1 /*
2  * Copyright (c) 1991-1997 Sam Leffler
3  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
4  *
5  * Permission to use, copy, modify, distribute, and sell this software and
6  * its documentation for any purpose is hereby granted without fee, provided
7  * that (i) the above copyright notices and this permission notice appear in
8  * all copies of the software and related documentation, and (ii) the names of
9  * Sam Leffler and Silicon Graphics may not be used in any advertising or
10  * publicity relating to the software without the specific, prior written
11  * permission of Sam Leffler and Silicon Graphics.
12  *
13  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
18  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22  * OF THIS SOFTWARE.
23  */
24 
25 /*
26  * TIFF Library
27  *
28  * Read and return a packed RGBA image.
29  */
30 #include "tiffiop.h"
31 #include <stdio.h>
32 
33 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
34 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
35 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
36 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int PickContigCase(TIFFRGBAImage*);
38 static int PickSeparateCase(TIFFRGBAImage*);
39 
40 static int BuildMapUaToAa(TIFFRGBAImage* img);
41 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
42 
43 static const char photoTag[] = "PhotometricInterpretation";
44 
45 /*
46  * Helper constants used in Orientation tag handling
47  */
48 #define FLIP_VERTICALLY 0x01
49 #define FLIP_HORIZONTALLY 0x02
50 
51 /*
52  * Color conversion constants. We will define display types here.
53  */
54 
55 static const TIFFDisplay display_sRGB = {
56 	{			/* XYZ -> luminance matrix */
57 		{  3.2410F, -1.5374F, -0.4986F },
58 		{  -0.9692F, 1.8760F, 0.0416F },
59 		{  0.0556F, -0.2040F, 1.0570F }
60 	},
61 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
62 	255, 255, 255,		/* Pixel values for ref. white */
63 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
64 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
65 };
66 
67 /*
68  * Check the image to see if TIFFReadRGBAImage can deal with it.
69  * 1/0 is returned according to whether or not the image can
70  * be handled.  If 0 is returned, emsg contains the reason
71  * why it is being rejected.
72  */
73 int
TIFFRGBAImageOK(TIFF * tif,char emsg[1024])74 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
75 {
76 	TIFFDirectory* td = &tif->tif_dir;
77 	uint16 photometric;
78 	int colorchannels;
79 
80 	if (!tif->tif_decodestatus) {
81 		sprintf(emsg, "Sorry, requested compression method is not configured");
82 		return (0);
83 	}
84 	switch (td->td_bitspersample) {
85 		case 1:
86 		case 2:
87 		case 4:
88 		case 8:
89 		case 16:
90 			break;
91 		default:
92 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
93 			    td->td_bitspersample);
94 			return (0);
95 	}
96         if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) {
97                 sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples");
98                 return (0);
99         }
100 	colorchannels = td->td_samplesperpixel - td->td_extrasamples;
101 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
102 		switch (colorchannels) {
103 			case 1:
104 				photometric = PHOTOMETRIC_MINISBLACK;
105 				break;
106 			case 3:
107 				photometric = PHOTOMETRIC_RGB;
108 				break;
109 			default:
110 				sprintf(emsg, "Missing needed %s tag", photoTag);
111 				return (0);
112 		}
113 	}
114 	switch (photometric) {
115 		case PHOTOMETRIC_MINISWHITE:
116 		case PHOTOMETRIC_MINISBLACK:
117 		case PHOTOMETRIC_PALETTE:
118 			if (td->td_planarconfig == PLANARCONFIG_CONTIG
119 			    && td->td_samplesperpixel != 1
120 			    && td->td_bitspersample < 8 ) {
121 				sprintf(emsg,
122 				    "Sorry, can not handle contiguous data with %s=%d, "
123 				    "and %s=%d and Bits/Sample=%d",
124 				    photoTag, photometric,
125 				    "Samples/pixel", td->td_samplesperpixel,
126 				    td->td_bitspersample);
127 				return (0);
128 			}
129 			/*
130 			 * We should likely validate that any extra samples are either
131 			 * to be ignored, or are alpha, and if alpha we should try to use
132 			 * them.  But for now we won't bother with this.
133 			*/
134 			break;
135 		case PHOTOMETRIC_YCBCR:
136 			/*
137 			 * TODO: if at all meaningful and useful, make more complete
138 			 * support check here, or better still, refactor to let supporting
139 			 * code decide whether there is support and what meaningful
140 			 * error to return
141 			 */
142 			break;
143 		case PHOTOMETRIC_RGB:
144 			if (colorchannels < 3) {
145 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
146 				    "Color channels", colorchannels);
147 				return (0);
148 			}
149 			break;
150 		case PHOTOMETRIC_SEPARATED:
151 			{
152 				uint16 inkset;
153 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
154 				if (inkset != INKSET_CMYK) {
155 					sprintf(emsg,
156 					    "Sorry, can not handle separated image with %s=%d",
157 					    "InkSet", inkset);
158 					return 0;
159 				}
160 				if (td->td_samplesperpixel < 4) {
161 					sprintf(emsg,
162 					    "Sorry, can not handle separated image with %s=%d",
163 					    "Samples/pixel", td->td_samplesperpixel);
164 					return 0;
165 				}
166 				break;
167 			}
168 		case PHOTOMETRIC_LOGL:
169 			if (td->td_compression != COMPRESSION_SGILOG) {
170 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
171 				    "Compression", COMPRESSION_SGILOG);
172 				return (0);
173 			}
174 			break;
175 		case PHOTOMETRIC_LOGLUV:
176 			if (td->td_compression != COMPRESSION_SGILOG &&
177 			    td->td_compression != COMPRESSION_SGILOG24) {
178 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
179 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
180 				return (0);
181 			}
182 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
183 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
184 				    "Planarconfiguration", td->td_planarconfig);
185 				return (0);
186 			}
187 			if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) {
188                                 sprintf(emsg,
189                                         "Sorry, can not handle image with %s=%d, %s=%d",
190                                         "Samples/pixel", td->td_samplesperpixel,
191                                         "colorchannels", colorchannels);
192                                 return 0;
193                         }
194 			break;
195 		case PHOTOMETRIC_CIELAB:
196                         if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) {
197                                 sprintf(emsg,
198                                         "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
199                                         "Samples/pixel", td->td_samplesperpixel,
200                                         "colorchannels", colorchannels,
201                                         "Bits/sample", td->td_bitspersample);
202                                 return 0;
203                         }
204 			break;
205                 default:
206 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
207 			    photoTag, photometric);
208 			return (0);
209 	}
210 	return (1);
211 }
212 
213 void
TIFFRGBAImageEnd(TIFFRGBAImage * img)214 TIFFRGBAImageEnd(TIFFRGBAImage* img)
215 {
216 	if (img->Map) {
217 		_TIFFfree(img->Map);
218 		img->Map = NULL;
219 	}
220 	if (img->BWmap) {
221 		_TIFFfree(img->BWmap);
222 		img->BWmap = NULL;
223 	}
224 	if (img->PALmap) {
225 		_TIFFfree(img->PALmap);
226 		img->PALmap = NULL;
227 	}
228 	if (img->ycbcr) {
229 		_TIFFfree(img->ycbcr);
230 		img->ycbcr = NULL;
231 	}
232 	if (img->cielab) {
233 		_TIFFfree(img->cielab);
234 		img->cielab = NULL;
235 	}
236 	if (img->UaToAa) {
237 		_TIFFfree(img->UaToAa);
238 		img->UaToAa = NULL;
239 	}
240 	if (img->Bitdepth16To8) {
241 		_TIFFfree(img->Bitdepth16To8);
242 		img->Bitdepth16To8 = NULL;
243 	}
244 
245 	if( img->redcmap ) {
246 		_TIFFfree( img->redcmap );
247 		_TIFFfree( img->greencmap );
248 		_TIFFfree( img->bluecmap );
249                 img->redcmap = img->greencmap = img->bluecmap = NULL;
250 	}
251 }
252 
253 static int
isCCITTCompression(TIFF * tif)254 isCCITTCompression(TIFF* tif)
255 {
256     uint16 compress;
257     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
258     return (compress == COMPRESSION_CCITTFAX3 ||
259 	    compress == COMPRESSION_CCITTFAX4 ||
260 	    compress == COMPRESSION_CCITTRLE ||
261 	    compress == COMPRESSION_CCITTRLEW);
262 }
263 
264 int
TIFFRGBAImageBegin(TIFFRGBAImage * img,TIFF * tif,int stop,char emsg[1024])265 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
266 {
267 	uint16* sampleinfo;
268 	uint16 extrasamples;
269 	uint16 planarconfig;
270 	uint16 compress;
271 	int colorchannels;
272 	uint16 *red_orig, *green_orig, *blue_orig;
273 	int n_color;
274 
275 	if( !TIFFRGBAImageOK(tif, emsg) )
276 		return 0;
277 
278 	/* Initialize to normal values */
279 	img->row_offset = 0;
280 	img->col_offset = 0;
281 	img->redcmap = NULL;
282 	img->greencmap = NULL;
283 	img->bluecmap = NULL;
284 	img->Map = NULL;
285 	img->BWmap = NULL;
286 	img->PALmap = NULL;
287 	img->ycbcr = NULL;
288 	img->cielab = NULL;
289 	img->UaToAa = NULL;
290 	img->Bitdepth16To8 = NULL;
291 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
292 
293 	img->tif = tif;
294 	img->stoponerr = stop;
295 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
296 	switch (img->bitspersample) {
297 		case 1:
298 		case 2:
299 		case 4:
300 		case 8:
301 		case 16:
302 			break;
303 		default:
304 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
305 			    img->bitspersample);
306 			goto fail_return;
307 	}
308 	img->alpha = 0;
309 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
310 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
311 	    &extrasamples, &sampleinfo);
312 	if (extrasamples >= 1)
313 	{
314 		switch (sampleinfo[0]) {
315 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
316 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */
317 					img->alpha = EXTRASAMPLE_ASSOCALPHA;
318 				break;
319 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
320 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
321 				img->alpha = sampleinfo[0];
322 				break;
323 		}
324 	}
325 
326 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
327 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
328 		img->photometric = PHOTOMETRIC_MINISWHITE;
329 
330 	if( extrasamples == 0
331 	    && img->samplesperpixel == 4
332 	    && img->photometric == PHOTOMETRIC_RGB )
333 	{
334 		img->alpha = EXTRASAMPLE_ASSOCALPHA;
335 		extrasamples = 1;
336 	}
337 #endif
338 
339 	colorchannels = img->samplesperpixel - extrasamples;
340 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
341 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
342 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
343 		switch (colorchannels) {
344 			case 1:
345 				if (isCCITTCompression(tif))
346 					img->photometric = PHOTOMETRIC_MINISWHITE;
347 				else
348 					img->photometric = PHOTOMETRIC_MINISBLACK;
349 				break;
350 			case 3:
351 				img->photometric = PHOTOMETRIC_RGB;
352 				break;
353 			default:
354 				sprintf(emsg, "Missing needed %s tag", photoTag);
355                                 goto fail_return;
356 		}
357 	}
358 	switch (img->photometric) {
359 		case PHOTOMETRIC_PALETTE:
360 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
361 			    &red_orig, &green_orig, &blue_orig)) {
362 				sprintf(emsg, "Missing required \"Colormap\" tag");
363                                 goto fail_return;
364 			}
365 
366 			/* copy the colormaps so we can modify them */
367 			n_color = (1U << img->bitspersample);
368 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
369 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
370 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
371 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
372 				sprintf(emsg, "Out of memory for colormap copy");
373                                 goto fail_return;
374 			}
375 
376 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
377 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
378 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
379 
380 			/* fall through... */
381 		case PHOTOMETRIC_MINISWHITE:
382 		case PHOTOMETRIC_MINISBLACK:
383 			if (planarconfig == PLANARCONFIG_CONTIG
384 			    && img->samplesperpixel != 1
385 			    && img->bitspersample < 8 ) {
386 				sprintf(emsg,
387 				    "Sorry, can not handle contiguous data with %s=%d, "
388 				    "and %s=%d and Bits/Sample=%d",
389 				    photoTag, img->photometric,
390 				    "Samples/pixel", img->samplesperpixel,
391 				    img->bitspersample);
392                                 goto fail_return;
393 			}
394 			break;
395 		case PHOTOMETRIC_YCBCR:
396 			/* It would probably be nice to have a reality check here. */
397 			if (planarconfig == PLANARCONFIG_CONTIG)
398 				/* can rely on libjpeg to convert to RGB */
399 				/* XXX should restore current state on exit */
400 				switch (compress) {
401 					case COMPRESSION_JPEG:
402 						/*
403 						 * TODO: when complete tests verify complete desubsampling
404 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
405 						 * favor of tif_getimage.c native handling
406 						 */
407 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
408 						img->photometric = PHOTOMETRIC_RGB;
409 						break;
410 					default:
411 						/* do nothing */;
412 						break;
413 				}
414 			/*
415 			 * TODO: if at all meaningful and useful, make more complete
416 			 * support check here, or better still, refactor to let supporting
417 			 * code decide whether there is support and what meaningful
418 			 * error to return
419 			 */
420 			break;
421 		case PHOTOMETRIC_RGB:
422 			if (colorchannels < 3) {
423 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
424 				    "Color channels", colorchannels);
425                                 goto fail_return;
426 			}
427 			break;
428 		case PHOTOMETRIC_SEPARATED:
429 			{
430 				uint16 inkset;
431 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
432 				if (inkset != INKSET_CMYK) {
433 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
434 					    "InkSet", inkset);
435                                         goto fail_return;
436 				}
437 				if (img->samplesperpixel < 4) {
438 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
439 					    "Samples/pixel", img->samplesperpixel);
440                                         goto fail_return;
441 				}
442 			}
443 			break;
444 		case PHOTOMETRIC_LOGL:
445 			if (compress != COMPRESSION_SGILOG) {
446 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
447 				    "Compression", COMPRESSION_SGILOG);
448                                 goto fail_return;
449 			}
450 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
451 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
452 			img->bitspersample = 8;
453 			break;
454 		case PHOTOMETRIC_LOGLUV:
455 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
456 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
457 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
458                                 goto fail_return;
459 			}
460 			if (planarconfig != PLANARCONFIG_CONTIG) {
461 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
462 				    "Planarconfiguration", planarconfig);
463 				return (0);
464 			}
465 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
466 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
467 			img->bitspersample = 8;
468 			break;
469 		case PHOTOMETRIC_CIELAB:
470 			break;
471 		default:
472 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
473 			    photoTag, img->photometric);
474                         goto fail_return;
475 	}
476 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
477 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
478 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
479 	img->isContig =
480 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
481 	if (img->isContig) {
482 		if (!PickContigCase(img)) {
483 			sprintf(emsg, "Sorry, can not handle image");
484 			goto fail_return;
485 		}
486 	} else {
487 		if (!PickSeparateCase(img)) {
488 			sprintf(emsg, "Sorry, can not handle image");
489 			goto fail_return;
490 		}
491 	}
492 	return 1;
493 
494   fail_return:
495         TIFFRGBAImageEnd( img );
496         return 0;
497 }
498 
499 int
TIFFRGBAImageGet(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)500 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
501 {
502     if (img->get == NULL) {
503 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
504 		return (0);
505 	}
506 	if (img->put.any == NULL) {
507 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
508 		"No \"put\" routine setupl; probably can not handle image format");
509 		return (0);
510     }
511     return (*img->get)(img, raster, w, h);
512 }
513 
514 /*
515  * Read the specified image into an ABGR-format rastertaking in account
516  * specified orientation.
517  */
518 int
TIFFReadRGBAImageOriented(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int orientation,int stop)519 TIFFReadRGBAImageOriented(TIFF* tif,
520 			  uint32 rwidth, uint32 rheight, uint32* raster,
521 			  int orientation, int stop)
522 {
523     char emsg[1024] = "";
524     TIFFRGBAImage img;
525     int ok;
526 
527 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
528 		img.req_orientation = (uint16)orientation;
529 		/* XXX verify rwidth and rheight against width and height */
530 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
531 			rwidth, img.height);
532 		TIFFRGBAImageEnd(&img);
533 	} else {
534 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
535 		ok = 0;
536     }
537     return (ok);
538 }
539 
540 /*
541  * Read the specified image into an ABGR-format raster. Use bottom left
542  * origin for raster by default.
543  */
544 int
TIFFReadRGBAImage(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int stop)545 TIFFReadRGBAImage(TIFF* tif,
546 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
547 {
548 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
549 					 ORIENTATION_BOTLEFT, stop);
550 }
551 
552 static int
setorientation(TIFFRGBAImage * img)553 setorientation(TIFFRGBAImage* img)
554 {
555 	switch (img->orientation) {
556 		case ORIENTATION_TOPLEFT:
557 		case ORIENTATION_LEFTTOP:
558 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
559 			    img->req_orientation == ORIENTATION_RIGHTTOP)
560 				return FLIP_HORIZONTALLY;
561 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
562 			    img->req_orientation == ORIENTATION_RIGHTBOT)
563 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
564 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
565 			    img->req_orientation == ORIENTATION_LEFTBOT)
566 				return FLIP_VERTICALLY;
567 			else
568 				return 0;
569 		case ORIENTATION_TOPRIGHT:
570 		case ORIENTATION_RIGHTTOP:
571 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
572 			    img->req_orientation == ORIENTATION_LEFTTOP)
573 				return FLIP_HORIZONTALLY;
574 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
575 			    img->req_orientation == ORIENTATION_RIGHTBOT)
576 				return FLIP_VERTICALLY;
577 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
578 			    img->req_orientation == ORIENTATION_LEFTBOT)
579 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
580 			else
581 				return 0;
582 		case ORIENTATION_BOTRIGHT:
583 		case ORIENTATION_RIGHTBOT:
584 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
585 			    img->req_orientation == ORIENTATION_LEFTTOP)
586 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
587 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
588 			    img->req_orientation == ORIENTATION_RIGHTTOP)
589 				return FLIP_VERTICALLY;
590 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
591 			    img->req_orientation == ORIENTATION_LEFTBOT)
592 				return FLIP_HORIZONTALLY;
593 			else
594 				return 0;
595 		case ORIENTATION_BOTLEFT:
596 		case ORIENTATION_LEFTBOT:
597 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
598 			    img->req_orientation == ORIENTATION_LEFTTOP)
599 				return FLIP_VERTICALLY;
600 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
601 			    img->req_orientation == ORIENTATION_RIGHTTOP)
602 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
603 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
604 			    img->req_orientation == ORIENTATION_RIGHTBOT)
605 				return FLIP_HORIZONTALLY;
606 			else
607 				return 0;
608 		default:	/* NOTREACHED */
609 			return 0;
610 	}
611 }
612 
613 /*
614  * Get an tile-organized image that has
615  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
616  * or
617  *	SamplesPerPixel == 1
618  */
619 static int
gtTileContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)620 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
621 {
622     TIFF* tif = img->tif;
623     tileContigRoutine put = img->put.contig;
624     uint32 col, row, y, rowstoread;
625     tmsize_t pos;
626     uint32 tw, th;
627     unsigned char* buf = NULL;
628     int32 fromskew, toskew;
629     uint32 nrow;
630     int ret = 1, flip;
631     uint32 this_tw, tocol;
632     int32 this_toskew, leftmost_toskew;
633     int32 leftmost_fromskew;
634     uint32 leftmost_tw;
635     tmsize_t bufsize;
636 
637     bufsize = TIFFTileSize(tif);
638     if (bufsize == 0) {
639         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
640         return (0);
641     }
642 
643     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
644     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
645 
646     flip = setorientation(img);
647     if (flip & FLIP_VERTICALLY) {
648 	    y = h - 1;
649 	    toskew = -(int32)(tw + w);
650     }
651     else {
652 	    y = 0;
653 	    toskew = -(int32)(tw - w);
654     }
655 
656     /*
657      *	Leftmost tile is clipped on left side if col_offset > 0.
658      */
659     leftmost_fromskew = img->col_offset % tw;
660     leftmost_tw = tw - leftmost_fromskew;
661     leftmost_toskew = toskew + leftmost_fromskew;
662     for (row = 0; ret != 0 && row < h; row += nrow)
663     {
664         rowstoread = th - (row + img->row_offset) % th;
665     	nrow = (row + rowstoread > h ? h - row : rowstoread);
666 	fromskew = leftmost_fromskew;
667 	this_tw = leftmost_tw;
668 	this_toskew = leftmost_toskew;
669 	tocol = 0;
670 	col = img->col_offset;
671 	while (tocol < w)
672         {
673 	    if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col,
674 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) &&
675                 (buf == NULL || img->stoponerr))
676             {
677                 ret = 0;
678                 break;
679             }
680             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
681 		   ((tmsize_t) fromskew * img->samplesperpixel);
682 	    if (tocol + this_tw > w)
683 	    {
684 		/*
685 		 * Rightmost tile is clipped on right side.
686 		 */
687 		fromskew = tw - (w - tocol);
688 		this_tw = tw - fromskew;
689 		this_toskew = toskew + fromskew;
690 	    }
691 	    (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
692 	    tocol += this_tw;
693 	    col += this_tw;
694 	    /*
695 	     * After the leftmost tile, tiles are no longer clipped on left side.
696 	     */
697 	    fromskew = 0;
698 	    this_tw = tw;
699 	    this_toskew = toskew;
700 	}
701 
702         y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
703     }
704     _TIFFfree(buf);
705 
706     if (flip & FLIP_HORIZONTALLY) {
707 	    uint32 line;
708 
709 	    for (line = 0; line < h; line++) {
710 		    uint32 *left = raster + (line * w);
711 		    uint32 *right = left + w - 1;
712 
713 		    while ( left < right ) {
714 			    uint32 temp = *left;
715 			    *left = *right;
716 			    *right = temp;
717 			    left++;
718 				right--;
719 		    }
720 	    }
721     }
722 
723     return (ret);
724 }
725 
726 /*
727  * Get an tile-organized image that has
728  *	 SamplesPerPixel > 1
729  *	 PlanarConfiguration separated
730  * We assume that all such images are RGB.
731  */
732 static int
gtTileSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)733 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
734 {
735 	TIFF* tif = img->tif;
736 	tileSeparateRoutine put = img->put.separate;
737 	uint32 col, row, y, rowstoread;
738 	tmsize_t pos;
739 	uint32 tw, th;
740 	unsigned char* buf = NULL;
741 	unsigned char* p0 = NULL;
742 	unsigned char* p1 = NULL;
743 	unsigned char* p2 = NULL;
744 	unsigned char* pa = NULL;
745 	tmsize_t tilesize;
746 	tmsize_t bufsize;
747 	int32 fromskew, toskew;
748 	int alpha = img->alpha;
749 	uint32 nrow;
750 	int ret = 1, flip;
751         uint16 colorchannels;
752 	uint32 this_tw, tocol;
753 	int32 this_toskew, leftmost_toskew;
754 	int32 leftmost_fromskew;
755 	uint32 leftmost_tw;
756 
757 	tilesize = TIFFTileSize(tif);
758 	bufsize = _TIFFMultiplySSize(tif, alpha?4:3,tilesize, "gtTileSeparate");
759 	if (bufsize == 0) {
760 		return (0);
761 	}
762 
763 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
764 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
765 
766 	flip = setorientation(img);
767 	if (flip & FLIP_VERTICALLY) {
768 		y = h - 1;
769 		toskew = -(int32)(tw + w);
770 	}
771 	else {
772 		y = 0;
773 		toskew = -(int32)(tw - w);
774 	}
775 
776         switch( img->photometric )
777         {
778           case PHOTOMETRIC_MINISWHITE:
779           case PHOTOMETRIC_MINISBLACK:
780           case PHOTOMETRIC_PALETTE:
781             colorchannels = 1;
782             break;
783 
784           default:
785             colorchannels = 3;
786             break;
787         }
788 
789 	/*
790 	 *	Leftmost tile is clipped on left side if col_offset > 0.
791 	 */
792 	leftmost_fromskew = img->col_offset % tw;
793 	leftmost_tw = tw - leftmost_fromskew;
794 	leftmost_toskew = toskew + leftmost_fromskew;
795 	for (row = 0; ret != 0 && row < h; row += nrow)
796 	{
797 		rowstoread = th - (row + img->row_offset) % th;
798 		nrow = (row + rowstoread > h ? h - row : rowstoread);
799 		fromskew = leftmost_fromskew;
800 		this_tw = leftmost_tw;
801 		this_toskew = leftmost_toskew;
802 		tocol = 0;
803 		col = img->col_offset;
804 		while (tocol < w)
805 		{
806                         if( buf == NULL )
807                         {
808                             if (_TIFFReadTileAndAllocBuffer(
809                                     tif, (void**) &buf, bufsize, col,
810                                     row+img->row_offset,0,0)==(tmsize_t)(-1)
811                                 && (buf == NULL || img->stoponerr))
812                             {
813                                     ret = 0;
814                                     break;
815                             }
816                             p0 = buf;
817                             if( colorchannels == 1 )
818                             {
819                                 p2 = p1 = p0;
820                                 pa = (alpha?(p0+3*tilesize):NULL);
821                             }
822                             else
823                             {
824                                 p1 = p0 + tilesize;
825                                 p2 = p1 + tilesize;
826                                 pa = (alpha?(p2+tilesize):NULL);
827                             }
828                         }
829 			else if (TIFFReadTile(tif, p0, col,
830 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
831 			{
832 				ret = 0;
833 				break;
834 			}
835 			if (colorchannels > 1
836                             && TIFFReadTile(tif, p1, col,
837                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
838                             && img->stoponerr)
839 			{
840 				ret = 0;
841 				break;
842 			}
843 			if (colorchannels > 1
844                             && TIFFReadTile(tif, p2, col,
845                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
846                             && img->stoponerr)
847 			{
848 				ret = 0;
849 				break;
850 			}
851 			if (alpha
852                             && TIFFReadTile(tif,pa,col,
853                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
854                             && img->stoponerr)
855                         {
856                             ret = 0;
857                             break;
858 			}
859 
860 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
861 			   ((tmsize_t) fromskew * img->samplesperpixel);
862 			if (tocol + this_tw > w)
863 			{
864 				/*
865 				 * Rightmost tile is clipped on right side.
866 				 */
867 				fromskew = tw - (w - tocol);
868 				this_tw = tw - fromskew;
869 				this_toskew = toskew + fromskew;
870 			}
871 			(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
872 				p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
873 			tocol += this_tw;
874 			col += this_tw;
875 			/*
876 			* After the leftmost tile, tiles are no longer clipped on left side.
877 			*/
878 			fromskew = 0;
879 			this_tw = tw;
880 			this_toskew = toskew;
881 		}
882 
883 		y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow);
884 	}
885 
886 	if (flip & FLIP_HORIZONTALLY) {
887 		uint32 line;
888 
889 		for (line = 0; line < h; line++) {
890 			uint32 *left = raster + (line * w);
891 			uint32 *right = left + w - 1;
892 
893 			while ( left < right ) {
894 				uint32 temp = *left;
895 				*left = *right;
896 				*right = temp;
897 				left++;
898 				right--;
899 			}
900 		}
901 	}
902 
903 	_TIFFfree(buf);
904 	return (ret);
905 }
906 
907 /*
908  * Get a strip-organized image that has
909  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
910  * or
911  *	SamplesPerPixel == 1
912  */
913 static int
gtStripContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)914 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
915 {
916 	TIFF* tif = img->tif;
917 	tileContigRoutine put = img->put.contig;
918 	uint32 row, y, nrow, nrowsub, rowstoread;
919 	tmsize_t pos;
920 	unsigned char* buf = NULL;
921 	uint32 rowsperstrip;
922 	uint16 subsamplinghor,subsamplingver;
923 	uint32 imagewidth = img->width;
924 	tmsize_t scanline;
925 	int32 fromskew, toskew;
926 	int ret = 1, flip;
927         tmsize_t maxstripsize;
928 
929 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
930 	if( subsamplingver == 0 ) {
931 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
932 		return (0);
933 	}
934 
935 	maxstripsize = TIFFStripSize(tif);
936 
937 	flip = setorientation(img);
938 	if (flip & FLIP_VERTICALLY) {
939 		y = h - 1;
940 		toskew = -(int32)(w + w);
941 	} else {
942 		y = 0;
943 		toskew = -(int32)(w - w);
944 	}
945 
946 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
947 
948 	scanline = TIFFScanlineSize(tif);
949 	fromskew = (w < imagewidth ? imagewidth - w : 0);
950 	for (row = 0; row < h; row += nrow)
951 	{
952 		uint32 temp;
953 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
954 		nrow = (row + rowstoread > h ? h - row : rowstoread);
955 		nrowsub = nrow;
956 		if ((nrowsub%subsamplingver)!=0)
957 			nrowsub+=subsamplingver-nrowsub%subsamplingver;
958 		temp = (row + img->row_offset)%rowsperstrip + nrowsub;
959 		if( scanline > 0 && temp > (size_t)(TIFF_TMSIZE_T_MAX / scanline) )
960 		{
961 			TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in gtStripContig");
962 			return 0;
963 		}
964 		if (_TIFFReadEncodedStripAndAllocBuffer(tif,
965 		    TIFFComputeStrip(tif,row+img->row_offset, 0),
966 		    (void**)(&buf),
967                     maxstripsize,
968 		    temp * scanline)==(tmsize_t)(-1)
969 		    && (buf == NULL || img->stoponerr))
970 		{
971 			ret = 0;
972 			break;
973 		}
974 
975 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
976 			((tmsize_t) img->col_offset * img->samplesperpixel);
977 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
978 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
979 	}
980 
981 	if (flip & FLIP_HORIZONTALLY) {
982 		uint32 line;
983 
984 		for (line = 0; line < h; line++) {
985 			uint32 *left = raster + (line * w);
986 			uint32 *right = left + w - 1;
987 
988 			while ( left < right ) {
989 				uint32 temp = *left;
990 				*left = *right;
991 				*right = temp;
992 				left++;
993 				right--;
994 			}
995 		}
996 	}
997 
998 	_TIFFfree(buf);
999 	return (ret);
1000 }
1001 
1002 /*
1003  * Get a strip-organized image with
1004  *	 SamplesPerPixel > 1
1005  *	 PlanarConfiguration separated
1006  * We assume that all such images are RGB.
1007  */
1008 static int
gtStripSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)1009 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
1010 {
1011 	TIFF* tif = img->tif;
1012 	tileSeparateRoutine put = img->put.separate;
1013 	unsigned char *buf = NULL;
1014 	unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
1015 	uint32 row, y, nrow, rowstoread;
1016 	tmsize_t pos;
1017 	tmsize_t scanline;
1018 	uint32 rowsperstrip, offset_row;
1019 	uint32 imagewidth = img->width;
1020 	tmsize_t stripsize;
1021 	tmsize_t bufsize;
1022 	int32 fromskew, toskew;
1023 	int alpha = img->alpha;
1024 	int ret = 1, flip;
1025         uint16 colorchannels;
1026 
1027 	stripsize = TIFFStripSize(tif);
1028 	bufsize = _TIFFMultiplySSize(tif,alpha?4:3,stripsize, "gtStripSeparate");
1029 	if (bufsize == 0) {
1030 		return (0);
1031 	}
1032 
1033 	flip = setorientation(img);
1034 	if (flip & FLIP_VERTICALLY) {
1035 		y = h - 1;
1036 		toskew = -(int32)(w + w);
1037 	}
1038 	else {
1039 		y = 0;
1040 		toskew = -(int32)(w - w);
1041 	}
1042 
1043         switch( img->photometric )
1044         {
1045           case PHOTOMETRIC_MINISWHITE:
1046           case PHOTOMETRIC_MINISBLACK:
1047           case PHOTOMETRIC_PALETTE:
1048             colorchannels = 1;
1049             break;
1050 
1051           default:
1052             colorchannels = 3;
1053             break;
1054         }
1055 
1056 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
1057 	scanline = TIFFScanlineSize(tif);
1058 	fromskew = (w < imagewidth ? imagewidth - w : 0);
1059 	for (row = 0; row < h; row += nrow)
1060 	{
1061                 uint32 temp;
1062 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
1063 		nrow = (row + rowstoread > h ? h - row : rowstoread);
1064 		offset_row = row + img->row_offset;
1065                 temp = (row + img->row_offset)%rowsperstrip + nrow;
1066                 if( scanline > 0 && temp > (size_t)(TIFF_TMSIZE_T_MAX / scanline) )
1067                 {
1068                         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in gtStripSeparate");
1069                         return 0;
1070                 }
1071                 if( buf == NULL )
1072                 {
1073                     if (_TIFFReadEncodedStripAndAllocBuffer(
1074                             tif, TIFFComputeStrip(tif, offset_row, 0),
1075                             (void**) &buf, bufsize,
1076                             temp * scanline)==(tmsize_t)(-1)
1077                         && (buf == NULL || img->stoponerr))
1078                     {
1079                             ret = 0;
1080                             break;
1081                     }
1082                     p0 = buf;
1083                     if( colorchannels == 1 )
1084                     {
1085                         p2 = p1 = p0;
1086                         pa = (alpha?(p0+3*stripsize):NULL);
1087                     }
1088                     else
1089                     {
1090                         p1 = p0 + stripsize;
1091                         p2 = p1 + stripsize;
1092                         pa = (alpha?(p2+stripsize):NULL);
1093                     }
1094                 }
1095 		else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
1096 		    p0, temp * scanline)==(tmsize_t)(-1)
1097 		    && img->stoponerr)
1098 		{
1099 			ret = 0;
1100 			break;
1101 		}
1102 		if (colorchannels > 1
1103                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
1104                                             p1, temp * scanline) == (tmsize_t)(-1)
1105 		    && img->stoponerr)
1106 		{
1107 			ret = 0;
1108 			break;
1109 		}
1110 		if (colorchannels > 1
1111                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
1112                                             p2, temp * scanline) == (tmsize_t)(-1)
1113 		    && img->stoponerr)
1114 		{
1115 			ret = 0;
1116 			break;
1117 		}
1118 		if (alpha)
1119 		{
1120 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1121 			    pa, temp * scanline)==(tmsize_t)(-1)
1122 			    && img->stoponerr)
1123 			{
1124 				ret = 0;
1125 				break;
1126 			}
1127 		}
1128 
1129 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1130 			((tmsize_t) img->col_offset * img->samplesperpixel);
1131 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1132 		    p2 + pos, (alpha?(pa+pos):NULL));
1133 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
1134 	}
1135 
1136 	if (flip & FLIP_HORIZONTALLY) {
1137 		uint32 line;
1138 
1139 		for (line = 0; line < h; line++) {
1140 			uint32 *left = raster + (line * w);
1141 			uint32 *right = left + w - 1;
1142 
1143 			while ( left < right ) {
1144 				uint32 temp = *left;
1145 				*left = *right;
1146 				*right = temp;
1147 				left++;
1148 				right--;
1149 			}
1150 		}
1151 	}
1152 
1153 	_TIFFfree(buf);
1154 	return (ret);
1155 }
1156 
1157 /*
1158  * The following routines move decoded data returned
1159  * from the TIFF library into rasters filled with packed
1160  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1161  *
1162  * The routines have been created according to the most
1163  * important cases and optimized.  PickContigCase and
1164  * PickSeparateCase analyze the parameters and select
1165  * the appropriate "get" and "put" routine to use.
1166  */
1167 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
1168 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
1169 #define	REPEAT2(op)	op; op
1170 #define	CASE8(x,op)			\
1171     switch (x) {			\
1172     case 7: op; /*-fallthrough*/ \
1173     case 6: op; /*-fallthrough*/ \
1174     case 5: op; /*-fallthrough*/ \
1175     case 4: op; /*-fallthrough*/ \
1176     case 3: op; /*-fallthrough*/ \
1177     case 2: op; /*-fallthrough*/ \
1178     case 1: op;				\
1179     }
1180 #define	CASE4(x,op)	switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; }
1181 #define	NOP
1182 
1183 #define	UNROLL8(w, op1, op2) {		\
1184     uint32 _x;				\
1185     for (_x = w; _x >= 8; _x -= 8) {	\
1186 	op1;				\
1187 	REPEAT8(op2);			\
1188     }					\
1189     if (_x > 0) {			\
1190 	op1;				\
1191 	CASE8(_x,op2);			\
1192     }					\
1193 }
1194 #define	UNROLL4(w, op1, op2) {		\
1195     uint32 _x;				\
1196     for (_x = w; _x >= 4; _x -= 4) {	\
1197 	op1;				\
1198 	REPEAT4(op2);			\
1199     }					\
1200     if (_x > 0) {			\
1201 	op1;				\
1202 	CASE4(_x,op2);			\
1203     }					\
1204 }
1205 #define	UNROLL2(w, op1, op2) {		\
1206     uint32 _x;				\
1207     for (_x = w; _x >= 2; _x -= 2) {	\
1208 	op1;				\
1209 	REPEAT2(op2);			\
1210     }					\
1211     if (_x) {				\
1212 	op1;				\
1213 	op2;				\
1214     }					\
1215 }
1216 
1217 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
1218 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
1219 
1220 #define A1 (((uint32)0xffL)<<24)
1221 #define	PACK(r,g,b)	\
1222 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1223 #define	PACK4(r,g,b,a)	\
1224 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1225 #define W2B(v) (((v)>>8)&0xff)
1226 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1227 #define	PACKW(r,g,b)	\
1228 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1229 #define	PACKW4(r,g,b,a)	\
1230 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1231 
1232 #define	DECLAREContigPutFunc(name) \
1233 static void name(\
1234     TIFFRGBAImage* img, \
1235     uint32* cp, \
1236     uint32 x, uint32 y, \
1237     uint32 w, uint32 h, \
1238     int32 fromskew, int32 toskew, \
1239     unsigned char* pp \
1240 )
1241 
1242 /*
1243  * 8-bit palette => colormap/RGB
1244  */
DECLAREContigPutFunc(put8bitcmaptile)1245 DECLAREContigPutFunc(put8bitcmaptile)
1246 {
1247     uint32** PALmap = img->PALmap;
1248     int samplesperpixel = img->samplesperpixel;
1249 
1250     (void) y;
1251     for( ; h > 0; --h) {
1252 	for (x = w; x > 0; --x)
1253         {
1254 	    *cp++ = PALmap[*pp][0];
1255             pp += samplesperpixel;
1256         }
1257 	cp += toskew;
1258 	pp += fromskew;
1259     }
1260 }
1261 
1262 /*
1263  * 4-bit palette => colormap/RGB
1264  */
DECLAREContigPutFunc(put4bitcmaptile)1265 DECLAREContigPutFunc(put4bitcmaptile)
1266 {
1267     uint32** PALmap = img->PALmap;
1268 
1269     (void) x; (void) y;
1270     fromskew /= 2;
1271     for( ; h > 0; --h) {
1272 	uint32* bw;
1273 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1274 	cp += toskew;
1275 	pp += fromskew;
1276     }
1277 }
1278 
1279 /*
1280  * 2-bit palette => colormap/RGB
1281  */
DECLAREContigPutFunc(put2bitcmaptile)1282 DECLAREContigPutFunc(put2bitcmaptile)
1283 {
1284     uint32** PALmap = img->PALmap;
1285 
1286     (void) x; (void) y;
1287     fromskew /= 4;
1288     for( ; h > 0; --h) {
1289 	uint32* bw;
1290 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1291 	cp += toskew;
1292 	pp += fromskew;
1293     }
1294 }
1295 
1296 /*
1297  * 1-bit palette => colormap/RGB
1298  */
DECLAREContigPutFunc(put1bitcmaptile)1299 DECLAREContigPutFunc(put1bitcmaptile)
1300 {
1301     uint32** PALmap = img->PALmap;
1302 
1303     (void) x; (void) y;
1304     fromskew /= 8;
1305     for( ; h > 0; --h) {
1306 	uint32* bw;
1307 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1308 	cp += toskew;
1309 	pp += fromskew;
1310     }
1311 }
1312 
1313 /*
1314  * 8-bit greyscale => colormap/RGB
1315  */
DECLAREContigPutFunc(putgreytile)1316 DECLAREContigPutFunc(putgreytile)
1317 {
1318     int samplesperpixel = img->samplesperpixel;
1319     uint32** BWmap = img->BWmap;
1320 
1321     (void) y;
1322     for( ; h > 0; --h) {
1323 	for (x = w; x > 0; --x)
1324         {
1325 	    *cp++ = BWmap[*pp][0];
1326             pp += samplesperpixel;
1327         }
1328 	cp += toskew;
1329 	pp += fromskew;
1330     }
1331 }
1332 
1333 /*
1334  * 8-bit greyscale with associated alpha => colormap/RGBA
1335  */
DECLAREContigPutFunc(putagreytile)1336 DECLAREContigPutFunc(putagreytile)
1337 {
1338     int samplesperpixel = img->samplesperpixel;
1339     uint32** BWmap = img->BWmap;
1340 
1341     (void) y;
1342     for( ; h > 0; --h) {
1343 	for (x = w; x > 0; --x)
1344         {
1345             *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
1346             pp += samplesperpixel;
1347         }
1348 	cp += toskew;
1349 	pp += fromskew;
1350     }
1351 }
1352 
1353 /*
1354  * 16-bit greyscale => colormap/RGB
1355  */
DECLAREContigPutFunc(put16bitbwtile)1356 DECLAREContigPutFunc(put16bitbwtile)
1357 {
1358     int samplesperpixel = img->samplesperpixel;
1359     uint32** BWmap = img->BWmap;
1360 
1361     (void) y;
1362     for( ; h > 0; --h) {
1363         uint16 *wp = (uint16 *) pp;
1364 
1365 	for (x = w; x > 0; --x)
1366         {
1367             /* use high order byte of 16bit value */
1368 
1369 	    *cp++ = BWmap[*wp >> 8][0];
1370             pp += 2 * samplesperpixel;
1371             wp += samplesperpixel;
1372         }
1373 	cp += toskew;
1374 	pp += fromskew;
1375     }
1376 }
1377 
1378 /*
1379  * 1-bit bilevel => colormap/RGB
1380  */
DECLAREContigPutFunc(put1bitbwtile)1381 DECLAREContigPutFunc(put1bitbwtile)
1382 {
1383     uint32** BWmap = img->BWmap;
1384 
1385     (void) x; (void) y;
1386     fromskew /= 8;
1387     for( ; h > 0; --h) {
1388 	uint32* bw;
1389 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1390 	cp += toskew;
1391 	pp += fromskew;
1392     }
1393 }
1394 
1395 /*
1396  * 2-bit greyscale => colormap/RGB
1397  */
DECLAREContigPutFunc(put2bitbwtile)1398 DECLAREContigPutFunc(put2bitbwtile)
1399 {
1400     uint32** BWmap = img->BWmap;
1401 
1402     (void) x; (void) y;
1403     fromskew /= 4;
1404     for( ; h > 0; --h) {
1405 	uint32* bw;
1406 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1407 	cp += toskew;
1408 	pp += fromskew;
1409     }
1410 }
1411 
1412 /*
1413  * 4-bit greyscale => colormap/RGB
1414  */
DECLAREContigPutFunc(put4bitbwtile)1415 DECLAREContigPutFunc(put4bitbwtile)
1416 {
1417     uint32** BWmap = img->BWmap;
1418 
1419     (void) x; (void) y;
1420     fromskew /= 2;
1421     for( ; h > 0; --h) {
1422 	uint32* bw;
1423 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1424 	cp += toskew;
1425 	pp += fromskew;
1426     }
1427 }
1428 
1429 /*
1430  * 8-bit packed samples, no Map => RGB
1431  */
DECLAREContigPutFunc(putRGBcontig8bittile)1432 DECLAREContigPutFunc(putRGBcontig8bittile)
1433 {
1434     int samplesperpixel = img->samplesperpixel;
1435 
1436     (void) x; (void) y;
1437     fromskew *= samplesperpixel;
1438     for( ; h > 0; --h) {
1439 	UNROLL8(w, NOP,
1440 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
1441 	    pp += samplesperpixel);
1442 	cp += toskew;
1443 	pp += fromskew;
1444     }
1445 }
1446 
1447 /*
1448  * 8-bit packed samples => RGBA w/ associated alpha
1449  * (known to have Map == NULL)
1450  */
DECLAREContigPutFunc(putRGBAAcontig8bittile)1451 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1452 {
1453     int samplesperpixel = img->samplesperpixel;
1454 
1455     (void) x; (void) y;
1456     fromskew *= samplesperpixel;
1457     for( ; h > 0; --h) {
1458 	UNROLL8(w, NOP,
1459 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1460 	    pp += samplesperpixel);
1461 	cp += toskew;
1462 	pp += fromskew;
1463     }
1464 }
1465 
1466 /*
1467  * 8-bit packed samples => RGBA w/ unassociated alpha
1468  * (known to have Map == NULL)
1469  */
DECLAREContigPutFunc(putRGBUAcontig8bittile)1470 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1471 {
1472 	int samplesperpixel = img->samplesperpixel;
1473 	(void) y;
1474 	fromskew *= samplesperpixel;
1475 	for( ; h > 0; --h) {
1476 		uint32 r, g, b, a;
1477 		uint8* m;
1478 		for (x = w; x > 0; --x) {
1479 			a = pp[3];
1480 			m = img->UaToAa+((size_t) a<<8);
1481 			r = m[pp[0]];
1482 			g = m[pp[1]];
1483 			b = m[pp[2]];
1484 			*cp++ = PACK4(r,g,b,a);
1485 			pp += samplesperpixel;
1486 		}
1487 		cp += toskew;
1488 		pp += fromskew;
1489 	}
1490 }
1491 
1492 /*
1493  * 16-bit packed samples => RGB
1494  */
DECLAREContigPutFunc(putRGBcontig16bittile)1495 DECLAREContigPutFunc(putRGBcontig16bittile)
1496 {
1497 	int samplesperpixel = img->samplesperpixel;
1498 	uint16 *wp = (uint16 *)pp;
1499 	(void) y;
1500 	fromskew *= samplesperpixel;
1501 	for( ; h > 0; --h) {
1502 		for (x = w; x > 0; --x) {
1503 			*cp++ = PACK(img->Bitdepth16To8[wp[0]],
1504 			    img->Bitdepth16To8[wp[1]],
1505 			    img->Bitdepth16To8[wp[2]]);
1506 			wp += samplesperpixel;
1507 		}
1508 		cp += toskew;
1509 		wp += fromskew;
1510 	}
1511 }
1512 
1513 /*
1514  * 16-bit packed samples => RGBA w/ associated alpha
1515  * (known to have Map == NULL)
1516  */
DECLAREContigPutFunc(putRGBAAcontig16bittile)1517 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1518 {
1519 	int samplesperpixel = img->samplesperpixel;
1520 	uint16 *wp = (uint16 *)pp;
1521 	(void) y;
1522 	fromskew *= samplesperpixel;
1523 	for( ; h > 0; --h) {
1524 		for (x = w; x > 0; --x) {
1525 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1526 			    img->Bitdepth16To8[wp[1]],
1527 			    img->Bitdepth16To8[wp[2]],
1528 			    img->Bitdepth16To8[wp[3]]);
1529 			wp += samplesperpixel;
1530 		}
1531 		cp += toskew;
1532 		wp += fromskew;
1533 	}
1534 }
1535 
1536 /*
1537  * 16-bit packed samples => RGBA w/ unassociated alpha
1538  * (known to have Map == NULL)
1539  */
DECLAREContigPutFunc(putRGBUAcontig16bittile)1540 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1541 {
1542 	int samplesperpixel = img->samplesperpixel;
1543 	uint16 *wp = (uint16 *)pp;
1544 	(void) y;
1545 	fromskew *= samplesperpixel;
1546 	for( ; h > 0; --h) {
1547 		uint32 r,g,b,a;
1548 		uint8* m;
1549 		for (x = w; x > 0; --x) {
1550 			a = img->Bitdepth16To8[wp[3]];
1551 			m = img->UaToAa+((size_t) a<<8);
1552 			r = m[img->Bitdepth16To8[wp[0]]];
1553 			g = m[img->Bitdepth16To8[wp[1]]];
1554 			b = m[img->Bitdepth16To8[wp[2]]];
1555 			*cp++ = PACK4(r,g,b,a);
1556 			wp += samplesperpixel;
1557 		}
1558 		cp += toskew;
1559 		wp += fromskew;
1560 	}
1561 }
1562 
1563 /*
1564  * 8-bit packed CMYK samples w/o Map => RGB
1565  *
1566  * NB: The conversion of CMYK->RGB is *very* crude.
1567  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)1568 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1569 {
1570     int samplesperpixel = img->samplesperpixel;
1571     uint16 r, g, b, k;
1572 
1573     (void) x; (void) y;
1574     fromskew *= samplesperpixel;
1575     for( ; h > 0; --h) {
1576 	UNROLL8(w, NOP,
1577 	    k = 255 - pp[3];
1578 	    r = (k*(255-pp[0]))/255;
1579 	    g = (k*(255-pp[1]))/255;
1580 	    b = (k*(255-pp[2]))/255;
1581 	    *cp++ = PACK(r, g, b);
1582 	    pp += samplesperpixel);
1583 	cp += toskew;
1584 	pp += fromskew;
1585     }
1586 }
1587 
1588 /*
1589  * 8-bit packed CMYK samples w/Map => RGB
1590  *
1591  * NB: The conversion of CMYK->RGB is *very* crude.
1592  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)1593 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1594 {
1595     int samplesperpixel = img->samplesperpixel;
1596     TIFFRGBValue* Map = img->Map;
1597     uint16 r, g, b, k;
1598 
1599     (void) y;
1600     fromskew *= samplesperpixel;
1601     for( ; h > 0; --h) {
1602 	for (x = w; x > 0; --x) {
1603 	    k = 255 - pp[3];
1604 	    r = (k*(255-pp[0]))/255;
1605 	    g = (k*(255-pp[1]))/255;
1606 	    b = (k*(255-pp[2]))/255;
1607 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
1608 	    pp += samplesperpixel;
1609 	}
1610 	pp += fromskew;
1611 	cp += toskew;
1612     }
1613 }
1614 
1615 #define	DECLARESepPutFunc(name) \
1616 static void name(\
1617     TIFFRGBAImage* img,\
1618     uint32* cp,\
1619     uint32 x, uint32 y, \
1620     uint32 w, uint32 h,\
1621     int32 fromskew, int32 toskew,\
1622     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1623 )
1624 
1625 /*
1626  * 8-bit unpacked samples => RGB
1627  */
DECLARESepPutFunc(putRGBseparate8bittile)1628 DECLARESepPutFunc(putRGBseparate8bittile)
1629 {
1630     (void) img; (void) x; (void) y; (void) a;
1631     for( ; h > 0; --h) {
1632 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1633 	SKEW(r, g, b, fromskew);
1634 	cp += toskew;
1635     }
1636 }
1637 
1638 /*
1639  * 8-bit unpacked samples => RGBA w/ associated alpha
1640  */
DECLARESepPutFunc(putRGBAAseparate8bittile)1641 DECLARESepPutFunc(putRGBAAseparate8bittile)
1642 {
1643 	(void) img; (void) x; (void) y;
1644 	for( ; h > 0; --h) {
1645 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1646 		SKEW4(r, g, b, a, fromskew);
1647 		cp += toskew;
1648 	}
1649 }
1650 
1651 /*
1652  * 8-bit unpacked CMYK samples => RGBA
1653  */
DECLARESepPutFunc(putCMYKseparate8bittile)1654 DECLARESepPutFunc(putCMYKseparate8bittile)
1655 {
1656 	(void) img; (void) y;
1657 	for( ; h > 0; --h) {
1658 		uint32 rv, gv, bv, kv;
1659 		for (x = w; x > 0; --x) {
1660 			kv = 255 - *a++;
1661 			rv = (kv*(255-*r++))/255;
1662 			gv = (kv*(255-*g++))/255;
1663 			bv = (kv*(255-*b++))/255;
1664 			*cp++ = PACK4(rv,gv,bv,255);
1665 		}
1666 		SKEW4(r, g, b, a, fromskew);
1667 		cp += toskew;
1668 	}
1669 }
1670 
1671 /*
1672  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1673  */
DECLARESepPutFunc(putRGBUAseparate8bittile)1674 DECLARESepPutFunc(putRGBUAseparate8bittile)
1675 {
1676 	(void) img; (void) y;
1677 	for( ; h > 0; --h) {
1678 		uint32 rv, gv, bv, av;
1679 		uint8* m;
1680 		for (x = w; x > 0; --x) {
1681 			av = *a++;
1682 			m = img->UaToAa+((size_t) av<<8);
1683 			rv = m[*r++];
1684 			gv = m[*g++];
1685 			bv = m[*b++];
1686 			*cp++ = PACK4(rv,gv,bv,av);
1687 		}
1688 		SKEW4(r, g, b, a, fromskew);
1689 		cp += toskew;
1690 	}
1691 }
1692 
1693 /*
1694  * 16-bit unpacked samples => RGB
1695  */
DECLARESepPutFunc(putRGBseparate16bittile)1696 DECLARESepPutFunc(putRGBseparate16bittile)
1697 {
1698 	uint16 *wr = (uint16*) r;
1699 	uint16 *wg = (uint16*) g;
1700 	uint16 *wb = (uint16*) b;
1701 	(void) img; (void) y; (void) a;
1702 	for( ; h > 0; --h) {
1703 		for (x = 0; x < w; x++)
1704 			*cp++ = PACK(img->Bitdepth16To8[*wr++],
1705 			    img->Bitdepth16To8[*wg++],
1706 			    img->Bitdepth16To8[*wb++]);
1707 		SKEW(wr, wg, wb, fromskew);
1708 		cp += toskew;
1709 	}
1710 }
1711 
1712 /*
1713  * 16-bit unpacked samples => RGBA w/ associated alpha
1714  */
DECLARESepPutFunc(putRGBAAseparate16bittile)1715 DECLARESepPutFunc(putRGBAAseparate16bittile)
1716 {
1717 	uint16 *wr = (uint16*) r;
1718 	uint16 *wg = (uint16*) g;
1719 	uint16 *wb = (uint16*) b;
1720 	uint16 *wa = (uint16*) a;
1721 	(void) img; (void) y;
1722 	for( ; h > 0; --h) {
1723 		for (x = 0; x < w; x++)
1724 			*cp++ = PACK4(img->Bitdepth16To8[*wr++],
1725 			    img->Bitdepth16To8[*wg++],
1726 			    img->Bitdepth16To8[*wb++],
1727 			    img->Bitdepth16To8[*wa++]);
1728 		SKEW4(wr, wg, wb, wa, fromskew);
1729 		cp += toskew;
1730 	}
1731 }
1732 
1733 /*
1734  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1735  */
DECLARESepPutFunc(putRGBUAseparate16bittile)1736 DECLARESepPutFunc(putRGBUAseparate16bittile)
1737 {
1738 	uint16 *wr = (uint16*) r;
1739 	uint16 *wg = (uint16*) g;
1740 	uint16 *wb = (uint16*) b;
1741 	uint16 *wa = (uint16*) a;
1742 	(void) img; (void) y;
1743 	for( ; h > 0; --h) {
1744 		uint32 r2,g2,b2,a2;
1745 		uint8* m;
1746 		for (x = w; x > 0; --x) {
1747 			a2 = img->Bitdepth16To8[*wa++];
1748 			m = img->UaToAa+((size_t) a2<<8);
1749 			r2 = m[img->Bitdepth16To8[*wr++]];
1750 			g2 = m[img->Bitdepth16To8[*wg++]];
1751 			b2 = m[img->Bitdepth16To8[*wb++]];
1752 			*cp++ = PACK4(r2,g2,b2,a2);
1753 		}
1754 		SKEW4(wr, wg, wb, wa, fromskew);
1755 		cp += toskew;
1756 	}
1757 }
1758 
1759 /*
1760  * 8-bit packed CIE L*a*b 1976 samples => RGB
1761  */
DECLAREContigPutFunc(putcontig8bitCIELab)1762 DECLAREContigPutFunc(putcontig8bitCIELab)
1763 {
1764 	float X, Y, Z;
1765 	uint32 r, g, b;
1766 	(void) y;
1767 	fromskew *= 3;
1768 	for( ; h > 0; --h) {
1769 		for (x = w; x > 0; --x) {
1770 			TIFFCIELabToXYZ(img->cielab,
1771 					(unsigned char)pp[0],
1772 					(signed char)pp[1],
1773 					(signed char)pp[2],
1774 					&X, &Y, &Z);
1775 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1776 			*cp++ = PACK(r, g, b);
1777 			pp += 3;
1778 		}
1779 		cp += toskew;
1780 		pp += fromskew;
1781 	}
1782 }
1783 
1784 /*
1785  * YCbCr -> RGB conversion and packing routines.
1786  */
1787 
1788 #define	YCbCrtoRGB(dst, Y) {						\
1789 	uint32 r, g, b;							\
1790 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
1791 	dst = PACK(r, g, b);						\
1792 }
1793 
1794 /*
1795  * 8-bit packed YCbCr samples => RGB
1796  * This function is generic for different sampling sizes,
1797  * and can handle blocks sizes that aren't multiples of the
1798  * sampling size.  However, it is substantially less optimized
1799  * than the specific sampling cases.  It is used as a fallback
1800  * for difficult blocks.
1801  */
1802 #ifdef notdef
putcontig8bitYCbCrGenericTile(TIFFRGBAImage * img,uint32 * cp,uint32 x,uint32 y,uint32 w,uint32 h,int32 fromskew,int32 toskew,unsigned char * pp,int h_group,int v_group)1803 static void putcontig8bitYCbCrGenericTile(
1804     TIFFRGBAImage* img,
1805     uint32* cp,
1806     uint32 x, uint32 y,
1807     uint32 w, uint32 h,
1808     int32 fromskew, int32 toskew,
1809     unsigned char* pp,
1810     int h_group,
1811     int v_group )
1812 
1813 {
1814     uint32* cp1 = cp+w+toskew;
1815     uint32* cp2 = cp1+w+toskew;
1816     uint32* cp3 = cp2+w+toskew;
1817     int32 incr = 3*w+4*toskew;
1818     int32   Cb, Cr;
1819     int     group_size = v_group * h_group + 2;
1820 
1821     (void) y;
1822     fromskew = (fromskew * group_size) / h_group;
1823 
1824     for( yy = 0; yy < h; yy++ )
1825     {
1826         unsigned char *pp_line;
1827         int     y_line_group = yy / v_group;
1828         int     y_remainder = yy - y_line_group * v_group;
1829 
1830         pp_line = pp + v_line_group *
1831 
1832 
1833         for( xx = 0; xx < w; xx++ )
1834         {
1835             Cb = pp
1836         }
1837     }
1838     for (; h >= 4; h -= 4) {
1839 	x = w>>2;
1840 	do {
1841 	    Cb = pp[16];
1842 	    Cr = pp[17];
1843 
1844 	    YCbCrtoRGB(cp [0], pp[ 0]);
1845 	    YCbCrtoRGB(cp [1], pp[ 1]);
1846 	    YCbCrtoRGB(cp [2], pp[ 2]);
1847 	    YCbCrtoRGB(cp [3], pp[ 3]);
1848 	    YCbCrtoRGB(cp1[0], pp[ 4]);
1849 	    YCbCrtoRGB(cp1[1], pp[ 5]);
1850 	    YCbCrtoRGB(cp1[2], pp[ 6]);
1851 	    YCbCrtoRGB(cp1[3], pp[ 7]);
1852 	    YCbCrtoRGB(cp2[0], pp[ 8]);
1853 	    YCbCrtoRGB(cp2[1], pp[ 9]);
1854 	    YCbCrtoRGB(cp2[2], pp[10]);
1855 	    YCbCrtoRGB(cp2[3], pp[11]);
1856 	    YCbCrtoRGB(cp3[0], pp[12]);
1857 	    YCbCrtoRGB(cp3[1], pp[13]);
1858 	    YCbCrtoRGB(cp3[2], pp[14]);
1859 	    YCbCrtoRGB(cp3[3], pp[15]);
1860 
1861 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1862 	    pp += 18;
1863 	} while (--x);
1864 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1865 	pp += fromskew;
1866     }
1867 }
1868 #endif
1869 
1870 /*
1871  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1872  */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)1873 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1874 {
1875     uint32* cp1 = cp+w+toskew;
1876     uint32* cp2 = cp1+w+toskew;
1877     uint32* cp3 = cp2+w+toskew;
1878     int32 incr = 3*w+4*toskew;
1879 
1880     (void) y;
1881     /* adjust fromskew */
1882     fromskew = (fromskew / 4) * (4*2+2);
1883     if ((h & 3) == 0 && (w & 3) == 0) {
1884         for (; h >= 4; h -= 4) {
1885             x = w>>2;
1886             do {
1887                 int32 Cb = pp[16];
1888                 int32 Cr = pp[17];
1889 
1890                 YCbCrtoRGB(cp [0], pp[ 0]);
1891                 YCbCrtoRGB(cp [1], pp[ 1]);
1892                 YCbCrtoRGB(cp [2], pp[ 2]);
1893                 YCbCrtoRGB(cp [3], pp[ 3]);
1894                 YCbCrtoRGB(cp1[0], pp[ 4]);
1895                 YCbCrtoRGB(cp1[1], pp[ 5]);
1896                 YCbCrtoRGB(cp1[2], pp[ 6]);
1897                 YCbCrtoRGB(cp1[3], pp[ 7]);
1898                 YCbCrtoRGB(cp2[0], pp[ 8]);
1899                 YCbCrtoRGB(cp2[1], pp[ 9]);
1900                 YCbCrtoRGB(cp2[2], pp[10]);
1901                 YCbCrtoRGB(cp2[3], pp[11]);
1902                 YCbCrtoRGB(cp3[0], pp[12]);
1903                 YCbCrtoRGB(cp3[1], pp[13]);
1904                 YCbCrtoRGB(cp3[2], pp[14]);
1905                 YCbCrtoRGB(cp3[3], pp[15]);
1906 
1907                 cp += 4;
1908                 cp1 += 4;
1909                 cp2 += 4;
1910                 cp3 += 4;
1911                 pp += 18;
1912             } while (--x);
1913             cp += incr;
1914             cp1 += incr;
1915             cp2 += incr;
1916             cp3 += incr;
1917             pp += fromskew;
1918         }
1919     } else {
1920         while (h > 0) {
1921             for (x = w; x > 0;) {
1922                 int32 Cb = pp[16];
1923                 int32 Cr = pp[17];
1924                 switch (x) {
1925                 default:
1926                     switch (h) {
1927                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1928                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1929                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1930                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1931                     }                                    /* FALLTHROUGH */
1932                 case 3:
1933                     switch (h) {
1934                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1935                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1936                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1937                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1938                     }                                    /* FALLTHROUGH */
1939                 case 2:
1940                     switch (h) {
1941                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1942                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1943                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1944                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1945                     }                                    /* FALLTHROUGH */
1946                 case 1:
1947                     switch (h) {
1948                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1949                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1950                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1951                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1952                     }                                    /* FALLTHROUGH */
1953                 }
1954                 if (x < 4) {
1955                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1956                     x = 0;
1957                 }
1958                 else {
1959                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1960                     x -= 4;
1961                 }
1962                 pp += 18;
1963             }
1964             if (h <= 4)
1965                 break;
1966             h -= 4;
1967             cp += incr;
1968             cp1 += incr;
1969             cp2 += incr;
1970             cp3 += incr;
1971             pp += fromskew;
1972         }
1973     }
1974 }
1975 
1976 /*
1977  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1978  */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)1979 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1980 {
1981     uint32* cp1 = cp+w+toskew;
1982     int32 incr = 2*toskew+w;
1983 
1984     (void) y;
1985     fromskew = (fromskew / 4) * (4*2+2);
1986     if ((w & 3) == 0 && (h & 1) == 0) {
1987         for (; h >= 2; h -= 2) {
1988             x = w>>2;
1989             do {
1990                 int32 Cb = pp[8];
1991                 int32 Cr = pp[9];
1992 
1993                 YCbCrtoRGB(cp [0], pp[0]);
1994                 YCbCrtoRGB(cp [1], pp[1]);
1995                 YCbCrtoRGB(cp [2], pp[2]);
1996                 YCbCrtoRGB(cp [3], pp[3]);
1997                 YCbCrtoRGB(cp1[0], pp[4]);
1998                 YCbCrtoRGB(cp1[1], pp[5]);
1999                 YCbCrtoRGB(cp1[2], pp[6]);
2000                 YCbCrtoRGB(cp1[3], pp[7]);
2001 
2002                 cp += 4;
2003                 cp1 += 4;
2004                 pp += 10;
2005             } while (--x);
2006             cp += incr;
2007             cp1 += incr;
2008             pp += fromskew;
2009         }
2010     } else {
2011         while (h > 0) {
2012             for (x = w; x > 0;) {
2013                 int32 Cb = pp[8];
2014                 int32 Cr = pp[9];
2015                 switch (x) {
2016                 default:
2017                     switch (h) {
2018                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
2019                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
2020                     }                                    /* FALLTHROUGH */
2021                 case 3:
2022                     switch (h) {
2023                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
2024                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
2025                     }                                    /* FALLTHROUGH */
2026                 case 2:
2027                     switch (h) {
2028                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
2029                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
2030                     }                                    /* FALLTHROUGH */
2031                 case 1:
2032                     switch (h) {
2033                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
2034                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
2035                     }                                    /* FALLTHROUGH */
2036                 }
2037                 if (x < 4) {
2038                     cp += x; cp1 += x;
2039                     x = 0;
2040                 }
2041                 else {
2042                     cp += 4; cp1 += 4;
2043                     x -= 4;
2044                 }
2045                 pp += 10;
2046             }
2047             if (h <= 2)
2048                 break;
2049             h -= 2;
2050             cp += incr;
2051             cp1 += incr;
2052             pp += fromskew;
2053         }
2054     }
2055 }
2056 
2057 /*
2058  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
2059  */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)2060 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
2061 {
2062     (void) y;
2063     fromskew = (fromskew / 4) * (4*1+2);
2064     do {
2065 	x = w>>2;
2066 	while(x>0) {
2067 	    int32 Cb = pp[4];
2068 	    int32 Cr = pp[5];
2069 
2070 	    YCbCrtoRGB(cp [0], pp[0]);
2071 	    YCbCrtoRGB(cp [1], pp[1]);
2072 	    YCbCrtoRGB(cp [2], pp[2]);
2073 	    YCbCrtoRGB(cp [3], pp[3]);
2074 
2075 	    cp += 4;
2076 	    pp += 6;
2077 		x--;
2078 	}
2079 
2080         if( (w&3) != 0 )
2081         {
2082 	    int32 Cb = pp[4];
2083 	    int32 Cr = pp[5];
2084 
2085             switch( (w&3) ) {
2086               case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/
2087               case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/
2088               case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/
2089               case 0: break;
2090             }
2091 
2092             cp += (w&3);
2093             pp += 6;
2094         }
2095 
2096 	cp += toskew;
2097 	pp += fromskew;
2098     } while (--h);
2099 
2100 }
2101 
2102 /*
2103  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
2104  */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)2105 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
2106 {
2107 	uint32* cp2;
2108 	int32 incr = 2*toskew+w;
2109 	(void) y;
2110 	fromskew = (fromskew / 2) * (2*2+2);
2111 	cp2 = cp+w+toskew;
2112 	while (h>=2) {
2113 		x = w;
2114 		while (x>=2) {
2115 			uint32 Cb = pp[4];
2116 			uint32 Cr = pp[5];
2117 			YCbCrtoRGB(cp[0], pp[0]);
2118 			YCbCrtoRGB(cp[1], pp[1]);
2119 			YCbCrtoRGB(cp2[0], pp[2]);
2120 			YCbCrtoRGB(cp2[1], pp[3]);
2121 			cp += 2;
2122 			cp2 += 2;
2123 			pp += 6;
2124 			x -= 2;
2125 		}
2126 		if (x==1) {
2127 			uint32 Cb = pp[4];
2128 			uint32 Cr = pp[5];
2129 			YCbCrtoRGB(cp[0], pp[0]);
2130 			YCbCrtoRGB(cp2[0], pp[2]);
2131 			cp ++ ;
2132 			cp2 ++ ;
2133 			pp += 6;
2134 		}
2135 		cp += incr;
2136 		cp2 += incr;
2137 		pp += fromskew;
2138 		h-=2;
2139 	}
2140 	if (h==1) {
2141 		x = w;
2142 		while (x>=2) {
2143 			uint32 Cb = pp[4];
2144 			uint32 Cr = pp[5];
2145 			YCbCrtoRGB(cp[0], pp[0]);
2146 			YCbCrtoRGB(cp[1], pp[1]);
2147 			cp += 2;
2148 			cp2 += 2;
2149 			pp += 6;
2150 			x -= 2;
2151 		}
2152 		if (x==1) {
2153 			uint32 Cb = pp[4];
2154 			uint32 Cr = pp[5];
2155 			YCbCrtoRGB(cp[0], pp[0]);
2156 		}
2157 	}
2158 }
2159 
2160 /*
2161  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2162  */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)2163 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2164 {
2165 	(void) y;
2166 	fromskew = (fromskew / 2) * (2*1+2);
2167 	do {
2168 		x = w>>1;
2169 		while(x>0) {
2170 			int32 Cb = pp[2];
2171 			int32 Cr = pp[3];
2172 
2173 			YCbCrtoRGB(cp[0], pp[0]);
2174 			YCbCrtoRGB(cp[1], pp[1]);
2175 
2176 			cp += 2;
2177 			pp += 4;
2178 			x --;
2179 		}
2180 
2181 		if( (w&1) != 0 )
2182 		{
2183 			int32 Cb = pp[2];
2184 			int32 Cr = pp[3];
2185 
2186 			YCbCrtoRGB(cp[0], pp[0]);
2187 
2188 			cp += 1;
2189 			pp += 4;
2190 		}
2191 
2192 		cp += toskew;
2193 		pp += fromskew;
2194 	} while (--h);
2195 }
2196 
2197 /*
2198  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2199  */
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)2200 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2201 {
2202 	uint32* cp2;
2203 	int32 incr = 2*toskew+w;
2204 	(void) y;
2205 	fromskew = (fromskew / 1) * (1 * 2 + 2);
2206 	cp2 = cp+w+toskew;
2207 	while (h>=2) {
2208 		x = w;
2209 		do {
2210 			uint32 Cb = pp[2];
2211 			uint32 Cr = pp[3];
2212 			YCbCrtoRGB(cp[0], pp[0]);
2213 			YCbCrtoRGB(cp2[0], pp[1]);
2214 			cp ++;
2215 			cp2 ++;
2216 			pp += 4;
2217 		} while (--x);
2218 		cp += incr;
2219 		cp2 += incr;
2220 		pp += fromskew;
2221 		h-=2;
2222 	}
2223 	if (h==1) {
2224 		x = w;
2225 		do {
2226 			uint32 Cb = pp[2];
2227 			uint32 Cr = pp[3];
2228 			YCbCrtoRGB(cp[0], pp[0]);
2229 			cp ++;
2230 			pp += 4;
2231 		} while (--x);
2232 	}
2233 }
2234 
2235 /*
2236  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2237  */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)2238 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2239 {
2240 	(void) y;
2241 	fromskew = (fromskew / 1) * (1 * 1 + 2);
2242 	do {
2243 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2244 		do {
2245 			int32 Cb = pp[1];
2246 			int32 Cr = pp[2];
2247 
2248 			YCbCrtoRGB(*cp++, pp[0]);
2249 
2250 			pp += 3;
2251 		} while (--x);
2252 		cp += toskew;
2253 		pp += fromskew;
2254 	} while (--h);
2255 }
2256 
2257 /*
2258  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2259  */
DECLARESepPutFunc(putseparate8bitYCbCr11tile)2260 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2261 {
2262 	(void) y;
2263 	(void) a;
2264 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2265 	for( ; h > 0; --h) {
2266 		x = w;
2267 		do {
2268 			uint32 dr, dg, db;
2269 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2270 			*cp++ = PACK(dr,dg,db);
2271 		} while (--x);
2272 		SKEW(r, g, b, fromskew);
2273 		cp += toskew;
2274 	}
2275 }
2276 #undef YCbCrtoRGB
2277 
isInRefBlackWhiteRange(float f)2278 static int isInRefBlackWhiteRange(float f)
2279 {
2280     return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF;
2281 }
2282 
2283 static int
initYCbCrConversion(TIFFRGBAImage * img)2284 initYCbCrConversion(TIFFRGBAImage* img)
2285 {
2286 	static const char module[] = "initYCbCrConversion";
2287 
2288 	float *luma, *refBlackWhite;
2289 
2290 	if (img->ycbcr == NULL) {
2291 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2292 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2293 		    + 4*256*sizeof (TIFFRGBValue)
2294 		    + 2*256*sizeof (int)
2295 		    + 3*256*sizeof (int32)
2296 		    );
2297 		if (img->ycbcr == NULL) {
2298 			TIFFErrorExt(img->tif->tif_clientdata, module,
2299 			    "No space for YCbCr->RGB conversion state");
2300 			return (0);
2301 		}
2302 	}
2303 
2304 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2305 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2306 	    &refBlackWhite);
2307 
2308         /* Do some validation to avoid later issues. Detect NaN for now */
2309         /* and also if lumaGreen is zero since we divide by it later */
2310         if( luma[0] != luma[0] ||
2311             luma[1] != luma[1] ||
2312             luma[1] == 0.0 ||
2313             luma[2] != luma[2] )
2314         {
2315             TIFFErrorExt(img->tif->tif_clientdata, module,
2316                 "Invalid values for YCbCrCoefficients tag");
2317             return (0);
2318         }
2319 
2320         if( !isInRefBlackWhiteRange(refBlackWhite[0]) ||
2321             !isInRefBlackWhiteRange(refBlackWhite[1]) ||
2322             !isInRefBlackWhiteRange(refBlackWhite[2]) ||
2323             !isInRefBlackWhiteRange(refBlackWhite[3]) ||
2324             !isInRefBlackWhiteRange(refBlackWhite[4]) ||
2325             !isInRefBlackWhiteRange(refBlackWhite[5]) )
2326         {
2327             TIFFErrorExt(img->tif->tif_clientdata, module,
2328                 "Invalid values for ReferenceBlackWhite tag");
2329             return (0);
2330         }
2331 
2332 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2333 		return(0);
2334 	return (1);
2335 }
2336 
2337 static tileContigRoutine
initCIELabConversion(TIFFRGBAImage * img)2338 initCIELabConversion(TIFFRGBAImage* img)
2339 {
2340 	static const char module[] = "initCIELabConversion";
2341 
2342 	float   *whitePoint;
2343 	float   refWhite[3];
2344 
2345 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2346 	if (whitePoint[1] == 0.0f ) {
2347 		TIFFErrorExt(img->tif->tif_clientdata, module,
2348 		    "Invalid value for WhitePoint tag.");
2349 		return NULL;
2350         }
2351 
2352 	if (!img->cielab) {
2353 		img->cielab = (TIFFCIELabToRGB *)
2354 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
2355 		if (!img->cielab) {
2356 			TIFFErrorExt(img->tif->tif_clientdata, module,
2357 			    "No space for CIE L*a*b*->RGB conversion state.");
2358 			return NULL;
2359 		}
2360 	}
2361 
2362 	refWhite[1] = 100.0F;
2363 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2364 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2365 		      / whitePoint[1] * refWhite[1];
2366 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2367 		TIFFErrorExt(img->tif->tif_clientdata, module,
2368 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
2369 		_TIFFfree(img->cielab);
2370 		return NULL;
2371 	}
2372 
2373 	return putcontig8bitCIELab;
2374 }
2375 
2376 /*
2377  * Greyscale images with less than 8 bits/sample are handled
2378  * with a table to avoid lots of shifts and masks.  The table
2379  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2380  * pixel values simply by indexing into the table with one
2381  * number.
2382  */
2383 static int
makebwmap(TIFFRGBAImage * img)2384 makebwmap(TIFFRGBAImage* img)
2385 {
2386     TIFFRGBValue* Map = img->Map;
2387     int bitspersample = img->bitspersample;
2388     int nsamples = 8 / bitspersample;
2389     int i;
2390     uint32* p;
2391 
2392     if( nsamples == 0 )
2393         nsamples = 1;
2394 
2395     img->BWmap = (uint32**) _TIFFmalloc(
2396 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2397     if (img->BWmap == NULL) {
2398 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2399 		return (0);
2400     }
2401     p = (uint32*)(img->BWmap + 256);
2402     for (i = 0; i < 256; i++) {
2403 	TIFFRGBValue c;
2404 	img->BWmap[i] = p;
2405 	switch (bitspersample) {
2406 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
2407 	case 1:
2408 	    GREY(i>>7);
2409 	    GREY((i>>6)&1);
2410 	    GREY((i>>5)&1);
2411 	    GREY((i>>4)&1);
2412 	    GREY((i>>3)&1);
2413 	    GREY((i>>2)&1);
2414 	    GREY((i>>1)&1);
2415 	    GREY(i&1);
2416 	    break;
2417 	case 2:
2418 	    GREY(i>>6);
2419 	    GREY((i>>4)&3);
2420 	    GREY((i>>2)&3);
2421 	    GREY(i&3);
2422 	    break;
2423 	case 4:
2424 	    GREY(i>>4);
2425 	    GREY(i&0xf);
2426 	    break;
2427 	case 8:
2428         case 16:
2429 	    GREY(i);
2430 	    break;
2431 	}
2432 #undef	GREY
2433     }
2434     return (1);
2435 }
2436 
2437 /*
2438  * Construct a mapping table to convert from the range
2439  * of the data samples to [0,255] --for display.  This
2440  * process also handles inverting B&W images when needed.
2441  */
2442 static int
setupMap(TIFFRGBAImage * img)2443 setupMap(TIFFRGBAImage* img)
2444 {
2445     int32 x, range;
2446 
2447     range = (int32)((1L<<img->bitspersample)-1);
2448 
2449     /* treat 16 bit the same as eight bit */
2450     if( img->bitspersample == 16 )
2451         range = (int32) 255;
2452 
2453     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2454     if (img->Map == NULL) {
2455 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2456 			"No space for photometric conversion table");
2457 		return (0);
2458     }
2459     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2460 	for (x = 0; x <= range; x++)
2461 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2462     } else {
2463 	for (x = 0; x <= range; x++)
2464 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2465     }
2466     if (img->bitspersample <= 16 &&
2467 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
2468 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2469 	/*
2470 	 * Use photometric mapping table to construct
2471 	 * unpacking tables for samples <= 8 bits.
2472 	 */
2473 	if (!makebwmap(img))
2474 	    return (0);
2475 	/* no longer need Map, free it */
2476 	_TIFFfree(img->Map);
2477 	img->Map = NULL;
2478     }
2479     return (1);
2480 }
2481 
2482 static int
checkcmap(TIFFRGBAImage * img)2483 checkcmap(TIFFRGBAImage* img)
2484 {
2485     uint16* r = img->redcmap;
2486     uint16* g = img->greencmap;
2487     uint16* b = img->bluecmap;
2488     long n = 1L<<img->bitspersample;
2489 
2490     while (n-- > 0)
2491 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2492 	    return (16);
2493     return (8);
2494 }
2495 
2496 static void
cvtcmap(TIFFRGBAImage * img)2497 cvtcmap(TIFFRGBAImage* img)
2498 {
2499     uint16* r = img->redcmap;
2500     uint16* g = img->greencmap;
2501     uint16* b = img->bluecmap;
2502     long i;
2503 
2504     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2505 #define	CVT(x)		((uint16)((x)>>8))
2506 	r[i] = CVT(r[i]);
2507 	g[i] = CVT(g[i]);
2508 	b[i] = CVT(b[i]);
2509 #undef	CVT
2510     }
2511 }
2512 
2513 /*
2514  * Palette images with <= 8 bits/sample are handled
2515  * with a table to avoid lots of shifts and masks.  The table
2516  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2517  * pixel values simply by indexing into the table with one
2518  * number.
2519  */
2520 static int
makecmap(TIFFRGBAImage * img)2521 makecmap(TIFFRGBAImage* img)
2522 {
2523     int bitspersample = img->bitspersample;
2524     int nsamples = 8 / bitspersample;
2525     uint16* r = img->redcmap;
2526     uint16* g = img->greencmap;
2527     uint16* b = img->bluecmap;
2528     uint32 *p;
2529     int i;
2530 
2531     img->PALmap = (uint32**) _TIFFmalloc(
2532 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2533     if (img->PALmap == NULL) {
2534 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2535 		return (0);
2536 	}
2537     p = (uint32*)(img->PALmap + 256);
2538     for (i = 0; i < 256; i++) {
2539 	TIFFRGBValue c;
2540 	img->PALmap[i] = p;
2541 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2542 	switch (bitspersample) {
2543 	case 1:
2544 	    CMAP(i>>7);
2545 	    CMAP((i>>6)&1);
2546 	    CMAP((i>>5)&1);
2547 	    CMAP((i>>4)&1);
2548 	    CMAP((i>>3)&1);
2549 	    CMAP((i>>2)&1);
2550 	    CMAP((i>>1)&1);
2551 	    CMAP(i&1);
2552 	    break;
2553 	case 2:
2554 	    CMAP(i>>6);
2555 	    CMAP((i>>4)&3);
2556 	    CMAP((i>>2)&3);
2557 	    CMAP(i&3);
2558 	    break;
2559 	case 4:
2560 	    CMAP(i>>4);
2561 	    CMAP(i&0xf);
2562 	    break;
2563 	case 8:
2564 	    CMAP(i);
2565 	    break;
2566 	}
2567 #undef CMAP
2568     }
2569     return (1);
2570 }
2571 
2572 /*
2573  * Construct any mapping table used
2574  * by the associated put routine.
2575  */
2576 static int
buildMap(TIFFRGBAImage * img)2577 buildMap(TIFFRGBAImage* img)
2578 {
2579     switch (img->photometric) {
2580     case PHOTOMETRIC_RGB:
2581     case PHOTOMETRIC_YCBCR:
2582     case PHOTOMETRIC_SEPARATED:
2583 	if (img->bitspersample == 8)
2584 	    break;
2585 	/* fall through... */
2586     case PHOTOMETRIC_MINISBLACK:
2587     case PHOTOMETRIC_MINISWHITE:
2588 	if (!setupMap(img))
2589 	    return (0);
2590 	break;
2591     case PHOTOMETRIC_PALETTE:
2592 	/*
2593 	 * Convert 16-bit colormap to 8-bit (unless it looks
2594 	 * like an old-style 8-bit colormap).
2595 	 */
2596 	if (checkcmap(img) == 16)
2597 	    cvtcmap(img);
2598 	else
2599 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2600 	/*
2601 	 * Use mapping table and colormap to construct
2602 	 * unpacking tables for samples < 8 bits.
2603 	 */
2604 	if (img->bitspersample <= 8 && !makecmap(img))
2605 	    return (0);
2606 	break;
2607     }
2608     return (1);
2609 }
2610 
2611 /*
2612  * Select the appropriate conversion routine for packed data.
2613  */
2614 static int
PickContigCase(TIFFRGBAImage * img)2615 PickContigCase(TIFFRGBAImage* img)
2616 {
2617 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2618 	img->put.contig = NULL;
2619 	switch (img->photometric) {
2620 		case PHOTOMETRIC_RGB:
2621 			switch (img->bitspersample) {
2622 				case 8:
2623 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2624 						img->samplesperpixel >= 4)
2625 						img->put.contig = putRGBAAcontig8bittile;
2626 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2627 							 img->samplesperpixel >= 4)
2628 					{
2629 						if (BuildMapUaToAa(img))
2630 							img->put.contig = putRGBUAcontig8bittile;
2631 					}
2632 					else if( img->samplesperpixel >= 3 )
2633 						img->put.contig = putRGBcontig8bittile;
2634 					break;
2635 				case 16:
2636 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2637 						img->samplesperpixel >=4 )
2638 					{
2639 						if (BuildMapBitdepth16To8(img))
2640 							img->put.contig = putRGBAAcontig16bittile;
2641 					}
2642 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2643 							 img->samplesperpixel >=4 )
2644 					{
2645 						if (BuildMapBitdepth16To8(img) &&
2646 						    BuildMapUaToAa(img))
2647 							img->put.contig = putRGBUAcontig16bittile;
2648 					}
2649 					else if( img->samplesperpixel >=3 )
2650 					{
2651 						if (BuildMapBitdepth16To8(img))
2652 							img->put.contig = putRGBcontig16bittile;
2653 					}
2654 					break;
2655 			}
2656 			break;
2657 		case PHOTOMETRIC_SEPARATED:
2658 			if (img->samplesperpixel >=4 && buildMap(img)) {
2659 				if (img->bitspersample == 8) {
2660 					if (!img->Map)
2661 						img->put.contig = putRGBcontig8bitCMYKtile;
2662 					else
2663 						img->put.contig = putRGBcontig8bitCMYKMaptile;
2664 				}
2665 			}
2666 			break;
2667 		case PHOTOMETRIC_PALETTE:
2668 			if (buildMap(img)) {
2669 				switch (img->bitspersample) {
2670 					case 8:
2671 						img->put.contig = put8bitcmaptile;
2672 						break;
2673 					case 4:
2674 						img->put.contig = put4bitcmaptile;
2675 						break;
2676 					case 2:
2677 						img->put.contig = put2bitcmaptile;
2678 						break;
2679 					case 1:
2680 						img->put.contig = put1bitcmaptile;
2681 						break;
2682 				}
2683 			}
2684 			break;
2685 		case PHOTOMETRIC_MINISWHITE:
2686 		case PHOTOMETRIC_MINISBLACK:
2687 			if (buildMap(img)) {
2688 				switch (img->bitspersample) {
2689 					case 16:
2690 						img->put.contig = put16bitbwtile;
2691 						break;
2692 					case 8:
2693 						if (img->alpha && img->samplesperpixel == 2)
2694 							img->put.contig = putagreytile;
2695 						else
2696 							img->put.contig = putgreytile;
2697 						break;
2698 					case 4:
2699 						img->put.contig = put4bitbwtile;
2700 						break;
2701 					case 2:
2702 						img->put.contig = put2bitbwtile;
2703 						break;
2704 					case 1:
2705 						img->put.contig = put1bitbwtile;
2706 						break;
2707 				}
2708 			}
2709 			break;
2710 		case PHOTOMETRIC_YCBCR:
2711 			if ((img->bitspersample==8) && (img->samplesperpixel==3))
2712 			{
2713 				if (initYCbCrConversion(img)!=0)
2714 				{
2715 					/*
2716 					 * The 6.0 spec says that subsampling must be
2717 					 * one of 1, 2, or 4, and that vertical subsampling
2718 					 * must always be <= horizontal subsampling; so
2719 					 * there are only a few possibilities and we just
2720 					 * enumerate the cases.
2721 					 * Joris: added support for the [1,2] case, nonetheless, to accommodate
2722 					 * some OJPEG files
2723 					 */
2724 					uint16 SubsamplingHor;
2725 					uint16 SubsamplingVer;
2726 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2727 					switch ((SubsamplingHor<<4)|SubsamplingVer) {
2728 						case 0x44:
2729 							img->put.contig = putcontig8bitYCbCr44tile;
2730 							break;
2731 						case 0x42:
2732 							img->put.contig = putcontig8bitYCbCr42tile;
2733 							break;
2734 						case 0x41:
2735 							img->put.contig = putcontig8bitYCbCr41tile;
2736 							break;
2737 						case 0x22:
2738 							img->put.contig = putcontig8bitYCbCr22tile;
2739 							break;
2740 						case 0x21:
2741 							img->put.contig = putcontig8bitYCbCr21tile;
2742 							break;
2743 						case 0x12:
2744 							img->put.contig = putcontig8bitYCbCr12tile;
2745 							break;
2746 						case 0x11:
2747 							img->put.contig = putcontig8bitYCbCr11tile;
2748 							break;
2749 					}
2750 				}
2751 			}
2752 			break;
2753 		case PHOTOMETRIC_CIELAB:
2754 			if (img->samplesperpixel == 3 && buildMap(img)) {
2755 				if (img->bitspersample == 8)
2756 					img->put.contig = initCIELabConversion(img);
2757 				break;
2758 			}
2759 	}
2760 	return ((img->get!=NULL) && (img->put.contig!=NULL));
2761 }
2762 
2763 /*
2764  * Select the appropriate conversion routine for unpacked data.
2765  *
2766  * NB: we assume that unpacked single channel data is directed
2767  *	 to the "packed routines.
2768  */
2769 static int
PickSeparateCase(TIFFRGBAImage * img)2770 PickSeparateCase(TIFFRGBAImage* img)
2771 {
2772 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2773 	img->put.separate = NULL;
2774 	switch (img->photometric) {
2775 	case PHOTOMETRIC_MINISWHITE:
2776 	case PHOTOMETRIC_MINISBLACK:
2777 		/* greyscale images processed pretty much as RGB by gtTileSeparate */
2778 	case PHOTOMETRIC_RGB:
2779 		switch (img->bitspersample) {
2780 		case 8:
2781 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2782 				img->put.separate = putRGBAAseparate8bittile;
2783 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2784 			{
2785 				if (BuildMapUaToAa(img))
2786 					img->put.separate = putRGBUAseparate8bittile;
2787 			}
2788 			else
2789 				img->put.separate = putRGBseparate8bittile;
2790 			break;
2791 		case 16:
2792 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2793 			{
2794 				if (BuildMapBitdepth16To8(img))
2795 					img->put.separate = putRGBAAseparate16bittile;
2796 			}
2797 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2798 			{
2799 				if (BuildMapBitdepth16To8(img) &&
2800 				    BuildMapUaToAa(img))
2801 					img->put.separate = putRGBUAseparate16bittile;
2802 			}
2803 			else
2804 			{
2805 				if (BuildMapBitdepth16To8(img))
2806 					img->put.separate = putRGBseparate16bittile;
2807 			}
2808 			break;
2809 		}
2810 		break;
2811 	case PHOTOMETRIC_SEPARATED:
2812 		if (img->bitspersample == 8 && img->samplesperpixel == 4)
2813 		{
2814 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2815 			img->put.separate = putCMYKseparate8bittile;
2816 		}
2817 		break;
2818 	case PHOTOMETRIC_YCBCR:
2819 		if ((img->bitspersample==8) && (img->samplesperpixel==3))
2820 		{
2821 			if (initYCbCrConversion(img)!=0)
2822 			{
2823 				uint16 hs, vs;
2824 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2825 				switch ((hs<<4)|vs) {
2826 				case 0x11:
2827 					img->put.separate = putseparate8bitYCbCr11tile;
2828 					break;
2829 					/* TODO: add other cases here */
2830 				}
2831 			}
2832 		}
2833 		break;
2834 	}
2835 	return ((img->get!=NULL) && (img->put.separate!=NULL));
2836 }
2837 
2838 static int
BuildMapUaToAa(TIFFRGBAImage * img)2839 BuildMapUaToAa(TIFFRGBAImage* img)
2840 {
2841 	static const char module[]="BuildMapUaToAa";
2842 	uint8* m;
2843 	uint16 na,nv;
2844 	assert(img->UaToAa==NULL);
2845 	img->UaToAa=_TIFFmalloc(65536);
2846 	if (img->UaToAa==NULL)
2847 	{
2848 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2849 		return(0);
2850 	}
2851 	m=img->UaToAa;
2852 	for (na=0; na<256; na++)
2853 	{
2854 		for (nv=0; nv<256; nv++)
2855 			*m++=(uint8)((nv*na+127)/255);
2856 	}
2857 	return(1);
2858 }
2859 
2860 static int
BuildMapBitdepth16To8(TIFFRGBAImage * img)2861 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2862 {
2863 	static const char module[]="BuildMapBitdepth16To8";
2864 	uint8* m;
2865 	uint32 n;
2866 	assert(img->Bitdepth16To8==NULL);
2867 	img->Bitdepth16To8=_TIFFmalloc(65536);
2868 	if (img->Bitdepth16To8==NULL)
2869 	{
2870 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2871 		return(0);
2872 	}
2873 	m=img->Bitdepth16To8;
2874 	for (n=0; n<65536; n++)
2875 		*m++=(uint8)((n+128)/257);
2876 	return(1);
2877 }
2878 
2879 
2880 /*
2881  * Read a whole strip off data from the file, and convert to RGBA form.
2882  * If this is the last strip, then it will only contain the portion of
2883  * the strip that is actually within the image space.  The result is
2884  * organized in bottom to top form.
2885  */
2886 
2887 
2888 int
TIFFReadRGBAStrip(TIFF * tif,uint32 row,uint32 * raster)2889 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2890 
2891 {
2892     return TIFFReadRGBAStripExt(tif, row, raster, 0 );
2893 }
2894 
2895 int
TIFFReadRGBAStripExt(TIFF * tif,uint32 row,uint32 * raster,int stop_on_error)2896 TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error)
2897 
2898 {
2899     char 	emsg[1024] = "";
2900     TIFFRGBAImage img;
2901     int 	ok;
2902     uint32	rowsperstrip, rows_to_read;
2903 
2904     if( TIFFIsTiled( tif ) )
2905     {
2906 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2907                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2908 	return (0);
2909     }
2910 
2911     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2912     if( (row % rowsperstrip) != 0 )
2913     {
2914 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2915 				"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2916 		return (0);
2917     }
2918 
2919     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2920 
2921         img.row_offset = row;
2922         img.col_offset = 0;
2923 
2924         if( row + rowsperstrip > img.height )
2925             rows_to_read = img.height - row;
2926         else
2927             rows_to_read = rowsperstrip;
2928 
2929 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2930 
2931 	TIFFRGBAImageEnd(&img);
2932     } else {
2933 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2934 		ok = 0;
2935     }
2936 
2937     return (ok);
2938 }
2939 
2940 /*
2941  * Read a whole tile off data from the file, and convert to RGBA form.
2942  * The returned RGBA data is organized from bottom to top of tile,
2943  * and may include zeroed areas if the tile extends off the image.
2944  */
2945 
2946 int
TIFFReadRGBATile(TIFF * tif,uint32 col,uint32 row,uint32 * raster)2947 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2948 
2949 {
2950     return TIFFReadRGBATileExt(tif, col, row, raster, 0 );
2951 }
2952 
2953 
2954 int
TIFFReadRGBATileExt(TIFF * tif,uint32 col,uint32 row,uint32 * raster,int stop_on_error)2955 TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error )
2956 {
2957     char 	emsg[1024] = "";
2958     TIFFRGBAImage img;
2959     int 	ok;
2960     uint32	tile_xsize, tile_ysize;
2961     uint32	read_xsize, read_ysize;
2962     uint32	i_row;
2963 
2964     /*
2965      * Verify that our request is legal - on a tile file, and on a
2966      * tile boundary.
2967      */
2968 
2969     if( !TIFFIsTiled( tif ) )
2970     {
2971 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2972 				  "Can't use TIFFReadRGBATile() with striped file.");
2973 		return (0);
2974     }
2975 
2976     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2977     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2978     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2979     {
2980 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2981                   "Row/col passed to TIFFReadRGBATile() must be top"
2982                   "left corner of a tile.");
2983 	return (0);
2984     }
2985 
2986     /*
2987      * Setup the RGBA reader.
2988      */
2989 
2990     if (!TIFFRGBAImageOK(tif, emsg)
2991 	|| !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2992 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2993 	    return( 0 );
2994     }
2995 
2996     /*
2997      * The TIFFRGBAImageGet() function doesn't allow us to get off the
2998      * edge of the image, even to fill an otherwise valid tile.  So we
2999      * figure out how much we can read, and fix up the tile buffer to
3000      * a full tile configuration afterwards.
3001      */
3002 
3003     if( row + tile_ysize > img.height )
3004         read_ysize = img.height - row;
3005     else
3006         read_ysize = tile_ysize;
3007 
3008     if( col + tile_xsize > img.width )
3009         read_xsize = img.width - col;
3010     else
3011         read_xsize = tile_xsize;
3012 
3013     /*
3014      * Read the chunk of imagery.
3015      */
3016 
3017     img.row_offset = row;
3018     img.col_offset = col;
3019 
3020     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
3021 
3022     TIFFRGBAImageEnd(&img);
3023 
3024     /*
3025      * If our read was incomplete we will need to fix up the tile by
3026      * shifting the data around as if a full tile of data is being returned.
3027      *
3028      * This is all the more complicated because the image is organized in
3029      * bottom to top format.
3030      */
3031 
3032     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
3033         return( ok );
3034 
3035     for( i_row = 0; i_row < read_ysize; i_row++ ) {
3036         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
3037                  raster + (read_ysize - i_row - 1) * read_xsize,
3038                  read_xsize * sizeof(uint32) );
3039         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
3040                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
3041     }
3042 
3043     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
3044         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
3045                      0, sizeof(uint32) * tile_xsize );
3046     }
3047 
3048     return (ok);
3049 }
3050 
3051 /* vim: set ts=8 sts=8 sw=8 noet: */
3052 /*
3053  * Local Variables:
3054  * mode: c
3055  * c-basic-offset: 8
3056  * fill-column: 78
3057  * End:
3058  */
3059