1 // Copyright (c) 2017 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <iostream>
16 #include <memory>
17 #include <set>
18 
19 #include "source/cfa.h"
20 #include "source/opt/dominator_tree.h"
21 #include "source/opt/ir_context.h"
22 
23 // Calculates the dominator or postdominator tree for a given function.
24 // 1 - Compute the successors and predecessors for each BasicBlock. We add a
25 // placeholder node for the start node or for postdominators the exit. This node
26 // will point to all entry or all exit nodes.
27 // 2 - Using the CFA::DepthFirstTraversal get a depth first postordered list of
28 // all BasicBlocks. Using the successors (or for postdominator, predecessors)
29 // calculated in step 1 to traverse the tree.
30 // 3 - Pass the list calculated in step 2 to the CFA::CalculateDominators using
31 // the predecessors list (or for postdominator, successors). This will give us a
32 // vector of BB pairs. Each BB and its immediate dominator.
33 // 4 - Using the list from 3 use those edges to build a tree of
34 // DominatorTreeNodes. Each node containing a link to the parent dominator and
35 // children which are dominated.
36 // 5 - Using the tree from 4, perform a depth first traversal to calculate the
37 // preorder and postorder index of each node. We use these indexes to compare
38 // nodes against each other for domination checks.
39 
40 namespace spvtools {
41 namespace opt {
42 namespace {
43 
44 // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform
45 // depth first search on generic BasicBlock types. Will call post and pre order
46 // user defined functions during traversal
47 //
48 // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode
49 // SuccessorLambda - Lamdba matching the signature of 'const
50 // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes
51 // succeding BasicBlock A.
52 // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be
53 // called on each node traversed AFTER their children.
54 // PreLambda - Lamdba matching the signature of 'void (const BBType*)' will be
55 // called on each node traversed BEFORE their children.
56 template <typename BBType, typename SuccessorLambda, typename PreLambda,
57           typename PostLambda>
DepthFirstSearch(const BBType * bb,SuccessorLambda successors,PreLambda pre,PostLambda post)58 static void DepthFirstSearch(const BBType* bb, SuccessorLambda successors,
59                              PreLambda pre, PostLambda post) {
60   // Ignore backedge operation.
61   auto nop_backedge = [](const BBType*, const BBType*) {};
62   CFA<BBType>::DepthFirstTraversal(bb, successors, pre, post, nop_backedge);
63 }
64 
65 // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform
66 // depth first search on generic BasicBlock types. This overload is for only
67 // performing user defined post order.
68 //
69 // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode
70 // SuccessorLambda - Lamdba matching the signature of 'const
71 // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes
72 // succeding BasicBlock A.
73 // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be
74 // called on each node traversed after their children.
75 template <typename BBType, typename SuccessorLambda, typename PostLambda>
DepthFirstSearchPostOrder(const BBType * bb,SuccessorLambda successors,PostLambda post)76 static void DepthFirstSearchPostOrder(const BBType* bb,
77                                       SuccessorLambda successors,
78                                       PostLambda post) {
79   // Ignore preorder operation.
80   auto nop_preorder = [](const BBType*) {};
81   DepthFirstSearch(bb, successors, nop_preorder, post);
82 }
83 
84 // Small type trait to get the function class type.
85 template <typename BBType>
86 struct GetFunctionClass {
87   using FunctionType = Function;
88 };
89 
90 // Helper class to compute predecessors and successors for each Basic Block in a
91 // function. Through GetPredFunctor and GetSuccessorFunctor it provides an
92 // interface to get the successor and predecessor lists for each basic
93 // block. This is required by the DepthFirstTraversal and ComputeDominator
94 // functions which take as parameter an std::function returning the successors
95 // and predecessors respectively.
96 //
97 // When computing the post-dominator tree, all edges are inverted. So successors
98 // returned by this class will be predecessors in the original CFG.
99 template <typename BBType>
100 class BasicBlockSuccessorHelper {
101   // This should eventually become const BasicBlock.
102   using BasicBlock = BBType;
103   using Function = typename GetFunctionClass<BBType>::FunctionType;
104 
105   using BasicBlockListTy = std::vector<BasicBlock*>;
106   using BasicBlockMapTy = std::map<const BasicBlock*, BasicBlockListTy>;
107 
108  public:
109   // For compliance with the dominance tree computation, entry nodes are
110   // connected to a single placeholder node.
111   BasicBlockSuccessorHelper(Function& func,
112                             const BasicBlock* placeholder_start_node,
113                             bool post);
114 
115   // CFA::CalculateDominators requires std::vector<BasicBlock*>.
116   using GetBlocksFunction =
117       std::function<const std::vector<BasicBlock*>*(const BasicBlock*)>;
118 
119   // Returns the list of predecessor functions.
GetPredFunctor()120   GetBlocksFunction GetPredFunctor() {
121     return [this](const BasicBlock* bb) {
122       BasicBlockListTy* v = &this->predecessors_[bb];
123       return v;
124     };
125   }
126 
127   // Returns a vector of the list of successor nodes from a given node.
GetSuccessorFunctor()128   GetBlocksFunction GetSuccessorFunctor() {
129     return [this](const BasicBlock* bb) {
130       BasicBlockListTy* v = &this->successors_[bb];
131       return v;
132     };
133   }
134 
135  private:
136   bool invert_graph_;
137   BasicBlockMapTy successors_;
138   BasicBlockMapTy predecessors_;
139 
140   // Build the successors and predecessors map for each basic blocks |f|.
141   // If |invert_graph_| is true, all edges are reversed (successors becomes
142   // predecessors and vice versa).
143   // For convenience, the start of the graph is |placeholder_start_node|.
144   // The dominator tree construction requires a unique entry node, which cannot
145   // be guaranteed for the postdominator graph. The |placeholder_start_node| BB
146   // is here to gather all entry nodes.
147   void CreateSuccessorMap(Function& f,
148                           const BasicBlock* placeholder_start_node);
149 };
150 
151 template <typename BBType>
BasicBlockSuccessorHelper(Function & func,const BasicBlock * placeholder_start_node,bool invert)152 BasicBlockSuccessorHelper<BBType>::BasicBlockSuccessorHelper(
153     Function& func, const BasicBlock* placeholder_start_node, bool invert)
154     : invert_graph_(invert) {
155   CreateSuccessorMap(func, placeholder_start_node);
156 }
157 
158 template <typename BBType>
CreateSuccessorMap(Function & f,const BasicBlock * placeholder_start_node)159 void BasicBlockSuccessorHelper<BBType>::CreateSuccessorMap(
160     Function& f, const BasicBlock* placeholder_start_node) {
161   std::map<uint32_t, BasicBlock*> id_to_BB_map;
162   auto GetSuccessorBasicBlock = [&f, &id_to_BB_map](uint32_t successor_id) {
163     BasicBlock*& Succ = id_to_BB_map[successor_id];
164     if (!Succ) {
165       for (BasicBlock& BBIt : f) {
166         if (successor_id == BBIt.id()) {
167           Succ = &BBIt;
168           break;
169         }
170       }
171     }
172     return Succ;
173   };
174 
175   if (invert_graph_) {
176     // For the post dominator tree, we see the inverted graph.
177     // successors_ in the inverted graph are the predecessors in the CFG.
178     // The tree construction requires 1 entry point, so we add a placeholder
179     // node that is connected to all function exiting basic blocks. An exiting
180     // basic block is a block with an OpKill, OpUnreachable, OpReturn,
181     // OpReturnValue, or OpTerminateInvocation  as terminator instruction.
182     for (BasicBlock& bb : f) {
183       if (bb.hasSuccessor()) {
184         BasicBlockListTy& pred_list = predecessors_[&bb];
185         const auto& const_bb = bb;
186         const_bb.ForEachSuccessorLabel(
187             [this, &pred_list, &bb,
188              &GetSuccessorBasicBlock](const uint32_t successor_id) {
189               BasicBlock* succ = GetSuccessorBasicBlock(successor_id);
190               // Inverted graph: our successors in the CFG
191               // are our predecessors in the inverted graph.
192               this->successors_[succ].push_back(&bb);
193               pred_list.push_back(succ);
194             });
195       } else {
196         successors_[placeholder_start_node].push_back(&bb);
197         predecessors_[&bb].push_back(
198             const_cast<BasicBlock*>(placeholder_start_node));
199       }
200     }
201   } else {
202     successors_[placeholder_start_node].push_back(f.entry().get());
203     predecessors_[f.entry().get()].push_back(
204         const_cast<BasicBlock*>(placeholder_start_node));
205     for (BasicBlock& bb : f) {
206       BasicBlockListTy& succ_list = successors_[&bb];
207 
208       const auto& const_bb = bb;
209       const_bb.ForEachSuccessorLabel([&](const uint32_t successor_id) {
210         BasicBlock* succ = GetSuccessorBasicBlock(successor_id);
211         succ_list.push_back(succ);
212         predecessors_[succ].push_back(&bb);
213       });
214     }
215   }
216 }
217 
218 }  // namespace
219 
StrictlyDominates(uint32_t a,uint32_t b) const220 bool DominatorTree::StrictlyDominates(uint32_t a, uint32_t b) const {
221   if (a == b) return false;
222   return Dominates(a, b);
223 }
224 
StrictlyDominates(const BasicBlock * a,const BasicBlock * b) const225 bool DominatorTree::StrictlyDominates(const BasicBlock* a,
226                                       const BasicBlock* b) const {
227   return DominatorTree::StrictlyDominates(a->id(), b->id());
228 }
229 
StrictlyDominates(const DominatorTreeNode * a,const DominatorTreeNode * b) const230 bool DominatorTree::StrictlyDominates(const DominatorTreeNode* a,
231                                       const DominatorTreeNode* b) const {
232   if (a == b) return false;
233   return Dominates(a, b);
234 }
235 
Dominates(uint32_t a,uint32_t b) const236 bool DominatorTree::Dominates(uint32_t a, uint32_t b) const {
237   // Check that both of the inputs are actual nodes.
238   const DominatorTreeNode* a_node = GetTreeNode(a);
239   const DominatorTreeNode* b_node = GetTreeNode(b);
240   if (!a_node || !b_node) return false;
241 
242   return Dominates(a_node, b_node);
243 }
244 
Dominates(const DominatorTreeNode * a,const DominatorTreeNode * b) const245 bool DominatorTree::Dominates(const DominatorTreeNode* a,
246                               const DominatorTreeNode* b) const {
247   if (!a || !b) return false;
248   // Node A dominates node B if they are the same.
249   if (a == b) return true;
250 
251   return a->dfs_num_pre_ < b->dfs_num_pre_ &&
252          a->dfs_num_post_ > b->dfs_num_post_;
253 }
254 
Dominates(const BasicBlock * A,const BasicBlock * B) const255 bool DominatorTree::Dominates(const BasicBlock* A, const BasicBlock* B) const {
256   return Dominates(A->id(), B->id());
257 }
258 
ImmediateDominator(const BasicBlock * A) const259 BasicBlock* DominatorTree::ImmediateDominator(const BasicBlock* A) const {
260   return ImmediateDominator(A->id());
261 }
262 
ImmediateDominator(uint32_t a) const263 BasicBlock* DominatorTree::ImmediateDominator(uint32_t a) const {
264   // Check that A is a valid node in the tree.
265   auto a_itr = nodes_.find(a);
266   if (a_itr == nodes_.end()) return nullptr;
267 
268   const DominatorTreeNode* node = &a_itr->second;
269 
270   if (node->parent_ == nullptr) {
271     return nullptr;
272   }
273 
274   return node->parent_->bb_;
275 }
276 
GetOrInsertNode(BasicBlock * bb)277 DominatorTreeNode* DominatorTree::GetOrInsertNode(BasicBlock* bb) {
278   DominatorTreeNode* dtn = nullptr;
279 
280   std::map<uint32_t, DominatorTreeNode>::iterator node_iter =
281       nodes_.find(bb->id());
282   if (node_iter == nodes_.end()) {
283     dtn = &nodes_.emplace(std::make_pair(bb->id(), DominatorTreeNode{bb}))
284                .first->second;
285   } else {
286     dtn = &node_iter->second;
287   }
288 
289   return dtn;
290 }
291 
GetDominatorEdges(const Function * f,const BasicBlock * placeholder_start_node,std::vector<std::pair<BasicBlock *,BasicBlock * >> * edges)292 void DominatorTree::GetDominatorEdges(
293     const Function* f, const BasicBlock* placeholder_start_node,
294     std::vector<std::pair<BasicBlock*, BasicBlock*>>* edges) {
295   // Each time the depth first traversal calls the postorder callback
296   // std::function we push that node into the postorder vector to create our
297   // postorder list.
298   std::vector<const BasicBlock*> postorder;
299   auto postorder_function = [&](const BasicBlock* b) {
300     postorder.push_back(b);
301   };
302 
303   // CFA::CalculateDominators requires std::vector<BasicBlock*>
304   // BB are derived from F, so we need to const cast it at some point
305   // no modification is made on F.
306   BasicBlockSuccessorHelper<BasicBlock> helper{
307       *const_cast<Function*>(f), placeholder_start_node, postdominator_};
308 
309   // The successor function tells DepthFirstTraversal how to move to successive
310   // nodes by providing an interface to get a list of successor nodes from any
311   // given node.
312   auto successor_functor = helper.GetSuccessorFunctor();
313 
314   // The predecessor functor does the same as the successor functor
315   // but for all nodes preceding a given node.
316   auto predecessor_functor = helper.GetPredFunctor();
317 
318   // If we're building a post dominator tree we traverse the tree in reverse
319   // using the predecessor function in place of the successor function and vice
320   // versa.
321   DepthFirstSearchPostOrder(placeholder_start_node, successor_functor,
322                             postorder_function);
323   *edges = CFA<BasicBlock>::CalculateDominators(postorder, predecessor_functor);
324 }
325 
InitializeTree(const CFG & cfg,const Function * f)326 void DominatorTree::InitializeTree(const CFG& cfg, const Function* f) {
327   ClearTree();
328 
329   // Skip over empty functions.
330   if (f->cbegin() == f->cend()) {
331     return;
332   }
333 
334   const BasicBlock* placeholder_start_node =
335       postdominator_ ? cfg.pseudo_exit_block() : cfg.pseudo_entry_block();
336 
337   // Get the immediate dominator for each node.
338   std::vector<std::pair<BasicBlock*, BasicBlock*>> edges;
339   GetDominatorEdges(f, placeholder_start_node, &edges);
340 
341   // Transform the vector<pair> into the tree structure which we can use to
342   // efficiently query dominance.
343   for (auto edge : edges) {
344     DominatorTreeNode* first = GetOrInsertNode(edge.first);
345 
346     if (edge.first == edge.second) {
347       if (std::find(roots_.begin(), roots_.end(), first) == roots_.end())
348         roots_.push_back(first);
349       continue;
350     }
351 
352     DominatorTreeNode* second = GetOrInsertNode(edge.second);
353 
354     first->parent_ = second;
355     second->children_.push_back(first);
356   }
357   ResetDFNumbering();
358 }
359 
ResetDFNumbering()360 void DominatorTree::ResetDFNumbering() {
361   int index = 0;
362   auto preFunc = [&index](const DominatorTreeNode* node) {
363     const_cast<DominatorTreeNode*>(node)->dfs_num_pre_ = ++index;
364   };
365 
366   auto postFunc = [&index](const DominatorTreeNode* node) {
367     const_cast<DominatorTreeNode*>(node)->dfs_num_post_ = ++index;
368   };
369 
370   auto getSucc = [](const DominatorTreeNode* node) { return &node->children_; };
371 
372   for (auto root : roots_) DepthFirstSearch(root, getSucc, preFunc, postFunc);
373 }
374 
DumpTreeAsDot(std::ostream & out_stream) const375 void DominatorTree::DumpTreeAsDot(std::ostream& out_stream) const {
376   out_stream << "digraph {\n";
377   Visit([&out_stream](const DominatorTreeNode* node) {
378     // Print the node.
379     if (node->bb_) {
380       out_stream << node->bb_->id() << "[label=\"" << node->bb_->id()
381                  << "\"];\n";
382     }
383 
384     // Print the arrow from the parent to this node. Entry nodes will not have
385     // parents so draw them as children from the placeholder node.
386     if (node->parent_) {
387       out_stream << node->parent_->bb_->id() << " -> " << node->bb_->id()
388                  << ";\n";
389     }
390 
391     // Return true to continue the traversal.
392     return true;
393   });
394   out_stream << "}\n";
395 }
396 
397 }  // namespace opt
398 }  // namespace spvtools
399