1 /**********************************************************************
2 * File: otsuthr.cpp
3 * Description: Simple Otsu thresholding for binarizing images.
4 * Author: Ray Smith
5 *
6 * (C) Copyright 2008, Google Inc.
7 ** Licensed under the Apache License, Version 2.0 (the "License");
8 ** you may not use this file except in compliance with the License.
9 ** You may obtain a copy of the License at
10 ** http://www.apache.org/licenses/LICENSE-2.0
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 *
17 **********************************************************************/
18
19 #include "otsuthr.h"
20
21 #include <allheaders.h>
22 #include <cstring>
23 #include "helpers.h"
24 #if defined(USE_OPENCL)
25 # include "openclwrapper.h" // for OpenclDevice
26 #endif
27
28 namespace tesseract {
29
30 // Computes the Otsu threshold(s) for the given image rectangle, making one
31 // for each channel. Each channel is always one byte per pixel.
32 // Returns an array of threshold values and an array of hi_values, such
33 // that a pixel value >threshold[channel] is considered foreground if
34 // hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates
35 // that there is no apparent foreground. At least one hi_value will not be -1.
36 // The return value is the number of channels in the input image, being
37 // the size of the output thresholds and hi_values arrays.
OtsuThreshold(Image src_pix,int left,int top,int width,int height,std::vector<int> & thresholds,std::vector<int> & hi_values)38 int OtsuThreshold(Image src_pix, int left, int top, int width, int height, std::vector<int> &thresholds,
39 std::vector<int> &hi_values) {
40 int num_channels = pixGetDepth(src_pix) / 8;
41 // Of all channels with no good hi_value, keep the best so we can always
42 // produce at least one answer.
43 int best_hi_value = 1;
44 int best_hi_index = 0;
45 bool any_good_hivalue = false;
46 double best_hi_dist = 0.0;
47 thresholds.resize(num_channels);
48 hi_values.resize(num_channels);
49
50 // only use opencl if compiled w/ OpenCL and selected device is opencl
51 #ifdef USE_OPENCL
52 // all of channel 0 then all of channel 1...
53 std::vector<int> histogramAllChannels(kHistogramSize * num_channels);
54
55 // Calculate Histogram on GPU
56 OpenclDevice od;
57 if (od.selectedDeviceIsOpenCL() && (num_channels == 1 || num_channels == 4) && top == 0 &&
58 left == 0) {
59 od.HistogramRectOCL(pixGetData(src_pix), num_channels, pixGetWpl(src_pix) * 4, left, top, width,
60 height, kHistogramSize, &histogramAllChannels[0]);
61
62 // Calculate Threshold from Histogram on cpu
63 for (int ch = 0; ch < num_channels; ++ch) {
64 thresholds[ch] = -1;
65 hi_values[ch] = -1;
66 int *histogram = &histogramAllChannels[kHistogramSize * ch];
67 int H;
68 int best_omega_0;
69 int best_t = OtsuStats(histogram, &H, &best_omega_0);
70 if (best_omega_0 == 0 || best_omega_0 == H) {
71 // This channel is empty.
72 continue;
73 }
74 // To be a convincing foreground we must have a small fraction of H
75 // or to be a convincing background we must have a large fraction of H.
76 // In between we assume this channel contains no thresholding information.
77 int hi_value = best_omega_0 < H * 0.5;
78 thresholds[ch] = best_t;
79 if (best_omega_0 > H * 0.75) {
80 any_good_hivalue = true;
81 hi_values[ch] = 0;
82 } else if (best_omega_0 < H * 0.25) {
83 any_good_hivalue = true;
84 hi_values[ch] = 1;
85 } else {
86 // In case all channels are like this, keep the best of the bad lot.
87 double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
88 if (hi_dist > best_hi_dist) {
89 best_hi_dist = hi_dist;
90 best_hi_value = hi_value;
91 best_hi_index = ch;
92 }
93 }
94 }
95 } else {
96 #endif
97 for (int ch = 0; ch < num_channels; ++ch) {
98 thresholds[ch] = -1;
99 hi_values[ch] = -1;
100 // Compute the histogram of the image rectangle.
101 int histogram[kHistogramSize];
102 HistogramRect(src_pix, ch, left, top, width, height, histogram);
103 int H;
104 int best_omega_0;
105 int best_t = OtsuStats(histogram, &H, &best_omega_0);
106 if (best_omega_0 == 0 || best_omega_0 == H) {
107 // This channel is empty.
108 continue;
109 }
110 // To be a convincing foreground we must have a small fraction of H
111 // or to be a convincing background we must have a large fraction of H.
112 // In between we assume this channel contains no thresholding information.
113 int hi_value = best_omega_0 < H * 0.5;
114 thresholds[ch] = best_t;
115 if (best_omega_0 > H * 0.75) {
116 any_good_hivalue = true;
117 hi_values[ch] = 0;
118 } else if (best_omega_0 < H * 0.25) {
119 any_good_hivalue = true;
120 hi_values[ch] = 1;
121 } else {
122 // In case all channels are like this, keep the best of the bad lot.
123 double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
124 if (hi_dist > best_hi_dist) {
125 best_hi_dist = hi_dist;
126 best_hi_value = hi_value;
127 best_hi_index = ch;
128 }
129 }
130 }
131 #ifdef USE_OPENCL
132 }
133 #endif // USE_OPENCL
134
135 if (!any_good_hivalue) {
136 // Use the best of the ones that were not good enough.
137 hi_values[best_hi_index] = best_hi_value;
138 }
139 return num_channels;
140 }
141
142 // Computes the histogram for the given image rectangle, and the given
143 // single channel. Each channel is always one byte per pixel.
144 // Histogram is always a kHistogramSize(256) element array to count
145 // occurrences of each pixel value.
HistogramRect(Image src_pix,int channel,int left,int top,int width,int height,int * histogram)146 void HistogramRect(Image src_pix, int channel, int left, int top, int width, int height,
147 int *histogram) {
148 int num_channels = pixGetDepth(src_pix) / 8;
149 channel = ClipToRange(channel, 0, num_channels - 1);
150 int bottom = top + height;
151 memset(histogram, 0, sizeof(*histogram) * kHistogramSize);
152 int src_wpl = pixGetWpl(src_pix);
153 l_uint32 *srcdata = pixGetData(src_pix);
154 for (int y = top; y < bottom; ++y) {
155 const l_uint32 *linedata = srcdata + y * src_wpl;
156 for (int x = 0; x < width; ++x) {
157 int pixel = GET_DATA_BYTE(linedata, (x + left) * num_channels + channel);
158 ++histogram[pixel];
159 }
160 }
161 }
162
163 // Computes the Otsu threshold(s) for the given histogram.
164 // Also returns H = total count in histogram, and
165 // omega0 = count of histogram below threshold.
OtsuStats(const int * histogram,int * H_out,int * omega0_out)166 int OtsuStats(const int *histogram, int *H_out, int *omega0_out) {
167 int H = 0;
168 double mu_T = 0.0;
169 for (int i = 0; i < kHistogramSize; ++i) {
170 H += histogram[i];
171 mu_T += static_cast<double>(i) * histogram[i];
172 }
173
174 // Now maximize sig_sq_B over t.
175 // http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf
176 int best_t = -1;
177 int omega_0, omega_1;
178 int best_omega_0 = 0;
179 double best_sig_sq_B = 0.0;
180 double mu_0, mu_1, mu_t;
181 omega_0 = 0;
182 mu_t = 0.0;
183 for (int t = 0; t < kHistogramSize - 1; ++t) {
184 omega_0 += histogram[t];
185 mu_t += t * static_cast<double>(histogram[t]);
186 if (omega_0 == 0) {
187 continue;
188 }
189 omega_1 = H - omega_0;
190 if (omega_1 == 0) {
191 break;
192 }
193 mu_0 = mu_t / omega_0;
194 mu_1 = (mu_T - mu_t) / omega_1;
195 double sig_sq_B = mu_1 - mu_0;
196 sig_sq_B *= sig_sq_B * omega_0 * omega_1;
197 if (best_t < 0 || sig_sq_B > best_sig_sq_B) {
198 best_sig_sq_B = sig_sq_B;
199 best_t = t;
200 best_omega_0 = omega_0;
201 }
202 }
203 if (H_out != nullptr) {
204 *H_out = H;
205 }
206 if (omega0_out != nullptr) {
207 *omega0_out = best_omega_0;
208 }
209 return best_t;
210 }
211
212 } // namespace tesseract.
213