1 /*
2  * jchuff.c
3  *
4  * Copyright (C) 1991-1994, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy encoding routines.
9  *
10  * Much of the complexity here has to do with supporting output suspension.
11  * If the data destination module demands suspension, we want to be able to
12  * back up to the start of the current MCU.  To do this, we copy state
13  * variables into local working storage, and update them back to the
14  * permanent JPEG objects only upon successful completion of an MCU.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 
21 
22 /* Derived data constructed for each Huffman table */
23 
24 typedef struct {
25   unsigned int ehufco[256];	/* code for each symbol */
26   char ehufsi[256];		/* length of code for each symbol */
27   /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
28 } C_DERIVED_TBL;
29 
30 /* Expanded entropy encoder object for Huffman encoding.
31  *
32  * The savable_state subrecord contains fields that change within an MCU,
33  * but must not be updated permanently until we complete the MCU.
34  */
35 
36 typedef struct {
37   INT32 put_buffer;		/* current bit-accumulation buffer */
38   int put_bits;			/* # of bits now in it */
39   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
40 } savable_state;
41 
42 /* This macro is to work around compilers with missing or broken
43  * structure assignment.  You'll need to fix this code if you have
44  * such a compiler and you change MAX_COMPS_IN_SCAN.
45  */
46 
47 #ifndef NO_STRUCT_ASSIGN
48 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
49 #else
50 #if MAX_COMPS_IN_SCAN == 4
51 #define ASSIGN_STATE(dest,src)  \
52 	((dest).put_buffer = (src).put_buffer, \
53 	 (dest).put_bits = (src).put_bits, \
54 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
55 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
56 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
57 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
58 #endif
59 #endif
60 
61 
62 typedef struct {
63   struct jpeg_entropy_encoder pub; /* public fields */
64 
65   savable_state saved;		/* Bit buffer & DC state at start of MCU */
66 
67   /* These fields are NOT loaded into local working state. */
68   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
69   int next_restart_num;		/* next restart number to write (0-7) */
70 
71   /* Pointers to derived tables (these workspaces have image lifespan) */
72   C_DERIVED_TBL * dc_derived_tbls[NUM_HUFF_TBLS];
73   C_DERIVED_TBL * ac_derived_tbls[NUM_HUFF_TBLS];
74 
75 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
76   long * dc_count_ptrs[NUM_HUFF_TBLS];
77   long * ac_count_ptrs[NUM_HUFF_TBLS];
78 #endif
79 } huff_entropy_encoder;
80 
81 typedef huff_entropy_encoder * huff_entropy_ptr;
82 
83 /* Working state while writing an MCU.
84  * This struct contains all the fields that are needed by subroutines.
85  */
86 
87 typedef struct {
88   JOCTET * next_output_byte;	/* => next byte to write in buffer */
89   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
90   savable_state cur;		/* Current bit buffer & DC state */
91   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
92 } working_state;
93 
94 
95 /* Forward declarations */
96 METHODDEF boolean encode_mcu_huff JPP((j_compress_ptr cinfo,
97 				       JBLOCKROW *MCU_data));
98 METHODDEF void finish_pass_huff JPP((j_compress_ptr cinfo));
99 #ifdef ENTROPY_OPT_SUPPORTED
100 METHODDEF boolean encode_mcu_gather JPP((j_compress_ptr cinfo,
101 					 JBLOCKROW *MCU_data));
102 METHODDEF void finish_pass_gather JPP((j_compress_ptr cinfo));
103 #endif
104 LOCAL void fix_huff_tbl JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl,
105 			     C_DERIVED_TBL ** pdtbl));
106 
107 
108 /*
109  * Initialize for a Huffman-compressed scan.
110  * If gather_statistics is TRUE, we do not output anything during the scan,
111  * just count the Huffman symbols used and generate Huffman code tables.
112  */
113 
114 METHODDEF void
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)115 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
116 {
117   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
118   int ci, dctbl, actbl;
119   jpeg_component_info * compptr;
120 
121   if (gather_statistics) {
122 #ifdef ENTROPY_OPT_SUPPORTED
123     entropy->pub.encode_mcu = encode_mcu_gather;
124     entropy->pub.finish_pass = finish_pass_gather;
125 #else
126     ERREXIT(cinfo, JERR_NOT_COMPILED);
127 #endif
128   } else {
129     entropy->pub.encode_mcu = encode_mcu_huff;
130     entropy->pub.finish_pass = finish_pass_huff;
131   }
132 
133   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
134     compptr = cinfo->cur_comp_info[ci];
135     dctbl = compptr->dc_tbl_no;
136     actbl = compptr->ac_tbl_no;
137     /* Make sure requested tables are present */
138     /* (In gather mode, tables need not be allocated yet) */
139     if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS ||
140 	(cinfo->dc_huff_tbl_ptrs[dctbl] == NULL && !gather_statistics))
141       ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
142     if (actbl < 0 || actbl >= NUM_HUFF_TBLS ||
143 	(cinfo->ac_huff_tbl_ptrs[actbl] == NULL && !gather_statistics))
144       ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
145     if (gather_statistics) {
146 #ifdef ENTROPY_OPT_SUPPORTED
147       /* Allocate and zero the statistics tables */
148       /* Note that gen_huff_coding expects 257 entries in each table! */
149       if (entropy->dc_count_ptrs[dctbl] == NULL)
150 	entropy->dc_count_ptrs[dctbl] = (long *)
151 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
152 				      257 * SIZEOF(long));
153       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
154       if (entropy->ac_count_ptrs[actbl] == NULL)
155 	entropy->ac_count_ptrs[actbl] = (long *)
156 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
157 				      257 * SIZEOF(long));
158       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
159 #endif
160     } else {
161       /* Compute derived values for Huffman tables */
162       /* We may do this more than once for a table, but it's not expensive */
163       fix_huff_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
164 		   & entropy->dc_derived_tbls[dctbl]);
165       fix_huff_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
166 		   & entropy->ac_derived_tbls[actbl]);
167     }
168     /* Initialize DC predictions to 0 */
169     entropy->saved.last_dc_val[ci] = 0;
170   }
171 
172   /* Initialize bit buffer to empty */
173   entropy->saved.put_buffer = 0;
174   entropy->saved.put_bits = 0;
175 
176   /* Initialize restart stuff */
177   entropy->restarts_to_go = cinfo->restart_interval;
178   entropy->next_restart_num = 0;
179 }
180 
181 
182 LOCAL void
fix_huff_tbl(j_compress_ptr cinfo,JHUFF_TBL * htbl,C_DERIVED_TBL ** pdtbl)183 fix_huff_tbl (j_compress_ptr cinfo, JHUFF_TBL * htbl, C_DERIVED_TBL ** pdtbl)
184 /* Compute the derived values for a Huffman table */
185 {
186   C_DERIVED_TBL *dtbl;
187   int p, i, l, lastp, si;
188   char huffsize[257];
189   unsigned int huffcode[257];
190   unsigned int code;
191 
192   /* Allocate a workspace if we haven't already done so. */
193   if (*pdtbl == NULL)
194     *pdtbl = (C_DERIVED_TBL *)
195       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
196 				  SIZEOF(C_DERIVED_TBL));
197   dtbl = *pdtbl;
198 
199   /* Figure C.1: make table of Huffman code length for each symbol */
200   /* Note that this is in code-length order. */
201 
202   p = 0;
203   for (l = 1; l <= 16; l++) {
204     for (i = 1; i <= (int) htbl->bits[l]; i++)
205       huffsize[p++] = (char) l;
206   }
207   huffsize[p] = 0;
208   lastp = p;
209 
210   /* Figure C.2: generate the codes themselves */
211   /* Note that this is in code-length order. */
212 
213   code = 0;
214   si = huffsize[0];
215   p = 0;
216   while (huffsize[p]) {
217     while (((int) huffsize[p]) == si) {
218       huffcode[p++] = code;
219       code++;
220     }
221     code <<= 1;
222     si++;
223   }
224 
225   /* Figure C.3: generate encoding tables */
226   /* These are code and size indexed by symbol value */
227 
228   /* Set any codeless symbols to have code length 0;
229    * this allows emit_bits to detect any attempt to emit such symbols.
230    */
231   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
232 
233   for (p = 0; p < lastp; p++) {
234     dtbl->ehufco[htbl->huffval[p]] = huffcode[p];
235     dtbl->ehufsi[htbl->huffval[p]] = huffsize[p];
236   }
237 }
238 
239 
240 /* Outputting bytes to the file */
241 
242 /* Emit a byte, taking 'action' if must suspend. */
243 #define emit_byte(state,val,action)  \
244 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
245 	  if (--(state)->free_in_buffer == 0)  \
246 	    if (! dump_buffer(state))  \
247 	      { action; } }
248 
249 
250 LOCAL boolean
dump_buffer(working_state * state)251 dump_buffer (working_state * state)
252 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
253 {
254   struct jpeg_destination_mgr * dest = state->cinfo->dest;
255 
256   if (! (*dest->empty_output_buffer) (state->cinfo))
257     return FALSE;
258   /* After a successful buffer dump, must reset buffer pointers */
259   state->next_output_byte = dest->next_output_byte;
260   state->free_in_buffer = dest->free_in_buffer;
261   return TRUE;
262 }
263 
264 
265 /* Outputting bits to the file */
266 
267 /* Only the right 24 bits of put_buffer are used; the valid bits are
268  * left-justified in this part.  At most 16 bits can be passed to emit_bits
269  * in one call, and we never retain more than 7 bits in put_buffer
270  * between calls, so 24 bits are sufficient.
271  */
272 
273 INLINE
274 LOCAL boolean
emit_bits(working_state * state,unsigned int code,int size)275 emit_bits (working_state * state, unsigned int code, int size)
276 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
277 {
278   /* This routine is heavily used, so it's worth coding tightly. */
279   register INT32 put_buffer = (INT32) code;
280   register int put_bits = state->cur.put_bits;
281 
282   /* if size is 0, caller used an invalid Huffman table entry */
283   if (size == 0)
284     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
285 
286   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
287 
288   put_bits += size;		/* new number of bits in buffer */
289 
290   put_buffer <<= 24 - put_bits; /* align incoming bits */
291 
292   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
293 
294   while (put_bits >= 8) {
295     int c = (int) ((put_buffer >> 16) & 0xFF);
296 
297     emit_byte(state, c, return FALSE);
298     if (c == 0xFF) {		/* need to stuff a zero byte? */
299       emit_byte(state, 0, return FALSE);
300     }
301     put_buffer <<= 8;
302     put_bits -= 8;
303   }
304 
305   state->cur.put_buffer = put_buffer; /* update state variables */
306   state->cur.put_bits = put_bits;
307 
308   return TRUE;
309 }
310 
311 
312 LOCAL boolean
flush_bits(working_state * state)313 flush_bits (working_state * state)
314 {
315   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
316     return FALSE;
317   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
318   state->cur.put_bits = 0;
319   return TRUE;
320 }
321 
322 
323 /* Encode a single block's worth of coefficients */
324 
325 LOCAL boolean
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,C_DERIVED_TBL * dctbl,C_DERIVED_TBL * actbl)326 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
327 		  C_DERIVED_TBL *dctbl, C_DERIVED_TBL *actbl)
328 {
329   register int temp, temp2;
330   register int nbits;
331   register int k, r, i;
332 
333   /* Encode the DC coefficient difference per section F.1.2.1 */
334 
335   temp = temp2 = block[0] - last_dc_val;
336 
337   if (temp < 0) {
338     temp = -temp;		/* temp is abs value of input */
339     /* For a negative input, want temp2 = bitwise complement of abs(input) */
340     /* This code assumes we are on a two's complement machine */
341     temp2--;
342   }
343 
344   /* Find the number of bits needed for the magnitude of the coefficient */
345   nbits = 0;
346   while (temp) {
347     nbits++;
348     temp >>= 1;
349   }
350 
351   /* Emit the Huffman-coded symbol for the number of bits */
352   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
353     return FALSE;
354 
355   /* Emit that number of bits of the value, if positive, */
356   /* or the complement of its magnitude, if negative. */
357   if (nbits)			/* emit_bits rejects calls with size 0 */
358     if (! emit_bits(state, (unsigned int) temp2, nbits))
359       return FALSE;
360 
361   /* Encode the AC coefficients per section F.1.2.2 */
362 
363   r = 0;			/* r = run length of zeros */
364 
365   for (k = 1; k < DCTSIZE2; k++) {
366     if ((temp = block[k]) == 0) {
367       r++;
368     } else {
369       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
370       while (r > 15) {
371 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
372 	  return FALSE;
373 	r -= 16;
374       }
375 
376       temp2 = temp;
377       if (temp < 0) {
378 	temp = -temp;		/* temp is abs value of input */
379 	/* This code assumes we are on a two's complement machine */
380 	temp2--;
381       }
382 
383       /* Find the number of bits needed for the magnitude of the coefficient */
384       nbits = 1;		/* there must be at least one 1 bit */
385       while ((temp >>= 1))
386 	nbits++;
387 
388       /* Emit Huffman symbol for run length / number of bits */
389       i = (r << 4) + nbits;
390       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
391 	return FALSE;
392 
393       /* Emit that number of bits of the value, if positive, */
394       /* or the complement of its magnitude, if negative. */
395       if (! emit_bits(state, (unsigned int) temp2, nbits))
396 	return FALSE;
397 
398       r = 0;
399     }
400   }
401 
402   /* If the last coef(s) were zero, emit an end-of-block code */
403   if (r > 0)
404     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
405       return FALSE;
406 
407   return TRUE;
408 }
409 
410 
411 /*
412  * Emit a restart marker & resynchronize predictions.
413  */
414 
415 LOCAL boolean
emit_restart(working_state * state,int restart_num)416 emit_restart (working_state * state, int restart_num)
417 {
418   int ci;
419 
420   if (! flush_bits(state))
421     return FALSE;
422 
423   emit_byte(state, 0xFF, return FALSE);
424   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
425 
426   /* Re-initialize DC predictions to 0 */
427   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
428     state->cur.last_dc_val[ci] = 0;
429 
430   /* The restart counter is not updated until we successfully write the MCU. */
431 
432   return TRUE;
433 }
434 
435 
436 /*
437  * Encode and output one MCU's worth of Huffman-compressed coefficients.
438  */
439 
440 METHODDEF boolean
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)441 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
442 {
443   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
444   working_state state;
445   int blkn, ci;
446   jpeg_component_info * compptr;
447 
448   /* Load up working state */
449   state.next_output_byte = cinfo->dest->next_output_byte;
450   state.free_in_buffer = cinfo->dest->free_in_buffer;
451   ASSIGN_STATE(state.cur, entropy->saved);
452   state.cinfo = cinfo;
453 
454   /* Emit restart marker if needed */
455   if (cinfo->restart_interval) {
456     if (entropy->restarts_to_go == 0)
457       if (! emit_restart(&state, entropy->next_restart_num))
458 	return FALSE;
459   }
460 
461   /* Encode the MCU data blocks */
462   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
463     ci = cinfo->MCU_membership[blkn];
464     compptr = cinfo->cur_comp_info[ci];
465     if (! encode_one_block(&state,
466 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
467 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
468 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
469       return FALSE;
470     /* Update last_dc_val */
471     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
472   }
473 
474   /* Completed MCU, so update state */
475   cinfo->dest->next_output_byte = state.next_output_byte;
476   cinfo->dest->free_in_buffer = state.free_in_buffer;
477   ASSIGN_STATE(entropy->saved, state.cur);
478 
479   /* Update restart-interval state too */
480   if (cinfo->restart_interval) {
481     if (entropy->restarts_to_go == 0) {
482       entropy->restarts_to_go = cinfo->restart_interval;
483       entropy->next_restart_num++;
484       entropy->next_restart_num &= 7;
485     }
486     entropy->restarts_to_go--;
487   }
488 
489   return TRUE;
490 }
491 
492 
493 /*
494  * Finish up at the end of a Huffman-compressed scan.
495  */
496 
497 METHODDEF void
finish_pass_huff(j_compress_ptr cinfo)498 finish_pass_huff (j_compress_ptr cinfo)
499 {
500   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
501   working_state state;
502 
503   /* Load up working state ... flush_bits needs it */
504   state.next_output_byte = cinfo->dest->next_output_byte;
505   state.free_in_buffer = cinfo->dest->free_in_buffer;
506   ASSIGN_STATE(state.cur, entropy->saved);
507   state.cinfo = cinfo;
508 
509   /* Flush out the last data */
510   if (! flush_bits(&state))
511     ERREXIT(cinfo, JERR_CANT_SUSPEND);
512 
513   /* Update state */
514   cinfo->dest->next_output_byte = state.next_output_byte;
515   cinfo->dest->free_in_buffer = state.free_in_buffer;
516   ASSIGN_STATE(entropy->saved, state.cur);
517 }
518 
519 
520 /*
521  * Huffman coding optimization.
522  *
523  * This actually is optimization, in the sense that we find the best possible
524  * Huffman table(s) for the given data.  We first scan the supplied data and
525  * count the number of uses of each symbol that is to be Huffman-coded.
526  * (This process must agree with the code above.)  Then we build an
527  * optimal Huffman coding tree for the observed counts.
528  *
529  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
530  * If some symbols have a very small but nonzero probability, the Huffman tree
531  * must be adjusted to meet the code length restriction.  We currently use
532  * the adjustment method suggested in the JPEG spec.  This method is *not*
533  * optimal; it may not choose the best possible limited-length code.  But
534  * since the symbols involved are infrequently used, it's not clear that
535  * going to extra trouble is worthwhile.
536  */
537 
538 #ifdef ENTROPY_OPT_SUPPORTED
539 
540 
541 /* Process a single block's worth of coefficients */
542 
543 LOCAL void
htest_one_block(JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])544 htest_one_block (JCOEFPTR block, int last_dc_val,
545 		 long dc_counts[], long ac_counts[])
546 {
547   register int temp;
548   register int nbits;
549   register int k, r;
550 
551   /* Encode the DC coefficient difference per section F.1.2.1 */
552 
553   temp = block[0] - last_dc_val;
554   if (temp < 0)
555     temp = -temp;
556 
557   /* Find the number of bits needed for the magnitude of the coefficient */
558   nbits = 0;
559   while (temp) {
560     nbits++;
561     temp >>= 1;
562   }
563 
564   /* Count the Huffman symbol for the number of bits */
565   dc_counts[nbits]++;
566 
567   /* Encode the AC coefficients per section F.1.2.2 */
568 
569   r = 0;			/* r = run length of zeros */
570 
571   for (k = 1; k < DCTSIZE2; k++) {
572     if ((temp = block[k]) == 0) {
573       r++;
574     } else {
575       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
576       while (r > 15) {
577 	ac_counts[0xF0]++;
578 	r -= 16;
579       }
580 
581       /* Find the number of bits needed for the magnitude of the coefficient */
582       if (temp < 0)
583 	temp = -temp;
584 
585       /* Find the number of bits needed for the magnitude of the coefficient */
586       nbits = 1;		/* there must be at least one 1 bit */
587       while ((temp >>= 1))
588 	nbits++;
589 
590       /* Count Huffman symbol for run length / number of bits */
591       ac_counts[(r << 4) + nbits]++;
592 
593       r = 0;
594     }
595   }
596 
597   /* If the last coef(s) were zero, emit an end-of-block code */
598   if (r > 0)
599     ac_counts[0]++;
600 }
601 
602 
603 /*
604  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
605  * No data is actually output, so no suspension return is possible.
606  */
607 
608 METHODDEF boolean
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)609 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
610 {
611   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
612   int blkn, ci;
613   jpeg_component_info * compptr;
614 
615   /* Take care of restart intervals if needed */
616   if (cinfo->restart_interval) {
617     if (entropy->restarts_to_go == 0) {
618       /* Re-initialize DC predictions to 0 */
619       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
620 	entropy->saved.last_dc_val[ci] = 0;
621       /* Update restart state */
622       entropy->restarts_to_go = cinfo->restart_interval;
623     }
624     entropy->restarts_to_go--;
625   }
626 
627   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
628     ci = cinfo->MCU_membership[blkn];
629     compptr = cinfo->cur_comp_info[ci];
630     htest_one_block(MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
631 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
632 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
633     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
634   }
635 
636   return TRUE;
637 }
638 
639 
640 /* Generate the optimal coding for the given counts, initialize htbl */
641 
642 LOCAL void
gen_huff_coding(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])643 gen_huff_coding (j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
644 {
645 #define MAX_CLEN 32		/* assumed maximum initial code length */
646   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
647   int codesize[257];		/* codesize[k] = code length of symbol k */
648   int others[257];		/* next symbol in current branch of tree */
649   int c1, c2;
650   int p, i, j;
651   long v;
652 
653   /* This algorithm is explained in section K.2 of the JPEG standard */
654 
655   MEMZERO(bits, SIZEOF(bits));
656   MEMZERO(codesize, SIZEOF(codesize));
657   for (i = 0; i < 257; i++)
658     others[i] = -1;		/* init links to empty */
659 
660   freq[256] = 1;		/* make sure there is a nonzero count */
661   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
662    * that no real symbol is given code-value of all ones, because 256
663    * will be placed in the largest codeword category.
664    */
665 
666   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
667 
668   for (;;) {
669     /* Find the smallest nonzero frequency, set c1 = its symbol */
670     /* In case of ties, take the larger symbol number */
671     c1 = -1;
672     v = 1000000000L;
673     for (i = 0; i <= 256; i++) {
674       if (freq[i] && freq[i] <= v) {
675 	v = freq[i];
676 	c1 = i;
677       }
678     }
679 
680     /* Find the next smallest nonzero frequency, set c2 = its symbol */
681     /* In case of ties, take the larger symbol number */
682     c2 = -1;
683     v = 1000000000L;
684     for (i = 0; i <= 256; i++) {
685       if (freq[i] && freq[i] <= v && i != c1) {
686 	v = freq[i];
687 	c2 = i;
688       }
689     }
690 
691     /* Done if we've merged everything into one frequency */
692     if (c2 < 0)
693       break;
694 
695     /* Else merge the two counts/trees */
696     freq[c1] += freq[c2];
697     freq[c2] = 0;
698 
699     /* Increment the codesize of everything in c1's tree branch */
700     codesize[c1]++;
701     while (others[c1] >= 0) {
702       c1 = others[c1];
703       codesize[c1]++;
704     }
705 
706     others[c1] = c2;		/* chain c2 onto c1's tree branch */
707 
708     /* Increment the codesize of everything in c2's tree branch */
709     codesize[c2]++;
710     while (others[c2] >= 0) {
711       c2 = others[c2];
712       codesize[c2]++;
713     }
714   }
715 
716   /* Now count the number of symbols of each code length */
717   for (i = 0; i <= 256; i++) {
718     if (codesize[i]) {
719       /* The JPEG standard seems to think that this can't happen, */
720       /* but I'm paranoid... */
721       if (codesize[i] > MAX_CLEN)
722 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
723 
724       bits[codesize[i]]++;
725     }
726   }
727 
728   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
729    * Huffman procedure assigned any such lengths, we must adjust the coding.
730    * Here is what the JPEG spec says about how this next bit works:
731    * Since symbols are paired for the longest Huffman code, the symbols are
732    * removed from this length category two at a time.  The prefix for the pair
733    * (which is one bit shorter) is allocated to one of the pair; then,
734    * skipping the BITS entry for that prefix length, a code word from the next
735    * shortest nonzero BITS entry is converted into a prefix for two code words
736    * one bit longer.
737    */
738 
739   for (i = MAX_CLEN; i > 16; i--) {
740     while (bits[i] > 0) {
741       j = i - 2;		/* find length of new prefix to be used */
742       while (bits[j] == 0)
743 	j--;
744 
745       bits[i] -= 2;		/* remove two symbols */
746       bits[i-1]++;		/* one goes in this length */
747       bits[j+1] += 2;		/* two new symbols in this length */
748       bits[j]--;		/* symbol of this length is now a prefix */
749     }
750   }
751 
752   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
753   while (bits[i] == 0)		/* find largest codelength still in use */
754     i--;
755   bits[i]--;
756 
757   /* Return final symbol counts (only for lengths 0..16) */
758   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
759 
760   /* Return a list of the symbols sorted by code length */
761   /* It's not real clear to me why we don't need to consider the codelength
762    * changes made above, but the JPEG spec seems to think this works.
763    */
764   p = 0;
765   for (i = 1; i <= MAX_CLEN; i++) {
766     for (j = 0; j <= 255; j++) {
767       if (codesize[j] == i) {
768 	htbl->huffval[p] = (UINT8) j;
769 	p++;
770       }
771     }
772   }
773 
774   /* Set sent_table FALSE so updated table will be written to JPEG file. */
775   htbl->sent_table = FALSE;
776 }
777 
778 
779 /*
780  * Finish up a statistics-gathering pass and create the new Huffman tables.
781  */
782 
783 METHODDEF void
finish_pass_gather(j_compress_ptr cinfo)784 finish_pass_gather (j_compress_ptr cinfo)
785 {
786   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
787   int ci, dctbl, actbl;
788   jpeg_component_info * compptr;
789   JHUFF_TBL **htblptr;
790   boolean did_dc[NUM_HUFF_TBLS];
791   boolean did_ac[NUM_HUFF_TBLS];
792 
793   /* It's important not to apply gen_huff_coding more than once per table,
794    * because it clobbers the input frequency counts!
795    */
796   MEMZERO(did_dc, SIZEOF(did_dc));
797   MEMZERO(did_ac, SIZEOF(did_ac));
798 
799   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
800     compptr = cinfo->cur_comp_info[ci];
801     dctbl = compptr->dc_tbl_no;
802     actbl = compptr->ac_tbl_no;
803     if (! did_dc[dctbl]) {
804       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
805       if (*htblptr == NULL)
806 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
807       gen_huff_coding(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
808       did_dc[dctbl] = TRUE;
809     }
810     if (! did_ac[actbl]) {
811       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
812       if (*htblptr == NULL)
813 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
814       gen_huff_coding(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
815       did_ac[actbl] = TRUE;
816     }
817   }
818 }
819 
820 
821 #endif /* ENTROPY_OPT_SUPPORTED */
822 
823 
824 /*
825  * Module initialization routine for Huffman entropy encoding.
826  */
827 
828 GLOBAL void
jinit_huff_encoder(j_compress_ptr cinfo)829 jinit_huff_encoder (j_compress_ptr cinfo)
830 {
831   huff_entropy_ptr entropy;
832   int i;
833 
834   entropy = (huff_entropy_ptr)
835     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
836 				SIZEOF(huff_entropy_encoder));
837   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
838   entropy->pub.start_pass = start_pass_huff;
839 
840   /* Mark tables unallocated */
841   for (i = 0; i < NUM_HUFF_TBLS; i++) {
842     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
843 #ifdef ENTROPY_OPT_SUPPORTED
844     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
845 #endif
846   }
847 }
848