1 /* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
2  * Copyright (c) 2018, Cavium. All rights reserved. (By BELLSOFT)
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/assembler.hpp"
27 #include "asm/assembler.inline.hpp"
28 #include "runtime/stubRoutines.hpp"
29 #include "macroAssembler_aarch64.hpp"
30 
31 // The following code is a optimized version of fdlibm sin/cos implementation
32 // (C code is in share/runtime/sharedRuntimeTrig.cpp) adapted for AARCH64.
33 
34 // Please refer to sin/cos approximation via polynomial and
35 // trigonometric argument reduction techniques to the following literature:
36 //
37 // [1] Muller, Jean-Michel, Nicolas Brisebarre, Florent De Dinechin,
38 // Claude-Pierre Jeannerod, Vincent Lefevre, Guillaume Melquiond,
39 // Nathalie Revol, Damien Stehlé, and Serge Torres:
40 // Handbook of floating-point arithmetic.
41 // Springer Science & Business Media, 2009.
42 // [2] K. C. Ng
43 // Argument Reduction for Huge Arguments: Good to the Last Bit
44 // July 13, 1992, SunPro
45 //
46 // HOW TO READ THIS CODE:
47 // This code consists of several functions. Each function has following header:
48 // 1) Description
49 // 2) C-pseudo code with differences from fdlibm marked by comments starting
50 //        with "NOTE". Check unmodified fdlibm code in
51 //        share/runtime/SharedRuntimeTrig.cpp
52 // 3) Brief textual description of changes between fdlibm and current
53 //        implementation along with optimization notes (if applicable)
54 // 4) Assumptions, input and output
55 // 5) (Optional) additional notes about intrinsic implementation
56 // Each function is separated in blocks which follow the pseudo-code structure
57 //
58 // HIGH-LEVEL ALGORITHM DESCRIPTION:
59 //    - entry point: generate_dsin_dcos(...);
60 //    - check corner cases: NaN, INF, tiny argument.
61 //    - check if |x| < Pi/4. Then approximate sin/cos via polynomial (kernel_sin/kernel_cos)
62 //    -- else proceed to argument reduction routine (__ieee754_rem_pio2) and
63 //           use reduced argument to get result via kernel_sin/kernel_cos
64 //
65 // HIGH-LEVEL CHANGES BETWEEN INTRINSICS AND FDLIBM:
66 // 1) two_over_pi table fdlibm representation is int[], while intrinsic version
67 // has these int values converted to double representation to load converted
68 // double values directly (see stubRoutines_aarch4::_two_over_pi)
69 // 2) Several loops are unrolled and vectorized: see comments in code after
70 // labels: SKIP_F_LOAD, RECOMP_FOR1_CHECK, RECOMP_FOR2
71 // 3) fdlibm npio2_hw table now has "prefix" with constants used in
72 // calculation. These constants are loaded from npio2_hw table instead of
73 // constructing it in code (see stubRoutines_aarch64.cpp)
74 // 4) Polynomial coefficients for sin and cos are moved to table sin_coef
75 // and cos_coef to use the same optimization as in 3). It allows to load most of
76 // required constants via single instruction
77 //
78 //
79 //
80 ///* __ieee754_rem_pio2(x,y)
81 // *
82 // * returns the remainder of x rem pi/2 in y[0]+y[1] (i.e. like x div pi/2)
83 // * x is input argument, y[] is hi and low parts of reduced argument (x)
84 // * uses __kernel_rem_pio2()
85 // */
86 // // use tables(see stubRoutines_aarch64.cpp): two_over_pi and modified npio2_hw
87 //
88 // BEGIN __ieee754_rem_pio2 PSEUDO CODE
89 //
90 //static int __ieee754_rem_pio2(double x, double *y) {
91 //  double z,w,t,r,fn;
92 //  double tx[3];
93 //  int e0,i,j,nx,n,ix,hx,i0;
94 //
95 //  i0 = ((*(int*)&two24A)>>30)^1;        /* high word index */
96 //  hx = *(i0+(int*)&x);          /* high word of x */
97 //  ix = hx&0x7fffffff;
98 //  if(ix<0x4002d97c) {  /* |x| < 3pi/4, special case with n=+-1 */
99 //    if(hx>0) {
100 //      z = x - pio2_1;
101 //      if(ix!=0x3ff921fb) {    /* 33+53 bit pi is good enough */
102 //        y[0] = z - pio2_1t;
103 //        y[1] = (z-y[0])-pio2_1t;
104 //      } else {                /* near pi/2, use 33+33+53 bit pi */
105 //        z -= pio2_2;
106 //        y[0] = z - pio2_2t;
107 //        y[1] = (z-y[0])-pio2_2t;
108 //      }
109 //      return 1;
110 //    } else {    /* negative x */
111 //      z = x + pio2_1;
112 //      if(ix!=0x3ff921fb) {    /* 33+53 bit pi is good enough */
113 //        y[0] = z + pio2_1t;
114 //        y[1] = (z-y[0])+pio2_1t;
115 //      } else {                /* near pi/2, use 33+33+53 bit pi */
116 //        z += pio2_2;
117 //        y[0] = z + pio2_2t;
118 //        y[1] = (z-y[0])+pio2_2t;
119 //      }
120 //      return -1;
121 //    }
122 //  }
123 //  if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
124 //    t  = fabsd(x);
125 //    n  = (int) (t*invpio2+half);
126 //    fn = (double)n;
127 //    r  = t-fn*pio2_1;
128 //    w  = fn*pio2_1t;    /* 1st round good to 85 bit */
129 //    // NOTE: y[0] = r-w; is moved from if/else below to be before "if"
130 //    y[0] = r-w;
131 //    if(n<32&&ix!=npio2_hw[n-1]) {
132 //      // y[0] = r-w;       /* quick check no cancellation */ // NOTE: moved earlier
133 //    } else {
134 //      j  = ix>>20;
135 //      // y[0] = r-w; // NOTE: moved earlier
136 //      i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
137 //      if(i>16) {  /* 2nd iteration needed, good to 118 */
138 //        t  = r;
139 //        w  = fn*pio2_2;
140 //        r  = t-w;
141 //        w  = fn*pio2_2t-((t-r)-w);
142 //        y[0] = r-w;
143 //        i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
144 //        if(i>49)  {     /* 3rd iteration need, 151 bits acc */
145 //          t  = r;       /* will cover all possible cases */
146 //          w  = fn*pio2_3;
147 //          r  = t-w;
148 //          w  = fn*pio2_3t-((t-r)-w);
149 //          y[0] = r-w;
150 //        }
151 //      }
152 //    }
153 //    y[1] = (r-y[0])-w;
154 //    if(hx<0)    {y[0] = -y[0]; y[1] = -y[1]; return -n;}
155 //    else         return n;
156 //  }
157 //  /*
158 //   * all other (large) arguments
159 //   */
160 //  // NOTE: this check is removed, because it was checked in dsin/dcos
161 //  // if(ix>=0x7ff00000) {          /* x is inf or NaN */
162 //  //  y[0]=y[1]=x-x; return 0;
163 //  // }
164 //  /* set z = scalbn(|x|,ilogb(x)-23) */
165 //  *(1-i0+(int*)&z) = *(1-i0+(int*)&x);
166 //  e0    = (ix>>20)-1046;        /* e0 = ilogb(z)-23; */
167 //  *(i0+(int*)&z) = ix - (e0<<20);
168 //
169 //  // NOTE: "for" loop below in unrolled. See comments in asm code
170 //  for(i=0;i<2;i++) {
171 //    tx[i] = (double)((int)(z));
172 //    z     = (z-tx[i])*two24A;
173 //  }
174 //
175 //  tx[2] = z;
176 //  nx = 3;
177 //
178 //  // NOTE: while(tx[nx-1]==zeroA) nx--;  is unrolled. See comments in asm code
179 //  while(tx[nx-1]==zeroA) nx--;  /* skip zero term */
180 //
181 //  n  =  __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
182 //  if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
183 //  return n;
184 //}
185 //
186 // END __ieee754_rem_pio2 PSEUDO CODE
187 //
188 // Changes between fdlibm and intrinsic for __ieee754_rem_pio2:
189 //     1. INF/NaN check for huge argument is removed in comparison with fdlibm
190 //     code, because this check is already done in dcos/dsin code
191 //     2. Most constants are now loaded from table instead of direct initialization
192 //     3. Two loops are unrolled
193 // Assumptions:
194 //     1. Assume |X| >= PI/4
195 //     2. Assume rscratch1 = 0x3fe921fb00000000  (~ PI/4)
196 //     3. Assume ix = r3
197 // Input and output:
198 //     1. Input: X = r0
199 //     2. Return n in r2, y[0] == y0 == v4, y[1] == y1 == v5
200 // NOTE: general purpose register names match local variable names in C code
201 // NOTE: fpu registers are actively reused. See comments in code about their usage
generate__ieee754_rem_pio2(address npio2_hw,address two_over_pi,address pio2)202 void MacroAssembler::generate__ieee754_rem_pio2(address npio2_hw,
203     address two_over_pi, address pio2) {
204   const int64_t PIO2_1t = 0x3DD0B4611A626331ULL;
205   const int64_t PIO2_2  = 0x3DD0B4611A600000ULL;
206   const int64_t PIO2_2t = 0x3BA3198A2E037073ULL;
207   Label X_IS_NEGATIVE, X_IS_MEDIUM_OR_LARGE, X_IS_POSITIVE_LONG_PI, LARGE_ELSE,
208       REDUCTION_DONE, X_IS_MEDIUM_BRANCH_DONE, X_IS_LARGE, NX_SET,
209       X_IS_NEGATIVE_LONG_PI;
210   Register X = r0, n = r2, ix = r3, jv = r4, tmp5 = r5, jx = r6,
211       tmp3 = r7, iqBase = r10, ih = r11, i = r17;
212     // initializing constants first
213     // rscratch1 = 0x3fe921fb00000000 (see assumptions)
214     movk(rscratch1, 0x3ff9, 48); // was 0x3fe921fb0..0 now it's 0x3ff921fb0..0
215     mov(rscratch2, 0x4002d97c); // 3*PI/4 high word
216     movk(rscratch1, 0x5440, 16); // now rscratch1 == PIO2_1
217     fmovd(v1, rscratch1); // v1 = PIO2_1
218     cmp(rscratch2, ix);
219     br(LE, X_IS_MEDIUM_OR_LARGE);
220 
221     block_comment("if(ix<0x4002d97c) {...  /* |x| ~< 3pi/4 */ "); {
222       cmp(X, zr);
223       br(LT, X_IS_NEGATIVE);
224 
225       block_comment("if(hx>0) {"); {
226         fsubd(v2, v0, v1); // v2 = z = x - pio2_1
227         cmp(ix, rscratch1, LSR, 32);
228         mov(n, 1);
229         br(EQ, X_IS_POSITIVE_LONG_PI);
230 
231         block_comment("case: hx > 0 &&  ix!=0x3ff921fb {"); { /* 33+53 bit pi is good enough */
232           mov(rscratch2, PIO2_1t);
233           fmovd(v27, rscratch2);
234           fsubd(v4, v2, v27); // v4 = y[0] = z - pio2_1t;
235           fsubd(v5, v2, v4);
236           fsubd(v5, v5, v27); // v5 = y[1] = (z-y[0])-pio2_1t
237           b(REDUCTION_DONE);
238         }
239 
240         block_comment("case: hx > 0 &*& ix==0x3ff921fb {"); { /* near pi/2, use 33+33+53 bit pi */
241           bind(X_IS_POSITIVE_LONG_PI);
242             mov(rscratch1, PIO2_2);
243             mov(rscratch2, PIO2_2t);
244             fmovd(v27, rscratch1);
245             fmovd(v6, rscratch2);
246             fsubd(v2, v2, v27); // z-= pio2_2
247             fsubd(v4, v2, v6);  // y[0] = z - pio2_2t
248             fsubd(v5, v2, v4);
249             fsubd(v5, v5, v6);  // v5 = (z - y[0]) - pio2_2t
250             b(REDUCTION_DONE);
251         }
252       }
253 
254       block_comment("case: hx <= 0)"); {
255         bind(X_IS_NEGATIVE);
256           faddd(v2, v0, v1); // v2 = z = x + pio2_1
257           cmp(ix, rscratch1, LSR, 32);
258           mov(n, -1);
259           br(EQ, X_IS_NEGATIVE_LONG_PI);
260 
261           block_comment("case: hx <= 0 && ix!=0x3ff921fb) {"); { /* 33+53 bit pi is good enough */
262             mov(rscratch2, PIO2_1t);
263             fmovd(v27, rscratch2);
264             faddd(v4, v2, v27); // v4 = y[0] = z + pio2_1t;
265             fsubd(v5, v2, v4);
266             faddd(v5, v5, v27); // v5 = y[1] = (z-y[0]) + pio2_1t
267             b(REDUCTION_DONE);
268           }
269 
270           block_comment("case: hx <= 0 && ix==0x3ff921fb"); { /* near pi/2, use 33+33+53 bit pi */
271             bind(X_IS_NEGATIVE_LONG_PI);
272               mov(rscratch1, PIO2_2);
273               mov(rscratch2, PIO2_2t);
274               fmovd(v27, rscratch1);
275               fmovd(v6, rscratch2);
276               faddd(v2, v2, v27); // z += pio2_2
277               faddd(v4, v2, v6);  // y[0] = z + pio2_2t
278               fsubd(v5, v2, v4);
279               faddd(v5, v5, v6);  // v5 = (z - y[0]) + pio2_2t
280               b(REDUCTION_DONE);
281           }
282       }
283   }
284   bind(X_IS_MEDIUM_OR_LARGE);
285     mov(rscratch1, 0x413921fb);
286     cmp(ix, rscratch1); // ix < = 0x413921fb ?
287     br(GT, X_IS_LARGE);
288 
289     block_comment("|x| ~<= 2^19*(pi/2), medium size"); {
290       lea(ih, ExternalAddress(npio2_hw));
291       ld1(v4, v5, v6, v7, T1D, ih);
292       fabsd(v31, v0);          // v31 = t = |x|
293       add(ih, ih, 64);
294       fmaddd(v2, v31, v5, v4); // v2 = t * invpio2 + half (invpio2 = 53 bits of 2/pi, half = 0.5)
295       fcvtzdw(n, v2);          // n = (int) v2
296       frintzd(v2, v2);
297       fmsubd(v3, v2, v6, v31); // v3 = r = t - fn * pio2_1
298       fmuld(v26, v2, v7);      // v26 = w = fn * pio2_1t
299       fsubd(v4, v3, v26);      // y[0] = r - w. Calculated before branch
300       cmp(n, 32);
301       br(GT, LARGE_ELSE);
302       subw(tmp5, n, 1);        // tmp5 = n - 1
303       ldrw(jv, Address(ih, tmp5, Address::lsl(2)));
304       cmp(ix, jv);
305       br(NE, X_IS_MEDIUM_BRANCH_DONE);
306 
307       block_comment("else block for if(n<32&&ix!=npio2_hw[n-1])"); {
308         bind(LARGE_ELSE);
309           fmovd(jx, v4);
310           lsr(tmp5, ix, 20);                       // j = ix >> 20
311           lsl(jx, jx, 1);
312           sub(tmp3, tmp5, jx, LSR, 32 + 20 + 1);   // r7 = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
313 
314           block_comment("if(i>16)"); {
315             cmp(tmp3, 16);
316             br(LE, X_IS_MEDIUM_BRANCH_DONE);
317             // i > 16. 2nd iteration needed
318             ldpd(v6, v7, Address(ih, -32));
319             fmovd(v28, v3);                        // t = r
320             fmuld(v29, v2, v6);                    // w = v29 = fn * pio2_2
321             fsubd(v3, v28, v29);                   // r = t - w
322             fsubd(v31, v28, v3);                   // v31 = (t - r)
323             fsubd(v31, v29, v31);                  // v31 = w - (t - r) = - ((t - r) - w)
324             fmaddd(v26, v2, v7, v31);              // v26 = w = fn*pio2_2t - ((t - r) - w)
325             fsubd(v4, v3, v26);                    // y[0] = r - w
326             fmovd(jx, v4);
327             lsl(jx, jx, 1);
328             sub(tmp3, tmp5, jx, LSR, 32 + 20 + 1); // r7 = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
329 
330             block_comment("if(i>49)"); {
331               cmp(tmp3, 49);
332               br(LE, X_IS_MEDIUM_BRANCH_DONE);
333               // 3rd iteration need, 151 bits acc
334               ldpd(v6, v7, Address(ih, -16));
335               fmovd(v28, v3);                      // save "r"
336               fmuld(v29, v2, v6);                  // v29 = fn * pio2_3
337               fsubd(v3, v28, v29);                 // r = r - w
338               fsubd(v31, v28, v3);                 // v31 = (t - r)
339               fsubd(v31, v29, v31);                // v31 = w - (t - r) = - ((t - r) - w)
340               fmaddd(v26, v2, v7, v31);            // v26 = w = fn*pio2_3t - ((t - r) - w)
341               fsubd(v4, v3, v26);                  // y[0] = r - w
342             }
343           }
344       }
345     block_comment("medium x tail"); {
346       bind(X_IS_MEDIUM_BRANCH_DONE);
347         fsubd(v5, v3, v4);                         // v5 = y[1] = (r - y[0])
348         fsubd(v5, v5, v26);                        // v5 = y[1] = (r - y[0]) - w
349         cmp(X, zr);
350         br(GT, REDUCTION_DONE);
351         fnegd(v4, v4);
352         negw(n, n);
353         fnegd(v5, v5);
354         b(REDUCTION_DONE);
355     }
356   }
357 
358   block_comment("all other (large) arguments"); {
359     bind(X_IS_LARGE);
360       lsr(rscratch1, ix, 20);                      // ix >> 20
361       movz(tmp5, 0x4170, 48);
362       subw(rscratch1, rscratch1, 1046);            // e0
363       fmovd(v24, tmp5);                            // init two24A value
364       subw(jv, ix, rscratch1, LSL, 20);            // ix - (e0<<20)
365       lsl(jv, jv, 32);
366       subw(rscratch2, rscratch1, 3);
367       bfm(jv, X, 0, 31);                           // jv = z
368       movw(i, 24);
369       fmovd(v26, jv);                              // v26 = z
370 
371       block_comment("unrolled for(i=0;i<2;i++) {tx[i] = (double)((int)(z));z = (z-tx[i])*two24A;}"); {
372         // tx[0,1,2] = v6,v7,v26
373         frintzd(v6, v26);                          // v6 = (double)((int)v26)
374         sdivw(jv, rscratch2, i);                   // jv = (e0 - 3)/24
375         fsubd(v26, v26, v6);
376         sub(sp, sp, 560);
377         fmuld(v26, v26, v24);
378         frintzd(v7, v26);                          // v7 = (double)((int)v26)
379         movw(jx, 2); // calculate jx as nx - 1, which is initially 2. Not a part of unrolled loop
380         fsubd(v26, v26, v7);
381       }
382 
383       block_comment("nx calculation with unrolled while(tx[nx-1]==zeroA) nx--;"); {
384         fcmpd(v26, 0.0);                           // if NE then jx == 2. else it's 1 or 0
385         add(iqBase, sp, 480);                      // base of iq[]
386         fmuld(v3, v26, v24);
387         br(NE, NX_SET);
388         fcmpd(v7, 0.0);                            // v7 == 0 => jx = 0. Else jx = 1
389         csetw(jx, NE);
390       }
391     bind(NX_SET);
392       generate__kernel_rem_pio2(two_over_pi, pio2);
393       // now we have y[0] = v4, y[1] = v5 and n = r2
394       cmp(X, zr);
395       br(GE, REDUCTION_DONE);
396       fnegd(v4, v4);
397       fnegd(v5, v5);
398       negw(n, n);
399   }
400   bind(REDUCTION_DONE);
401 }
402 
403 ///*
404 // * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
405 // * double x[],y[]; int e0,nx,prec; int ipio2[];
406 // *
407 // * __kernel_rem_pio2 return the last three digits of N with
408 // *              y = x - N*pi/2
409 // * so that |y| < pi/2.
410 // *
411 // * The method is to compute the integer (mod 8) and fraction parts of
412 // * (2/pi)*x without doing the full multiplication. In general we
413 // * skip the part of the product that are known to be a huge integer (
414 // * more accurately, = 0 mod 8 ). Thus the number of operations are
415 // * independent of the exponent of the input.
416 // *
417 // * NOTE: 2/pi int representation is converted to double
418 // * // (2/pi) is represented by an array of 24-bit integers in ipio2[].
419 // *
420 // * Input parameters:
421 // *      x[]     The input value (must be positive) is broken into nx
422 // *              pieces of 24-bit integers in double precision format.
423 // *              x[i] will be the i-th 24 bit of x. The scaled exponent
424 // *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
425 // *              match x's up to 24 bits.
426 // *
427 // *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
428 // *                      e0 = ilogb(z)-23
429 // *                      z  = scalbn(z,-e0)
430 // *              for i = 0,1,2
431 // *                      x[i] = floor(z)
432 // *                      z    = (z-x[i])*2**24
433 // *
434 // *
435 // *      y[]     ouput result in an array of double precision numbers.
436 // *              The dimension of y[] is:
437 // *                      24-bit  precision       1
438 // *                      53-bit  precision       2
439 // *                      64-bit  precision       2
440 // *                      113-bit precision       3
441 // *              The actual value is the sum of them. Thus for 113-bit
442 // *              precsion, one may have to do something like:
443 // *
444 // *              long double t,w,r_head, r_tail;
445 // *              t = (long double)y[2] + (long double)y[1];
446 // *              w = (long double)y[0];
447 // *              r_head = t+w;
448 // *              r_tail = w - (r_head - t);
449 // *
450 // *      e0      The exponent of x[0]
451 // *
452 // *      nx      dimension of x[]
453 // *
454 // *      prec    an interger indicating the precision:
455 // *                      0       24  bits (single)
456 // *                      1       53  bits (double)
457 // *                      2       64  bits (extended)
458 // *                      3       113 bits (quad)
459 // *
460 // *      NOTE: ipio2[] array below is converted to double representation
461 // *      //ipio2[]
462 // *      //        integer array, contains the (24*i)-th to (24*i+23)-th
463 // *      //        bit of 2/pi after binary point. The corresponding
464 // *      //        floating value is
465 // *
466 // *                      ipio2[i] * 2^(-24(i+1)).
467 // *
468 // * Here is the description of some local variables:
469 // *
470 // *      jk      jk+1 is the initial number of terms of ipio2[] needed
471 // *              in the computation. The recommended value is 2,3,4,
472 // *              6 for single, double, extended,and quad.
473 // *
474 // *      jz      local integer variable indicating the number of
475 // *              terms of ipio2[] used.
476 // *
477 // *      jx      nx - 1
478 // *
479 // *      jv      index for pointing to the suitable ipio2[] for the
480 // *              computation. In general, we want
481 // *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
482 // *              is an integer. Thus
483 // *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
484 // *              Hence jv = max(0,(e0-3)/24).
485 // *
486 // *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
487 // *
488 // *      q[]     double array with integral value, representing the
489 // *              24-bits chunk of the product of x and 2/pi.
490 // *
491 // *      q0      the corresponding exponent of q[0]. Note that the
492 // *              exponent for q[i] would be q0-24*i.
493 // *
494 // *      PIo2[]  double precision array, obtained by cutting pi/2
495 // *              into 24 bits chunks.
496 // *
497 // *      f[]     ipio2[] in floating point
498 // *
499 // *      iq[]    integer array by breaking up q[] in 24-bits chunk.
500 // *
501 // *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
502 // *
503 // *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
504 // *              it also indicates the *sign* of the result.
505 // *
506 // */
507 //
508 // Use PIo2 table(see stubRoutines_aarch64.cpp)
509 //
510 // BEGIN __kernel_rem_pio2 PSEUDO CODE
511 //
512 //static int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, /* NOTE: converted to double */ const double *ipio2 // const int *ipio2) {
513 //  int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
514 //  double z,fw,f[20],fq[20],q[20];
515 //
516 //  /* initialize jk*/
517 //  // jk = init_jk[prec]; // NOTE: prec==2 for double. jk is always 4.
518 //  jp = jk; // NOTE: always 4
519 //
520 //  /* determine jx,jv,q0, note that 3>q0 */
521 //  jx =  nx-1;
522 //  jv = (e0-3)/24; if(jv<0) jv=0;
523 //  q0 =  e0-24*(jv+1);
524 //
525 //  /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
526 //  j = jv-jx; m = jx+jk;
527 //
528 //  // NOTE: split into two for-loops: one with zeroB and one with ipio2[j]. It
529 //  //       allows the use of wider loads/stores
530 //  for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : /* NOTE: converted to double */ ipio2[j]; //(double) ipio2[j];
531 //
532 //  // NOTE: unrolled and vectorized "for". See comments in asm code
533 //  /* compute q[0],q[1],...q[jk] */
534 //  for (i=0;i<=jk;i++) {
535 //    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
536 //  }
537 //
538 //  jz = jk;
539 //recompute:
540 //  /* distill q[] into iq[] reversingly */
541 //  for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
542 //    fw    =  (double)((int)(twon24* z));
543 //    iq[i] =  (int)(z-two24B*fw);
544 //    z     =  q[j-1]+fw;
545 //  }
546 //
547 //  /* compute n */
548 //  z  = scalbnA(z,q0);           /* actual value of z */
549 //  z -= 8.0*floor(z*0.125);              /* trim off integer >= 8 */
550 //  n  = (int) z;
551 //  z -= (double)n;
552 //  ih = 0;
553 //  if(q0>0) {    /* need iq[jz-1] to determine n */
554 //    i  = (iq[jz-1]>>(24-q0)); n += i;
555 //    iq[jz-1] -= i<<(24-q0);
556 //    ih = iq[jz-1]>>(23-q0);
557 //  }
558 //  else if(q0==0) ih = iq[jz-1]>>23;
559 //  else if(z>=0.5) ih=2;
560 //
561 //  if(ih>0) {    /* q > 0.5 */
562 //    n += 1; carry = 0;
563 //    for(i=0;i<jz ;i++) {        /* compute 1-q */
564 //      j = iq[i];
565 //      if(carry==0) {
566 //        if(j!=0) {
567 //          carry = 1; iq[i] = 0x1000000- j;
568 //        }
569 //      } else  iq[i] = 0xffffff - j;
570 //    }
571 //    if(q0>0) {          /* rare case: chance is 1 in 12 */
572 //      switch(q0) {
573 //      case 1:
574 //        iq[jz-1] &= 0x7fffff; break;
575 //      case 2:
576 //        iq[jz-1] &= 0x3fffff; break;
577 //      }
578 //    }
579 //    if(ih==2) {
580 //      z = one - z;
581 //      if(carry!=0) z -= scalbnA(one,q0);
582 //    }
583 //  }
584 //
585 //  /* check if recomputation is needed */
586 //  if(z==zeroB) {
587 //    j = 0;
588 //    for (i=jz-1;i>=jk;i--) j |= iq[i];
589 //    if(j==0) { /* need recomputation */
590 //      for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
591 //
592 //      for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
593 //        f[jx+i] = /* NOTE: converted to double */ ipio2[jv+i]; //(double) ipio2[jv+i];
594 //        for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
595 //        q[i] = fw;
596 //      }
597 //      jz += k;
598 //      goto recompute;
599 //    }
600 //  }
601 //
602 //  /* chop off zero terms */
603 //  if(z==0.0) {
604 //    jz -= 1; q0 -= 24;
605 //    while(iq[jz]==0) { jz--; q0-=24;}
606 //  } else { /* break z into 24-bit if necessary */
607 //    z = scalbnA(z,-q0);
608 //    if(z>=two24B) {
609 //      fw = (double)((int)(twon24*z));
610 //      iq[jz] = (int)(z-two24B*fw);
611 //      jz += 1; q0 += 24;
612 //      iq[jz] = (int) fw;
613 //    } else iq[jz] = (int) z ;
614 //  }
615 //
616 //  /* convert integer "bit" chunk to floating-point value */
617 //  fw = scalbnA(one,q0);
618 //  for(i=jz;i>=0;i--) {
619 //    q[i] = fw*(double)iq[i]; fw*=twon24;
620 //  }
621 //
622 //  /* compute PIo2[0,...,jp]*q[jz,...,0] */
623 //  for(i=jz;i>=0;i--) {
624 //    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
625 //    fq[jz-i] = fw;
626 //  }
627 //
628 //  // NOTE: switch below is eliminated, because prec is always 2 for doubles
629 //  /* compress fq[] into y[] */
630 //  //switch(prec) {
631 //  //case 0:
632 //  //  fw = 0.0;
633 //  //  for (i=jz;i>=0;i--) fw += fq[i];
634 //  //  y[0] = (ih==0)? fw: -fw;
635 //  //  break;
636 //  //case 1:
637 //  //case 2:
638 //    fw = 0.0;
639 //    for (i=jz;i>=0;i--) fw += fq[i];
640 //    y[0] = (ih==0)? fw: -fw;
641 //    fw = fq[0]-fw;
642 //    for (i=1;i<=jz;i++) fw += fq[i];
643 //    y[1] = (ih==0)? fw: -fw;
644 //  //  break;
645 //  //case 3:       /* painful */
646 //  //  for (i=jz;i>0;i--) {
647 //  //    fw      = fq[i-1]+fq[i];
648 //  // fq[i]  += fq[i-1]-fw;
649 //  //    fq[i-1] = fw;
650 //  //  }
651 //  //  for (i=jz;i>1;i--) {
652 //  //    fw      = fq[i-1]+fq[i];
653 //  //    fq[i]  += fq[i-1]-fw;
654 //  //    fq[i-1] = fw;
655 //  //  }
656 //  //  for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
657 //  //  if(ih==0) {
658 //  //    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
659 //  //  } else {
660 //  //    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
661 //  //  }
662 //  //}
663 //  return n&7;
664 //}
665 //
666 // END __kernel_rem_pio2 PSEUDO CODE
667 //
668 // Changes between fdlibm and intrinsic:
669 //     1. One loop is unrolled and vectorized (see comments in code)
670 //     2. One loop is split into 2 loops (see comments in code)
671 //     3. Non-double code is removed(last switch). Sevaral variables became
672 //         constants because of that (see comments in code)
673 //     4. Use of jx, which is nx-1 instead of nx
674 // Assumptions:
675 //     1. Assume |X| >= PI/4
676 // Input and output:
677 //     1. Input: X = r0, jx == nx - 1 == r6, e0 == rscratch1
678 //     2. Return n in r2, y[0] == y0 == v4, y[1] == y1 == v5
679 // NOTE: general purpose register names match local variable names in C code
680 // NOTE: fpu registers are actively reused. See comments in code about their usage
generate__kernel_rem_pio2(address two_over_pi,address pio2)681 void MacroAssembler::generate__kernel_rem_pio2(address two_over_pi, address pio2) {
682   Label Q_DONE, JX_IS_0, JX_IS_2, COMP_INNER_LOOP, RECOMP_FOR2, Q0_ZERO_CMP_LT,
683       RECOMP_CHECK_DONE_NOT_ZERO, Q0_ZERO_CMP_DONE, COMP_FOR, Q0_ZERO_CMP_EQ,
684       INIT_F_ZERO, RECOMPUTE, IH_FOR_INCREMENT, IH_FOR_STORE, RECOMP_CHECK_DONE,
685       Z_IS_LESS_THAN_TWO24B, Z_IS_ZERO, FW_Y1_NO_NEGATION,
686       RECOMP_FW_UPDATED, Z_ZERO_CHECK_DONE, FW_FOR1, IH_AFTER_SWITCH, IH_HANDLED,
687       CONVERTION_FOR, FW_Y0_NO_NEGATION, FW_FOR1_DONE, FW_FOR2, FW_FOR2_DONE,
688       IH_FOR, SKIP_F_LOAD, RECOMP_FOR1, RECOMP_FIRST_FOR, INIT_F_COPY,
689       RECOMP_FOR1_CHECK;
690   Register tmp2 = r1, n = r2, jv = r4, tmp5 = r5, jx = r6,
691       tmp3 = r7, iqBase = r10, ih = r11, tmp4 = r12, tmp1 = r13,
692       jz = r14, j = r15, twoOverPiBase = r16, i = r17, qBase = r18;
693     // jp = jk == init_jk[prec] = init_jk[2] == {2,3,4,6}[2] == 4
694     // jx = nx - 1
695     lea(twoOverPiBase, ExternalAddress(two_over_pi));
696     cmpw(jv, zr);
697     addw(tmp4, jx, 4); // tmp4 = m = jx + jk = jx + 4. jx is in {0,1,2} so m is in [4,5,6]
698     cselw(jv, jv, zr, GE);
699     fmovd(v26, 0.0);
700     addw(tmp5, jv, 1);                    // jv+1
701     subsw(j, jv, jx);
702     add(qBase, sp, 320);                  // base of q[]
703     msubw(rscratch1, i, tmp5, rscratch1); // q0 =  e0-24*(jv+1)
704     // use double f[20], fq[20], q[20], iq[20] on stack, which is
705     // (20 + 20 + 20) x 8 + 20 x 4 = 560 bytes. From lower to upper addresses it
706     // will contain f[20], fq[20], q[20], iq[20]
707     // now initialize f[20] indexes 0..m (inclusive)
708     // for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : /* NOTE: converted to double */ ipio2[j]; // (double) ipio2[j];
709     mov(tmp5, sp);
710 
711     block_comment("for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : /* NOTE: converted to double */ ipio2[j]; // (double) ipio2[j];"); {
712         eorw(i, i, i);
713         br(GE, INIT_F_COPY);
714       bind(INIT_F_ZERO);
715         stpq(v26, v26, Address(post(tmp5, 32)));
716         addw(i, i, 4);
717         addsw(j, j, 4);
718         br(LT, INIT_F_ZERO);
719         subw(i, i, j);
720         movw(j, zr);
721       bind(INIT_F_COPY);
722         add(tmp1, twoOverPiBase, j, LSL, 3); // ipio2[j] start address
723         ld1(v18, v19, v20, v21, T16B, tmp1);
724         add(tmp5, sp, i, ext::uxtx, 3);
725         st1(v18, v19, v20, v21, T16B, tmp5);
726     }
727     // v18..v21 can actually contain f[0..7]
728     cbz(i, SKIP_F_LOAD); // i == 0 => f[i] == f[0] => already loaded
729     ld1(v18, v19, v20, v21, T2D, Address(sp)); // load f[0..7]
730   bind(SKIP_F_LOAD);
731     // calculate 2^q0 and 2^-q0, which we'll need further.
732     // q0 is exponent. So, calculate biased exponent(q0+1023)
733     negw(tmp4, rscratch1);
734     addw(tmp5, rscratch1, 1023);
735     addw(tmp4, tmp4, 1023);
736     // Unroll following for(s) depending on jx in [0,1,2]
737     // for (i=0;i<=jk;i++) {
738     //   for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
739     // }
740     // Unrolling for jx == 0 case:
741     //   q[0] = x[0] * f[0]
742     //   q[1] = x[0] * f[1]
743     //   q[2] = x[0] * f[2]
744     //   q[3] = x[0] * f[3]
745     //   q[4] = x[0] * f[4]
746     //
747     // Vectorization for unrolled jx == 0 case:
748     //   {q[0], q[1]} = {f[0], f[1]} * x[0]
749     //   {q[2], q[3]} = {f[2], f[3]} * x[0]
750     //   q[4] = f[4] * x[0]
751     //
752     // Unrolling for jx == 1 case:
753     //   q[0] = x[0] * f[1] + x[1] * f[0]
754     //   q[1] = x[0] * f[2] + x[1] * f[1]
755     //   q[2] = x[0] * f[3] + x[1] * f[2]
756     //   q[3] = x[0] * f[4] + x[1] * f[3]
757     //   q[4] = x[0] * f[5] + x[1] * f[4]
758     //
759     // Vectorization for unrolled jx == 1 case:
760     //   {q[0], q[1]} = {f[0], f[1]} * x[1]
761     //   {q[2], q[3]} = {f[2], f[3]} * x[1]
762     //   q[4] = f[4] * x[1]
763     //   {q[0], q[1]} += {f[1], f[2]} * x[0]
764     //   {q[2], q[3]} += {f[3], f[4]} * x[0]
765     //   q[4] += f[5] * x[0]
766     //
767     // Unrolling for jx == 2 case:
768     //   q[0] = x[0] * f[2] + x[1] * f[1] + x[2] * f[0]
769     //   q[1] = x[0] * f[3] + x[1] * f[2] + x[2] * f[1]
770     //   q[2] = x[0] * f[4] + x[1] * f[3] + x[2] * f[2]
771     //   q[3] = x[0] * f[5] + x[1] * f[4] + x[2] * f[3]
772     //   q[4] = x[0] * f[6] + x[1] * f[5] + x[2] * f[4]
773     //
774     // Vectorization for unrolled jx == 2 case:
775     //   {q[0], q[1]} = {f[0], f[1]} * x[2]
776     //   {q[2], q[3]} = {f[2], f[3]} * x[2]
777     //   q[4] = f[4] * x[2]
778     //   {q[0], q[1]} += {f[1], f[2]} * x[1]
779     //   {q[2], q[3]} += {f[3], f[4]} * x[1]
780     //   q[4] += f[5] * x[1]
781     //   {q[0], q[1]} += {f[2], f[3]} * x[0]
782     //   {q[2], q[3]} += {f[4], f[5]} * x[0]
783     //   q[4] += f[6] * x[0]
784   block_comment("unrolled and vectorized computation of q[0]..q[jk]"); {
785       cmpw(jx, 1);
786       lsl(tmp5, tmp5, 52);                     // now it's 2^q0 double value
787       lsl(tmp4, tmp4, 52);                     // now it's 2^-q0 double value
788       br(LT, JX_IS_0);
789       add(i, sp, 8);
790       ldpq(v26, v27, i);                       // load f[1..4]
791       br(GT, JX_IS_2);
792       // jx == 1
793       fmulxvs(v28, T2D, v18, v7);              // f[0,1] * x[1]
794       fmulxvs(v29, T2D, v19, v7);              // f[2,3] * x[1]
795       fmuld(v30, v20, v7);                     // f[4] * x[1]
796       fmlavs(v28, T2D, v26, v6, 0);
797       fmlavs(v29, T2D, v27, v6, 0);
798       fmlavs(v30, T2D, v6, v20, 1);            // v30 += f[5] * x[0]
799       b(Q_DONE);
800     bind(JX_IS_2);
801       fmulxvs(v28, T2D, v18, v3);              // f[0,1] * x[2]
802       fmulxvs(v29, T2D, v19, v3);              // f[2,3] * x[2]
803       fmuld(v30, v20, v3);                     // f[4] * x[2]
804       fmlavs(v28, T2D, v26, v7, 0);
805       fmlavs(v29, T2D, v27, v7, 0);
806       fmlavs(v30, T2D, v7, v20, 1);            // v30 += f[5] * x[1]
807       fmlavs(v28, T2D, v19, v6, 0);
808       fmlavs(v29, T2D, v20, v6, 0);
809       fmlavs(v30, T2D, v6, v21, 0);            // v30 += f[6] * x[0]
810       b(Q_DONE);
811     bind(JX_IS_0);
812       fmulxvs(v28, T2D, v18, v6);              // f[0,1] * x[0]
813       fmulxvs(v29, T2D, v19, v6);              // f[2,3] * x[0]
814       fmuld(v30, v20, v6);                     // f[4] * x[0]
815     bind(Q_DONE);
816       st1(v28, v29, v30, T2D, Address(qBase)); // save calculated q[0]...q[jk]
817   }
818   movz(i, 0x3E70, 48);
819   movw(jz, 4);
820   fmovd(v17, i);                               // v17 = twon24
821   fmovd(v30, tmp5);                            // 2^q0
822   fmovd(v21, 0.125);
823   fmovd(v20, 8.0);
824   fmovd(v22, tmp4);                            // 2^-q0
825 
826   block_comment("recompute loop"); {
827     bind(RECOMPUTE);
828       //  for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
829       //    fw    =  (double)((int)(twon24* z));
830       //    iq[i] =  (int)(z-two24A*fw);
831       //    z     =  q[j-1]+fw;
832       //  }
833       block_comment("distill q[] into iq[] reversingly"); {
834           eorw(i, i, i);
835           movw(j, jz);
836           add(tmp2, qBase, jz, LSL, 3);                    // q[jz] address
837           ldrd(v18, post(tmp2, -8));                       // z = q[j] and moving address to q[j-1]
838         bind(RECOMP_FIRST_FOR);
839           ldrd(v27, post(tmp2, -8));
840           fmuld(v29, v17, v18);                            // twon24*z
841           frintzd(v29, v29);                               // (double)(int)
842           fmsubd(v28, v24, v29, v18);                      // v28 = z-two24A*fw
843           fcvtzdw(tmp1, v28);                              // (int)(z-two24A*fw)
844           strw(tmp1, Address(iqBase, i, Address::lsl(2)));
845           faddd(v18, v27, v29);
846           add(i, i, 1);
847           subs(j, j, 1);
848           br(GT, RECOMP_FIRST_FOR);
849       }
850       // compute n
851       fmuld(v18, v18, v30);
852       fmuld(v2, v18, v21);
853       frintmd(v2, v2);                                     // v2 = floor(v2) == rounding towards -inf
854       fmsubd(v18, v2, v20, v18);                           // z -= 8.0*floor(z*0.125);
855       movw(ih, 2);
856       frintzd(v2, v18);                                    // v2 = (double)((int)z)
857       fcvtzdw(n, v18);                                     // n  = (int) z;
858       fsubd(v18, v18, v2);                                 // z -= (double)n;
859 
860       block_comment("q0-dependent initialization"); {
861           cmpw(rscratch1, 0);                              // if (q0 > 0)
862           br(LT, Q0_ZERO_CMP_LT);
863           subw(j, jz, 1);                                  // j = jz - 1
864           ldrw(tmp2, Address(iqBase, j, Address::lsl(2))); // tmp2 = iq[jz-1]
865           br(EQ, Q0_ZERO_CMP_EQ);
866           movw(tmp4, 24);
867           subw(tmp4, tmp4, rscratch1);                     // == 24 - q0
868           lsrvw(i, tmp2, tmp4);                            // i = iq[jz-1] >> (24-q0)
869           lslvw(tmp5, i, tmp4);
870           subw(tmp2, tmp2, tmp5);                          // iq[jz-1] -= i<<(24-q0);
871           strw(tmp2, Address(iqBase, j, Address::lsl(2))); // store iq[jz-1]
872           subw(rscratch2, tmp4, 1);                        // == 23 - q0
873           addw(n, n, i);                                   // n+=i
874           lsrvw(ih, tmp2, rscratch2);                      // ih = iq[jz-1] >> (23-q0)
875           b(Q0_ZERO_CMP_DONE);
876         bind(Q0_ZERO_CMP_EQ);
877           lsr(ih, tmp2, 23);                               // ih = iq[z-1] >> 23
878           b(Q0_ZERO_CMP_DONE);
879         bind(Q0_ZERO_CMP_LT);
880           fmovd(v4, 0.5);
881           fcmpd(v18, v4);
882           cselw(ih, zr, ih, LT);                           // if (z<0.5) ih = 0
883       }
884     bind(Q0_ZERO_CMP_DONE);
885       cmpw(ih, zr);
886       br(LE, IH_HANDLED);
887 
888     block_comment("if(ih>) {"); {
889       // use rscratch2 as carry
890 
891       block_comment("for(i=0;i<jz ;i++) {...}"); {
892           addw(n, n, 1);
893           eorw(i, i, i);
894           eorw(rscratch2, rscratch2, rscratch2);
895         bind(IH_FOR);
896           ldrw(j, Address(iqBase, i, Address::lsl(2)));    // j = iq[i]
897           movw(tmp3, 0x1000000);
898           subw(tmp3, tmp3, rscratch2);
899           cbnzw(rscratch2, IH_FOR_STORE);
900           cbzw(j, IH_FOR_INCREMENT);
901           movw(rscratch2, 1);
902         bind(IH_FOR_STORE);
903           subw(tmp3, tmp3, j);
904           strw(tmp3, Address(iqBase, i, Address::lsl(2))); // iq[i] = 0xffffff - j
905         bind(IH_FOR_INCREMENT);
906           addw(i, i, 1);
907           cmpw(i, jz);
908           br(LT, IH_FOR);
909       }
910 
911       block_comment("if(q0>0) {"); {
912         cmpw(rscratch1, zr);
913         br(LE, IH_AFTER_SWITCH);
914         // tmp3 still has iq[jz-1] value. no need to reload
915         // now, zero high tmp3 bits (rscratch1 number of bits)
916         movw(j, -1);
917         subw(i, jz, 1);                                    // set i to jz-1
918         lsrv(j, j, rscratch1);
919         andw(tmp3, tmp3, j, LSR, 8);                       // we have 24-bit-based constants
920         strw(tmp3, Address(iqBase, i, Address::lsl(2)));   // save iq[jz-1]
921       }
922       bind(IH_AFTER_SWITCH);
923         cmpw(ih, 2);
924         br(NE, IH_HANDLED);
925 
926         block_comment("if(ih==2) {"); {
927           fmovd(v25, 1.0);
928           fsubd(v18, v25, v18);                            // z = one - z;
929           cbzw(rscratch2, IH_HANDLED);
930           fsubd(v18, v18, v30);                            // z -= scalbnA(one,q0);
931         }
932     }
933     bind(IH_HANDLED);
934       // check if recomputation is needed
935       fcmpd(v18, 0.0);
936       br(NE, RECOMP_CHECK_DONE_NOT_ZERO);
937 
938       block_comment("if(z==zeroB) {"); {
939 
940         block_comment("for (i=jz-1;i>=jk;i--) j |= iq[i];"); {
941             subw(i, jz, 1);
942             eorw(j, j, j);
943             b(RECOMP_FOR1_CHECK);
944           bind(RECOMP_FOR1);
945             ldrw(tmp1, Address(iqBase, i, Address::lsl(2)));
946             orrw(j, j, tmp1);
947             subw(i, i, 1);
948           bind(RECOMP_FOR1_CHECK);
949             cmpw(i, 4);
950             br(GE, RECOMP_FOR1);
951         }
952         cbnzw(j, RECOMP_CHECK_DONE);
953 
954         block_comment("if(j==0) {"); {
955             // for(k=1;iq[jk-k]==0;k++); // let's unroll it. jk == 4. So, read
956             // iq[3], iq[2], iq[1], iq[0] until non-zero value
957             ldp(tmp1, tmp3, iqBase);               // iq[0..3]
958             movw(j, 2);
959             cmp(tmp3, zr);
960             csel(tmp1, tmp1, tmp3, EQ);            // set register for further consideration
961             cselw(j, j, zr, EQ);                   // set initial k. Use j as k
962             cmp(zr, tmp1, LSR, 32);
963             addw(i, jz, 1);
964             csincw(j, j, j, NE);
965 
966           block_comment("for(i=jz+1;i<=jz+k;i++) {...}"); {
967               addw(jz, i, j); // i = jz+1, j = k-1. j+i = jz+k (which is a new jz)
968             bind(RECOMP_FOR2);
969               addw(tmp1, jv, i);
970               ldrd(v29, Address(twoOverPiBase, tmp1, Address::lsl(3)));
971               addw(tmp2, jx, i);
972               strd(v29, Address(sp, tmp2, Address::lsl(3)));
973               // f[jx+i] = /* NOTE: converted to double */ ipio2[jv+i]; //(double) ipio2[jv+i];
974               // since jx = 0, 1 or 2 we can unroll it:
975               // for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
976               // f[jx+i-j] == (for first iteration) f[jx+i], which is already v29
977               add(tmp2, sp, tmp2, ext::uxtx, 3); // address of f[jx+i]
978               ldpd(v4, v5, Address(tmp2, -16)); // load f[jx+i-2] and f[jx+i-1]
979               fmuld(v26, v6, v29); // initial fw
980               cbzw(jx, RECOMP_FW_UPDATED);
981               fmaddd(v26, v7, v5, v26);
982               cmpw(jx, 1);
983               br(EQ, RECOMP_FW_UPDATED);
984               fmaddd(v26, v3, v4, v26);
985             bind(RECOMP_FW_UPDATED);
986               strd(v26, Address(qBase, i, Address::lsl(3))); // q[i] = fw;
987               addw(i, i, 1);
988               cmpw(i, jz);                                   // jz here is "old jz" + k
989               br(LE, RECOMP_FOR2);
990           }
991             b(RECOMPUTE);
992         }
993       }
994     }
995     bind(RECOMP_CHECK_DONE);
996       // chop off zero terms
997       fcmpd(v18, 0.0);
998       br(EQ, Z_IS_ZERO);
999 
1000       block_comment("else block of if(z==0.0) {"); {
1001         bind(RECOMP_CHECK_DONE_NOT_ZERO);
1002           fmuld(v18, v18, v22);
1003           fcmpd(v18, v24);                                   // v24 is stil two24A
1004           br(LT, Z_IS_LESS_THAN_TWO24B);
1005           fmuld(v1, v18, v17);                               // twon24*z
1006           frintzd(v1, v1);                                   // v1 = (double)(int)(v1)
1007           fmaddd(v2, v24, v1, v18);
1008           fcvtzdw(tmp3, v1);                                 // (int)fw
1009           fcvtzdw(tmp2, v2);                                 // double to int
1010           strw(tmp2, Address(iqBase, jz, Address::lsl(2)));
1011           addw(rscratch1, rscratch1, 24);
1012           addw(jz, jz, 1);
1013           strw(tmp3, Address(iqBase, jz, Address::lsl(2)));  // iq[jz] = (int) fw
1014           b(Z_ZERO_CHECK_DONE);
1015         bind(Z_IS_LESS_THAN_TWO24B);
1016           fcvtzdw(tmp3, v18);                                // (int)z
1017           strw(tmp3, Address(iqBase, jz, Address::lsl(2)));  // iq[jz] = (int) z
1018           b(Z_ZERO_CHECK_DONE);
1019       }
1020 
1021       block_comment("if(z==0.0) {"); {
1022         bind(Z_IS_ZERO);
1023           subw(jz, jz, 1);
1024           ldrw(tmp1, Address(iqBase, jz, Address::lsl(2)));
1025           subw(rscratch1, rscratch1, 24);
1026           cbz(tmp1, Z_IS_ZERO);
1027       }
1028       bind(Z_ZERO_CHECK_DONE);
1029         // convert integer "bit" chunk to floating-point value
1030         // v17 = twon24
1031         // update v30, which was scalbnA(1.0, <old q0>);
1032         addw(tmp2, rscratch1, 1023); // biased exponent
1033         lsl(tmp2, tmp2, 52); // put at correct position
1034         mov(i, jz);
1035         fmovd(v30, tmp2);
1036 
1037         block_comment("for(i=jz;i>=0;i--) {q[i] = fw*(double)iq[i]; fw*=twon24;}"); {
1038           bind(CONVERTION_FOR);
1039             ldrw(tmp1, Address(iqBase, i, Address::lsl(2)));
1040             scvtfwd(v31, tmp1);
1041             fmuld(v31, v31, v30);
1042             strd(v31, Address(qBase, i, Address::lsl(3)));
1043             fmuld(v30, v30, v17);
1044             subsw(i, i, 1);
1045             br(GE, CONVERTION_FOR);
1046         }
1047         add(rscratch2, sp, 160); // base for fq
1048         // reusing twoOverPiBase
1049         lea(twoOverPiBase, ExternalAddress(pio2));
1050 
1051       block_comment("compute PIo2[0,...,jp]*q[jz,...,0]. for(i=jz;i>=0;i--) {...}"); {
1052           movw(i, jz);
1053           movw(tmp2, zr); // tmp2 will keep jz - i == 0 at start
1054         bind(COMP_FOR);
1055           // for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
1056           fmovd(v30, 0.0);
1057           add(tmp5, qBase, i, LSL, 3); // address of q[i+k] for k==0
1058           movw(tmp3, 4);
1059           movw(tmp4, zr);              // used as k
1060           cmpw(tmp2, 4);
1061           add(tmp1, qBase, i, LSL, 3); // used as q[i] address
1062           cselw(tmp3, tmp2, tmp3, LE); // min(jz - i, jp)
1063 
1064           block_comment("for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];"); {
1065             bind(COMP_INNER_LOOP);
1066               ldrd(v18, Address(tmp1, tmp4, Address::lsl(3)));          // q[i+k]
1067               ldrd(v19, Address(twoOverPiBase, tmp4, Address::lsl(3))); // PIo2[k]
1068               fmaddd(v30, v18, v19, v30);                               // fw += PIo2[k]*q[i+k];
1069               addw(tmp4, tmp4, 1);                                      // k++
1070               cmpw(tmp4, tmp3);
1071               br(LE, COMP_INNER_LOOP);
1072           }
1073           strd(v30, Address(rscratch2, tmp2, Address::lsl(3)));         // fq[jz-i]
1074           add(tmp2, tmp2, 1);
1075           subsw(i, i, 1);
1076           br(GE, COMP_FOR);
1077       }
1078 
1079       block_comment("switch(prec) {...}. case 2:"); {
1080         // compress fq into y[]
1081         // remember prec == 2
1082 
1083         block_comment("for (i=jz;i>=0;i--) fw += fq[i];"); {
1084             fmovd(v4, 0.0);
1085             mov(i, jz);
1086           bind(FW_FOR1);
1087             ldrd(v1, Address(rscratch2, i, Address::lsl(3)));
1088             subsw(i, i, 1);
1089             faddd(v4, v4, v1);
1090             br(GE, FW_FOR1);
1091         }
1092         bind(FW_FOR1_DONE);
1093           // v1 contains fq[0]. so, keep it so far
1094           fsubd(v5, v1, v4); // fw = fq[0] - fw
1095           cbzw(ih, FW_Y0_NO_NEGATION);
1096           fnegd(v4, v4);
1097         bind(FW_Y0_NO_NEGATION);
1098 
1099         block_comment("for (i=1;i<=jz;i++) fw += fq[i];"); {
1100             movw(i, 1);
1101               cmpw(jz, 1);
1102             br(LT, FW_FOR2_DONE);
1103           bind(FW_FOR2);
1104             ldrd(v1, Address(rscratch2, i, Address::lsl(3)));
1105             addw(i, i, 1);
1106             cmp(i, jz);
1107             faddd(v5, v5, v1);
1108             br(LE, FW_FOR2);
1109         }
1110         bind(FW_FOR2_DONE);
1111           cbz(ih, FW_Y1_NO_NEGATION);
1112           fnegd(v5, v5);
1113         bind(FW_Y1_NO_NEGATION);
1114           add(sp, sp, 560);
1115       }
1116 }
1117 
1118 ///* __kernel_sin( x, y, iy)
1119 // * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
1120 // * Input x is assumed to be bounded by ~pi/4 in magnitude.
1121 // * Input y is the tail of x.
1122 // * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
1123 // *
1124 // * Algorithm
1125 // *      1. Since sin(-x) = -sin(x), we need only to consider positive x.
1126 // *      2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
1127 // *      3. sin(x) is approximated by a polynomial of degree 13 on
1128 // *         [0,pi/4]
1129 // *                               3            13
1130 // *              sin(x) ~ x + S1*x + ... + S6*x
1131 // *         where
1132 // *
1133 // *      |sin(x)         2     4     6     8     10     12  |     -58
1134 // *      |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
1135 // *      |  x                                               |
1136 // *
1137 // *      4. sin(x+y) = sin(x) + sin'(x')*y
1138 // *                  ~ sin(x) + (1-x*x/2)*y
1139 // *         For better accuracy, let
1140 // *                   3      2      2      2      2
1141 // *              r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
1142 // *         then                   3    2
1143 // *              sin(x) = x + (S1*x + (x *(r-y/2)+y))
1144 // */
1145 //static const double
1146 //S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
1147 //S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
1148 //S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
1149 //S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
1150 //S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
1151 //S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
1152 //
1153 // NOTE: S1..S6 were moved into a table: StubRoutines::aarch64::_dsin_coef
1154 //
1155 // BEGIN __kernel_sin PSEUDO CODE
1156 //
1157 //static double __kernel_sin(double x, double y, bool iy)
1158 //{
1159 //        double z,r,v;
1160 //
1161 //        // NOTE: not needed. moved to dsin/dcos
1162 //        //int ix;
1163 //        //ix = high(x)&0x7fffffff;                /* high word of x */
1164 //
1165 //        // NOTE: moved to dsin/dcos
1166 //        //if(ix<0x3e400000)                       /* |x| < 2**-27 */
1167 //        //   {if((int)x==0) return x;}            /* generate inexact */
1168 //
1169 //        z       =  x*x;
1170 //        v       =  z*x;
1171 //        r       =  S2+z*(S3+z*(S4+z*(S5+z*S6)));
1172 //        if(iy==0) return x+v*(S1+z*r);
1173 //        else      return x-((z*(half*y-v*r)-y)-v*S1);
1174 //}
1175 //
1176 // END __kernel_sin PSEUDO CODE
1177 //
1178 // Changes between fdlibm and intrinsic:
1179 //     1. Removed |x| < 2**-27 check, because if was done earlier in dsin/dcos
1180 //     2. Constants are now loaded from table dsin_coef
1181 //     3. C code parameter "int iy" was modified to "bool iyIsOne", because
1182 //         iy is always 0 or 1. Also, iyIsOne branch was moved into
1183 //         generation phase instead of taking it during code execution
1184 // Input ans output:
1185 //     1. Input for generated function: X argument = x
1186 //     2. Input for generator: x = register to read argument from, iyIsOne
1187 //         = flag to use low argument low part or not, dsin_coef = coefficients
1188 //         table address
1189 //     3. Return sin(x) value in v0
generate_kernel_sin(FloatRegister x,bool iyIsOne,address dsin_coef)1190 void MacroAssembler::generate_kernel_sin(FloatRegister x, bool iyIsOne,
1191     address dsin_coef) {
1192   FloatRegister y = v5, z = v6, v = v7, r = v16, S1 = v17, S2 = v18,
1193       S3 = v19, S4 = v20, S5 = v21, S6 = v22, half = v23;
1194   lea(rscratch2, ExternalAddress(dsin_coef));
1195   ldpd(S5, S6, Address(rscratch2, 32));
1196   fmuld(z, x, x); // z =  x*x;
1197   ld1(S1, S2, S3, S4, T1D, Address(rscratch2));
1198   fmuld(v, z, x); // v =  z*x;
1199 
1200   block_comment("calculate r =  S2+z*(S3+z*(S4+z*(S5+z*S6)))"); {
1201     fmaddd(r, z, S6, S5);
1202     // initialize "half" in current block to utilize 2nd FPU. However, it's
1203     // not a part of this block
1204     fmovd(half, 0.5);
1205     fmaddd(r, z, r, S4);
1206     fmaddd(r, z, r, S3);
1207     fmaddd(r, z, r, S2);
1208   }
1209 
1210   if (!iyIsOne) {
1211     // return x+v*(S1+z*r);
1212     fmaddd(S1, z, r, S1);
1213     fmaddd(v0, v, S1, x);
1214   } else {
1215     // return x-((z*(half*y-v*r)-y)-v*S1);
1216     fmuld(S6, half, y);    // half*y
1217     fmsubd(S6, v, r, S6);  // half*y-v*r
1218     fmsubd(S6, z, S6, y);  // y - z*(half*y-v*r) = - (z*(half*y-v*r)-y)
1219     fmaddd(S6, v, S1, S6); // - (z*(half*y-v*r)-y) + v*S1 == -((z*(half*y-v*r)-y)-v*S1)
1220     faddd(v0, x, S6);
1221   }
1222 }
1223 
1224 ///*
1225 // * __kernel_cos( x,  y )
1226 // * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
1227 // * Input x is assumed to be bounded by ~pi/4 in magnitude.
1228 // * Input y is the tail of x.
1229 // *
1230 // * Algorithm
1231 // *      1. Since cos(-x) = cos(x), we need only to consider positive x.
1232 // *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
1233 // *      3. cos(x) is approximated by a polynomial of degree 14 on
1234 // *         [0,pi/4]
1235 // *                                       4            14
1236 // *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
1237 // *         where the remez error is
1238 // *
1239 // *      |              2     4     6     8     10    12     14 |     -58
1240 // *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
1241 // *      |                                                      |
1242 // *
1243 // *                     4     6     8     10    12     14
1244 // *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
1245 // *             cos(x) = 1 - x*x/2 + r
1246 // *         since cos(x+y) ~ cos(x) - sin(x)*y
1247 // *                        ~ cos(x) - x*y,
1248 // *         a correction term is necessary in cos(x) and hence
1249 // *              cos(x+y) = 1 - (x*x/2 - (r - x*y))
1250 // *         For better accuracy when x > 0.3, let qx = |x|/4 with
1251 // *         the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
1252 // *         Then
1253 // *              cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
1254 // *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the
1255 // *         magnitude of the latter is at least a quarter of x*x/2,
1256 // *         thus, reducing the rounding error in the subtraction.
1257 // */
1258 //
1259 //static const double
1260 //C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
1261 //C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
1262 //C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
1263 //C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
1264 //C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
1265 //C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
1266 //
1267 // NOTE: C1..C6 were moved into a table: StubRoutines::aarch64::_dcos_coef
1268 //
1269 // BEGIN __kernel_cos PSEUDO CODE
1270 //
1271 //static double __kernel_cos(double x, double y)
1272 //{
1273 //  double a,h,z,r,qx=0;
1274 //
1275 //  // NOTE: ix is already initialized in dsin/dcos. Reuse value from register
1276 //  //int ix;
1277 //  //ix = high(x)&0x7fffffff;              /* ix = |x|'s high word*/
1278 //
1279 //  // NOTE: moved to dsin/dcos
1280 //  //if(ix<0x3e400000) {                   /* if x < 2**27 */
1281 //  //  if(((int)x)==0) return one;         /* generate inexact */
1282 //  //}
1283 //
1284 //  z  = x*x;
1285 //  r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
1286 //  if(ix < 0x3FD33333)                   /* if |x| < 0.3 */
1287 //    return one - (0.5*z - (z*r - x*y));
1288 //  else {
1289 //    if(ix > 0x3fe90000) {               /* x > 0.78125 */
1290 //      qx = 0.28125;
1291 //    } else {
1292 //      set_high(&qx, ix-0x00200000); /* x/4 */
1293 //      set_low(&qx, 0);
1294 //    }
1295 //    h = 0.5*z-qx;
1296 //    a = one-qx;
1297 //    return a - (h - (z*r-x*y));
1298 //  }
1299 //}
1300 //
1301 // END __kernel_cos PSEUDO CODE
1302 //
1303 // Changes between fdlibm and intrinsic:
1304 //     1. Removed |x| < 2**-27 check, because if was done earlier in dsin/dcos
1305 //     2. Constants are now loaded from table dcos_coef
1306 // Input and output:
1307 //     1. Input for generated function: X argument = x
1308 //     2. Input for generator: x = register to read argument from, dcos_coef
1309 //        = coefficients table address
1310 //     2. Return cos(x) value in v0
generate_kernel_cos(FloatRegister x,address dcos_coef)1311 void MacroAssembler::generate_kernel_cos(FloatRegister x, address dcos_coef) {
1312   Register ix = r3;
1313   FloatRegister qx = v1, h = v2, a = v3, y = v5, z = v6, r = v7, C1 = v18,
1314       C2 = v19, C3 = v20, C4 = v21, C5 = v22, C6 = v23, one = v25, half = v26;
1315   Label IX_IS_LARGE, SET_QX_CONST, DONE, QX_SET;
1316     lea(rscratch2, ExternalAddress(dcos_coef));
1317     ldpd(C5, C6, Address(rscratch2, 32));         // load C5, C6
1318     fmuld(z, x, x);                               // z=x^2
1319     ld1(C1, C2, C3, C4, T1D, Address(rscratch2)); // load C1..C3\4
1320     block_comment("calculate r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))))"); {
1321       fmaddd(r, z, C6, C5);
1322       fmovd(half, 0.5);
1323       fmaddd(r, z, r, C4);
1324       fmuld(y, x, y);
1325       fmaddd(r, z, r, C3);
1326       mov(rscratch1, 0x3FD33333);
1327       fmaddd(r, z, r, C2);
1328       fmuld(x, z, z);                             // x = z^2
1329       fmaddd(r, z, r, C1);                        // r = C1+z(C2+z(C4+z(C5+z*C6)))
1330     }
1331     // need to multiply r by z to have "final" r value
1332     fmovd(one, 1.0);
1333     cmp(ix, rscratch1);
1334     br(GT, IX_IS_LARGE);
1335     block_comment("if(ix < 0x3FD33333) return one - (0.5*z - (z*r - x*y))"); {
1336       // return 1.0 - (0.5*z - (z*r - x*y)) = 1.0 - (0.5*z + (x*y - z*r))
1337       fmsubd(v0, x, r, y);
1338       fmaddd(v0, half, z, v0);
1339       fsubd(v0, one, v0);
1340       b(DONE);
1341     }
1342   block_comment("if(ix >= 0x3FD33333)"); {
1343     bind(IX_IS_LARGE);
1344       movz(rscratch2, 0x3FE9, 16);
1345       cmp(ix, rscratch2);
1346       br(GT, SET_QX_CONST);
1347       block_comment("set_high(&qx, ix-0x00200000); set_low(&qx, 0);"); {
1348         subw(rscratch2, ix, 0x00200000);
1349         lsl(rscratch2, rscratch2, 32);
1350         fmovd(qx, rscratch2);
1351       }
1352       b(QX_SET);
1353     bind(SET_QX_CONST);
1354       block_comment("if(ix > 0x3fe90000) qx = 0.28125;"); {
1355         fmovd(qx, 0.28125);
1356       }
1357     bind(QX_SET);
1358       fnmsub(C6, x, r, y);    // z*r - xy
1359       fnmsub(h, half, z, qx); // h = 0.5*z - qx
1360       fsubd(a, one, qx);      // a = 1-qx
1361       fsubd(C6, h, C6);       // = h - (z*r - x*y)
1362       fsubd(v0, a, C6);
1363   }
1364   bind(DONE);
1365 }
1366 
1367 // generate_dsin_dcos creates stub for dsin and dcos
1368 // Generation is done via single call because dsin and dcos code is almost the
1369 // same(see C code below). These functions work as follows:
1370 // 1) handle corner cases: |x| ~< pi/4, x is NaN or INF, |x| < 2**-27
1371 // 2) perform argument reduction if required
1372 // 3) call kernel_sin or kernel_cos which approximate sin/cos via polynomial
1373 //
1374 // BEGIN dsin/dcos PSEUDO CODE
1375 //
1376 //dsin_dcos(jdouble x, bool isCos) {
1377 //  double y[2],z=0.0;
1378 //  int n, ix;
1379 //
1380 //  /* High word of x. */
1381 //  ix = high(x);
1382 //
1383 //  /* |x| ~< pi/4 */
1384 //  ix &= 0x7fffffff;
1385 //  if(ix <= 0x3fe921fb) return isCos ? __kernel_cos : __kernel_sin(x,z,0);
1386 //
1387 //  /* sin/cos(Inf or NaN) is NaN */
1388 //  else if (ix>=0x7ff00000) return x-x;
1389 //  else if (ix<0x3e400000) {                   /* if ix < 2**27 */
1390 //    if(((int)x)==0) return isCos ? one : x;         /* generate inexact */
1391 //  }
1392 //  /* argument reduction needed */
1393 //  else {
1394 //    n = __ieee754_rem_pio2(x,y);
1395 //    switch(n&3) {
1396 //    case 0: return isCos ?  __kernel_cos(y[0],y[1])      :  __kernel_sin(y[0],y[1], true);
1397 //    case 1: return isCos ? -__kernel_sin(y[0],y[1],true) :  __kernel_cos(y[0],y[1]);
1398 //    case 2: return isCos ? -__kernel_cos(y[0],y[1])      : -__kernel_sin(y[0],y[1], true);
1399 //    default:
1400 //      return isCos ? __kernel_sin(y[0],y[1],1) : -__kernel_cos(y[0],y[1]);
1401 //    }
1402 //  }
1403 //}
1404 // END dsin/dcos PSEUDO CODE
1405 //
1406 // Changes between fdlibm and intrinsic:
1407 //     1. Moved ix < 2**27 from kernel_sin/kernel_cos into dsin/dcos
1408 //     2. Final switch use equivalent bit checks(tbz/tbnz)
1409 // Input ans output:
1410 //     1. Input for generated function: X = r0
1411 //     2. Input for generator: isCos = generate sin or cos, npio2_hw = address
1412 //         of npio2_hw table, two_over_pi = address of two_over_pi table,
1413 //         pio2 = address if pio2 table, dsin_coef = address if dsin_coef table,
1414 //         dcos_coef = address of dcos_coef table
1415 //     3. Return result in v0
1416 // NOTE: general purpose register names match local variable names in C code
generate_dsin_dcos(bool isCos,address npio2_hw,address two_over_pi,address pio2,address dsin_coef,address dcos_coef)1417 void MacroAssembler::generate_dsin_dcos(bool isCos, address npio2_hw,
1418     address two_over_pi, address pio2, address dsin_coef, address dcos_coef) {
1419   const int POSITIVE_INFINITY_OR_NAN_PREFIX = 0x7FF0;
1420 
1421   Label DONE, ARG_REDUCTION, TINY_X, RETURN_SIN, EARLY_CASE;
1422   Register X = r0, absX = r1, n = r2, ix = r3;
1423   FloatRegister y0 = v4, y1 = v5;
1424     block_comment("check |x| ~< pi/4, NaN, Inf and |x| < 2**-27 cases"); {
1425       fmovd(X, v0);
1426       mov(rscratch2, 0x3e400000);
1427       mov(rscratch1, 0x3fe921fb00000000);            // pi/4. shifted to reuse later
1428       ubfm(absX, X, 0, 62);                          // absX
1429       movz(r10, POSITIVE_INFINITY_OR_NAN_PREFIX, 48);
1430       cmp(rscratch2, absX, LSR, 32);
1431       lsr(ix, absX, 32);                             // set ix
1432       br(GT, TINY_X);                                // handle tiny x (|x| < 2^-27)
1433       cmp(ix, rscratch1, LSR, 32);
1434       br(LE, EARLY_CASE);                            // if(ix <= 0x3fe921fb) return
1435       cmp(absX, r10);
1436       br(LT, ARG_REDUCTION);
1437       // X is NaN or INF(i.e. 0x7FF* or 0xFFF*). Return NaN (mantissa != 0).
1438       // Set last bit unconditionally to make it NaN
1439       orr(r10, r10, 1);
1440       fmovd(v0, r10);
1441       ret(lr);
1442     }
1443   block_comment("kernel_sin/kernel_cos: if(ix<0x3e400000) {<fast return>}"); {
1444     bind(TINY_X);
1445       if (isCos) {
1446         fmovd(v0, 1.0);
1447       }
1448       ret(lr);
1449   }
1450   bind(ARG_REDUCTION); /* argument reduction needed */
1451     block_comment("n = __ieee754_rem_pio2(x,y);"); {
1452       generate__ieee754_rem_pio2(npio2_hw, two_over_pi, pio2);
1453     }
1454     block_comment("switch(n&3) {case ... }"); {
1455       if (isCos) {
1456         eorw(absX, n, n, LSR, 1);
1457         tbnz(n, 0, RETURN_SIN);
1458       } else {
1459         tbz(n, 0, RETURN_SIN);
1460       }
1461       generate_kernel_cos(y0, dcos_coef);
1462       if (isCos) {
1463         tbz(absX, 0, DONE);
1464       } else {
1465         tbz(n, 1, DONE);
1466       }
1467       fnegd(v0, v0);
1468       ret(lr);
1469     bind(RETURN_SIN);
1470       generate_kernel_sin(y0, true, dsin_coef);
1471       if (isCos) {
1472         tbz(absX, 0, DONE);
1473       } else {
1474         tbz(n, 1, DONE);
1475       }
1476       fnegd(v0, v0);
1477       ret(lr);
1478     }
1479   bind(EARLY_CASE);
1480     eor(y1, T8B, y1, y1);
1481     if (isCos) {
1482       generate_kernel_cos(v0, dcos_coef);
1483     } else {
1484       generate_kernel_sin(v0, false, dsin_coef);
1485     }
1486   bind(DONE);
1487     ret(lr);
1488 }
1489