1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_GC_CMS_COMPACTIBLEFREELISTSPACE_HPP
26 #define SHARE_VM_GC_CMS_COMPACTIBLEFREELISTSPACE_HPP
27 
28 #include "gc/cms/adaptiveFreeList.hpp"
29 #include "gc/cms/promotionInfo.hpp"
30 #include "gc/shared/blockOffsetTable.hpp"
31 #include "gc/shared/cardTable.hpp"
32 #include "gc/shared/space.hpp"
33 #include "logging/log.hpp"
34 #include "memory/binaryTreeDictionary.hpp"
35 #include "memory/freeList.hpp"
36 
37 // Classes in support of keeping track of promotions into a non-Contiguous
38 // space, in this case a CompactibleFreeListSpace.
39 
40 // Forward declarations
41 class CMSCollector;
42 class CompactibleFreeListSpace;
43 class ConcurrentMarkSweepGeneration;
44 class BlkClosure;
45 class BlkClosureCareful;
46 class FreeChunk;
47 class UpwardsObjectClosure;
48 class ObjectClosureCareful;
49 class Klass;
50 
51 class AFLBinaryTreeDictionary : public BinaryTreeDictionary<FreeChunk, AdaptiveFreeList<FreeChunk> > {
52  public:
AFLBinaryTreeDictionary(MemRegion mr)53   AFLBinaryTreeDictionary(MemRegion mr)
54       : BinaryTreeDictionary<FreeChunk, AdaptiveFreeList<FreeChunk> >(mr) {}
55 
56   // Find the list with size "size" in the binary tree and update
57   // the statistics in the list according to "split" (chunk was
58   // split or coalesce) and "birth" (chunk was added or removed).
59   void       dict_census_update(size_t size, bool split, bool birth);
60   // Return true if the dictionary is overpopulated (more chunks of
61   // this size than desired) for size "size".
62   bool       coal_dict_over_populated(size_t size);
63   // Methods called at the beginning of a sweep to prepare the
64   // statistics for the sweep.
65   void       begin_sweep_dict_census(double coalSurplusPercent,
66                                      float inter_sweep_current,
67                                      float inter_sweep_estimate,
68                                      float intra_sweep_estimate);
69   // Methods called after the end of a sweep to modify the
70   // statistics for the sweep.
71   void       end_sweep_dict_census(double splitSurplusPercent);
72   // Accessors for statistics
73   void       set_tree_surplus(double splitSurplusPercent);
74   void       set_tree_hints(void);
75   // Reset statistics for all the lists in the tree.
76   void       clear_tree_census(void);
77   // Print the statistics for all the lists in the tree.  Also may
78   // print out summaries.
79   void       print_dict_census(outputStream* st) const;
80 };
81 
82 class LinearAllocBlock {
83  public:
LinearAllocBlock()84   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
85     _allocation_size_limit(0) {}
set(HeapWord * ptr,size_t word_size,size_t refill_size,size_t allocation_size_limit)86   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
87     size_t allocation_size_limit) {
88     _ptr = ptr;
89     _word_size = word_size;
90     _refillSize = refill_size;
91     _allocation_size_limit = allocation_size_limit;
92   }
93   HeapWord* _ptr;
94   size_t    _word_size;
95   size_t    _refillSize;
96   size_t    _allocation_size_limit;  // Largest size that will be allocated
97 
98   void print_on(outputStream* st) const;
99 };
100 
101 // Concrete subclass of CompactibleSpace that implements
102 // a free list space, such as used in the concurrent mark sweep
103 // generation.
104 
105 class CompactibleFreeListSpace: public CompactibleSpace {
106   friend class VMStructs;
107   friend class ConcurrentMarkSweepGeneration;
108   friend class CMSCollector;
109   // Local alloc buffer for promotion into this space.
110   friend class CompactibleFreeListSpaceLAB;
111   // Allow scan_and_* functions to call (private) overrides of the auxiliary functions on this class
112   template <typename SpaceType>
113   friend void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space);
114   template <typename SpaceType>
115   friend void CompactibleSpace::scan_and_compact(SpaceType* space);
116   template <typename SpaceType>
117   friend void CompactibleSpace::verify_up_to_first_dead(SpaceType* space);
118   template <typename SpaceType>
119   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
120 
121   // "Size" of chunks of work (executed during parallel remark phases
122   // of CMS collection); this probably belongs in CMSCollector, although
123   // it's cached here because it's used in
124   // initialize_sequential_subtasks_for_rescan() which modifies
125   // par_seq_tasks which also lives in Space. XXX
126   const size_t _rescan_task_size;
127   const size_t _marking_task_size;
128 
129   // Yet another sequential tasks done structure. This supports
130   // CMS GC, where we have threads dynamically
131   // claiming sub-tasks from a larger parallel task.
132   SequentialSubTasksDone _conc_par_seq_tasks;
133 
134   BlockOffsetArrayNonContigSpace _bt;
135 
136   CMSCollector* _collector;
137   ConcurrentMarkSweepGeneration* _old_gen;
138 
139   // Data structures for free blocks (used during allocation/sweeping)
140 
141   // Allocation is done linearly from two different blocks depending on
142   // whether the request is small or large, in an effort to reduce
143   // fragmentation. We assume that any locking for allocation is done
144   // by the containing generation. Thus, none of the methods in this
145   // space are re-entrant.
146   enum SomeConstants {
147     SmallForLinearAlloc = 16,        // size < this then use _sLAB
148     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
149     IndexSetSize        = SmallForDictionary  // keep this odd-sized
150   };
151   static size_t IndexSetStart;
152   static size_t IndexSetStride;
153   static size_t _min_chunk_size_in_bytes;
154 
155  private:
156   enum FitStrategyOptions {
157     FreeBlockStrategyNone = 0,
158     FreeBlockBestFitFirst
159   };
160 
161   PromotionInfo _promoInfo;
162 
163   // Helps to impose a global total order on freelistLock ranks;
164   // assumes that CFLSpace's are allocated in global total order
165   static int   _lockRank;
166 
167   // A lock protecting the free lists and free blocks;
168   // mutable because of ubiquity of locking even for otherwise const methods
169   mutable Mutex _freelistLock;
170 
171   // Locking verifier convenience function
172   void assert_locked() const PRODUCT_RETURN;
173   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
174 
175   // Linear allocation blocks
176   LinearAllocBlock _smallLinearAllocBlock;
177 
178   AFLBinaryTreeDictionary* _dictionary;    // Pointer to dictionary for large size blocks
179 
180   // Indexed array for small size blocks
181   AdaptiveFreeList<FreeChunk> _indexedFreeList[IndexSetSize];
182 
183   // Allocation strategy
184   bool _fitStrategy;  // Use best fit strategy
185 
186   // This is an address close to the largest free chunk in the heap.
187   // It is currently assumed to be at the end of the heap.  Free
188   // chunks with addresses greater than nearLargestChunk are coalesced
189   // in an effort to maintain a large chunk at the end of the heap.
190   HeapWord*  _nearLargestChunk;
191 
192   // Used to keep track of limit of sweep for the space
193   HeapWord* _sweep_limit;
194 
195   // Stable value of used().
196   size_t _used_stable;
197 
198   // Used to make the young collector update the mod union table
199   MemRegionClosure* _preconsumptionDirtyCardClosure;
200 
201   // Support for compacting cms
202   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
203   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
204 
205   // Initialization helpers.
206   void initializeIndexedFreeListArray();
207 
208   // Extra stuff to manage promotion parallelism.
209 
210   // A lock protecting the dictionary during par promotion allocation.
211   mutable Mutex _parDictionaryAllocLock;
parDictionaryAllocLock() const212   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
213 
214   // Locks protecting the exact lists during par promotion allocation.
215   Mutex* _indexedFreeListParLocks[IndexSetSize];
216 
217   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
218   // required to be smaller than "IndexSetSize".)  If successful,
219   // adds them to "fl", which is required to be an empty free list.
220   // If the count of "fl" is negative, it's absolute value indicates a
221   // number of free chunks that had been previously "borrowed" from global
222   // list of size "word_sz", and must now be decremented.
223   void par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
224 
225   // Used by par_get_chunk_of_blocks() for the chunks from the
226   // indexed_free_lists.
227   bool par_get_chunk_of_blocks_IFL(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
228 
229   // Used by par_get_chunk_of_blocks_dictionary() to get a chunk
230   // evenly splittable into "n" "word_sz" chunks.  Returns that
231   // evenly splittable chunk.  May split a larger chunk to get the
232   // evenly splittable chunk.
233   FreeChunk* get_n_way_chunk_to_split(size_t word_sz, size_t n);
234 
235   // Used by par_get_chunk_of_blocks() for the chunks from the
236   // dictionary.
237   void par_get_chunk_of_blocks_dictionary(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
238 
239   // Allocation helper functions
240   // Allocate using a strategy that takes from the indexed free lists
241   // first.  This allocation strategy assumes a companion sweeping
242   // strategy that attempts to keep the needed number of chunks in each
243   // indexed free lists.
244   HeapWord* allocate_adaptive_freelists(size_t size);
245 
246   // Gets a chunk from the linear allocation block (LinAB).  If there
247   // is not enough space in the LinAB, refills it.
248   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
249   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
250   // Get a chunk from the space remaining in the linear allocation block.  Do
251   // not attempt to refill if the space is not available, return NULL.  Do the
252   // repairs on the linear allocation block as appropriate.
253   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
254   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
255 
256   // Helper function for getChunkFromIndexedFreeList.
257   // Replenish the indexed free list for this "size".  Do not take from an
258   // underpopulated size.
259   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
260 
261   // Get a chunk from the indexed free list.  If the indexed free list
262   // does not have a free chunk, try to replenish the indexed free list
263   // then get the free chunk from the replenished indexed free list.
264   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
265 
266   // The returned chunk may be larger than requested (or null).
267   FreeChunk* getChunkFromDictionary(size_t size);
268   // The returned chunk is the exact size requested (or null).
269   FreeChunk* getChunkFromDictionaryExact(size_t size);
270 
271   // Find a chunk in the indexed free list that is the best
272   // fit for size "numWords".
273   FreeChunk* bestFitSmall(size_t numWords);
274   // For free list "fl" of chunks of size > numWords,
275   // remove a chunk, split off a chunk of size numWords
276   // and return it.  The split off remainder is returned to
277   // the free lists.  The old name for getFromListGreater
278   // was lookInListGreater.
279   FreeChunk* getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, size_t numWords);
280   // Get a chunk in the indexed free list or dictionary,
281   // by considering a larger chunk and splitting it.
282   FreeChunk* getChunkFromGreater(size_t numWords);
283   //  Verify that the given chunk is in the indexed free lists.
284   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
285   // Remove the specified chunk from the indexed free lists.
286   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
287   // Remove the specified chunk from the dictionary.
288   void       removeChunkFromDictionary(FreeChunk* fc);
289   // Split a free chunk into a smaller free chunk of size "new_size".
290   // Return the smaller free chunk and return the remainder to the
291   // free lists.
292   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
293   // Add a chunk to the free lists.
294   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
295   // Add a chunk to the free lists, preferring to suffix it
296   // to the last free chunk at end of space if possible, and
297   // updating the block census stats as well as block offset table.
298   // Take any locks as appropriate if we are multithreaded.
299   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
300   // Add a free chunk to the indexed free lists.
301   void       returnChunkToFreeList(FreeChunk* chunk);
302   // Add a free chunk to the dictionary.
303   void       returnChunkToDictionary(FreeChunk* chunk);
304 
305   // Functions for maintaining the linear allocation buffers (LinAB).
306   // Repairing a linear allocation block refers to operations
307   // performed on the remainder of a LinAB after an allocation
308   // has been made from it.
309   void       repairLinearAllocationBlocks();
310   void       repairLinearAllocBlock(LinearAllocBlock* blk);
311   void       refillLinearAllocBlock(LinearAllocBlock* blk);
312   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
313   void       refillLinearAllocBlocksIfNeeded();
314 
315   void       verify_objects_initialized() const;
316 
317   // Statistics reporting helper functions
318   void       reportFreeListStatistics(const char* title) const;
319   void       reportIndexedFreeListStatistics(outputStream* st) const;
320   size_t     maxChunkSizeInIndexedFreeLists() const;
321   size_t     numFreeBlocksInIndexedFreeLists() const;
322   // Accessor
unallocated_block() const323   HeapWord* unallocated_block() const {
324     if (BlockOffsetArrayUseUnallocatedBlock) {
325       HeapWord* ub = _bt.unallocated_block();
326       assert(ub >= bottom() &&
327              ub <= end(), "space invariant");
328       return ub;
329     } else {
330       return end();
331     }
332   }
freed(HeapWord * start,size_t size)333   void freed(HeapWord* start, size_t size) {
334     _bt.freed(start, size);
335   }
336 
337   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
338   // See comments for CompactibleSpace for more information.
scan_limit() const339   inline HeapWord* scan_limit() const {
340     return end();
341   }
342 
scanned_block_is_obj(const HeapWord * addr) const343   inline bool scanned_block_is_obj(const HeapWord* addr) const {
344     return CompactibleFreeListSpace::block_is_obj(addr); // Avoid virtual call
345   }
346 
scanned_block_size(const HeapWord * addr) const347   inline size_t scanned_block_size(const HeapWord* addr) const {
348     return CompactibleFreeListSpace::block_size(addr); // Avoid virtual call
349   }
350 
adjust_obj_size(size_t size) const351   inline size_t adjust_obj_size(size_t size) const {
352     return adjustObjectSize(size);
353   }
354 
355   inline size_t obj_size(const HeapWord* addr) const;
356 
357  protected:
358   // Reset the indexed free list to its initial empty condition.
359   void resetIndexedFreeListArray();
360   // Reset to an initial state with a single free block described
361   // by the MemRegion parameter.
362   void reset(MemRegion mr);
363   // Return the total number of words in the indexed free lists.
364   size_t     totalSizeInIndexedFreeLists() const;
365 
366  public:
367   // Constructor
368   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr);
369   // Accessors
bestFitFirst()370   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
dictionary() const371   AFLBinaryTreeDictionary* dictionary() const { return _dictionary; }
nearLargestChunk() const372   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
set_nearLargestChunk(HeapWord * v)373   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
374 
375   // Set CMS global values.
376   static void set_cms_values();
377 
378   // Return the free chunk at the end of the space.  If no such
379   // chunk exists, return NULL.
380   FreeChunk* find_chunk_at_end();
381 
set_collector(CMSCollector * collector)382   void set_collector(CMSCollector* collector) { _collector = collector; }
383 
384   // Support for parallelization of rescan and marking.
rescan_task_size() const385   const size_t rescan_task_size()  const { return _rescan_task_size;  }
marking_task_size() const386   const size_t marking_task_size() const { return _marking_task_size; }
387   // Return ergonomic max size for CMSRescanMultiple and CMSConcMarkMultiple.
388   const size_t max_flag_size_for_task_size() const;
conc_par_seq_tasks()389   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
390   void initialize_sequential_subtasks_for_rescan(int n_threads);
391   void initialize_sequential_subtasks_for_marking(int n_threads,
392          HeapWord* low = NULL);
393 
preconsumptionDirtyCardClosure() const394   virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
395     return _preconsumptionDirtyCardClosure;
396   }
397 
setPreconsumptionDirtyCardClosure(MemRegionClosure * cl)398   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
399     _preconsumptionDirtyCardClosure = cl;
400   }
401 
402   // Space enquiries
403   size_t used() const;
404   size_t free() const;
405   size_t max_alloc_in_words() const;
406   // XXX: should have a less conservative used_region() than that of
407   // Space; we could consider keeping track of highest allocated
408   // address and correcting that at each sweep, as the sweeper
409   // goes through the entire allocated part of the generation. We
410   // could also use that information to keep the sweeper from
411   // sweeping more than is necessary. The allocator and sweeper will
412   // of course need to synchronize on this, since the sweeper will
413   // try to bump down the address and the allocator will try to bump it up.
414   // For now, however, we'll just use the default used_region()
415   // which overestimates the region by returning the entire
416   // committed region (this is safe, but inefficient).
417 
418   // Returns monotonically increasing stable used space bytes for CMS.
419   // This is required for jstat and other memory monitoring tools
420   // that might otherwise see inconsistent used space values during a garbage
421   // collection, promotion or allocation into compactibleFreeListSpace.
422   // The value returned by this function might be smaller than the
423   // actual value.
424   size_t used_stable() const;
425   // Recalculate and cache the current stable used() value. Only to be called
426   // in places where we can be sure that the result is stable.
427   void recalculate_used_stable();
428 
429   // Returns a subregion of the space containing all the objects in
430   // the space.
used_region() const431   MemRegion used_region() const {
432     return MemRegion(bottom(),
433                      BlockOffsetArrayUseUnallocatedBlock ?
434                      unallocated_block() : end());
435   }
436 
437   virtual bool is_free_block(const HeapWord* p) const;
438 
439   // Resizing support
440   void set_end(HeapWord* value);  // override
441 
442   // Never mangle CompactibleFreeListSpace
mangle_unused_area()443   void mangle_unused_area() {}
mangle_unused_area_complete()444   void mangle_unused_area_complete() {}
445 
446   // Mutual exclusion support
freelistLock() const447   Mutex* freelistLock() const { return &_freelistLock; }
448 
449   // Iteration support
450   void oop_iterate(OopIterateClosure* cl);
451 
452   void object_iterate(ObjectClosure* blk);
453   // Apply the closure to each object in the space whose references
454   // point to objects in the heap.  The usage of CompactibleFreeListSpace
455   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
456   // objects in the space with references to objects that are no longer
457   // valid.  For example, an object may reference another object
458   // that has already been sweep up (collected).  This method uses
459   // obj_is_alive() to determine whether it is safe to iterate of
460   // an object.
461   void safe_object_iterate(ObjectClosure* blk);
462 
463   // Iterate over all objects that intersect with mr, calling "cl->do_object"
464   // on each.  There is an exception to this: if this closure has already
465   // been invoked on an object, it may skip such objects in some cases.  This is
466   // Most likely to happen in an "upwards" (ascending address) iteration of
467   // MemRegions.
468   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
469 
470   // Requires that "mr" be entirely within the space.
471   // Apply "cl->do_object" to all objects that intersect with "mr".
472   // If the iteration encounters an unparseable portion of the region,
473   // terminate the iteration and return the address of the start of the
474   // subregion that isn't done.  Return of "NULL" indicates that the
475   // iteration completed.
476   HeapWord* object_iterate_careful_m(MemRegion mr,
477                                      ObjectClosureCareful* cl);
478 
479   // Override: provides a DCTO_CL specific to this kind of space.
480   DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
481                                      CardTable::PrecisionStyle precision,
482                                      HeapWord* boundary,
483                                      bool parallel);
484 
485   void blk_iterate(BlkClosure* cl);
486   void blk_iterate_careful(BlkClosureCareful* cl);
487   HeapWord* block_start_const(const void* p) const;
488   HeapWord* block_start_careful(const void* p) const;
489   size_t block_size(const HeapWord* p) const;
490   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
491   bool block_is_obj(const HeapWord* p) const;
492   bool obj_is_alive(const HeapWord* p) const;
493   size_t block_size_nopar(const HeapWord* p) const;
494   bool block_is_obj_nopar(const HeapWord* p) const;
495 
496   // Iteration support for promotion
497   void save_marks();
498   bool no_allocs_since_save_marks();
499 
500   // Iteration support for sweeping
save_sweep_limit()501   void save_sweep_limit() {
502     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
503                    unallocated_block() : end();
504     log_develop_trace(gc, sweep)(">>>>> Saving sweep limit " PTR_FORMAT
505                                  "  for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
506                                  p2i(_sweep_limit), p2i(bottom()), p2i(end()));
507   }
NOT_PRODUCT(void clear_sweep_limit (){ _sweep_limit = NULL; } )508   NOT_PRODUCT(
509     void clear_sweep_limit() { _sweep_limit = NULL; }
510   )
511   HeapWord* sweep_limit() { return _sweep_limit; }
512 
513   // Apply "blk->do_oop" to the addresses of all reference fields in objects
514   // promoted into this generation since the most recent save_marks() call.
515   // Fields in objects allocated by applications of the closure
516   // *are* included in the iteration. Thus, when the iteration completes
517   // there should be no further such objects remaining.
518   template <typename OopClosureType>
519   void oop_since_save_marks_iterate(OopClosureType* blk);
520 
521   // Allocation support
522   HeapWord* allocate(size_t size);
523   HeapWord* par_allocate(size_t size);
524 
525   oop       promote(oop obj, size_t obj_size);
526   void      gc_prologue();
527   void      gc_epilogue();
528 
529   // This call is used by a containing CMS generation / collector
530   // to inform the CFLS space that a sweep has been completed
531   // and that the space can do any related house-keeping functions.
532   void      sweep_completed();
533 
534   // For an object in this space, the mark-word's two
535   // LSB's having the value [11] indicates that it has been
536   // promoted since the most recent call to save_marks() on
537   // this generation and has not subsequently been iterated
538   // over (using oop_since_save_marks_iterate() above).
539   // This property holds only for single-threaded collections,
540   // and is typically used for Cheney scans; for MT scavenges,
541   // the property holds for all objects promoted during that
542   // scavenge for the duration of the scavenge and is used
543   // by card-scanning to avoid scanning objects (being) promoted
544   // during that scavenge.
obj_allocated_since_save_marks(const oop obj) const545   bool obj_allocated_since_save_marks(const oop obj) const {
546     assert(is_in_reserved(obj), "Wrong space?");
547     return ((PromotedObject*)obj)->hasPromotedMark();
548   }
549 
550   // A worst-case estimate of the space required (in HeapWords) to expand the
551   // heap when promoting an obj of size obj_size.
552   size_t expansionSpaceRequired(size_t obj_size) const;
553 
554   FreeChunk* allocateScratch(size_t size);
555 
556   // Returns true if either the small or large linear allocation buffer is empty.
557   bool       linearAllocationWouldFail() const;
558 
559   // Adjust the chunk for the minimum size.  This version is called in
560   // most cases in CompactibleFreeListSpace methods.
adjustObjectSize(size_t size)561   inline static size_t adjustObjectSize(size_t size) {
562     return align_object_size(MAX2(size, (size_t)MinChunkSize));
563   }
564   // This is a virtual version of adjustObjectSize() that is called
565   // only occasionally when the compaction space changes and the type
566   // of the new compaction space is is only known to be CompactibleSpace.
adjust_object_size_v(size_t size) const567   size_t adjust_object_size_v(size_t size) const {
568     return adjustObjectSize(size);
569   }
570   // Minimum size of a free block.
minimum_free_block_size() const571   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
572   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
573   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
574               bool coalesced);
575 
576   // Support for compaction.
577   void prepare_for_compaction(CompactPoint* cp);
578   void adjust_pointers();
579   void compact();
580   // Reset the space to reflect the fact that a compaction of the
581   // space has been done.
582   virtual void reset_after_compaction();
583 
584   // Debugging support.
585   void print()                            const;
586   void print_on(outputStream* st)         const;
587   void prepare_for_verify();
588   void verify()                           const;
589   void verifyFreeLists()                  const PRODUCT_RETURN;
590   void verifyIndexedFreeLists()           const;
591   void verifyIndexedFreeList(size_t size) const;
592   // Verify that the given chunk is in the free lists:
593   // i.e. either the binary tree dictionary, the indexed free lists
594   // or the linear allocation block.
595   bool verify_chunk_in_free_list(FreeChunk* fc) const;
596   // Verify that the given chunk is the linear allocation block.
597   bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
598   // Do some basic checks on the the free lists.
599   void check_free_list_consistency()      const PRODUCT_RETURN;
600 
601   // Printing support
602   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
603   void print_indexed_free_lists(outputStream* st) const;
604   void print_dictionary_free_lists(outputStream* st) const;
605   void print_promo_info_blocks(outputStream* st) const;
606 
607   NOT_PRODUCT (
608     void initializeIndexedFreeListArrayReturnedBytes();
609     size_t sumIndexedFreeListArrayReturnedBytes();
610     // Return the total number of chunks in the indexed free lists.
611     size_t totalCountInIndexedFreeLists() const;
612     // Return the total number of chunks in the space.
613     size_t totalCount();
614   )
615 
616   // The census consists of counts of the quantities such as
617   // the current count of the free chunks, number of chunks
618   // created as a result of the split of a larger chunk or
619   // coalescing of smaller chucks, etc.  The counts in the
620   // census is used to make decisions on splitting and
621   // coalescing of chunks during the sweep of garbage.
622 
623   // Print the statistics for the free lists.
624   void printFLCensus(size_t sweep_count) const;
625 
626   // Statistics functions
627   // Initialize census for lists before the sweep.
628   void beginSweepFLCensus(float inter_sweep_current,
629                           float inter_sweep_estimate,
630                           float intra_sweep_estimate);
631   // Set the surplus for each of the free lists.
632   void setFLSurplus();
633   // Set the hint for each of the free lists.
634   void setFLHints();
635   // Clear the census for each of the free lists.
636   void clearFLCensus();
637   // Perform functions for the census after the end of the sweep.
638   void endSweepFLCensus(size_t sweep_count);
639   // Return true if the count of free chunks is greater
640   // than the desired number of free chunks.
641   bool coalOverPopulated(size_t size);
642 
643 // Record (for each size):
644 //
645 //   split-births = #chunks added due to splits in (prev-sweep-end,
646 //      this-sweep-start)
647 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
648 //      this-sweep-start)
649 //   num-curr     = #chunks at start of this sweep
650 //   num-prev     = #chunks at end of previous sweep
651 //
652 // The above are quantities that are measured. Now define:
653 //
654 //   num-desired := num-prev + split-births - split-deaths - num-curr
655 //
656 // Roughly, num-prev + split-births is the supply,
657 // split-deaths is demand due to other sizes
658 // and num-curr is what we have left.
659 //
660 // Thus, num-desired is roughly speaking the "legitimate demand"
661 // for blocks of this size and what we are striving to reach at the
662 // end of the current sweep.
663 //
664 // For a given list, let num-len be its current population.
665 // Define, for a free list of a given size:
666 //
667 //   coal-overpopulated := num-len >= num-desired * coal-surplus
668 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
669 // coalescing -- we do not coalesce unless we think that the current
670 // supply has exceeded the estimated demand by more than 5%).
671 //
672 // For the set of sizes in the binary tree, which is neither dense nor
673 // closed, it may be the case that for a particular size we have never
674 // had, or do not now have, or did not have at the previous sweep,
675 // chunks of that size. We need to extend the definition of
676 // coal-overpopulated to such sizes as well:
677 //
678 //   For a chunk in/not in the binary tree, extend coal-overpopulated
679 //   defined above to include all sizes as follows:
680 //
681 //   . a size that is non-existent is coal-overpopulated
682 //   . a size that has a num-desired <= 0 as defined above is
683 //     coal-overpopulated.
684 //
685 // Also define, for a chunk heap-offset C and mountain heap-offset M:
686 //
687 //   close-to-mountain := C >= 0.99 * M
688 //
689 // Now, the coalescing strategy is:
690 //
691 //    Coalesce left-hand chunk with right-hand chunk if and
692 //    only if:
693 //
694 //      EITHER
695 //        . left-hand chunk is of a size that is coal-overpopulated
696 //      OR
697 //        . right-hand chunk is close-to-mountain
698   void smallCoalBirth(size_t size);
699   void smallCoalDeath(size_t size);
700   void coalBirth(size_t size);
701   void coalDeath(size_t size);
702   void smallSplitBirth(size_t size);
703   void smallSplitDeath(size_t size);
704   void split_birth(size_t size);
705   void splitDeath(size_t size);
706   void split(size_t from, size_t to1);
707 
708   double flsFrag() const;
709 };
710 
711 // A parallel-GC-thread-local allocation buffer for allocation into a
712 // CompactibleFreeListSpace.
713 class CompactibleFreeListSpaceLAB : public CHeapObj<mtGC> {
714   // The space that this buffer allocates into.
715   CompactibleFreeListSpace* _cfls;
716 
717   // Our local free lists.
718   AdaptiveFreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
719 
720   // Initialized from a command-line arg.
721 
722   // Allocation statistics in support of dynamic adjustment of
723   // #blocks to claim per get_from_global_pool() call below.
724   static AdaptiveWeightedAverage
725                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
726   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
727   static uint   _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
728   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
729 
730   // Internal work method
731   void get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl);
732 
733 public:
734   static const int _default_dynamic_old_plab_size = 16;
735   static const int _default_static_old_plab_size  = 50;
736 
737   CompactibleFreeListSpaceLAB(CompactibleFreeListSpace* cfls);
738 
739   // Allocate and return a block of the given size, or else return NULL.
740   HeapWord* alloc(size_t word_sz);
741 
742   // Return any unused portions of the buffer to the global pool.
743   void retire(int tid);
744 
745   // Dynamic OldPLABSize sizing
746   static void compute_desired_plab_size();
747   // When the settings are modified from default static initialization
748   static void modify_initialization(size_t n, unsigned wt);
749 };
750 
refillSize() const751 size_t PromotionInfo::refillSize() const {
752   const size_t CMSSpoolBlockSize = 256;
753   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
754                                    * CMSSpoolBlockSize);
755   return CompactibleFreeListSpace::adjustObjectSize(sz);
756 }
757 
758 #endif // SHARE_VM_GC_CMS_COMPACTIBLEFREELISTSPACE_HPP
759