1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_GC_SHARED_SPACE_HPP
26 #define SHARE_VM_GC_SHARED_SPACE_HPP
27 
28 #include "gc/shared/blockOffsetTable.hpp"
29 #include "gc/shared/cardTable.hpp"
30 #include "gc/shared/workgroup.hpp"
31 #include "memory/allocation.hpp"
32 #include "memory/iterator.hpp"
33 #include "memory/memRegion.hpp"
34 #include "oops/markOop.hpp"
35 #include "runtime/mutexLocker.hpp"
36 #include "utilities/align.hpp"
37 #include "utilities/macros.hpp"
38 
39 // A space is an abstraction for the "storage units" backing
40 // up the generation abstraction. It includes specific
41 // implementations for keeping track of free and used space,
42 // for iterating over objects and free blocks, etc.
43 
44 // Forward decls.
45 class Space;
46 class BlockOffsetArray;
47 class BlockOffsetArrayContigSpace;
48 class Generation;
49 class CompactibleSpace;
50 class BlockOffsetTable;
51 class CardTableRS;
52 class DirtyCardToOopClosure;
53 
54 // A Space describes a heap area. Class Space is an abstract
55 // base class.
56 //
57 // Space supports allocation, size computation and GC support is provided.
58 //
59 // Invariant: bottom() and end() are on page_size boundaries and
60 // bottom() <= top() <= end()
61 // top() is inclusive and end() is exclusive.
62 
63 class Space: public CHeapObj<mtGC> {
64   friend class VMStructs;
65  protected:
66   HeapWord* _bottom;
67   HeapWord* _end;
68 
69   // Used in support of save_marks()
70   HeapWord* _saved_mark_word;
71 
72   // A sequential tasks done structure. This supports
73   // parallel GC, where we have threads dynamically
74   // claiming sub-tasks from a larger parallel task.
75   SequentialSubTasksDone _par_seq_tasks;
76 
Space()77   Space():
78     _bottom(NULL), _end(NULL) { }
79 
80  public:
81   // Accessors
bottom() const82   HeapWord* bottom() const         { return _bottom; }
end() const83   HeapWord* end() const            { return _end;    }
set_bottom(HeapWord * value)84   virtual void set_bottom(HeapWord* value) { _bottom = value; }
set_end(HeapWord * value)85   virtual void set_end(HeapWord* value)    { _end = value; }
86 
saved_mark_word() const87   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
88 
set_saved_mark_word(HeapWord * p)89   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
90 
91   // Returns true if this object has been allocated since a
92   // generation's "save_marks" call.
obj_allocated_since_save_marks(const oop obj) const93   virtual bool obj_allocated_since_save_marks(const oop obj) const {
94     return (HeapWord*)obj >= saved_mark_word();
95   }
96 
preconsumptionDirtyCardClosure() const97   virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
98     return NULL;
99   }
100 
101   // Returns a subregion of the space containing only the allocated objects in
102   // the space.
103   virtual MemRegion used_region() const = 0;
104 
105   // Returns a region that is guaranteed to contain (at least) all objects
106   // allocated at the time of the last call to "save_marks".  If the space
107   // initializes its DirtyCardToOopClosure's specifying the "contig" option
108   // (that is, if the space is contiguous), then this region must contain only
109   // such objects: the memregion will be from the bottom of the region to the
110   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
111   // the space must distinguish between objects in the region allocated before
112   // and after the call to save marks.
used_region_at_save_marks() const113   MemRegion used_region_at_save_marks() const {
114     return MemRegion(bottom(), saved_mark_word());
115   }
116 
117   // Initialization.
118   // "initialize" should be called once on a space, before it is used for
119   // any purpose.  The "mr" arguments gives the bounds of the space, and
120   // the "clear_space" argument should be true unless the memory in "mr" is
121   // known to be zeroed.
122   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
123 
124   // The "clear" method must be called on a region that may have
125   // had allocation performed in it, but is now to be considered empty.
126   virtual void clear(bool mangle_space);
127 
128   // For detecting GC bugs.  Should only be called at GC boundaries, since
129   // some unused space may be used as scratch space during GC's.
130   // We also call this when expanding a space to satisfy an allocation
131   // request. See bug #4668531
132   virtual void mangle_unused_area() = 0;
133   virtual void mangle_unused_area_complete() = 0;
134 
135   // Testers
is_empty() const136   bool is_empty() const              { return used() == 0; }
not_empty() const137   bool not_empty() const             { return used() > 0; }
138 
139   // Returns true iff the given the space contains the
140   // given address as part of an allocated object. For
141   // certain kinds of spaces, this might be a potentially
142   // expensive operation. To prevent performance problems
143   // on account of its inadvertent use in product jvm's,
144   // we restrict its use to assertion checks only.
is_in(const void * p) const145   bool is_in(const void* p) const {
146     return used_region().contains(p);
147   }
is_in(oop obj) const148   bool is_in(oop obj) const {
149     return is_in((void*)obj);
150   }
151 
152   // Returns true iff the given reserved memory of the space contains the
153   // given address.
is_in_reserved(const void * p) const154   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
155 
156   // Returns true iff the given block is not allocated.
157   virtual bool is_free_block(const HeapWord* p) const = 0;
158 
159   // Test whether p is double-aligned
is_aligned(void * p)160   static bool is_aligned(void* p) {
161     return ::is_aligned(p, sizeof(double));
162   }
163 
164   // Size computations.  Sizes are in bytes.
capacity() const165   size_t capacity()     const { return byte_size(bottom(), end()); }
166   virtual size_t used() const = 0;
167   virtual size_t free() const = 0;
168 
169   // Iterate over all the ref-containing fields of all objects in the
170   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
171   // applications of the closure are not included in the iteration.
172   virtual void oop_iterate(OopIterateClosure* cl);
173 
174   // Iterate over all objects in the space, calling "cl.do_object" on
175   // each.  Objects allocated by applications of the closure are not
176   // included in the iteration.
177   virtual void object_iterate(ObjectClosure* blk) = 0;
178   // Similar to object_iterate() except only iterates over
179   // objects whose internal references point to objects in the space.
180   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
181 
182   // Create and return a new dirty card to oop closure. Can be
183   // overridden to return the appropriate type of closure
184   // depending on the type of space in which the closure will
185   // operate. ResourceArea allocated.
186   virtual DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
187                                              CardTable::PrecisionStyle precision,
188                                              HeapWord* boundary,
189                                              bool parallel);
190 
191   // If "p" is in the space, returns the address of the start of the
192   // "block" that contains "p".  We say "block" instead of "object" since
193   // some heaps may not pack objects densely; a chunk may either be an
194   // object or a non-object.  If "p" is not in the space, return NULL.
195   virtual HeapWord* block_start_const(const void* p) const = 0;
196 
197   // The non-const version may have benevolent side effects on the data
198   // structure supporting these calls, possibly speeding up future calls.
199   // The default implementation, however, is simply to call the const
200   // version.
201   virtual HeapWord* block_start(const void* p);
202 
203   // Requires "addr" to be the start of a chunk, and returns its size.
204   // "addr + size" is required to be the start of a new chunk, or the end
205   // of the active area of the heap.
206   virtual size_t block_size(const HeapWord* addr) const = 0;
207 
208   // Requires "addr" to be the start of a block, and returns "TRUE" iff
209   // the block is an object.
210   virtual bool block_is_obj(const HeapWord* addr) const = 0;
211 
212   // Requires "addr" to be the start of a block, and returns "TRUE" iff
213   // the block is an object and the object is alive.
214   virtual bool obj_is_alive(const HeapWord* addr) const;
215 
216   // Allocation (return NULL if full).  Assumes the caller has established
217   // mutually exclusive access to the space.
218   virtual HeapWord* allocate(size_t word_size) = 0;
219 
220   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
221   virtual HeapWord* par_allocate(size_t word_size) = 0;
222 
223 #if INCLUDE_SERIALGC
224   // Mark-sweep-compact support: all spaces can update pointers to objects
225   // moving as a part of compaction.
226   virtual void adjust_pointers() = 0;
227 #endif
228 
229   virtual void print() const;
230   virtual void print_on(outputStream* st) const;
231   virtual void print_short() const;
232   virtual void print_short_on(outputStream* st) const;
233 
234 
235   // Accessor for parallel sequential tasks.
par_seq_tasks()236   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
237 
238   // IF "this" is a ContiguousSpace, return it, else return NULL.
toContiguousSpace()239   virtual ContiguousSpace* toContiguousSpace() {
240     return NULL;
241   }
242 
243   // Debugging
244   virtual void verify() const = 0;
245 };
246 
247 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
248 // OopClosure to (the addresses of) all the ref-containing fields that could
249 // be modified by virtue of the given MemRegion being dirty. (Note that
250 // because of the imprecise nature of the write barrier, this may iterate
251 // over oops beyond the region.)
252 // This base type for dirty card to oop closures handles memory regions
253 // in non-contiguous spaces with no boundaries, and should be sub-classed
254 // to support other space types. See ContiguousDCTOC for a sub-class
255 // that works with ContiguousSpaces.
256 
257 class DirtyCardToOopClosure: public MemRegionClosureRO {
258 protected:
259   OopIterateClosure* _cl;
260   Space* _sp;
261   CardTable::PrecisionStyle _precision;
262   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
263                                 // pointing below boundary.
264   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
265                                 // a downwards traversal; this is the
266                                 // lowest location already done (or,
267                                 // alternatively, the lowest address that
268                                 // shouldn't be done again.  NULL means infinity.)
269   NOT_PRODUCT(HeapWord* _last_bottom;)
270   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
271 
272   // Get the actual top of the area on which the closure will
273   // operate, given where the top is assumed to be (the end of the
274   // memory region passed to do_MemRegion) and where the object
275   // at the top is assumed to start. For example, an object may
276   // start at the top but actually extend past the assumed top,
277   // in which case the top becomes the end of the object.
278   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
279 
280   // Walk the given memory region from bottom to (actual) top
281   // looking for objects and applying the oop closure (_cl) to
282   // them. The base implementation of this treats the area as
283   // blocks, where a block may or may not be an object. Sub-
284   // classes should override this to provide more accurate
285   // or possibly more efficient walking.
286   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
287 
288 public:
DirtyCardToOopClosure(Space * sp,OopIterateClosure * cl,CardTable::PrecisionStyle precision,HeapWord * boundary)289   DirtyCardToOopClosure(Space* sp, OopIterateClosure* cl,
290                         CardTable::PrecisionStyle precision,
291                         HeapWord* boundary) :
292     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
293     _min_done(NULL) {
294     NOT_PRODUCT(_last_bottom = NULL);
295     NOT_PRODUCT(_last_explicit_min_done = NULL);
296   }
297 
298   void do_MemRegion(MemRegion mr);
299 
set_min_done(HeapWord * min_done)300   void set_min_done(HeapWord* min_done) {
301     _min_done = min_done;
302     NOT_PRODUCT(_last_explicit_min_done = _min_done);
303   }
304 #ifndef PRODUCT
set_last_bottom(HeapWord * last_bottom)305   void set_last_bottom(HeapWord* last_bottom) {
306     _last_bottom = last_bottom;
307   }
308 #endif
309 };
310 
311 // A structure to represent a point at which objects are being copied
312 // during compaction.
313 class CompactPoint : public StackObj {
314 public:
315   Generation* gen;
316   CompactibleSpace* space;
317   HeapWord* threshold;
318 
CompactPoint(Generation * g=NULL)319   CompactPoint(Generation* g = NULL) :
320     gen(g), space(NULL), threshold(0) {}
321 };
322 
323 // A space that supports compaction operations.  This is usually, but not
324 // necessarily, a space that is normally contiguous.  But, for example, a
325 // free-list-based space whose normal collection is a mark-sweep without
326 // compaction could still support compaction in full GC's.
327 //
328 // The compaction operations are implemented by the
329 // scan_and_{adjust_pointers,compact,forward} function templates.
330 // The following are, non-virtual, auxiliary functions used by these function templates:
331 // - scan_limit()
332 // - scanned_block_is_obj()
333 // - scanned_block_size()
334 // - adjust_obj_size()
335 // - obj_size()
336 // These functions are to be used exclusively by the scan_and_* function templates,
337 // and must be defined for all (non-abstract) subclasses of CompactibleSpace.
338 //
339 // NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
340 // in any of the auxiliary functions must also override the corresponding
341 // prepare_for_compaction/adjust_pointers/compact functions using them.
342 // If not, such changes will not be used or have no effect on the compaction operations.
343 //
344 // This translates to the following dependencies:
345 // Overrides/definitions of
346 //  - scan_limit
347 //  - scanned_block_is_obj
348 //  - scanned_block_size
349 // require override/definition of prepare_for_compaction().
350 // Similar dependencies exist between
351 //  - adjust_obj_size  and adjust_pointers()
352 //  - obj_size         and compact().
353 //
354 // Additionally, this also means that changes to block_size() or block_is_obj() that
355 // should be effective during the compaction operations must provide a corresponding
356 // definition of scanned_block_size/scanned_block_is_obj respectively.
357 class CompactibleSpace: public Space {
358   friend class VMStructs;
359   friend class CompactibleFreeListSpace;
360 private:
361   HeapWord* _compaction_top;
362   CompactibleSpace* _next_compaction_space;
363 
364   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
adjust_obj_size(size_t size) const365   inline size_t adjust_obj_size(size_t size) const {
366     return size;
367   }
368 
369   inline size_t obj_size(const HeapWord* addr) const;
370 
371   template <class SpaceType>
372   static inline void verify_up_to_first_dead(SpaceType* space) NOT_DEBUG_RETURN;
373 
374   template <class SpaceType>
375   static inline void clear_empty_region(SpaceType* space);
376 
377 public:
CompactibleSpace()378   CompactibleSpace() :
379    _compaction_top(NULL), _next_compaction_space(NULL) {}
380 
381   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
382   virtual void clear(bool mangle_space);
383 
384   // Used temporarily during a compaction phase to hold the value
385   // top should have when compaction is complete.
compaction_top() const386   HeapWord* compaction_top() const { return _compaction_top;    }
387 
set_compaction_top(HeapWord * value)388   void set_compaction_top(HeapWord* value) {
389     assert(value == NULL || (value >= bottom() && value <= end()),
390       "should point inside space");
391     _compaction_top = value;
392   }
393 
394   // Perform operations on the space needed after a compaction
395   // has been performed.
396   virtual void reset_after_compaction() = 0;
397 
398   // Returns the next space (in the current generation) to be compacted in
399   // the global compaction order.  Also is used to select the next
400   // space into which to compact.
401 
next_compaction_space() const402   virtual CompactibleSpace* next_compaction_space() const {
403     return _next_compaction_space;
404   }
405 
set_next_compaction_space(CompactibleSpace * csp)406   void set_next_compaction_space(CompactibleSpace* csp) {
407     _next_compaction_space = csp;
408   }
409 
410 #if INCLUDE_SERIALGC
411   // MarkSweep support phase2
412 
413   // Start the process of compaction of the current space: compute
414   // post-compaction addresses, and insert forwarding pointers.  The fields
415   // "cp->gen" and "cp->compaction_space" are the generation and space into
416   // which we are currently compacting.  This call updates "cp" as necessary,
417   // and leaves the "compaction_top" of the final value of
418   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
419   // this phase as if the final copy had occurred; if so, "cp->threshold"
420   // indicates when the next such action should be taken.
421   virtual void prepare_for_compaction(CompactPoint* cp) = 0;
422   // MarkSweep support phase3
423   virtual void adjust_pointers();
424   // MarkSweep support phase4
425   virtual void compact();
426 #endif // INCLUDE_SERIALGC
427 
428   // The maximum percentage of objects that can be dead in the compacted
429   // live part of a compacted space ("deadwood" support.)
allowed_dead_ratio() const430   virtual size_t allowed_dead_ratio() const { return 0; };
431 
432   // Some contiguous spaces may maintain some data structures that should
433   // be updated whenever an allocation crosses a boundary.  This function
434   // returns the first such boundary.
435   // (The default implementation returns the end of the space, so the
436   // boundary is never crossed.)
initialize_threshold()437   virtual HeapWord* initialize_threshold() { return end(); }
438 
439   // "q" is an object of the given "size" that should be forwarded;
440   // "cp" names the generation ("gen") and containing "this" (which must
441   // also equal "cp->space").  "compact_top" is where in "this" the
442   // next object should be forwarded to.  If there is room in "this" for
443   // the object, insert an appropriate forwarding pointer in "q".
444   // If not, go to the next compaction space (there must
445   // be one, since compaction must succeed -- we go to the first space of
446   // the previous generation if necessary, updating "cp"), reset compact_top
447   // and then forward.  In either case, returns the new value of "compact_top".
448   // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
449   // function of the then-current compaction space, and updates "cp->threshold
450   // accordingly".
451   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
452                     HeapWord* compact_top);
453 
454   // Return a size with adjustments as required of the space.
adjust_object_size_v(size_t size) const455   virtual size_t adjust_object_size_v(size_t size) const { return size; }
456 
set_first_dead(HeapWord * value)457   void set_first_dead(HeapWord* value) { _first_dead = value; }
set_end_of_live(HeapWord * value)458   void set_end_of_live(HeapWord* value) { _end_of_live = value; }
459 
460 protected:
461   // Used during compaction.
462   HeapWord* _first_dead;
463   HeapWord* _end_of_live;
464 
465   // Minimum size of a free block.
minimum_free_block_size() const466   virtual size_t minimum_free_block_size() const { return 0; }
467 
468   // This the function is invoked when an allocation of an object covering
469   // "start" to "end occurs crosses the threshold; returns the next
470   // threshold.  (The default implementation does nothing.)
cross_threshold(HeapWord * start,HeapWord * the_end)471   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
472     return end();
473   }
474 
475   // Below are template functions for scan_and_* algorithms (avoiding virtual calls).
476   // The space argument should be a subclass of CompactibleSpace, implementing
477   // scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
478   // and possibly also overriding obj_size(), and adjust_obj_size().
479   // These functions should avoid virtual calls whenever possible.
480 
481 #if INCLUDE_SERIALGC
482   // Frequently calls adjust_obj_size().
483   template <class SpaceType>
484   static inline void scan_and_adjust_pointers(SpaceType* space);
485 #endif
486 
487   // Frequently calls obj_size().
488   template <class SpaceType>
489   static inline void scan_and_compact(SpaceType* space);
490 
491   // Frequently calls scanned_block_is_obj() and scanned_block_size().
492   // Requires the scan_limit() function.
493   template <class SpaceType>
494   static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
495 };
496 
497 class GenSpaceMangler;
498 
499 // A space in which the free area is contiguous.  It therefore supports
500 // faster allocation, and compaction.
501 class ContiguousSpace: public CompactibleSpace {
502   friend class VMStructs;
503   // Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
504   template <typename SpaceType>
505   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
506 
507  private:
508   // Auxiliary functions for scan_and_forward support.
509   // See comments for CompactibleSpace for more information.
scan_limit() const510   inline HeapWord* scan_limit() const {
511     return top();
512   }
513 
scanned_block_is_obj(const HeapWord * addr) const514   inline bool scanned_block_is_obj(const HeapWord* addr) const {
515     return true; // Always true, since scan_limit is top
516   }
517 
518   inline size_t scanned_block_size(const HeapWord* addr) const;
519 
520  protected:
521   HeapWord* _top;
522   HeapWord* _concurrent_iteration_safe_limit;
523   // A helper for mangling the unused area of the space in debug builds.
524   GenSpaceMangler* _mangler;
525 
mangler()526   GenSpaceMangler* mangler() { return _mangler; }
527 
528   // Allocation helpers (return NULL if full).
529   inline HeapWord* allocate_impl(size_t word_size);
530   inline HeapWord* par_allocate_impl(size_t word_size);
531 
532  public:
533   ContiguousSpace();
534   ~ContiguousSpace();
535 
536   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
537   virtual void clear(bool mangle_space);
538 
539   // Accessors
top() const540   HeapWord* top() const            { return _top;    }
set_top(HeapWord * value)541   void set_top(HeapWord* value)    { _top = value; }
542 
set_saved_mark()543   void set_saved_mark()            { _saved_mark_word = top();    }
reset_saved_mark()544   void reset_saved_mark()          { _saved_mark_word = bottom(); }
545 
saved_mark_at_top() const546   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
547 
548   // In debug mode mangle (write it with a particular bit
549   // pattern) the unused part of a space.
550 
551   // Used to save the an address in a space for later use during mangling.
552   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
553   // Used to save the space's current top for later use during mangling.
554   void set_top_for_allocations() PRODUCT_RETURN;
555 
556   // Mangle regions in the space from the current top up to the
557   // previously mangled part of the space.
558   void mangle_unused_area() PRODUCT_RETURN;
559   // Mangle [top, end)
560   void mangle_unused_area_complete() PRODUCT_RETURN;
561 
562   // Do some sparse checking on the area that should have been mangled.
563   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
564   // Check the complete area that should have been mangled.
565   // This code may be NULL depending on the macro DEBUG_MANGLING.
566   void check_mangled_unused_area_complete() PRODUCT_RETURN;
567 
568   // Size computations: sizes in bytes.
capacity() const569   size_t capacity() const        { return byte_size(bottom(), end()); }
used() const570   size_t used() const            { return byte_size(bottom(), top()); }
free() const571   size_t free() const            { return byte_size(top(),    end()); }
572 
573   virtual bool is_free_block(const HeapWord* p) const;
574 
575   // In a contiguous space we have a more obvious bound on what parts
576   // contain objects.
used_region() const577   MemRegion used_region() const { return MemRegion(bottom(), top()); }
578 
579   // Allocation (return NULL if full)
580   virtual HeapWord* allocate(size_t word_size);
581   virtual HeapWord* par_allocate(size_t word_size);
582   HeapWord* allocate_aligned(size_t word_size);
583 
584   // Iteration
585   void oop_iterate(OopIterateClosure* cl);
586   void object_iterate(ObjectClosure* blk);
587   // For contiguous spaces this method will iterate safely over objects
588   // in the space (i.e., between bottom and top) when at a safepoint.
589   void safe_object_iterate(ObjectClosure* blk);
590 
591   // Iterate over as many initialized objects in the space as possible,
592   // calling "cl.do_object_careful" on each. Return NULL if all objects
593   // in the space (at the start of the iteration) were iterated over.
594   // Return an address indicating the extent of the iteration in the
595   // event that the iteration had to return because of finding an
596   // uninitialized object in the space, or if the closure "cl"
597   // signaled early termination.
598   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
concurrent_iteration_safe_limit()599   HeapWord* concurrent_iteration_safe_limit() {
600     assert(_concurrent_iteration_safe_limit <= top(),
601            "_concurrent_iteration_safe_limit update missed");
602     return _concurrent_iteration_safe_limit;
603   }
604   // changes the safe limit, all objects from bottom() to the new
605   // limit should be properly initialized
set_concurrent_iteration_safe_limit(HeapWord * new_limit)606   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
607     assert(new_limit <= top(), "uninitialized objects in the safe range");
608     _concurrent_iteration_safe_limit = new_limit;
609   }
610 
611   // In support of parallel oop_iterate.
612   template <typename OopClosureType>
613   void par_oop_iterate(MemRegion mr, OopClosureType* blk);
614 
615   // Compaction support
reset_after_compaction()616   virtual void reset_after_compaction() {
617     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
618     set_top(compaction_top());
619     // set new iteration safe limit
620     set_concurrent_iteration_safe_limit(compaction_top());
621   }
622 
623   // Override.
624   DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
625                                      CardTable::PrecisionStyle precision,
626                                      HeapWord* boundary,
627                                      bool parallel);
628 
629   // Apply "blk->do_oop" to the addresses of all reference fields in objects
630   // starting with the _saved_mark_word, which was noted during a generation's
631   // save_marks and is required to denote the head of an object.
632   // Fields in objects allocated by applications of the closure
633   // *are* included in the iteration.
634   // Updates _saved_mark_word to point to just after the last object
635   // iterated over.
636   template <typename OopClosureType>
637   void oop_since_save_marks_iterate(OopClosureType* blk);
638 
639   // Same as object_iterate, but starting from "mark", which is required
640   // to denote the start of an object.  Objects allocated by
641   // applications of the closure *are* included in the iteration.
642   virtual void object_iterate_from(HeapWord* mark, ObjectClosure* blk);
643 
644   // Very inefficient implementation.
645   virtual HeapWord* block_start_const(const void* p) const;
646   size_t block_size(const HeapWord* p) const;
647   // If a block is in the allocated area, it is an object.
block_is_obj(const HeapWord * p) const648   bool block_is_obj(const HeapWord* p) const { return p < top(); }
649 
650   // Addresses for inlined allocation
top_addr()651   HeapWord** top_addr() { return &_top; }
end_addr()652   HeapWord** end_addr() { return &_end; }
653 
654 #if INCLUDE_SERIALGC
655   // Overrides for more efficient compaction support.
656   void prepare_for_compaction(CompactPoint* cp);
657 #endif
658 
659   virtual void print_on(outputStream* st) const;
660 
661   // Checked dynamic downcasts.
toContiguousSpace()662   virtual ContiguousSpace* toContiguousSpace() {
663     return this;
664   }
665 
666   // Debugging
667   virtual void verify() const;
668 
669   // Used to increase collection frequency.  "factor" of 0 means entire
670   // space.
671   void allocate_temporary_filler(int factor);
672 };
673 
674 
675 // A dirty card to oop closure that does filtering.
676 // It knows how to filter out objects that are outside of the _boundary.
677 class FilteringDCTOC : public DirtyCardToOopClosure {
678 protected:
679   // Override.
680   void walk_mem_region(MemRegion mr,
681                        HeapWord* bottom, HeapWord* top);
682 
683   // Walk the given memory region, from bottom to top, applying
684   // the given oop closure to (possibly) all objects found. The
685   // given oop closure may or may not be the same as the oop
686   // closure with which this closure was created, as it may
687   // be a filtering closure which makes use of the _boundary.
688   // We offer two signatures, so the FilteringClosure static type is
689   // apparent.
690   virtual void walk_mem_region_with_cl(MemRegion mr,
691                                        HeapWord* bottom, HeapWord* top,
692                                        OopIterateClosure* cl) = 0;
693   virtual void walk_mem_region_with_cl(MemRegion mr,
694                                        HeapWord* bottom, HeapWord* top,
695                                        FilteringClosure* cl) = 0;
696 
697 public:
FilteringDCTOC(Space * sp,OopIterateClosure * cl,CardTable::PrecisionStyle precision,HeapWord * boundary)698   FilteringDCTOC(Space* sp, OopIterateClosure* cl,
699                   CardTable::PrecisionStyle precision,
700                   HeapWord* boundary) :
701     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
702 };
703 
704 // A dirty card to oop closure for contiguous spaces
705 // (ContiguousSpace and sub-classes).
706 // It is a FilteringClosure, as defined above, and it knows:
707 //
708 // 1. That the actual top of any area in a memory region
709 //    contained by the space is bounded by the end of the contiguous
710 //    region of the space.
711 // 2. That the space is really made up of objects and not just
712 //    blocks.
713 
714 class ContiguousSpaceDCTOC : public FilteringDCTOC {
715 protected:
716   // Overrides.
717   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
718 
719   virtual void walk_mem_region_with_cl(MemRegion mr,
720                                        HeapWord* bottom, HeapWord* top,
721                                        OopIterateClosure* cl);
722   virtual void walk_mem_region_with_cl(MemRegion mr,
723                                        HeapWord* bottom, HeapWord* top,
724                                        FilteringClosure* cl);
725 
726 public:
ContiguousSpaceDCTOC(ContiguousSpace * sp,OopIterateClosure * cl,CardTable::PrecisionStyle precision,HeapWord * boundary)727   ContiguousSpaceDCTOC(ContiguousSpace* sp, OopIterateClosure* cl,
728                        CardTable::PrecisionStyle precision,
729                        HeapWord* boundary) :
730     FilteringDCTOC(sp, cl, precision, boundary)
731   {}
732 };
733 
734 // A ContigSpace that Supports an efficient "block_start" operation via
735 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
736 // other spaces.)  This is the abstract base class for old generation
737 // (tenured) spaces.
738 
739 class OffsetTableContigSpace: public ContiguousSpace {
740   friend class VMStructs;
741  protected:
742   BlockOffsetArrayContigSpace _offsets;
743   Mutex _par_alloc_lock;
744 
745  public:
746   // Constructor
747   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
748                          MemRegion mr);
749 
750   void set_bottom(HeapWord* value);
751   void set_end(HeapWord* value);
752 
753   void clear(bool mangle_space);
754 
755   inline HeapWord* block_start_const(const void* p) const;
756 
757   // Add offset table update.
758   virtual inline HeapWord* allocate(size_t word_size);
759   inline HeapWord* par_allocate(size_t word_size);
760 
761   // MarkSweep support phase3
762   virtual HeapWord* initialize_threshold();
763   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
764 
765   virtual void print_on(outputStream* st) const;
766 
767   // Debugging
768   void verify() const;
769 };
770 
771 
772 // Class TenuredSpace is used by TenuredGeneration
773 
774 class TenuredSpace: public OffsetTableContigSpace {
775   friend class VMStructs;
776  protected:
777   // Mark sweep support
778   size_t allowed_dead_ratio() const;
779  public:
780   // Constructor
TenuredSpace(BlockOffsetSharedArray * sharedOffsetArray,MemRegion mr)781   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
782                MemRegion mr) :
783     OffsetTableContigSpace(sharedOffsetArray, mr) {}
784 };
785 #endif // SHARE_VM_GC_SHARED_SPACE_HPP
786