1 /*
2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 /*
27  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
28  * (C) Copyright IBM Corp. 1996-1998 - All Rights Reserved
29  *
30  *   The original version of this source code and documentation is copyrighted
31  * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
32  * materials are provided under terms of a License Agreement between Taligent
33  * and Sun. This technology is protected by multiple US and International
34  * patents. This notice and attribution to Taligent may not be removed.
35  *   Taligent is a registered trademark of Taligent, Inc.
36  *
37  */
38 
39 package java.text;
40 
41 import java.util.Vector;
42 import sun.text.UCompactIntArray;
43 import sun.text.IntHashtable;
44 import sun.text.ComposedCharIter;
45 import sun.text.CollatorUtilities;
46 import sun.text.normalizer.NormalizerImpl;
47 
48 /**
49  * This class contains all the code to parse a RuleBasedCollator pattern
50  * and build a RBCollationTables object from it.  A particular instance
51  * of tis class exists only during the actual build process-- once an
52  * RBCollationTables object has been built, the RBTableBuilder object
53  * goes away.  This object carries all of the state which is only needed
54  * during the build process, plus a "shadow" copy of all of the state
55  * that will go into the tables object itself.  This object communicates
56  * with RBCollationTables through a separate class, RBCollationTables.BuildAPI,
57  * this is an inner class of RBCollationTables and provides a separate
58  * private API for communication with RBTableBuilder.
59  * This class isn't just an inner class of RBCollationTables itself because
60  * of its large size.  For source-code readability, it seemed better for the
61  * builder to have its own source file.
62  */
63 final class RBTableBuilder {
64 
RBTableBuilder(RBCollationTables.BuildAPI tables)65     public RBTableBuilder(RBCollationTables.BuildAPI tables) {
66         this.tables = tables;
67     }
68 
69     /**
70      * Create a table-based collation object with the given rules.
71      * This is the main function that actually builds the tables and
72      * stores them back in the RBCollationTables object.  It is called
73      * ONLY by the RBCollationTables constructor.
74      * @see RuleBasedCollator#RuleBasedCollator
75      * @exception ParseException If the rules format is incorrect.
76      */
77 
build(String pattern, int decmp)78     public void build(String pattern, int decmp) throws ParseException {
79         String expChars;
80         String groupChars;
81         if (pattern.isEmpty())
82             throw new ParseException("Build rules empty.", 0);
83 
84         // This array maps Unicode characters to their collation ordering
85         mapping = new UCompactIntArray(RBCollationTables.UNMAPPED);
86         // Normalize the build rules.  Find occurances of all decomposed characters
87         // and normalize the rules before feeding into the builder.  By "normalize",
88         // we mean that all precomposed Unicode characters must be converted into
89         // a base character and one or more combining characters (such as accents).
90         // When there are multiple combining characters attached to a base character,
91         // the combining characters must be in their canonical order
92         //
93         // sherman/Note:
94         //(1)decmp will be NO_DECOMPOSITION only in ko locale to prevent decompose
95         //hangual syllables to jamos, so we can actually just call decompose with
96         //normalizer's IGNORE_HANGUL option turned on
97         //
98         //(2)just call the "special version" in NormalizerImpl directly
99         //pattern = Normalizer.decompose(pattern, false, Normalizer.IGNORE_HANGUL, true);
100         //
101         //Normalizer.Mode mode = CollatorUtilities.toNormalizerMode(decmp);
102         //pattern = Normalizer.normalize(pattern, mode, 0, true);
103 
104         pattern = NormalizerImpl.canonicalDecomposeWithSingleQuotation(pattern);
105 
106         // Build the merged collation entries
107         // Since rules can be specified in any order in the string
108         // (e.g. "c , C < d , D < e , E .... C < CH")
109         // this splits all of the rules in the string out into separate
110         // objects and then sorts them.  In the above example, it merges the
111         // "C < CH" rule in just before the "C < D" rule.
112         //
113 
114         mPattern = new MergeCollation(pattern);
115 
116         int order = 0;
117 
118         // Now walk though each entry and add it to my own tables
119         for (int i = 0; i < mPattern.getCount(); ++i) {
120             PatternEntry entry = mPattern.getItemAt(i);
121             if (entry != null) {
122                 groupChars = entry.getChars();
123                 if (groupChars.length() > 1) {
124                     switch(groupChars.charAt(groupChars.length()-1)) {
125                     case '@':
126                         frenchSec = true;
127                         groupChars = groupChars.substring(0, groupChars.length()-1);
128                         break;
129                     case '!':
130                         seAsianSwapping = true;
131                         groupChars = groupChars.substring(0, groupChars.length()-1);
132                         break;
133                     }
134                 }
135 
136                 order = increment(entry.getStrength(), order);
137                 expChars = entry.getExtension();
138 
139                 if (!expChars.isEmpty()) {
140                     addExpandOrder(groupChars, expChars, order);
141                 } else if (groupChars.length() > 1) {
142                     char ch = groupChars.charAt(0);
143                     if (Character.isHighSurrogate(ch) && groupChars.length() == 2) {
144                         addOrder(Character.toCodePoint(ch, groupChars.charAt(1)), order);
145                     } else {
146                         addContractOrder(groupChars, order);
147                     }
148                 } else {
149                     char ch = groupChars.charAt(0);
150                     addOrder(ch, order);
151                 }
152             }
153         }
154         addComposedChars();
155 
156         commit();
157         mapping.compact();
158         /*
159         System.out.println("mappingSize=" + mapping.getKSize());
160         for (int j = 0; j < 0xffff; j++) {
161             int value = mapping.elementAt(j);
162             if (value != RBCollationTables.UNMAPPED)
163                 System.out.println("index=" + Integer.toString(j, 16)
164                            + ", value=" + Integer.toString(value, 16));
165         }
166         */
167         tables.fillInTables(frenchSec, seAsianSwapping, mapping, contractTable, expandTable,
168                     contractFlags, maxSecOrder, maxTerOrder);
169     }
170 
171     /** Add expanding entries for pre-composed unicode characters so that this
172      * collator can be used reasonably well with decomposition turned off.
173      */
addComposedChars()174     private void addComposedChars() throws ParseException {
175         // Iterate through all of the pre-composed characters in Unicode
176         ComposedCharIter iter = new ComposedCharIter();
177         int c;
178         while ((c = iter.next()) != ComposedCharIter.DONE) {
179             if (getCharOrder(c) == RBCollationTables.UNMAPPED) {
180                 //
181                 // We don't already have an ordering for this pre-composed character.
182                 //
183                 // First, see if the decomposed string is already in our
184                 // tables as a single contracting-string ordering.
185                 // If so, just map the precomposed character to that order.
186                 //
187                 // TODO: What we should really be doing here is trying to find the
188                 // longest initial substring of the decomposition that is present
189                 // in the tables as a contracting character sequence, and find its
190                 // ordering.  Then do this recursively with the remaining chars
191                 // so that we build a list of orderings, and add that list to
192                 // the expansion table.
193                 // That would be more correct but also significantly slower, so
194                 // I'm not totally sure it's worth doing.
195                 //
196                 String s = iter.decomposition();
197 
198                 //sherman/Note: if this is 1 character decomposed string, the
199                 //only thing need to do is to check if this decomposed character
200                 //has an entry in our order table, this order is not necessary
201                 //to be a contraction order, if it does have one, add an entry
202                 //for the precomposed character by using the same order, the
203                 //previous impl unnecessarily adds a single character expansion
204                 //entry.
205                 if (s.length() == 1) {
206                     int order = getCharOrder(s.charAt(0));
207                     if (order != RBCollationTables.UNMAPPED) {
208                         addOrder(c, order);
209                     }
210                     continue;
211                 } else if (s.length() == 2) {
212                     char ch0 = s.charAt(0);
213                     if (Character.isHighSurrogate(ch0)) {
214                         int order = getCharOrder(s.codePointAt(0));
215                         if (order != RBCollationTables.UNMAPPED) {
216                             addOrder(c, order);
217                         }
218                         continue;
219                     }
220                 }
221                 int contractOrder = getContractOrder(s);
222                 if (contractOrder != RBCollationTables.UNMAPPED) {
223                     addOrder(c, contractOrder);
224                 } else {
225                     //
226                     // We don't have a contracting ordering for the entire string
227                     // that results from the decomposition, but if we have orders
228                     // for each individual character, we can add an expanding
229                     // table entry for the pre-composed character
230                     //
231                     boolean allThere = true;
232                     for (int i = 0; i < s.length(); i++) {
233                         if (getCharOrder(s.charAt(i)) == RBCollationTables.UNMAPPED) {
234                             allThere = false;
235                             break;
236                         }
237                     }
238                     if (allThere) {
239                         addExpandOrder(c, s, RBCollationTables.UNMAPPED);
240                     }
241                 }
242             }
243         }
244     }
245 
246     /**
247      * Look up for unmapped values in the expanded character table.
248      *
249      * When the expanding character tables are built by addExpandOrder,
250      * it doesn't know what the final ordering of each character
251      * in the expansion will be.  Instead, it just puts the raw character
252      * code into the table, adding CHARINDEX as a flag.  Now that we've
253      * finished building the mapping table, we can go back and look up
254      * that character to see what its real collation order is and
255      * stick that into the expansion table.  That lets us avoid doing
256      * a two-stage lookup later.
257      */
commit()258     private final void commit()
259     {
260         if (expandTable != null) {
261             for (int i = 0; i < expandTable.size(); i++) {
262                 int[] valueList = expandTable.elementAt(i);
263                 for (int j = 0; j < valueList.length; j++) {
264                     int order = valueList[j];
265                     if (order < RBCollationTables.EXPANDCHARINDEX && order > CHARINDEX) {
266                         // found a expanding character that isn't filled in yet
267                         int ch = order - CHARINDEX;
268 
269                         // Get the real values for the non-filled entry
270                         int realValue = getCharOrder(ch);
271 
272                         if (realValue == RBCollationTables.UNMAPPED) {
273                             // The real value is still unmapped, maybe it's ignorable
274                             valueList[j] = IGNORABLEMASK & ch;
275                         } else {
276                             // just fill in the value
277                             valueList[j] = realValue;
278                         }
279                     }
280                 }
281             }
282         }
283     }
284     /**
285      *  Increment of the last order based on the comparison level.
286      */
increment(int aStrength, int lastValue)287     private final int increment(int aStrength, int lastValue)
288     {
289         switch(aStrength)
290         {
291         case Collator.PRIMARY:
292             // increment priamry order  and mask off secondary and tertiary difference
293             lastValue += PRIMARYORDERINCREMENT;
294             lastValue &= RBCollationTables.PRIMARYORDERMASK;
295             isOverIgnore = true;
296             break;
297         case Collator.SECONDARY:
298             // increment secondary order and mask off tertiary difference
299             lastValue += SECONDARYORDERINCREMENT;
300             lastValue &= RBCollationTables.SECONDARYDIFFERENCEONLY;
301             // record max # of ignorable chars with secondary difference
302             if (!isOverIgnore)
303                 maxSecOrder++;
304             break;
305         case Collator.TERTIARY:
306             // increment tertiary order
307             lastValue += TERTIARYORDERINCREMENT;
308             // record max # of ignorable chars with tertiary difference
309             if (!isOverIgnore)
310                 maxTerOrder++;
311             break;
312         }
313         return lastValue;
314     }
315 
316     /**
317      *  Adds a character and its designated order into the collation table.
318      */
addOrder(int ch, int anOrder)319     private final void addOrder(int ch, int anOrder)
320     {
321         // See if the char already has an order in the mapping table
322         int order = mapping.elementAt(ch);
323 
324         if (order >= RBCollationTables.CONTRACTCHARINDEX) {
325             // There's already an entry for this character that points to a contracting
326             // character table.  Instead of adding the character directly to the mapping
327             // table, we must add it to the contract table instead.
328             int length = 1;
329             if (Character.isSupplementaryCodePoint(ch)) {
330                 length = Character.toChars(ch, keyBuf, 0);
331             } else {
332                 keyBuf[0] = (char)ch;
333             }
334             addContractOrder(new String(keyBuf, 0, length), anOrder);
335         } else {
336             // add the entry to the mapping table,
337             // the same later entry replaces the previous one
338             mapping.setElementAt(ch, anOrder);
339         }
340     }
341 
addContractOrder(String groupChars, int anOrder)342     private final void addContractOrder(String groupChars, int anOrder) {
343         addContractOrder(groupChars, anOrder, true);
344     }
345 
346     /**
347      *  Adds the contracting string into the collation table.
348      */
addContractOrder(String groupChars, int anOrder, boolean fwd)349     private final void addContractOrder(String groupChars, int anOrder,
350                                           boolean fwd)
351     {
352         if (contractTable == null) {
353             contractTable = new Vector<>(INITIALTABLESIZE);
354         }
355 
356         //initial character
357         int ch = groupChars.codePointAt(0);
358         /*
359         char ch0 = groupChars.charAt(0);
360         int ch = Character.isHighSurrogate(ch0)?
361           Character.toCodePoint(ch0, groupChars.charAt(1)):ch0;
362           */
363         // See if the initial character of the string already has a contract table.
364         int entry = mapping.elementAt(ch);
365         Vector<EntryPair> entryTable = getContractValuesImpl(entry - RBCollationTables.CONTRACTCHARINDEX);
366 
367         if (entryTable == null) {
368             // We need to create a new table of contract entries for this base char
369             int tableIndex = RBCollationTables.CONTRACTCHARINDEX + contractTable.size();
370             entryTable = new Vector<>(INITIALTABLESIZE);
371             contractTable.addElement(entryTable);
372 
373             // Add the initial character's current ordering first. then
374             // update its mapping to point to this contract table
375             entryTable.addElement(new EntryPair(groupChars.substring(0,Character.charCount(ch)), entry));
376             mapping.setElementAt(ch, tableIndex);
377         }
378 
379         // Now add (or replace) this string in the table
380         int index = RBCollationTables.getEntry(entryTable, groupChars, fwd);
381         if (index != RBCollationTables.UNMAPPED) {
382             EntryPair pair = entryTable.elementAt(index);
383             pair.value = anOrder;
384         } else {
385             EntryPair pair = entryTable.lastElement();
386 
387             // NOTE:  This little bit of logic is here to speed CollationElementIterator
388             // .nextContractChar().  This code ensures that the longest sequence in
389             // this list is always the _last_ one in the list.  This keeps
390             // nextContractChar() from having to search the entire list for the longest
391             // sequence.
392             if (groupChars.length() > pair.entryName.length()) {
393                 entryTable.addElement(new EntryPair(groupChars, anOrder, fwd));
394             } else {
395                 entryTable.insertElementAt(new EntryPair(groupChars, anOrder,
396                         fwd), entryTable.size() - 1);
397             }
398         }
399 
400         // If this was a forward mapping for a contracting string, also add a
401         // reverse mapping for it, so that CollationElementIterator.previous
402         // can work right
403         if (fwd && groupChars.length() > 1) {
404             addContractFlags(groupChars);
405             addContractOrder(new StringBuffer(groupChars).reverse().toString(),
406                              anOrder, false);
407         }
408     }
409 
410     /**
411      * If the given string has been specified as a contracting string
412      * in this collation table, return its ordering.
413      * Otherwise return UNMAPPED.
414      */
getContractOrder(String groupChars)415     private int getContractOrder(String groupChars)
416     {
417         int result = RBCollationTables.UNMAPPED;
418         if (contractTable != null) {
419             int ch = groupChars.codePointAt(0);
420             /*
421             char ch0 = groupChars.charAt(0);
422             int ch = Character.isHighSurrogate(ch0)?
423               Character.toCodePoint(ch0, groupChars.charAt(1)):ch0;
424               */
425             Vector<EntryPair> entryTable = getContractValues(ch);
426             if (entryTable != null) {
427                 int index = RBCollationTables.getEntry(entryTable, groupChars, true);
428                 if (index != RBCollationTables.UNMAPPED) {
429                     EntryPair pair = entryTable.elementAt(index);
430                     result = pair.value;
431                 }
432             }
433         }
434         return result;
435     }
436 
getCharOrder(int ch)437     private final int getCharOrder(int ch) {
438         int order = mapping.elementAt(ch);
439 
440         if (order >= RBCollationTables.CONTRACTCHARINDEX) {
441             Vector<EntryPair> groupList = getContractValuesImpl(order - RBCollationTables.CONTRACTCHARINDEX);
442             EntryPair pair = groupList.firstElement();
443             order = pair.value;
444         }
445         return order;
446     }
447 
448     /**
449      *  Get the entry of hash table of the contracting string in the collation
450      *  table.
451      *  @param ch the starting character of the contracting string
452      */
getContractValues(int ch)453     private Vector<EntryPair> getContractValues(int ch)
454     {
455         int index = mapping.elementAt(ch);
456         return getContractValuesImpl(index - RBCollationTables.CONTRACTCHARINDEX);
457     }
458 
getContractValuesImpl(int index)459     private Vector<EntryPair> getContractValuesImpl(int index)
460     {
461         if (index >= 0)
462         {
463             return contractTable.elementAt(index);
464         }
465         else // not found
466         {
467             return null;
468         }
469     }
470 
471     /**
472      *  Adds the expanding string into the collation table.
473      */
addExpandOrder(String contractChars, String expandChars, int anOrder)474     private final void addExpandOrder(String contractChars,
475                                 String expandChars,
476                                 int anOrder) throws ParseException
477     {
478         // Create an expansion table entry
479         int tableIndex = addExpansion(anOrder, expandChars);
480 
481         // And add its index into the main mapping table
482         if (contractChars.length() > 1) {
483             char ch = contractChars.charAt(0);
484             if (Character.isHighSurrogate(ch) && contractChars.length() == 2) {
485                 char ch2 = contractChars.charAt(1);
486                 if (Character.isLowSurrogate(ch2)) {
487                     //only add into table when it is a legal surrogate
488                     addOrder(Character.toCodePoint(ch, ch2), tableIndex);
489                 }
490             } else {
491                 addContractOrder(contractChars, tableIndex);
492             }
493         } else {
494             addOrder(contractChars.charAt(0), tableIndex);
495         }
496     }
497 
addExpandOrder(int ch, String expandChars, int anOrder)498     private final void addExpandOrder(int ch, String expandChars, int anOrder)
499       throws ParseException
500     {
501         int tableIndex = addExpansion(anOrder, expandChars);
502         addOrder(ch, tableIndex);
503     }
504 
505     /**
506      * Create a new entry in the expansion table that contains the orderings
507      * for the given characers.  If anOrder is valid, it is added to the
508      * beginning of the expanded list of orders.
509      */
addExpansion(int anOrder, String expandChars)510     private int addExpansion(int anOrder, String expandChars) {
511         if (expandTable == null) {
512             expandTable = new Vector<>(INITIALTABLESIZE);
513         }
514 
515         // If anOrder is valid, we want to add it at the beginning of the list
516         int offset = (anOrder == RBCollationTables.UNMAPPED) ? 0 : 1;
517 
518         int[] valueList = new int[expandChars.length() + offset];
519         if (offset == 1) {
520             valueList[0] = anOrder;
521         }
522 
523         int j = offset;
524         for (int i = 0; i < expandChars.length(); i++) {
525             char ch0 = expandChars.charAt(i);
526             char ch1;
527             int ch;
528             if (Character.isHighSurrogate(ch0)) {
529                 if (++i == expandChars.length() ||
530                     !Character.isLowSurrogate(ch1=expandChars.charAt(i))) {
531                     //ether we are missing the low surrogate or the next char
532                     //is not a legal low surrogate, so stop loop
533                     break;
534                 }
535                 ch = Character.toCodePoint(ch0, ch1);
536 
537             } else {
538                 ch = ch0;
539             }
540 
541             int mapValue = getCharOrder(ch);
542 
543             if (mapValue != RBCollationTables.UNMAPPED) {
544                 valueList[j++] = mapValue;
545             } else {
546                 // can't find it in the table, will be filled in by commit().
547                 valueList[j++] = CHARINDEX + ch;
548             }
549         }
550         if (j < valueList.length) {
551             //we had at least one supplementary character, the size of valueList
552             //is bigger than it really needs...
553             int[] tmpBuf = new int[j];
554             while (--j >= 0) {
555                 tmpBuf[j] = valueList[j];
556             }
557             valueList = tmpBuf;
558         }
559         // Add the expanding char list into the expansion table.
560         int tableIndex = RBCollationTables.EXPANDCHARINDEX + expandTable.size();
561         expandTable.addElement(valueList);
562 
563         return tableIndex;
564     }
565 
addContractFlags(String chars)566     private void addContractFlags(String chars) {
567         char c0;
568         int c;
569         int len = chars.length();
570         for (int i = 0; i < len; i++) {
571             c0 = chars.charAt(i);
572             c = Character.isHighSurrogate(c0)
573                           ?Character.toCodePoint(c0, chars.charAt(++i))
574                           :c0;
575             contractFlags.put(c, 1);
576         }
577     }
578 
579     // ==============================================================
580     // constants
581     // ==============================================================
582     static final int CHARINDEX = 0x70000000;  // need look up in .commit()
583 
584     private static final int IGNORABLEMASK = 0x0000ffff;
585     private static final int PRIMARYORDERINCREMENT = 0x00010000;
586     private static final int SECONDARYORDERINCREMENT = 0x00000100;
587     private static final int TERTIARYORDERINCREMENT = 0x00000001;
588     private static final int INITIALTABLESIZE = 20;
589     private static final int MAXKEYSIZE = 5;
590 
591     // ==============================================================
592     // instance variables
593     // ==============================================================
594 
595     // variables used by the build process
596     private RBCollationTables.BuildAPI tables = null;
597     private MergeCollation mPattern = null;
598     private boolean isOverIgnore = false;
599     private char[] keyBuf = new char[MAXKEYSIZE];
600     private IntHashtable contractFlags = new IntHashtable(100);
601 
602     // "shadow" copies of the instance variables in RBCollationTables
603     // (the values in these variables are copied back into RBCollationTables
604     // at the end of the build process)
605     private boolean frenchSec = false;
606     private boolean seAsianSwapping = false;
607 
608     private UCompactIntArray mapping = null;
609     private Vector<Vector<EntryPair>>   contractTable = null;
610     private Vector<int[]>   expandTable = null;
611 
612     private short maxSecOrder = 0;
613     private short maxTerOrder = 0;
614 }
615