1 /*
2  * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2012, 2015 SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP
27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP
28 
29 #include "asm/assembler.inline.hpp"
30 #include "asm/macroAssembler.hpp"
31 #include "asm/codeBuffer.hpp"
32 #include "code/codeCache.hpp"
33 #include "gc/shared/barrierSet.hpp"
34 #include "gc/shared/barrierSetAssembler.hpp"
35 #include "oops/accessDecorators.hpp"
36 #include "runtime/safepointMechanism.hpp"
37 
is_ld_largeoffset(address a)38 inline bool MacroAssembler::is_ld_largeoffset(address a) {
39   const int inst1 = *(int *)a;
40   const int inst2 = *(int *)(a+4);
41   return (is_ld(inst1)) ||
42          (is_addis(inst1) && is_ld(inst2) && inv_ra_field(inst2) == inv_rt_field(inst1));
43 }
44 
get_ld_largeoffset_offset(address a)45 inline int MacroAssembler::get_ld_largeoffset_offset(address a) {
46   assert(MacroAssembler::is_ld_largeoffset(a), "must be ld with large offset");
47 
48   const int inst1 = *(int *)a;
49   if (is_ld(inst1)) {
50     return inv_d1_field(inst1);
51   } else {
52     const int inst2 = *(int *)(a+4);
53     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
54   }
55 }
56 
round_to(Register r,int modulus)57 inline void MacroAssembler::round_to(Register r, int modulus) {
58   assert(is_power_of_2_long((jlong)modulus), "must be power of 2");
59   addi(r, r, modulus-1);
60   clrrdi(r, r, log2_long((jlong)modulus));
61 }
62 
63 // Move register if destination register and target register are different.
mr_if_needed(Register rd,Register rs)64 inline void MacroAssembler::mr_if_needed(Register rd, Register rs) {
65   if (rs != rd) mr(rd, rs);
66 }
fmr_if_needed(FloatRegister rd,FloatRegister rs)67 inline void MacroAssembler::fmr_if_needed(FloatRegister rd, FloatRegister rs) {
68   if (rs != rd) fmr(rd, rs);
69 }
endgroup_if_needed(bool needed)70 inline void MacroAssembler::endgroup_if_needed(bool needed) {
71   if (needed) {
72     endgroup();
73   }
74 }
75 
membar(int bits)76 inline void MacroAssembler::membar(int bits) {
77   // Comment: Usage of elemental_membar(bits) is not recommended for Power 8.
78   // If elemental_membar(bits) is used, disable optimization of acquire-release
79   // (Matcher::post_membar_release where we use PPC64_ONLY(xop == Op_MemBarRelease ||))!
80   if (bits & StoreLoad) { sync(); }
81   else if (bits) { lwsync(); }
82 }
release()83 inline void MacroAssembler::release() { membar(LoadStore | StoreStore); }
acquire()84 inline void MacroAssembler::acquire() { membar(LoadLoad | LoadStore); }
fence()85 inline void MacroAssembler::fence()   { membar(LoadLoad | LoadStore | StoreLoad | StoreStore); }
86 
87 // Address of the global TOC.
global_toc()88 inline address MacroAssembler::global_toc() {
89   return CodeCache::low_bound();
90 }
91 
92 // Offset of given address to the global TOC.
offset_to_global_toc(const address addr)93 inline int MacroAssembler::offset_to_global_toc(const address addr) {
94   intptr_t offset = (intptr_t)addr - (intptr_t)MacroAssembler::global_toc();
95   assert(Assembler::is_uimm((long)offset, 31), "must be in range");
96   return (int)offset;
97 }
98 
99 // Address of current method's TOC.
method_toc()100 inline address MacroAssembler::method_toc() {
101   return code()->consts()->start();
102 }
103 
104 // Offset of given address to current method's TOC.
offset_to_method_toc(address addr)105 inline int MacroAssembler::offset_to_method_toc(address addr) {
106   intptr_t offset = (intptr_t)addr - (intptr_t)method_toc();
107   assert(Assembler::is_uimm((long)offset, 31), "must be in range");
108   return (int)offset;
109 }
110 
is_calculate_address_from_global_toc_at(address a,address bound)111 inline bool MacroAssembler::is_calculate_address_from_global_toc_at(address a, address bound) {
112   const address inst2_addr = a;
113   const int inst2 = *(int *) a;
114 
115   // The relocation points to the second instruction, the addi.
116   if (!is_addi(inst2)) return false;
117 
118   // The addi reads and writes the same register dst.
119   const int dst = inv_rt_field(inst2);
120   if (inv_ra_field(inst2) != dst) return false;
121 
122   // Now, find the preceding addis which writes to dst.
123   int inst1 = 0;
124   address inst1_addr = inst2_addr - BytesPerInstWord;
125   while (inst1_addr >= bound) {
126     inst1 = *(int *) inst1_addr;
127     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
128       // stop, found the addis which writes dst
129       break;
130     }
131     inst1_addr -= BytesPerInstWord;
132   }
133 
134   if (!(inst1 == 0 || inv_ra_field(inst1) == 29 /* R29 */)) return false;
135   return is_addis(inst1);
136 }
137 
138 #ifdef _LP64
139 // Detect narrow oop constants.
is_set_narrow_oop(address a,address bound)140 inline bool MacroAssembler::is_set_narrow_oop(address a, address bound) {
141   const address inst2_addr = a;
142   const int inst2 = *(int *)a;
143   // The relocation points to the second instruction, the ori.
144   if (!is_ori(inst2)) return false;
145 
146   // The ori reads and writes the same register dst.
147   const int dst = inv_rta_field(inst2);
148   if (inv_rs_field(inst2) != dst) return false;
149 
150   // Now, find the preceding addis which writes to dst.
151   int inst1 = 0;
152   address inst1_addr = inst2_addr - BytesPerInstWord;
153   while (inst1_addr >= bound) {
154     inst1 = *(int *) inst1_addr;
155     if (is_lis(inst1) && inv_rs_field(inst1) == dst) return true;
156     inst1_addr -= BytesPerInstWord;
157   }
158   return false;
159 }
160 #endif
161 
162 
is_load_const_at(address a)163 inline bool MacroAssembler::is_load_const_at(address a) {
164   const int* p_inst = (int *) a;
165   bool b = is_lis(*p_inst++);
166   if (is_ori(*p_inst)) {
167     p_inst++;
168     b = b && is_rldicr(*p_inst++); // TODO: could be made more precise: `sldi'!
169     b = b && is_oris(*p_inst++);
170     b = b && is_ori(*p_inst);
171   } else if (is_lis(*p_inst)) {
172     p_inst++;
173     b = b && is_ori(*p_inst++);
174     b = b && is_ori(*p_inst);
175     // TODO: could enhance reliability by adding is_insrdi
176   } else return false;
177   return b;
178 }
179 
set_oop_constant(jobject obj,Register d)180 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
181   set_oop(constant_oop_address(obj), d);
182 }
183 
set_oop(AddressLiteral obj_addr,Register d)184 inline void MacroAssembler::set_oop(AddressLiteral obj_addr, Register d) {
185   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
186   load_const(d, obj_addr);
187 }
188 
pd_patch_instruction(address branch,address target)189 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
190   jint& stub_inst = *(jint*) branch;
191   stub_inst = patched_branch(target - branch, stub_inst, 0);
192 }
193 
194 // Relocation of conditional far branches.
is_bc_far_variant1_at(address instruction_addr)195 inline bool MacroAssembler::is_bc_far_variant1_at(address instruction_addr) {
196   // Variant 1, the 1st instruction contains the destination address:
197   //
198   //    bcxx  DEST
199   //    nop
200   //
201   const int instruction_1 = *(int*)(instruction_addr);
202   const int instruction_2 = *(int*)(instruction_addr + 4);
203   return is_bcxx(instruction_1) &&
204          (inv_bd_field(instruction_1, (intptr_t)instruction_addr) != (intptr_t)(instruction_addr + 2*4)) &&
205          is_nop(instruction_2);
206 }
207 
208 // Relocation of conditional far branches.
is_bc_far_variant2_at(address instruction_addr)209 inline bool MacroAssembler::is_bc_far_variant2_at(address instruction_addr) {
210   // Variant 2, the 2nd instruction contains the destination address:
211   //
212   //    b!cxx SKIP
213   //    bxx   DEST
214   //  SKIP:
215   //
216   const int instruction_1 = *(int*)(instruction_addr);
217   const int instruction_2 = *(int*)(instruction_addr + 4);
218   return is_bcxx(instruction_1) &&
219          (inv_bd_field(instruction_1, (intptr_t)instruction_addr) == (intptr_t)(instruction_addr + 2*4)) &&
220          is_bxx(instruction_2);
221 }
222 
223 // Relocation for conditional branches
is_bc_far_variant3_at(address instruction_addr)224 inline bool MacroAssembler::is_bc_far_variant3_at(address instruction_addr) {
225   // Variant 3, far cond branch to the next instruction, already patched to nops:
226   //
227   //    nop
228   //    endgroup
229   //  SKIP/DEST:
230   //
231   const int instruction_1 = *(int*)(instruction_addr);
232   const int instruction_2 = *(int*)(instruction_addr + 4);
233   return is_nop(instruction_1) &&
234          is_endgroup(instruction_2);
235 }
236 
237 
238 // Convenience bc_far versions
blt_far(ConditionRegister crx,Label & L,int optimize)239 inline void MacroAssembler::blt_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, less), L, optimize); }
bgt_far(ConditionRegister crx,Label & L,int optimize)240 inline void MacroAssembler::bgt_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, greater), L, optimize); }
beq_far(ConditionRegister crx,Label & L,int optimize)241 inline void MacroAssembler::beq_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, equal), L, optimize); }
bso_far(ConditionRegister crx,Label & L,int optimize)242 inline void MacroAssembler::bso_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, summary_overflow), L, optimize); }
bge_far(ConditionRegister crx,Label & L,int optimize)243 inline void MacroAssembler::bge_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, less), L, optimize); }
ble_far(ConditionRegister crx,Label & L,int optimize)244 inline void MacroAssembler::ble_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, greater), L, optimize); }
bne_far(ConditionRegister crx,Label & L,int optimize)245 inline void MacroAssembler::bne_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, equal), L, optimize); }
bns_far(ConditionRegister crx,Label & L,int optimize)246 inline void MacroAssembler::bns_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, summary_overflow), L, optimize); }
247 
call_stub(Register function_entry)248 inline address MacroAssembler::call_stub(Register function_entry) {
249   mtctr(function_entry);
250   bctrl();
251   return pc();
252 }
253 
call_stub_and_return_to(Register function_entry,Register return_pc)254 inline void MacroAssembler::call_stub_and_return_to(Register function_entry, Register return_pc) {
255   assert_different_registers(function_entry, return_pc);
256   mtlr(return_pc);
257   mtctr(function_entry);
258   bctr();
259 }
260 
261 // Get the pc where the last emitted call will return to.
last_calls_return_pc()262 inline address MacroAssembler::last_calls_return_pc() {
263   return _last_calls_return_pc;
264 }
265 
266 // Read from the polling page, its address is already in a register.
load_from_polling_page(Register polling_page_address,int offset)267 inline void MacroAssembler::load_from_polling_page(Register polling_page_address, int offset) {
268   if (SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) {
269     int encoding = SafepointMechanism::poll_bit();
270     tdi(traptoGreaterThanUnsigned | traptoEqual, polling_page_address, encoding);
271   } else {
272     ld(R0, offset, polling_page_address);
273   }
274 }
275 
276 // Trap-instruction-based checks.
277 
trap_null_check(Register a,trap_to_bits cmp)278 inline void MacroAssembler::trap_null_check(Register a, trap_to_bits cmp) {
279   assert(TrapBasedNullChecks, "sanity");
280   tdi(cmp, a/*reg a*/, 0);
281 }
trap_zombie_not_entrant()282 inline void MacroAssembler::trap_zombie_not_entrant() {
283   tdi(traptoUnconditional, 0/*reg 0*/, 1);
284 }
trap_should_not_reach_here()285 inline void MacroAssembler::trap_should_not_reach_here() {
286   tdi_unchecked(traptoUnconditional, 0/*reg 0*/, 2);
287 }
288 
trap_ic_miss_check(Register a,Register b)289 inline void MacroAssembler::trap_ic_miss_check(Register a, Register b) {
290   td(traptoGreaterThanUnsigned | traptoLessThanUnsigned, a, b);
291 }
292 
293 // Do an explicit null check if access to a+offset will not raise a SIGSEGV.
294 // Either issue a trap instruction that raises SIGTRAP, or do a compare that
295 // branches to exception_entry.
296 // No support for compressed oops (base page of heap). Does not distinguish
297 // loads and stores.
null_check_throw(Register a,int offset,Register temp_reg,address exception_entry)298 inline void MacroAssembler::null_check_throw(Register a, int offset, Register temp_reg,
299                                              address exception_entry) {
300   if (!ImplicitNullChecks || needs_explicit_null_check(offset) || !os::zero_page_read_protected()) {
301     if (TrapBasedNullChecks) {
302       assert(UseSIGTRAP, "sanity");
303       trap_null_check(a);
304     } else {
305       Label ok;
306       cmpdi(CCR0, a, 0);
307       bne(CCR0, ok);
308       load_const_optimized(temp_reg, exception_entry);
309       mtctr(temp_reg);
310       bctr();
311       bind(ok);
312     }
313   }
314 }
315 
null_check(Register a,int offset,Label * Lis_null)316 inline void MacroAssembler::null_check(Register a, int offset, Label *Lis_null) {
317   if (!ImplicitNullChecks || needs_explicit_null_check(offset) || !os::zero_page_read_protected()) {
318     if (TrapBasedNullChecks) {
319       assert(UseSIGTRAP, "sanity");
320       trap_null_check(a);
321     } else if (Lis_null){
322       Label ok;
323       cmpdi(CCR0, a, 0);
324       beq(CCR0, *Lis_null);
325     }
326   }
327 }
328 
access_store_at(BasicType type,DecoratorSet decorators,Register base,RegisterOrConstant ind_or_offs,Register val,Register tmp1,Register tmp2,Register tmp3,bool needs_frame)329 inline void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
330                                             Register base, RegisterOrConstant ind_or_offs, Register val,
331                                             Register tmp1, Register tmp2, Register tmp3, bool needs_frame) {
332   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
333                          ON_UNKNOWN_OOP_REF)) == 0, "unsupported decorator");
334   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
335   bool as_raw = (decorators & AS_RAW) != 0;
336   decorators = AccessInternal::decorator_fixup(decorators);
337   if (as_raw) {
338     bs->BarrierSetAssembler::store_at(this, decorators, type,
339                                       base, ind_or_offs, val,
340                                       tmp1, tmp2, tmp3, needs_frame);
341   } else {
342     bs->store_at(this, decorators, type,
343                  base, ind_or_offs, val,
344                  tmp1, tmp2, tmp3, needs_frame);
345   }
346 }
347 
access_load_at(BasicType type,DecoratorSet decorators,Register base,RegisterOrConstant ind_or_offs,Register dst,Register tmp1,Register tmp2,bool needs_frame,Label * L_handle_null)348 inline void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
349                                            Register base, RegisterOrConstant ind_or_offs, Register dst,
350                                            Register tmp1, Register tmp2, bool needs_frame, Label *L_handle_null) {
351   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
352                          ON_PHANTOM_OOP_REF | ON_WEAK_OOP_REF)) == 0, "unsupported decorator");
353   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
354   decorators = AccessInternal::decorator_fixup(decorators);
355   bool as_raw = (decorators & AS_RAW) != 0;
356   if (as_raw) {
357     bs->BarrierSetAssembler::load_at(this, decorators, type,
358                                      base, ind_or_offs, dst,
359                                      tmp1, tmp2, needs_frame, L_handle_null);
360   } else {
361     bs->load_at(this, decorators, type,
362                 base, ind_or_offs, dst,
363                 tmp1, tmp2, needs_frame, L_handle_null);
364   }
365 }
366 
load_heap_oop(Register d,RegisterOrConstant offs,Register s1,Register tmp1,Register tmp2,bool needs_frame,DecoratorSet decorators,Label * L_handle_null)367 inline void MacroAssembler::load_heap_oop(Register d, RegisterOrConstant offs, Register s1,
368                                           Register tmp1, Register tmp2,
369                                           bool needs_frame, DecoratorSet decorators, Label *L_handle_null) {
370   access_load_at(T_OBJECT, IN_HEAP | decorators, s1, offs, d, tmp1, tmp2, needs_frame, L_handle_null);
371 }
372 
store_heap_oop(Register d,RegisterOrConstant offs,Register s1,Register tmp1,Register tmp2,Register tmp3,bool needs_frame,DecoratorSet decorators)373 inline void MacroAssembler::store_heap_oop(Register d, RegisterOrConstant offs, Register s1,
374                                            Register tmp1, Register tmp2, Register tmp3,
375                                            bool needs_frame, DecoratorSet decorators) {
376   access_store_at(T_OBJECT, IN_HEAP | decorators, s1, offs, d, tmp1, tmp2, tmp3, needs_frame);
377 }
378 
encode_heap_oop_not_null(Register d,Register src)379 inline Register MacroAssembler::encode_heap_oop_not_null(Register d, Register src) {
380   Register current = (src != noreg) ? src : d; // Oop to be compressed is in d if no src provided.
381   if (Universe::narrow_oop_base_overlaps()) {
382     sub_const_optimized(d, current, Universe::narrow_oop_base(), R0);
383     current = d;
384   }
385   if (Universe::narrow_oop_shift() != 0) {
386     rldicl(d, current, 64-Universe::narrow_oop_shift(), 32);  // Clears the upper bits.
387     current = d;
388   }
389   return current; // Encoded oop is in this register.
390 }
391 
encode_heap_oop(Register d,Register src)392 inline Register MacroAssembler::encode_heap_oop(Register d, Register src) {
393   if (Universe::narrow_oop_base() != NULL) {
394     if (VM_Version::has_isel()) {
395       cmpdi(CCR0, src, 0);
396       Register co = encode_heap_oop_not_null(d, src);
397       assert(co == d, "sanity");
398       isel_0(d, CCR0, Assembler::equal);
399     } else {
400       Label isNull;
401       or_(d, src, src); // move and compare 0
402       beq(CCR0, isNull);
403       encode_heap_oop_not_null(d, src);
404       bind(isNull);
405     }
406     return d;
407   } else {
408     return encode_heap_oop_not_null(d, src);
409   }
410 }
411 
decode_heap_oop_not_null(Register d,Register src)412 inline Register MacroAssembler::decode_heap_oop_not_null(Register d, Register src) {
413   if (Universe::narrow_oop_base_disjoint() && src != noreg && src != d &&
414       Universe::narrow_oop_shift() != 0) {
415     load_const_optimized(d, Universe::narrow_oop_base(), R0);
416     rldimi(d, src, Universe::narrow_oop_shift(), 32-Universe::narrow_oop_shift());
417     return d;
418   }
419 
420   Register current = (src != noreg) ? src : d; // Compressed oop is in d if no src provided.
421   if (Universe::narrow_oop_shift() != 0) {
422     sldi(d, current, Universe::narrow_oop_shift());
423     current = d;
424   }
425   if (Universe::narrow_oop_base() != NULL) {
426     add_const_optimized(d, current, Universe::narrow_oop_base(), R0);
427     current = d;
428   }
429   return current; // Decoded oop is in this register.
430 }
431 
decode_heap_oop(Register d)432 inline void MacroAssembler::decode_heap_oop(Register d) {
433   Label isNull;
434   bool use_isel = false;
435   if (Universe::narrow_oop_base() != NULL) {
436     cmpwi(CCR0, d, 0);
437     if (VM_Version::has_isel()) {
438       use_isel = true;
439     } else {
440       beq(CCR0, isNull);
441     }
442   }
443   decode_heap_oop_not_null(d);
444   if (use_isel) {
445     isel_0(d, CCR0, Assembler::equal);
446   }
447   bind(isNull);
448 }
449 
450 // SIGTRAP-based range checks for arrays.
trap_range_check_l(Register a,Register b)451 inline void MacroAssembler::trap_range_check_l(Register a, Register b) {
452   tw (traptoLessThanUnsigned,                  a/*reg a*/, b/*reg b*/);
453 }
trap_range_check_l(Register a,int si16)454 inline void MacroAssembler::trap_range_check_l(Register a, int si16) {
455   twi(traptoLessThanUnsigned,                  a/*reg a*/, si16);
456 }
trap_range_check_le(Register a,int si16)457 inline void MacroAssembler::trap_range_check_le(Register a, int si16) {
458   twi(traptoEqual | traptoLessThanUnsigned,    a/*reg a*/, si16);
459 }
trap_range_check_g(Register a,int si16)460 inline void MacroAssembler::trap_range_check_g(Register a, int si16) {
461   twi(traptoGreaterThanUnsigned,               a/*reg a*/, si16);
462 }
trap_range_check_ge(Register a,Register b)463 inline void MacroAssembler::trap_range_check_ge(Register a, Register b) {
464   tw (traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, b/*reg b*/);
465 }
trap_range_check_ge(Register a,int si16)466 inline void MacroAssembler::trap_range_check_ge(Register a, int si16) {
467   twi(traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, si16);
468 }
469 
470 // unsigned integer multiplication 64*64 -> 128 bits
multiply64(Register dest_hi,Register dest_lo,Register x,Register y)471 inline void MacroAssembler::multiply64(Register dest_hi, Register dest_lo,
472                                        Register x, Register y) {
473   mulld(dest_lo, x, y);
474   mulhdu(dest_hi, x, y);
475 }
476 
477 #if defined(ABI_ELFv2)
function_entry()478 inline address MacroAssembler::function_entry() { return pc(); }
479 #else
function_entry()480 inline address MacroAssembler::function_entry() { return emit_fd(); }
481 #endif
482 
483 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP
484