1 /*
2  * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2016, 2018 SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 // Major contributions by AHa, AS, JL, ML.
27 
28 #include "precompiled.hpp"
29 #include "asm/macroAssembler.inline.hpp"
30 #include "gc/shared/barrierSet.hpp"
31 #include "gc/shared/barrierSetAssembler.hpp"
32 #include "interp_masm_s390.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "interpreter/interpreterRuntime.hpp"
35 #include "oops/arrayOop.hpp"
36 #include "oops/markOop.hpp"
37 #include "prims/jvmtiExport.hpp"
38 #include "prims/jvmtiThreadState.hpp"
39 #include "runtime/basicLock.hpp"
40 #include "runtime/biasedLocking.hpp"
41 #include "runtime/frame.inline.hpp"
42 #include "runtime/safepointMechanism.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 #include "runtime/thread.inline.hpp"
45 
46 // Implementation of InterpreterMacroAssembler.
47 // This file specializes the assembler with interpreter-specific macros.
48 
49 #ifdef PRODUCT
50 #define BLOCK_COMMENT(str)
51 #define BIND(label)        bind(label);
52 #else
53 #define BLOCK_COMMENT(str) block_comment(str)
54 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
55 #endif
56 
jump_to_entry(address entry,Register Rscratch)57 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
58   assert(entry != NULL, "Entry must have been generated by now");
59   assert(Rscratch != Z_R0, "Can't use R0 for addressing");
60   branch_optimized(Assembler::bcondAlways, entry);
61 }
62 
empty_expression_stack(void)63 void InterpreterMacroAssembler::empty_expression_stack(void) {
64   get_monitors(Z_R1_scratch);
65   add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch);
66 }
67 
68 // Dispatch code executed in the prolog of a bytecode which does not do it's
69 // own dispatch.
dispatch_prolog(TosState state,int bcp_incr)70 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
71   // On z/Architecture we are short on registers, therefore we do not preload the
72   // dispatch address of the next bytecode.
73 }
74 
75 // Dispatch code executed in the epilog of a bytecode which does not do it's
76 // own dispatch.
dispatch_epilog(TosState state,int step)77 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
78   dispatch_next(state, step);
79 }
80 
dispatch_next(TosState state,int bcp_incr,bool generate_poll)81 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
82   z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp);  // Load next bytecode.
83   add2reg(Z_bcp, bcp_incr);                   // Advance bcp. Add2reg produces optimal code.
84   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
85 }
86 
87 // Common code to dispatch and dispatch_only.
88 // Dispatch value in Lbyte_code and increment Lbcp.
89 
dispatch_base(TosState state,address * table,bool generate_poll)90 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) {
91   verify_FPU(1, state);
92 
93 #ifdef ASSERT
94   address reentry = NULL;
95   { Label OK;
96     // Check if the frame pointer in Z_fp is correct.
97     z_cg(Z_fp, 0, Z_SP);
98     z_bre(OK);
99     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE);
100     bind(OK);
101   }
102   { Label OK;
103     // check if the locals pointer in Z_locals is correct
104     z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp);
105     z_bre(OK);
106     reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE);
107     bind(OK);
108   }
109 #endif
110 
111   // TODO: Maybe implement +VerifyActivationFrameSize here.
112   // verify_thread(); // Too slow. We will just verify on method entry & exit.
113   verify_oop(Z_tos, state);
114 
115   // Dispatch table to use.
116   load_absolute_address(Z_tmp_1, (address)table);  // Z_tmp_1 = table;
117 
118   if (SafepointMechanism::uses_thread_local_poll() && generate_poll) {
119     address *sfpt_tbl = Interpreter::safept_table(state);
120     if (table != sfpt_tbl) {
121       Label dispatch;
122       const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
123       // Armed page has poll_bit set, if poll bit is cleared just continue.
124       z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
125       z_braz(dispatch);
126       load_absolute_address(Z_tmp_1, (address)sfpt_tbl);  // Z_tmp_1 = table;
127       bind(dispatch);
128     }
129   }
130 
131   // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg.
132   // Z_bytecode must have been loaded zero-extended for this approach to be correct.
133   z_sll(Z_bytecode, LogBytesPerWord, Z_R0);   // Multiply by wordSize.
134   z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1);      // Get entry addr.
135 
136   z_br(Z_tmp_1);
137 }
138 
dispatch_only(TosState state,bool generate_poll)139 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
140   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
141 }
142 
dispatch_only_normal(TosState state)143 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
144   dispatch_base(state, Interpreter::normal_table(state));
145 }
146 
dispatch_via(TosState state,address * table)147 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) {
148   // Load current bytecode.
149   z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0));
150   dispatch_base(state, table);
151 }
152 
153 // The following call_VM*_base() methods overload and mask the respective
154 // declarations/definitions in class MacroAssembler. They are meant as a "detour"
155 // to perform additional, template interpreter specific tasks before actually
156 // calling their MacroAssembler counterparts.
157 
call_VM_leaf_base(address entry_point)158 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) {
159   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
160   // interpreter specific
161   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
162   // saved registers and no blocking/ GC can happen in leaf calls.
163 
164   // super call
165   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
166 }
167 
call_VM_leaf_base(address entry_point,bool allow_relocation)168 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
169   // interpreter specific
170   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
171   // saved registers and no blocking/ GC can happen in leaf calls.
172 
173   // super call
174   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
175 }
176 
call_VM_base(Register oop_result,Register last_java_sp,address entry_point,bool check_exceptions)177 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
178                                              address entry_point, bool check_exceptions) {
179   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
180   // interpreter specific
181 
182   save_bcp();
183   save_esp();
184   // super call
185   MacroAssembler::call_VM_base(oop_result, last_java_sp,
186                                entry_point, allow_relocation, check_exceptions);
187   restore_bcp();
188 }
189 
call_VM_base(Register oop_result,Register last_java_sp,address entry_point,bool allow_relocation,bool check_exceptions)190 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
191                                              address entry_point, bool allow_relocation,
192                                              bool check_exceptions) {
193   // interpreter specific
194 
195   save_bcp();
196   save_esp();
197   // super call
198   MacroAssembler::call_VM_base(oop_result, last_java_sp,
199                                entry_point, allow_relocation, check_exceptions);
200   restore_bcp();
201 }
202 
check_and_handle_popframe(Register scratch_reg)203 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
204   if (JvmtiExport::can_pop_frame()) {
205     BLOCK_COMMENT("check_and_handle_popframe {");
206     Label L;
207     // Initiate popframe handling only if it is not already being
208     // processed. If the flag has the popframe_processing bit set, it
209     // means that this code is called *during* popframe handling - we
210     // don't want to reenter.
211     // TODO: Check if all four state combinations could be visible.
212     // If (processing and !pending) is an invisible/impossible state,
213     // there is optimization potential by testing both bits at once.
214     // Then, All_Zeroes and All_Ones means skip, Mixed means doit.
215     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
216             exact_log2(JavaThread::popframe_pending_bit));
217     z_bfalse(L);
218     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
219             exact_log2(JavaThread::popframe_processing_bit));
220     z_btrue(L);
221 
222     // Call Interpreter::remove_activation_preserving_args_entry() to get the
223     // address of the same-named entrypoint in the generated interpreter code.
224     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
225     // The above call should (as its only effect) return the contents of the field
226     // _remove_activation_preserving_args_entry in Z_RET.
227     // We just jump there to have the work done.
228     z_br(Z_RET);
229     // There is no way for control to fall thru here.
230 
231     bind(L);
232     BLOCK_COMMENT("} check_and_handle_popframe");
233   }
234 }
235 
236 
load_earlyret_value(TosState state)237 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
238   Register RjvmtiState = Z_R1_scratch;
239   int      tos_off     = in_bytes(JvmtiThreadState::earlyret_tos_offset());
240   int      oop_off     = in_bytes(JvmtiThreadState::earlyret_oop_offset());
241   int      val_off     = in_bytes(JvmtiThreadState::earlyret_value_offset());
242   int      state_off   = in_bytes(JavaThread::jvmti_thread_state_offset());
243 
244   z_lg(RjvmtiState, state_off, Z_thread);
245 
246   switch (state) {
247     case atos: z_lg(Z_tos, oop_off, RjvmtiState);
248       store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch);
249                                                     break;
250     case ltos: z_lg(Z_tos, val_off, RjvmtiState);   break;
251     case btos: // fall through
252     case ztos: // fall through
253     case ctos: // fall through
254     case stos: // fall through
255     case itos: z_llgf(Z_tos, val_off, RjvmtiState); break;
256     case ftos: z_le(Z_ftos, val_off, RjvmtiState);  break;
257     case dtos: z_ld(Z_ftos, val_off, RjvmtiState);  break;
258     case vtos:   /* nothing to do */                break;
259     default  : ShouldNotReachHere();
260   }
261 
262   // Clean up tos value in the jvmti thread state.
263   store_const(Address(RjvmtiState, val_off),   0L, 8, 8, Z_R0_scratch);
264   // Set tos state field to illegal value.
265   store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch);
266 }
267 
check_and_handle_earlyret(Register scratch_reg)268 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
269   if (JvmtiExport::can_force_early_return()) {
270     BLOCK_COMMENT("check_and_handle_earlyret {");
271     Label L;
272     // arg regs are save, because we are just behind the call in call_VM_base
273     Register jvmti_thread_state = Z_ARG2;
274     Register tmp                = Z_ARG3;
275     load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset()));
276     z_bre(L); // if (thread->jvmti_thread_state() == NULL) exit;
277 
278     // Initiate earlyret handling only if it is not already being processed.
279     // If the flag has the earlyret_processing bit set, it means that this code
280     // is called *during* earlyret handling - we don't want to reenter.
281 
282     assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0),
283           "must fix this check, when changing the values of the earlyret enum");
284     assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum");
285 
286     load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset()));
287     z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit;
288 
289     // Call Interpreter::remove_activation_early_entry() to get the address of the
290     // same-named entrypoint in the generated interpreter code.
291     assert(sizeof(TosState) == 4, "unexpected size");
292     z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset()));
293     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1);
294     // The above call should (as its only effect) return the contents of the field
295     // _remove_activation_preserving_args_entry in Z_RET.
296     // We just jump there to have the work done.
297     z_br(Z_RET);
298     // There is no way for control to fall thru here.
299 
300     bind(L);
301     BLOCK_COMMENT("} check_and_handle_earlyret");
302   }
303 }
304 
super_call_VM_leaf(address entry_point,Register arg_1,Register arg_2)305 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
306   lgr_if_needed(Z_ARG1, arg_1);
307   assert(arg_2 != Z_ARG1, "smashed argument");
308   lgr_if_needed(Z_ARG2, arg_2);
309   MacroAssembler::call_VM_leaf_base(entry_point, true);
310 }
311 
get_cache_index_at_bcp(Register index,int bcp_offset,size_t index_size)312 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) {
313   Address param(Z_bcp, bcp_offset);
314 
315   BLOCK_COMMENT("get_cache_index_at_bcp {");
316   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
317   if (index_size == sizeof(u2)) {
318     load_sized_value(index, param, 2, false /*signed*/);
319   } else if (index_size == sizeof(u4)) {
320 
321     load_sized_value(index, param, 4, false);
322 
323     // Check if the secondary index definition is still ~x, otherwise
324     // we have to change the following assembler code to calculate the
325     // plain index.
326     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
327     not_(index);  // Convert to plain index.
328   } else if (index_size == sizeof(u1)) {
329     z_llgc(index, param);
330   } else {
331     ShouldNotReachHere();
332   }
333   BLOCK_COMMENT("}");
334 }
335 
336 
get_cache_and_index_at_bcp(Register cache,Register cpe_offset,int bcp_offset,size_t index_size)337 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register cpe_offset,
338                                                            int bcp_offset, size_t index_size) {
339   BLOCK_COMMENT("get_cache_and_index_at_bcp {");
340   assert_different_registers(cache, cpe_offset);
341   get_cache_index_at_bcp(cpe_offset, bcp_offset, index_size);
342   z_lg(cache, Address(Z_fp, _z_ijava_state_neg(cpoolCache)));
343   // Convert from field index to ConstantPoolCache offset in bytes.
344   z_sllg(cpe_offset, cpe_offset, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
345   BLOCK_COMMENT("}");
346 }
347 
348 // Kills Z_R0_scratch.
get_cache_and_index_and_bytecode_at_bcp(Register cache,Register cpe_offset,Register bytecode,int byte_no,int bcp_offset,size_t index_size)349 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
350                                                                         Register cpe_offset,
351                                                                         Register bytecode,
352                                                                         int byte_no,
353                                                                         int bcp_offset,
354                                                                         size_t index_size) {
355   BLOCK_COMMENT("get_cache_and_index_and_bytecode_at_bcp {");
356   get_cache_and_index_at_bcp(cache, cpe_offset, bcp_offset, index_size);
357 
358   // We want to load (from CP cache) the bytecode that corresponds to the passed-in byte_no.
359   // It is located at (cache + cpe_offset + base_offset + indices_offset + (8-1) (last byte in DW) - (byte_no+1).
360   // Instead of loading, shifting and masking a DW, we just load that one byte of interest with z_llgc (unsigned).
361   const int base_ix_off = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset());
362   const int off_in_DW   = (8-1) - (1+byte_no);
363   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
364   assert(ConstantPoolCacheEntry::bytecode_1_mask == 0xff, "");
365   load_sized_value(bytecode, Address(cache, cpe_offset, base_ix_off+off_in_DW), 1, false /*signed*/);
366 
367   BLOCK_COMMENT("}");
368 }
369 
370 // Load object from cpool->resolved_references(index).
load_resolved_reference_at_index(Register result,Register index)371 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
372   assert_different_registers(result, index);
373   get_constant_pool(result);
374 
375   // Convert
376   //  - from field index to resolved_references() index and
377   //  - from word index to byte offset.
378   // Since this is a java object, it is potentially compressed.
379   Register tmp = index;  // reuse
380   z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array.
381   // Load pointer for resolved_references[] objArray.
382   z_lg(result, ConstantPool::cache_offset_in_bytes(), result);
383   z_lg(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
384   resolve_oop_handle(result); // Load resolved references array itself.
385 #ifdef ASSERT
386   NearLabel index_ok;
387   z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes()));
388   z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop);
389   compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok);
390   stop("resolved reference index out of bounds", 0x09256);
391   bind(index_ok);
392 #endif
393   z_agr(result, index);    // Address of indexed array element.
394   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg);
395 }
396 
397 // load cpool->resolved_klass_at(index)
load_resolved_klass_at_offset(Register cpool,Register offset,Register iklass)398 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) {
399   // int value = *(Rcpool->int_at_addr(which));
400   // int resolved_klass_index = extract_low_short_from_int(value);
401   z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian)
402   z_sllg(offset, offset, LogBytesPerWord);                          // Convert 'index' to 'offset'
403   z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // iklass = cpool->_resolved_klasses
404   z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes()));
405 }
406 
get_cache_entry_pointer_at_bcp(Register cache,Register tmp,int bcp_offset,size_t index_size)407 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
408                                                                Register tmp,
409                                                                int bcp_offset,
410                                                                size_t index_size) {
411   BLOCK_COMMENT("get_cache_entry_pointer_at_bcp {");
412     get_cache_and_index_at_bcp(cache, tmp, bcp_offset, index_size);
413     add2reg_with_index(cache, in_bytes(ConstantPoolCache::base_offset()), tmp, cache);
414   BLOCK_COMMENT("}");
415 }
416 
417 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
418 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
gen_subtype_check(Register Rsub_klass,Register Rsuper_klass,Register Rtmp1,Register Rtmp2,Label & ok_is_subtype)419 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
420                                                   Register Rsuper_klass,
421                                                   Register Rtmp1,
422                                                   Register Rtmp2,
423                                                   Label &ok_is_subtype) {
424   // Profile the not-null value's klass.
425   profile_typecheck(Rtmp1, Rsub_klass, Rtmp2);
426 
427   // Do the check.
428   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
429 
430   // Profile the failure of the check.
431   profile_typecheck_failed(Rtmp1, Rtmp2);
432 }
433 
434 // Pop topmost element from stack. It just disappears.
435 // Useful if consumed previously by access via stackTop().
popx(int len)436 void InterpreterMacroAssembler::popx(int len) {
437   add2reg(Z_esp, len*Interpreter::stackElementSize);
438   debug_only(verify_esp(Z_esp, Z_R1_scratch));
439 }
440 
441 // Get Address object of stack top. No checks. No pop.
442 // Purpose: - Provide address of stack operand to exploit reg-mem operations.
443 //          - Avoid RISC-like mem2reg - reg-reg-op sequence.
stackTop()444 Address InterpreterMacroAssembler::stackTop() {
445   return Address(Z_esp, Interpreter::expr_offset_in_bytes(0));
446 }
447 
pop_i(Register r)448 void InterpreterMacroAssembler::pop_i(Register r) {
449   z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
450   add2reg(Z_esp, Interpreter::stackElementSize);
451   assert_different_registers(r, Z_R1_scratch);
452   debug_only(verify_esp(Z_esp, Z_R1_scratch));
453 }
454 
pop_ptr(Register r)455 void InterpreterMacroAssembler::pop_ptr(Register r) {
456   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
457   add2reg(Z_esp, Interpreter::stackElementSize);
458   assert_different_registers(r, Z_R1_scratch);
459   debug_only(verify_esp(Z_esp, Z_R1_scratch));
460 }
461 
pop_l(Register r)462 void InterpreterMacroAssembler::pop_l(Register r) {
463   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
464   add2reg(Z_esp, 2*Interpreter::stackElementSize);
465   assert_different_registers(r, Z_R1_scratch);
466   debug_only(verify_esp(Z_esp, Z_R1_scratch));
467 }
468 
pop_f(FloatRegister f)469 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
470   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false);
471   add2reg(Z_esp, Interpreter::stackElementSize);
472   debug_only(verify_esp(Z_esp, Z_R1_scratch));
473 }
474 
pop_d(FloatRegister f)475 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
476   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true);
477   add2reg(Z_esp, 2*Interpreter::stackElementSize);
478   debug_only(verify_esp(Z_esp, Z_R1_scratch));
479 }
480 
push_i(Register r)481 void InterpreterMacroAssembler::push_i(Register r) {
482   assert_different_registers(r, Z_R1_scratch);
483   debug_only(verify_esp(Z_esp, Z_R1_scratch));
484   z_st(r, Address(Z_esp));
485   add2reg(Z_esp, -Interpreter::stackElementSize);
486 }
487 
push_ptr(Register r)488 void InterpreterMacroAssembler::push_ptr(Register r) {
489   z_stg(r, Address(Z_esp));
490   add2reg(Z_esp, -Interpreter::stackElementSize);
491 }
492 
push_l(Register r)493 void InterpreterMacroAssembler::push_l(Register r) {
494   assert_different_registers(r, Z_R1_scratch);
495   debug_only(verify_esp(Z_esp, Z_R1_scratch));
496   int offset = -Interpreter::stackElementSize;
497   z_stg(r, Address(Z_esp, offset));
498   clear_mem(Address(Z_esp), Interpreter::stackElementSize);
499   add2reg(Z_esp, 2 * offset);
500 }
501 
push_f(FloatRegister f)502 void InterpreterMacroAssembler::push_f(FloatRegister f) {
503   debug_only(verify_esp(Z_esp, Z_R1_scratch));
504   freg2mem_opt(f, Address(Z_esp), false);
505   add2reg(Z_esp, -Interpreter::stackElementSize);
506 }
507 
push_d(FloatRegister d)508 void InterpreterMacroAssembler::push_d(FloatRegister d) {
509   debug_only(verify_esp(Z_esp, Z_R1_scratch));
510   int offset = -Interpreter::stackElementSize;
511   freg2mem_opt(d, Address(Z_esp, offset));
512   add2reg(Z_esp, 2 * offset);
513 }
514 
push(TosState state)515 void InterpreterMacroAssembler::push(TosState state) {
516   verify_oop(Z_tos, state);
517   switch (state) {
518     case atos: push_ptr();           break;
519     case btos: push_i();             break;
520     case ztos:
521     case ctos:
522     case stos: push_i();             break;
523     case itos: push_i();             break;
524     case ltos: push_l();             break;
525     case ftos: push_f();             break;
526     case dtos: push_d();             break;
527     case vtos: /* nothing to do */   break;
528     default  : ShouldNotReachHere();
529   }
530 }
531 
pop(TosState state)532 void InterpreterMacroAssembler::pop(TosState state) {
533   switch (state) {
534     case atos: pop_ptr(Z_tos);       break;
535     case btos: pop_i(Z_tos);         break;
536     case ztos:
537     case ctos:
538     case stos: pop_i(Z_tos);         break;
539     case itos: pop_i(Z_tos);         break;
540     case ltos: pop_l(Z_tos);         break;
541     case ftos: pop_f(Z_ftos);        break;
542     case dtos: pop_d(Z_ftos);        break;
543     case vtos: /* nothing to do */   break;
544     default  : ShouldNotReachHere();
545   }
546   verify_oop(Z_tos, state);
547 }
548 
549 // Helpers for swap and dup.
load_ptr(int n,Register val)550 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
551   z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
552 }
553 
store_ptr(int n,Register val)554 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
555   z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
556 }
557 
prepare_to_jump_from_interpreted(Register method)558 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) {
559   // Satisfy interpreter calling convention (see generate_normal_entry()).
560   z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp).
561   // Record top_frame_sp, because the callee might modify it, if it's compiled.
562   z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp);
563   save_bcp();
564   save_esp();
565   z_lgr(Z_method, method); // Set Z_method (kills Z_fp!).
566 }
567 
568 // Jump to from_interpreted entry of a call unless single stepping is possible
569 // in this thread in which case we must call the i2i entry.
jump_from_interpreted(Register method,Register temp)570 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
571   assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp);
572   prepare_to_jump_from_interpreted(method);
573 
574   if (JvmtiExport::can_post_interpreter_events()) {
575     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
576     // compiled code in threads for which the event is enabled. Check here for
577     // interp_only_mode if these events CAN be enabled.
578     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
579     MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
580     z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero.
581     // Run interpreted.
582     z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset()));
583     z_br(Z_R1_scratch);
584   } else {
585     // Run compiled code.
586     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
587     z_br(Z_R1_scratch);
588   }
589 }
590 
591 #ifdef ASSERT
verify_esp(Register Resp,Register Rtemp)592 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) {
593   // About to read or write Resp[0].
594   // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI.
595   address reentry = NULL;
596 
597   {
598     // Check if the frame pointer in Z_fp is correct.
599     NearLabel OK;
600     z_cg(Z_fp, 0, Z_SP);
601     z_bre(OK);
602     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp");
603     bind(OK);
604   }
605   {
606     // Resp must not point into or below the operand stack,
607     // i.e. IJAVA_STATE.monitors > Resp.
608     NearLabel OK;
609     Register Rmonitors = Rtemp;
610     z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp);
611     compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK);
612     reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area");
613     bind(OK);
614   }
615   {
616     // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below
617     // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp).
618     NearLabel OK;
619     Register Rabi_bottom = Rtemp;
620     add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP);
621     compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK);
622     reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI");
623     bind(OK);
624   }
625 }
626 
asm_assert_ijava_state_magic(Register tmp)627 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) {
628   Label magic_ok;
629   load_const_optimized(tmp, frame::z_istate_magic_number);
630   z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic)));
631   z_bre(magic_ok);
632   stop_static("error: wrong magic number in ijava_state access");
633   bind(magic_ok);
634 }
635 #endif // ASSERT
636 
save_bcp()637 void InterpreterMacroAssembler::save_bcp() {
638   z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
639   asm_assert_ijava_state_magic(Z_bcp);
640   NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))));
641 }
642 
restore_bcp()643 void InterpreterMacroAssembler::restore_bcp() {
644   asm_assert_ijava_state_magic(Z_bcp);
645   z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
646 }
647 
save_esp()648 void InterpreterMacroAssembler::save_esp() {
649   z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
650 }
651 
restore_esp()652 void InterpreterMacroAssembler::restore_esp() {
653   asm_assert_ijava_state_magic(Z_esp);
654   z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
655 }
656 
get_monitors(Register reg)657 void InterpreterMacroAssembler::get_monitors(Register reg) {
658   asm_assert_ijava_state_magic(reg);
659   mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
660 }
661 
save_monitors(Register reg)662 void InterpreterMacroAssembler::save_monitors(Register reg) {
663   reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
664 }
665 
get_mdp(Register mdp)666 void InterpreterMacroAssembler::get_mdp(Register mdp) {
667   z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp);
668 }
669 
save_mdp(Register mdp)670 void InterpreterMacroAssembler::save_mdp(Register mdp) {
671   z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
672 }
673 
674 // Values that are only read (besides initialization).
restore_locals()675 void InterpreterMacroAssembler::restore_locals() {
676   asm_assert_ijava_state_magic(Z_locals);
677   z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals)));
678 }
679 
get_method(Register reg)680 void InterpreterMacroAssembler::get_method(Register reg) {
681   asm_assert_ijava_state_magic(reg);
682   z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method)));
683 }
684 
get_2_byte_integer_at_bcp(Register Rdst,int bcp_offset,signedOrNot is_signed)685 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset,
686                                                           signedOrNot is_signed) {
687   // Rdst is an 8-byte return value!!!
688 
689   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
690   // is a few (2..3) ticks, even when the load crosses a cache line
691   // boundary. In case of a cache miss, the stall could, of course, be
692   // much longer.
693 
694   switch (is_signed) {
695     case Signed:
696       z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp);
697      break;
698    case Unsigned:
699      z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp);
700      break;
701    default:
702      ShouldNotReachHere();
703   }
704 }
705 
706 
get_4_byte_integer_at_bcp(Register Rdst,int bcp_offset,setCCOrNot set_cc)707 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset,
708                                                           setCCOrNot set_cc) {
709   // Rdst is an 8-byte return value!!!
710 
711   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
712   // is a few (2..3) ticks, even when the load crosses a cache line
713   // boundary. In case of a cache miss, the stall could, of course, be
714   // much longer.
715 
716   // Both variants implement a sign-extending int2long load.
717   if (set_cc == set_CC) {
718     load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
719   } else {
720     mem2reg_signed_opt(    Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
721   }
722 }
723 
get_constant_pool(Register Rdst)724 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
725   get_method(Rdst);
726   mem2reg_opt(Rdst, Address(Rdst, Method::const_offset()));
727   mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset()));
728 }
729 
get_cpool_and_tags(Register Rcpool,Register Rtags)730 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
731   get_constant_pool(Rcpool);
732   mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset_in_bytes()));
733 }
734 
735 // Unlock if synchronized method.
736 //
737 // Unlock the receiver if this is a synchronized method.
738 // Unlock any Java monitors from syncronized blocks.
739 //
740 // If there are locked Java monitors
741 //   If throw_monitor_exception
742 //     throws IllegalMonitorStateException
743 //   Else if install_monitor_exception
744 //     installs IllegalMonitorStateException
745 //   Else
746 //     no error processing
unlock_if_synchronized_method(TosState state,bool throw_monitor_exception,bool install_monitor_exception)747 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
748                                                               bool throw_monitor_exception,
749                                                               bool install_monitor_exception) {
750   NearLabel unlocked, unlock, no_unlock;
751 
752   {
753     Register R_method = Z_ARG2;
754     Register R_do_not_unlock_if_synchronized = Z_ARG3;
755 
756     // Get the value of _do_not_unlock_if_synchronized into G1_scratch.
757     const Address do_not_unlock_if_synchronized(Z_thread,
758                                                 JavaThread::do_not_unlock_if_synchronized_offset());
759     load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/);
760     z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag.
761 
762     // Check if synchronized method.
763     get_method(R_method);
764     verify_oop(Z_tos, state);
765     push(state); // Save tos/result.
766     testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
767     z_bfalse(unlocked);
768 
769     // Don't unlock anything if the _do_not_unlock_if_synchronized flag
770     // is set.
771     compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock);
772   }
773 
774   // unlock monitor
775 
776   // BasicObjectLock will be first in list, since this is a
777   // synchronized method. However, need to check that the object has
778   // not been unlocked by an explicit monitorexit bytecode.
779   const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock)));
780   // We use Z_ARG2 so that if we go slow path it will be the correct
781   // register for unlock_object to pass to VM directly.
782   load_address(Z_ARG2, monitor); // Address of first monitor.
783   z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset_in_bytes()));
784   compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock);
785 
786   if (throw_monitor_exception) {
787     // Entry already unlocked need to throw an exception.
788     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
789     should_not_reach_here();
790   } else {
791     // Monitor already unlocked during a stack unroll.
792     // If requested, install an illegal_monitor_state_exception.
793     // Continue with stack unrolling.
794     if (install_monitor_exception) {
795       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
796     }
797    z_bru(unlocked);
798   }
799 
800   bind(unlock);
801 
802   unlock_object(Z_ARG2);
803 
804   bind(unlocked);
805 
806   // I0, I1: Might contain return value
807 
808   // Check that all monitors are unlocked.
809   {
810     NearLabel loop, exception, entry, restart;
811     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
812     // We use Z_ARG2 so that if we go slow path it will be the correct
813     // register for unlock_object to pass to VM directly.
814     Register R_current_monitor = Z_ARG2;
815     Register R_monitor_block_bot = Z_ARG1;
816     const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors));
817     const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size);
818 
819     bind(restart);
820     // Starting with top-most entry.
821     z_lg(R_current_monitor, monitor_block_top);
822     // Points to word before bottom of monitor block.
823     load_address(R_monitor_block_bot, monitor_block_bot);
824     z_bru(entry);
825 
826     // Entry already locked, need to throw exception.
827     bind(exception);
828 
829     if (throw_monitor_exception) {
830       // Throw exception.
831       MacroAssembler::call_VM(noreg,
832                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
833                                                throw_illegal_monitor_state_exception));
834       should_not_reach_here();
835     } else {
836       // Stack unrolling. Unlock object and install illegal_monitor_exception.
837       // Unlock does not block, so don't have to worry about the frame.
838       // We don't have to preserve c_rarg1 since we are going to throw an exception.
839       unlock_object(R_current_monitor);
840       if (install_monitor_exception) {
841         call_VM(noreg, CAST_FROM_FN_PTR(address,
842                                         InterpreterRuntime::
843                                         new_illegal_monitor_state_exception));
844       }
845       z_bru(restart);
846     }
847 
848     bind(loop);
849     // Check if current entry is used.
850     load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset_in_bytes()));
851     z_brne(exception);
852 
853     add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry.
854     bind(entry);
855     compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop);
856   }
857 
858   bind(no_unlock);
859   pop(state);
860   verify_oop(Z_tos, state);
861 }
862 
narrow(Register result,Register ret_type)863 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) {
864   get_method(ret_type);
865   z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset())));
866   z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset())));
867 
868   Label notBool, notByte, notChar, done;
869 
870   // common case first
871   compareU32_and_branch(ret_type, T_INT, bcondEqual, done);
872 
873   compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool);
874   z_nilf(result, 0x1);
875   z_bru(done);
876 
877   bind(notBool);
878   compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte);
879   z_lbr(result, result);
880   z_bru(done);
881 
882   bind(notByte);
883   compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar);
884   z_nilf(result, 0xffff);
885   z_bru(done);
886 
887   bind(notChar);
888   // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort);
889   z_lhr(result, result);
890 
891   // Nothing to do for T_INT
892   bind(done);
893 }
894 
895 // remove activation
896 //
897 // Unlock the receiver if this is a synchronized method.
898 // Unlock any Java monitors from syncronized blocks.
899 // Remove the activation from the stack.
900 //
901 // If there are locked Java monitors
902 //   If throw_monitor_exception
903 //     throws IllegalMonitorStateException
904 //   Else if install_monitor_exception
905 //     installs IllegalMonitorStateException
906 //   Else
907 //     no error processing
remove_activation(TosState state,Register return_pc,bool throw_monitor_exception,bool install_monitor_exception,bool notify_jvmti)908 void InterpreterMacroAssembler::remove_activation(TosState state,
909                                                   Register return_pc,
910                                                   bool throw_monitor_exception,
911                                                   bool install_monitor_exception,
912                                                   bool notify_jvmti) {
913   BLOCK_COMMENT("remove_activation {");
914   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
915 
916   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
917   notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI);
918 
919   if (StackReservedPages > 0) {
920     BLOCK_COMMENT("reserved_stack_check:");
921     // Test if reserved zone needs to be enabled.
922     Label no_reserved_zone_enabling;
923 
924     // Compare frame pointers. There is no good stack pointer, as with stack
925     // frame compression we can get different SPs when we do calls. A subsequent
926     // call could have a smaller SP, so that this compare succeeds for an
927     // inner call of the method annotated with ReservedStack.
928     z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp)));
929     z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory.
930     z_brl(no_reserved_zone_enabling);
931 
932     // Enable reserved zone again, throw stack overflow exception.
933     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
934     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
935 
936     should_not_reach_here();
937 
938     bind(no_reserved_zone_enabling);
939   }
940 
941   verify_oop(Z_tos, state);
942   verify_thread();
943 
944   pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3);
945   BLOCK_COMMENT("} remove_activation");
946 }
947 
948 // lock object
949 //
950 // Registers alive
951 //   monitor - Address of the BasicObjectLock to be used for locking,
952 //             which must be initialized with the object to lock.
953 //   object  - Address of the object to be locked.
lock_object(Register monitor,Register object)954 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
955 
956   if (UseHeavyMonitors) {
957     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor);
958     return;
959   }
960 
961   // template code:
962   //
963   // markOop displaced_header = obj->mark().set_unlocked();
964   // monitor->lock()->set_displaced_header(displaced_header);
965   // if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
966   //   // We stored the monitor address into the object's mark word.
967   // } else if (THREAD->is_lock_owned((address)displaced_header))
968   //   // Simple recursive case.
969   //   monitor->lock()->set_displaced_header(NULL);
970   // } else {
971   //   // Slow path.
972   //   InterpreterRuntime::monitorenter(THREAD, monitor);
973   // }
974 
975   const Register displaced_header = Z_ARG5;
976   const Register object_mark_addr = Z_ARG4;
977   const Register current_header   = Z_ARG5;
978 
979   NearLabel done;
980   NearLabel slow_case;
981 
982   // markOop displaced_header = obj->mark().set_unlocked();
983 
984   // Load markOop from object into displaced_header.
985   z_lg(displaced_header, oopDesc::mark_offset_in_bytes(), object);
986 
987   if (UseBiasedLocking) {
988     biased_locking_enter(object, displaced_header, Z_R1, Z_R0, done, &slow_case);
989   }
990 
991   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
992   z_oill(displaced_header, markOopDesc::unlocked_value);
993 
994   // monitor->lock()->set_displaced_header(displaced_header);
995 
996   // Initialize the box (Must happen before we update the object mark!).
997   z_stg(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
998                           BasicLock::displaced_header_offset_in_bytes(), monitor);
999 
1000   // if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
1001 
1002   // Store stack address of the BasicObjectLock (this is monitor) into object.
1003   add2reg(object_mark_addr, oopDesc::mark_offset_in_bytes(), object);
1004 
1005   z_csg(displaced_header, monitor, 0, object_mark_addr);
1006   assert(current_header==displaced_header, "must be same register"); // Identified two registers from z/Architecture.
1007 
1008   z_bre(done);
1009 
1010   // } else if (THREAD->is_lock_owned((address)displaced_header))
1011   //   // Simple recursive case.
1012   //   monitor->lock()->set_displaced_header(NULL);
1013 
1014   // We did not see an unlocked object so try the fast recursive case.
1015 
1016   // Check if owner is self by comparing the value in the markOop of object
1017   // (current_header) with the stack pointer.
1018   z_sgr(current_header, Z_SP);
1019 
1020   assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1021 
1022   // The prior sequence "LGR, NGR, LTGR" can be done better
1023   // (Z_R1 is temp and not used after here).
1024   load_const_optimized(Z_R0, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
1025   z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0)
1026 
1027   // If condition is true we are done and hence we can store 0 in the displaced
1028   // header indicating it is a recursive lock and be done.
1029   z_brne(slow_case);
1030   z_release();  // Membar unnecessary on zarch AND because the above csg does a sync before and after.
1031   z_stg(Z_R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
1032                       BasicLock::displaced_header_offset_in_bytes(), monitor);
1033   z_bru(done);
1034 
1035   // } else {
1036   //   // Slow path.
1037   //   InterpreterRuntime::monitorenter(THREAD, monitor);
1038 
1039   // None of the above fast optimizations worked so we have to get into the
1040   // slow case of monitor enter.
1041   bind(slow_case);
1042   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor);
1043 
1044   // }
1045 
1046   bind(done);
1047 }
1048 
1049 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1050 //
1051 // Registers alive
1052 //   monitor - address of the BasicObjectLock to be used for locking,
1053 //             which must be initialized with the object to lock.
1054 //
1055 // Throw IllegalMonitorException if object is not locked by current thread.
unlock_object(Register monitor,Register object)1056 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) {
1057 
1058   if (UseHeavyMonitors) {
1059     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
1060     return;
1061   }
1062 
1063 // else {
1064   // template code:
1065   //
1066   // if ((displaced_header = monitor->displaced_header()) == NULL) {
1067   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
1068   //   monitor->set_obj(NULL);
1069   // } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) {
1070   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1071   //   monitor->set_obj(NULL);
1072   // } else {
1073   //   // Slow path.
1074   //   InterpreterRuntime::monitorexit(THREAD, monitor);
1075   // }
1076 
1077   const Register displaced_header = Z_ARG4;
1078   const Register current_header   = Z_R1;
1079   Address obj_entry(monitor, BasicObjectLock::obj_offset_in_bytes());
1080   Label done;
1081 
1082   if (object == noreg) {
1083     // In the template interpreter, we must assure that the object
1084     // entry in the monitor is cleared on all paths. Thus we move
1085     // loading up to here, and clear the entry afterwards.
1086     object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object.
1087     z_lg(object, obj_entry);
1088   }
1089 
1090   assert_different_registers(monitor, object, displaced_header, current_header);
1091 
1092   // if ((displaced_header = monitor->displaced_header()) == NULL) {
1093   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
1094   //   monitor->set_obj(NULL);
1095 
1096   clear_mem(obj_entry, sizeof(oop));
1097 
1098   if (UseBiasedLocking) {
1099     // The object address from the monitor is in object.
1100     assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1101     biased_locking_exit(object, displaced_header, done);
1102   }
1103 
1104   // Test first if we are in the fast recursive case.
1105   MacroAssembler::load_and_test_long(displaced_header,
1106                                      Address(monitor, BasicObjectLock::lock_offset_in_bytes() +
1107                                                       BasicLock::displaced_header_offset_in_bytes()));
1108   z_bre(done); // displaced_header == 0 -> goto done
1109 
1110   // } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) {
1111   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1112   //   monitor->set_obj(NULL);
1113 
1114   // If we still have a lightweight lock, unlock the object and be done.
1115 
1116   // The markword is expected to be at offset 0.
1117   assert(oopDesc::mark_offset_in_bytes() == 0, "unlock_object: review code below");
1118 
1119   // We have the displaced header in displaced_header. If the lock is still
1120   // lightweight, it will contain the monitor address and we'll store the
1121   // displaced header back into the object's mark word.
1122   z_lgr(current_header, monitor);
1123   z_csg(current_header, displaced_header, 0, object);
1124   z_bre(done);
1125 
1126   // } else {
1127   //   // Slow path.
1128   //   InterpreterRuntime::monitorexit(THREAD, monitor);
1129 
1130   // The lock has been converted into a heavy lock and hence
1131   // we need to get into the slow case.
1132   z_stg(object, obj_entry);   // Restore object entry, has been cleared above.
1133   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
1134 
1135   // }
1136 
1137   bind(done);
1138 }
1139 
test_method_data_pointer(Register mdp,Label & zero_continue)1140 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1141   assert(ProfileInterpreter, "must be profiling interpreter");
1142   load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx)));
1143   z_brz(zero_continue);
1144 }
1145 
1146 // Set the method data pointer for the current bcp.
set_method_data_pointer_for_bcp()1147 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1148   assert(ProfileInterpreter, "must be profiling interpreter");
1149   Label    set_mdp;
1150   Register mdp    = Z_ARG4;
1151   Register method = Z_ARG5;
1152 
1153   get_method(method);
1154   // Test MDO to avoid the call if it is NULL.
1155   load_and_test_long(mdp, method2_(method, method_data));
1156   z_brz(set_mdp);
1157 
1158   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp);
1159   // Z_RET: mdi
1160   // Mdo is guaranteed to be non-zero here, we checked for it before the call.
1161   assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame");
1162   z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg.
1163   add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp);
1164 
1165   bind(set_mdp);
1166   save_mdp(mdp);
1167 }
1168 
verify_method_data_pointer()1169 void InterpreterMacroAssembler::verify_method_data_pointer() {
1170   assert(ProfileInterpreter, "must be profiling interpreter");
1171 #ifdef ASSERT
1172   NearLabel verify_continue;
1173   Register bcp_expected = Z_ARG3;
1174   Register mdp    = Z_ARG4;
1175   Register method = Z_ARG5;
1176 
1177   test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue
1178   get_method(method);
1179 
1180   // If the mdp is valid, it will point to a DataLayout header which is
1181   // consistent with the bcp. The converse is highly probable also.
1182   load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/);
1183   z_ag(bcp_expected, Address(method, Method::const_offset()));
1184   load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset()));
1185   compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue);
1186   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp);
1187   bind(verify_continue);
1188 #endif // ASSERT
1189 }
1190 
set_mdp_data_at(Register mdp_in,int constant,Register value)1191 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
1192   assert(ProfileInterpreter, "must be profiling interpreter");
1193   z_stg(value, constant, mdp_in);
1194 }
1195 
increment_mdp_data_at(Register mdp_in,int constant,Register tmp,bool decrement)1196 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1197                                                       int constant,
1198                                                       Register tmp,
1199                                                       bool decrement) {
1200   assert_different_registers(mdp_in, tmp);
1201   // counter address
1202   Address data(mdp_in, constant);
1203   const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment;
1204   add2mem_64(Address(mdp_in, constant), delta, tmp);
1205 }
1206 
set_mdp_flag_at(Register mdp_in,int flag_byte_constant)1207 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1208                                                 int flag_byte_constant) {
1209   assert(ProfileInterpreter, "must be profiling interpreter");
1210   // Set the flag.
1211   z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant);
1212 }
1213 
test_mdp_data_at(Register mdp_in,int offset,Register value,Register test_value_out,Label & not_equal_continue)1214 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1215                                                  int offset,
1216                                                  Register value,
1217                                                  Register test_value_out,
1218                                                  Label& not_equal_continue) {
1219   assert(ProfileInterpreter, "must be profiling interpreter");
1220   if (test_value_out == noreg) {
1221     z_cg(value, Address(mdp_in, offset));
1222     z_brne(not_equal_continue);
1223   } else {
1224     // Put the test value into a register, so caller can use it:
1225     z_lg(test_value_out, Address(mdp_in, offset));
1226     compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue);
1227   }
1228 }
1229 
update_mdp_by_offset(Register mdp_in,int offset_of_disp)1230 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
1231   update_mdp_by_offset(mdp_in, noreg, offset_of_disp);
1232 }
1233 
update_mdp_by_offset(Register mdp_in,Register dataidx,int offset_of_disp)1234 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1235                                                      Register dataidx,
1236                                                      int offset_of_disp) {
1237   assert(ProfileInterpreter, "must be profiling interpreter");
1238   Address disp_address(mdp_in, dataidx, offset_of_disp);
1239   Assembler::z_ag(mdp_in, disp_address);
1240   save_mdp(mdp_in);
1241 }
1242 
update_mdp_by_constant(Register mdp_in,int constant)1243 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1244   assert(ProfileInterpreter, "must be profiling interpreter");
1245   add2reg(mdp_in, constant);
1246   save_mdp(mdp_in);
1247 }
1248 
update_mdp_for_ret(Register return_bci)1249 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1250   assert(ProfileInterpreter, "must be profiling interpreter");
1251   assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore");
1252   call_VM(noreg,
1253           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1254           return_bci);
1255 }
1256 
profile_taken_branch(Register mdp,Register bumped_count)1257 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1258   if (ProfileInterpreter) {
1259     Label profile_continue;
1260 
1261     // If no method data exists, go to profile_continue.
1262     // Otherwise, assign to mdp.
1263     test_method_data_pointer(mdp, profile_continue);
1264 
1265     // We are taking a branch. Increment the taken count.
1266     // We inline increment_mdp_data_at to return bumped_count in a register
1267     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1268     Address data(mdp, JumpData::taken_offset());
1269     z_lg(bumped_count, data);
1270     // 64-bit overflow is very unlikely. Saturation to 32-bit values is
1271     // performed when reading the counts.
1272     add2reg(bumped_count, DataLayout::counter_increment);
1273     z_stg(bumped_count, data); // Store back out
1274 
1275     // The method data pointer needs to be updated to reflect the new target.
1276     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1277     bind(profile_continue);
1278   }
1279 }
1280 
1281 // Kills Z_R1_scratch.
profile_not_taken_branch(Register mdp)1282 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1283   if (ProfileInterpreter) {
1284     Label profile_continue;
1285 
1286     // If no method data exists, go to profile_continue.
1287     test_method_data_pointer(mdp, profile_continue);
1288 
1289     // We are taking a branch. Increment the not taken count.
1290     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch);
1291 
1292     // The method data pointer needs to be updated to correspond to
1293     // the next bytecode.
1294     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1295     bind(profile_continue);
1296   }
1297 }
1298 
1299 // Kills: Z_R1_scratch.
profile_call(Register mdp)1300 void InterpreterMacroAssembler::profile_call(Register mdp) {
1301   if (ProfileInterpreter) {
1302     Label profile_continue;
1303 
1304     // If no method data exists, go to profile_continue.
1305     test_method_data_pointer(mdp, profile_continue);
1306 
1307     // We are making a call. Increment the count.
1308     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1309 
1310     // The method data pointer needs to be updated to reflect the new target.
1311     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1312     bind(profile_continue);
1313   }
1314 }
1315 
profile_final_call(Register mdp)1316 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1317   if (ProfileInterpreter) {
1318     Label profile_continue;
1319 
1320     // If no method data exists, go to profile_continue.
1321     test_method_data_pointer(mdp, profile_continue);
1322 
1323     // We are making a call. Increment the count.
1324     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1325 
1326     // The method data pointer needs to be updated to reflect the new target.
1327     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1328     bind(profile_continue);
1329   }
1330 }
1331 
profile_virtual_call(Register receiver,Register mdp,Register reg2,bool receiver_can_be_null)1332 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1333                                                      Register mdp,
1334                                                      Register reg2,
1335                                                      bool receiver_can_be_null) {
1336   if (ProfileInterpreter) {
1337     NearLabel profile_continue;
1338 
1339     // If no method data exists, go to profile_continue.
1340     test_method_data_pointer(mdp, profile_continue);
1341 
1342     NearLabel skip_receiver_profile;
1343     if (receiver_can_be_null) {
1344       NearLabel not_null;
1345       compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null);
1346       // We are making a call. Increment the count for null receiver.
1347       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1348       z_bru(skip_receiver_profile);
1349       bind(not_null);
1350     }
1351 
1352     // Record the receiver type.
1353     record_klass_in_profile(receiver, mdp, reg2, true);
1354     bind(skip_receiver_profile);
1355 
1356     // The method data pointer needs to be updated to reflect the new target.
1357     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1358     bind(profile_continue);
1359   }
1360 }
1361 
1362 // This routine creates a state machine for updating the multi-row
1363 // type profile at a virtual call site (or other type-sensitive bytecode).
1364 // The machine visits each row (of receiver/count) until the receiver type
1365 // is found, or until it runs out of rows. At the same time, it remembers
1366 // the location of the first empty row. (An empty row records null for its
1367 // receiver, and can be allocated for a newly-observed receiver type.)
1368 // Because there are two degrees of freedom in the state, a simple linear
1369 // search will not work; it must be a decision tree. Hence this helper
1370 // function is recursive, to generate the required tree structured code.
1371 // It's the interpreter, so we are trading off code space for speed.
1372 // See below for example code.
record_klass_in_profile_helper(Register receiver,Register mdp,Register reg2,int start_row,Label & done,bool is_virtual_call)1373 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1374                                         Register receiver, Register mdp,
1375                                         Register reg2, int start_row,
1376                                         Label& done, bool is_virtual_call) {
1377   if (TypeProfileWidth == 0) {
1378     if (is_virtual_call) {
1379       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1380     }
1381     return;
1382   }
1383 
1384   int last_row = VirtualCallData::row_limit() - 1;
1385   assert(start_row <= last_row, "must be work left to do");
1386   // Test this row for both the receiver and for null.
1387   // Take any of three different outcomes:
1388   //   1. found receiver => increment count and goto done
1389   //   2. found null => keep looking for case 1, maybe allocate this cell
1390   //   3. found something else => keep looking for cases 1 and 2
1391   // Case 3 is handled by a recursive call.
1392   for (int row = start_row; row <= last_row; row++) {
1393     NearLabel next_test;
1394     bool test_for_null_also = (row == start_row);
1395 
1396     // See if the receiver is receiver[n].
1397     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1398     test_mdp_data_at(mdp, recvr_offset, receiver,
1399                      (test_for_null_also ? reg2 : noreg),
1400                      next_test);
1401     // (Reg2 now contains the receiver from the CallData.)
1402 
1403     // The receiver is receiver[n]. Increment count[n].
1404     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1405     increment_mdp_data_at(mdp, count_offset);
1406     z_bru(done);
1407     bind(next_test);
1408 
1409     if (test_for_null_also) {
1410       Label found_null;
1411       // Failed the equality check on receiver[n]... Test for null.
1412       z_ltgr(reg2, reg2);
1413       if (start_row == last_row) {
1414         // The only thing left to do is handle the null case.
1415         if (is_virtual_call) {
1416           z_brz(found_null);
1417           // Receiver did not match any saved receiver and there is no empty row for it.
1418           // Increment total counter to indicate polymorphic case.
1419           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1420           z_bru(done);
1421           bind(found_null);
1422         } else {
1423           z_brnz(done);
1424         }
1425         break;
1426       }
1427       // Since null is rare, make it be the branch-taken case.
1428       z_brz(found_null);
1429 
1430       // Put all the "Case 3" tests here.
1431       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1432 
1433       // Found a null. Keep searching for a matching receiver,
1434       // but remember that this is an empty (unused) slot.
1435       bind(found_null);
1436     }
1437   }
1438 
1439   // In the fall-through case, we found no matching receiver, but we
1440   // observed the receiver[start_row] is NULL.
1441 
1442   // Fill in the receiver field and increment the count.
1443   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1444   set_mdp_data_at(mdp, recvr_offset, receiver);
1445   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1446   load_const_optimized(reg2, DataLayout::counter_increment);
1447   set_mdp_data_at(mdp, count_offset, reg2);
1448   if (start_row > 0) {
1449     z_bru(done);
1450   }
1451 }
1452 
1453 // Example state machine code for three profile rows:
1454 //   // main copy of decision tree, rooted at row[1]
1455 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1456 //   if (row[0].rec != NULL) {
1457 //     // inner copy of decision tree, rooted at row[1]
1458 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1459 //     if (row[1].rec != NULL) {
1460 //       // degenerate decision tree, rooted at row[2]
1461 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1462 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1463 //       row[2].init(rec); goto done;
1464 //     } else {
1465 //       // remember row[1] is empty
1466 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1467 //       row[1].init(rec); goto done;
1468 //     }
1469 //   } else {
1470 //     // remember row[0] is empty
1471 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1472 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1473 //     row[0].init(rec); goto done;
1474 //   }
1475 //   done:
1476 
record_klass_in_profile(Register receiver,Register mdp,Register reg2,bool is_virtual_call)1477 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1478                                                         Register mdp, Register reg2,
1479                                                         bool is_virtual_call) {
1480   assert(ProfileInterpreter, "must be profiling");
1481   Label done;
1482 
1483   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1484 
1485   bind (done);
1486 }
1487 
profile_ret(Register return_bci,Register mdp)1488 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1489   if (ProfileInterpreter) {
1490     NearLabel profile_continue;
1491     uint row;
1492 
1493     // If no method data exists, go to profile_continue.
1494     test_method_data_pointer(mdp, profile_continue);
1495 
1496     // Update the total ret count.
1497     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1498 
1499     for (row = 0; row < RetData::row_limit(); row++) {
1500       NearLabel next_test;
1501 
1502       // See if return_bci is equal to bci[n]:
1503       test_mdp_data_at(mdp,
1504                        in_bytes(RetData::bci_offset(row)),
1505                        return_bci, noreg,
1506                        next_test);
1507 
1508       // Return_bci is equal to bci[n]. Increment the count.
1509       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1510 
1511       // The method data pointer needs to be updated to reflect the new target.
1512       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1513       z_bru(profile_continue);
1514       bind(next_test);
1515     }
1516 
1517     update_mdp_for_ret(return_bci);
1518 
1519     bind(profile_continue);
1520   }
1521 }
1522 
profile_null_seen(Register mdp)1523 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1524   if (ProfileInterpreter) {
1525     Label profile_continue;
1526 
1527     // If no method data exists, go to profile_continue.
1528     test_method_data_pointer(mdp, profile_continue);
1529 
1530     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1531 
1532     // The method data pointer needs to be updated.
1533     int mdp_delta = in_bytes(BitData::bit_data_size());
1534     if (TypeProfileCasts) {
1535       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1536     }
1537     update_mdp_by_constant(mdp, mdp_delta);
1538 
1539     bind(profile_continue);
1540   }
1541 }
1542 
profile_typecheck_failed(Register mdp,Register tmp)1543 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp, Register tmp) {
1544   if (ProfileInterpreter && TypeProfileCasts) {
1545     Label profile_continue;
1546 
1547     // If no method data exists, go to profile_continue.
1548     test_method_data_pointer(mdp, profile_continue);
1549 
1550     int count_offset = in_bytes(CounterData::count_offset());
1551     // Back up the address, since we have already bumped the mdp.
1552     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1553 
1554     // *Decrement* the counter. We expect to see zero or small negatives.
1555     increment_mdp_data_at(mdp, count_offset, tmp, true);
1556 
1557     bind (profile_continue);
1558   }
1559 }
1560 
profile_typecheck(Register mdp,Register klass,Register reg2)1561 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1562   if (ProfileInterpreter) {
1563     Label profile_continue;
1564 
1565     // If no method data exists, go to profile_continue.
1566     test_method_data_pointer(mdp, profile_continue);
1567 
1568     // The method data pointer needs to be updated.
1569     int mdp_delta = in_bytes(BitData::bit_data_size());
1570     if (TypeProfileCasts) {
1571       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1572 
1573       // Record the object type.
1574       record_klass_in_profile(klass, mdp, reg2, false);
1575     }
1576     update_mdp_by_constant(mdp, mdp_delta);
1577 
1578     bind(profile_continue);
1579   }
1580 }
1581 
profile_switch_default(Register mdp)1582 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1583   if (ProfileInterpreter) {
1584     Label profile_continue;
1585 
1586     // If no method data exists, go to profile_continue.
1587     test_method_data_pointer(mdp, profile_continue);
1588 
1589     // Update the default case count.
1590     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1591 
1592     // The method data pointer needs to be updated.
1593     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1594 
1595     bind(profile_continue);
1596   }
1597 }
1598 
1599 // Kills: index, scratch1, scratch2.
profile_switch_case(Register index,Register mdp,Register scratch1,Register scratch2)1600 void InterpreterMacroAssembler::profile_switch_case(Register index,
1601                                                     Register mdp,
1602                                                     Register scratch1,
1603                                                     Register scratch2) {
1604   if (ProfileInterpreter) {
1605     Label profile_continue;
1606     assert_different_registers(index, mdp, scratch1, scratch2);
1607 
1608     // If no method data exists, go to profile_continue.
1609     test_method_data_pointer(mdp, profile_continue);
1610 
1611     // Build the base (index * per_case_size_in_bytes()) +
1612     // case_array_offset_in_bytes().
1613     z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1614     add2reg(index, in_bytes(MultiBranchData::case_array_offset()));
1615 
1616     // Add the calculated base to the mdp -> address of the case' data.
1617     Address case_data_addr(mdp, index);
1618     Register case_data = scratch1;
1619     load_address(case_data, case_data_addr);
1620 
1621     // Update the case count.
1622     increment_mdp_data_at(case_data,
1623                           in_bytes(MultiBranchData::relative_count_offset()),
1624                           scratch2);
1625 
1626     // The method data pointer needs to be updated.
1627     update_mdp_by_offset(mdp,
1628                          index,
1629                          in_bytes(MultiBranchData::relative_displacement_offset()));
1630 
1631     bind(profile_continue);
1632   }
1633 }
1634 
1635 // kills: R0, R1, flags, loads klass from obj (if not null)
profile_obj_type(Register obj,Address mdo_addr,Register klass,bool cmp_done)1636 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) {
1637   NearLabel null_seen, init_klass, do_nothing, do_update;
1638 
1639   // Klass = obj is allowed.
1640   const Register tmp = Z_R1;
1641   assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0);
1642   assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0);
1643 
1644   z_lg(tmp, mdo_addr);
1645   if (cmp_done) {
1646     z_brz(null_seen);
1647   } else {
1648     compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen);
1649   }
1650 
1651   verify_oop(obj);
1652   load_klass(klass, obj);
1653 
1654   // Klass seen before, nothing to do (regardless of unknown bit).
1655   z_lgr(Z_R0, tmp);
1656   assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
1657   z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF);
1658   compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing);
1659 
1660   // Already unknown. Nothing to do anymore.
1661   z_tmll(tmp, TypeEntries::type_unknown);
1662   z_brc(Assembler::bcondAllOne, do_nothing);
1663 
1664   z_lgr(Z_R0, tmp);
1665   assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
1666   z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF);
1667   compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass);
1668 
1669   // Different than before. Cannot keep accurate profile.
1670   z_oill(tmp, TypeEntries::type_unknown);
1671   z_bru(do_update);
1672 
1673   bind(init_klass);
1674   // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1675   z_ogr(tmp, klass);
1676   z_bru(do_update);
1677 
1678   bind(null_seen);
1679   // Set null_seen if obj is 0.
1680   z_oill(tmp, TypeEntries::null_seen);
1681   // fallthru: z_bru(do_update);
1682 
1683   bind(do_update);
1684   z_stg(tmp, mdo_addr);
1685 
1686   bind(do_nothing);
1687 }
1688 
profile_arguments_type(Register mdp,Register callee,Register tmp,bool is_virtual)1689 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1690   if (!ProfileInterpreter) {
1691     return;
1692   }
1693 
1694   assert_different_registers(mdp, callee, tmp);
1695 
1696   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1697     Label profile_continue;
1698 
1699     test_method_data_pointer(mdp, profile_continue);
1700 
1701     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1702 
1703     z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp,
1704            is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1705     z_brne(profile_continue);
1706 
1707     if (MethodData::profile_arguments()) {
1708       NearLabel done;
1709       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1710       add2reg(mdp, off_to_args);
1711 
1712       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1713         if (i > 0 || MethodData::profile_return()) {
1714           // If return value type is profiled we may have no argument to profile.
1715           z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1716           add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count());
1717           compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done);
1718         }
1719         z_lg(tmp, Address(callee, Method::const_offset()));
1720         z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1721         // Stack offset o (zero based) from the start of the argument
1722         // list. For n arguments translates into offset n - o - 1 from
1723         // the end of the argument list. But there is an extra slot at
1724         // the top of the stack. So the offset is n - o from Lesp.
1725         z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1726         z_sllg(tmp, tmp, Interpreter::logStackElementSize);
1727         Address stack_slot_addr(tmp, Z_esp);
1728         z_ltg(tmp, stack_slot_addr);
1729 
1730         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1731         profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true);
1732 
1733         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1734         add2reg(mdp, to_add);
1735         off_to_args += to_add;
1736       }
1737 
1738       if (MethodData::profile_return()) {
1739         z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1740         add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1741       }
1742 
1743       bind(done);
1744 
1745       if (MethodData::profile_return()) {
1746         // We're right after the type profile for the last
1747         // argument. Tmp is the number of cells left in the
1748         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1749         // if there's a return to profile.
1750         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1751         z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size));
1752         z_agr(mdp, tmp);
1753       }
1754       z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
1755     } else {
1756       assert(MethodData::profile_return(), "either profile call args or call ret");
1757       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1758     }
1759 
1760     // Mdp points right after the end of the
1761     // CallTypeData/VirtualCallTypeData, right after the cells for the
1762     // return value type if there's one.
1763     bind(profile_continue);
1764   }
1765 }
1766 
profile_return_type(Register mdp,Register ret,Register tmp)1767 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1768   assert_different_registers(mdp, ret, tmp);
1769   if (ProfileInterpreter && MethodData::profile_return()) {
1770     Label profile_continue;
1771 
1772     test_method_data_pointer(mdp, profile_continue);
1773 
1774     if (MethodData::profile_return_jsr292_only()) {
1775       // If we don't profile all invoke bytecodes we must make sure
1776       // it's a bytecode we indeed profile. We can't go back to the
1777       // beginning of the ProfileData we intend to update to check its
1778       // type because we're right after it and we don't known its
1779       // length.
1780       NearLabel do_profile;
1781       Address bc(Z_bcp);
1782       z_lb(tmp, bc);
1783       compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile);
1784       compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile);
1785       get_method(tmp);
1786       // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit.
1787       if (Method::intrinsic_id_size_in_bytes() == 1) {
1788         z_cli(Method::intrinsic_id_offset_in_bytes(), tmp, vmIntrinsics::_compiledLambdaForm);
1789       } else {
1790         assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id");
1791         z_lh(tmp, Method::intrinsic_id_offset_in_bytes(), Z_R0, tmp);
1792         z_chi(tmp, vmIntrinsics::_compiledLambdaForm);
1793       }
1794       z_brne(profile_continue);
1795 
1796       bind(do_profile);
1797     }
1798 
1799     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1800     profile_obj_type(ret, mdo_ret_addr, tmp);
1801 
1802     bind(profile_continue);
1803   }
1804 }
1805 
profile_parameters_type(Register mdp,Register tmp1,Register tmp2)1806 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1807   if (ProfileInterpreter && MethodData::profile_parameters()) {
1808     Label profile_continue, done;
1809 
1810     test_method_data_pointer(mdp, profile_continue);
1811 
1812     // Load the offset of the area within the MDO used for
1813     // parameters. If it's negative we're not profiling any parameters.
1814     Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()));
1815     load_and_test_int2long(tmp1, parm_di_addr);
1816     z_brl(profile_continue);
1817 
1818     // Compute a pointer to the area for parameters from the offset
1819     // and move the pointer to the slot for the last
1820     // parameters. Collect profiling from last parameter down.
1821     // mdo start + parameters offset + array length - 1
1822 
1823     // Pointer to the parameter area in the MDO.
1824     z_agr(mdp, tmp1);
1825 
1826     // Offset of the current profile entry to update.
1827     const Register entry_offset = tmp1;
1828     // entry_offset = array len in number of cells.
1829     z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset()));
1830     // entry_offset (number of cells) = array len - size of 1 entry
1831     add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count());
1832     // entry_offset in bytes
1833     z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1834 
1835     Label loop;
1836     bind(loop);
1837 
1838     Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0));
1839     Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0));
1840 
1841     // Load offset on the stack from the slot for this parameter.
1842     z_lg(tmp2, arg_off);
1843     z_sllg(tmp2, tmp2, Interpreter::logStackElementSize);
1844     z_lcgr(tmp2); // Negate.
1845 
1846     // Profile the parameter.
1847     z_ltg(tmp2, Address(Z_locals, tmp2));
1848     profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true);
1849 
1850     // Go to next parameter.
1851     z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size);
1852     z_brnl(loop);
1853 
1854     bind(profile_continue);
1855   }
1856 }
1857 
1858 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
increment_mask_and_jump(Address counter_addr,int increment,Address mask,Register scratch,bool preloaded,branch_condition cond,Label * where)1859 void InterpreterMacroAssembler::increment_mask_and_jump(Address          counter_addr,
1860                                                         int              increment,
1861                                                         Address          mask,
1862                                                         Register         scratch,
1863                                                         bool             preloaded,
1864                                                         branch_condition cond,
1865                                                         Label           *where) {
1866   assert_different_registers(counter_addr.base(), scratch);
1867   if (preloaded) {
1868     add2reg(scratch, increment);
1869     reg2mem_opt(scratch, counter_addr, false);
1870   } else {
1871     if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) {
1872       z_alsi(counter_addr.disp20(), counter_addr.base(), increment);
1873       mem2reg_signed_opt(scratch, counter_addr);
1874     } else {
1875       mem2reg_signed_opt(scratch, counter_addr);
1876       add2reg(scratch, increment);
1877       reg2mem_opt(scratch, counter_addr, false);
1878     }
1879   }
1880   z_n(scratch, mask);
1881   if (where) { z_brc(cond, *where); }
1882 }
1883 
1884 // Get MethodCounters object for given method. Lazily allocated if necessary.
1885 //   method    - Ptr to Method object.
1886 //   Rcounters - Ptr to MethodCounters object associated with Method object.
1887 //   skip      - Exit point if MethodCounters object can't be created (OOM condition).
get_method_counters(Register Rmethod,Register Rcounters,Label & skip)1888 void InterpreterMacroAssembler::get_method_counters(Register Rmethod,
1889                                                     Register Rcounters,
1890                                                     Label& skip) {
1891   assert_different_registers(Rmethod, Rcounters);
1892 
1893   BLOCK_COMMENT("get MethodCounters object {");
1894 
1895   Label has_counters;
1896   load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset()));
1897   z_brnz(has_counters);
1898 
1899   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod);
1900   z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object.
1901   z_brz(skip); // No MethodCounters, out of memory.
1902 
1903   bind(has_counters);
1904 
1905   BLOCK_COMMENT("} get MethodCounters object");
1906 }
1907 
1908 // Increment invocation counter in MethodCounters object.
1909 // Return (invocation_counter+backedge_counter) as "result" in RctrSum.
1910 // Counter values are all unsigned.
increment_invocation_counter(Register Rcounters,Register RctrSum)1911 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) {
1912   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
1913   assert_different_registers(Rcounters, RctrSum);
1914 
1915   int increment          = InvocationCounter::count_increment;
1916   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1917   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1918 
1919   BLOCK_COMMENT("Increment invocation counter {");
1920 
1921   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1922     // Increment the invocation counter in place,
1923     // then add the incremented value to the backedge counter.
1924     z_l(RctrSum, be_counter_offset, Rcounters);
1925     z_alsi(inv_counter_offset, Rcounters, increment);     // Atomic increment @no extra cost!
1926     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1927     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1928   } else {
1929     // This path is optimized for low register consumption
1930     // at the cost of somewhat higher operand delays.
1931     // It does not need an extra temp register.
1932 
1933     // Update the invocation counter.
1934     z_l(RctrSum, inv_counter_offset, Rcounters);
1935     if (RctrSum == Z_R0) {
1936       z_ahi(RctrSum, increment);
1937     } else {
1938       add2reg(RctrSum, increment);
1939     }
1940     z_st(RctrSum, inv_counter_offset, Rcounters);
1941 
1942     // Mask off the state bits.
1943     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1944 
1945     // Add the backedge counter to the updated invocation counter to
1946     // form the result.
1947     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1948   }
1949 
1950   BLOCK_COMMENT("} Increment invocation counter");
1951 
1952   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
1953 }
1954 
1955 
1956 // increment backedge counter in MethodCounters object.
1957 // return (invocation_counter+backedge_counter) as "result" in RctrSum
1958 // counter values are all unsigned!
increment_backedge_counter(Register Rcounters,Register RctrSum)1959 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) {
1960   assert(UseCompiler, "incrementing must be useful");
1961   assert_different_registers(Rcounters, RctrSum);
1962 
1963   int increment          = InvocationCounter::count_increment;
1964   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1965   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1966 
1967   BLOCK_COMMENT("Increment backedge counter {");
1968 
1969   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1970     // Increment the invocation counter in place,
1971     // then add the incremented value to the backedge counter.
1972     z_l(RctrSum, inv_counter_offset, Rcounters);
1973     z_alsi(be_counter_offset, Rcounters, increment);      // Atomic increment @no extra cost!
1974     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1975     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1976   } else {
1977     // This path is optimized for low register consumption
1978     // at the cost of somewhat higher operand delays.
1979     // It does not need an extra temp register.
1980 
1981     // Update the invocation counter.
1982     z_l(RctrSum, be_counter_offset, Rcounters);
1983     if (RctrSum == Z_R0) {
1984       z_ahi(RctrSum, increment);
1985     } else {
1986       add2reg(RctrSum, increment);
1987     }
1988     z_st(RctrSum, be_counter_offset, Rcounters);
1989 
1990     // Mask off the state bits.
1991     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1992 
1993     // Add the backedge counter to the updated invocation counter to
1994     // form the result.
1995     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1996   }
1997 
1998   BLOCK_COMMENT("} Increment backedge counter");
1999 
2000   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2001 }
2002 
2003 // Add an InterpMonitorElem to stack (see frame_s390.hpp).
add_monitor_to_stack(bool stack_is_empty,Register Rtemp1,Register Rtemp2,Register Rtemp3)2004 void InterpreterMacroAssembler::add_monitor_to_stack(bool     stack_is_empty,
2005                                                      Register Rtemp1,
2006                                                      Register Rtemp2,
2007                                                      Register Rtemp3) {
2008 
2009   const Register Rcurr_slot = Rtemp1;
2010   const Register Rlimit     = Rtemp2;
2011   const jint delta = -frame::interpreter_frame_monitor_size() * wordSize;
2012 
2013   assert((delta & LongAlignmentMask) == 0,
2014          "sizeof BasicObjectLock must be even number of doublewords");
2015   assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize");
2016   assert(Rcurr_slot != Z_R0, "Register must be usable as base register");
2017   assert_different_registers(Rlimit, Rcurr_slot, Rtemp3);
2018 
2019   get_monitors(Rlimit);
2020 
2021   // Adjust stack pointer for additional monitor entry.
2022   resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false);
2023 
2024   if (!stack_is_empty) {
2025     // Must copy stack contents down.
2026     NearLabel next, done;
2027 
2028     // Rtemp := addr(Tos), Z_esp is pointing below it!
2029     add2reg(Rcurr_slot, wordSize, Z_esp);
2030 
2031     // Nothing to do, if already at monitor area.
2032     compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done);
2033 
2034     bind(next);
2035 
2036     // Move one stack slot.
2037     mem2reg_opt(Rtemp3, Address(Rcurr_slot));
2038     reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta));
2039     add2reg(Rcurr_slot, wordSize);
2040     compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done?
2041 
2042     bind(done);
2043     // Done copying stack.
2044   }
2045 
2046   // Adjust expression stack and monitor pointers.
2047   add2reg(Z_esp, delta);
2048   add2reg(Rlimit, delta);
2049   save_monitors(Rlimit);
2050 }
2051 
2052 // Note: Index holds the offset in bytes afterwards.
2053 // You can use this to store a new value (with Llocals as the base).
access_local_int(Register index,Register dst)2054 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) {
2055   z_sllg(index, index, LogBytesPerWord);
2056   mem2reg_opt(dst, Address(Z_locals, index), false);
2057 }
2058 
verify_oop(Register reg,TosState state)2059 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2060   if (state == atos) { MacroAssembler::verify_oop(reg); }
2061 }
2062 
2063 // Inline assembly for:
2064 //
2065 // if (thread is in interp_only_mode) {
2066 //   InterpreterRuntime::post_method_entry();
2067 // }
2068 
notify_method_entry()2069 void InterpreterMacroAssembler::notify_method_entry() {
2070 
2071   // JVMTI
2072   // Whenever JVMTI puts a thread in interp_only_mode, method
2073   // entry/exit events are sent for that thread to track stack
2074   // depth. If it is possible to enter interp_only_mode we add
2075   // the code to check if the event should be sent.
2076   if (JvmtiExport::can_post_interpreter_events()) {
2077     Label jvmti_post_done;
2078     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2079     z_bre(jvmti_post_done);
2080     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2081     bind(jvmti_post_done);
2082   }
2083 }
2084 
2085 // Inline assembly for:
2086 //
2087 // if (thread is in interp_only_mode) {
2088 //   if (!native_method) save result
2089 //   InterpreterRuntime::post_method_exit();
2090 //   if (!native_method) restore result
2091 // }
2092 // if (DTraceMethodProbes) {
2093 //   SharedRuntime::dtrace_method_exit(thread, method);
2094 // }
2095 //
2096 // For native methods their result is stored in z_ijava_state.lresult
2097 // and z_ijava_state.fresult before coming here.
2098 // Java methods have their result stored in the expression stack.
2099 //
2100 // Notice the dependency to frame::interpreter_frame_result().
notify_method_exit(bool native_method,TosState state,NotifyMethodExitMode mode)2101 void InterpreterMacroAssembler::notify_method_exit(bool native_method,
2102                                                    TosState state,
2103                                                    NotifyMethodExitMode mode) {
2104   // JVMTI
2105   // Whenever JVMTI puts a thread in interp_only_mode, method
2106   // entry/exit events are sent for that thread to track stack
2107   // depth. If it is possible to enter interp_only_mode we add
2108   // the code to check if the event should be sent.
2109   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2110     Label jvmti_post_done;
2111     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2112     z_bre(jvmti_post_done);
2113     if (!native_method) push(state); // see frame::interpreter_frame_result()
2114     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2115     if (!native_method) pop(state);
2116     bind(jvmti_post_done);
2117   }
2118 
2119 #if 0
2120   // Dtrace currently not supported on z/Architecture.
2121   {
2122     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2123     push(state);
2124     get_method(c_rarg1);
2125     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2126                  r15_thread, c_rarg1);
2127     pop(state);
2128   }
2129 #endif
2130 }
2131 
skip_if_jvmti_mode(Label & Lskip,Register Rscratch)2132 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) {
2133   if (!JvmtiExport::can_post_interpreter_events()) {
2134     return;
2135   }
2136 
2137   load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2138   z_brnz(Lskip);
2139 
2140 }
2141 
2142 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP.
2143 // The return pc is loaded into the register return_pc.
2144 //
2145 // Registers updated:
2146 //     return_pc  - The return pc of the calling frame.
2147 //     tmp1, tmp2 - scratch
pop_interpreter_frame(Register return_pc,Register tmp1,Register tmp2)2148 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) {
2149   // F0  Z_SP -> caller_sp (F1's)
2150   //             ...
2151   //             sender_sp (F1's)
2152   //             ...
2153   // F1  Z_fp -> caller_sp (F2's)
2154   //             return_pc (Continuation after return from F0.)
2155   //             ...
2156   // F2          caller_sp
2157 
2158   // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications
2159   // (a) by a c2i adapter and (b) by generate_fixed_frame().
2160   // In case (a) the new top frame F1 is an unextended compiled frame.
2161   // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME.
2162 
2163   // Case (b) seems to be redundant when returning to a interpreted caller,
2164   // because then the caller's top_frame_sp is installed as sp (see
2165   // TemplateInterpreterGenerator::generate_return_entry_for ()). But
2166   // pop_interpreter_frame() is also used in exception handling and there the
2167   // frame type of the caller is unknown, therefore top_frame_sp cannot be used,
2168   // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME.
2169 
2170   Register R_f1_sender_sp = tmp1;
2171   Register R_f2_sp = tmp2;
2172 
2173   // Tirst check the for the interpreter frame's magic.
2174   asm_assert_ijava_state_magic(R_f2_sp/*tmp*/);
2175   z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp);
2176   z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp);
2177   if (return_pc->is_valid())
2178     z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2179   // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp.
2180   resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/);
2181 
2182 #ifdef ASSERT
2183   // The return_pc in the new top frame is dead... at least that's my
2184   // current understanding; to assert this I overwrite it.
2185   load_const_optimized(Z_ARG3, 0xb00b1);
2186   z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2187 #endif
2188 }
2189 
verify_FPU(int stack_depth,TosState state)2190 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2191   if (VerifyFPU) {
2192     unimplemented("verfiyFPU");
2193   }
2194 }
2195