1 /*
2  * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2016, 2018 SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "gc/shared/barrierSetAssembler.hpp"
29 #include "interpreter/interpreter.hpp"
30 #include "interpreter/interpreterRuntime.hpp"
31 #include "interpreter/interp_masm.hpp"
32 #include "interpreter/templateTable.hpp"
33 #include "memory/universe.hpp"
34 #include "oops/objArrayKlass.hpp"
35 #include "oops/oop.inline.hpp"
36 #include "prims/methodHandles.hpp"
37 #include "runtime/frame.inline.hpp"
38 #include "runtime/safepointMechanism.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/stubRoutines.hpp"
41 #include "runtime/synchronizer.hpp"
42 
43 #ifdef PRODUCT
44 #define __ _masm->
45 #define BLOCK_COMMENT(str)
46 #define BIND(label)        __ bind(label);
47 #else
48 #define __ (PRODUCT_ONLY(false&&)Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
49 #define BLOCK_COMMENT(str) __ block_comment(str)
50 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
51 #endif
52 
53 // The assumed minimum size of a BranchTableBlock.
54 // The actual size of each block heavily depends on the CPU capabilities and,
55 // of course, on the logic implemented in each block.
56 #ifdef ASSERT
57   #define BTB_MINSIZE 256
58 #else
59   #define BTB_MINSIZE  64
60 #endif
61 
62 #ifdef ASSERT
63 // Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
64 #define BTB_BEGIN(lbl, alignment, name)                                        \
65   __ align_address(alignment);                                                 \
66   __ bind(lbl);                                                                \
67   { unsigned int b_off = __ offset();                                          \
68     uintptr_t   b_addr = (uintptr_t)__ pc();                                   \
69     __ z_larl(Z_R0, (int64_t)0);     /* Check current address alignment. */    \
70     __ z_slgr(Z_R0, br_tab);         /* Current Address must be equal    */    \
71     __ z_slgr(Z_R0, flags);          /* to calculated branch target.     */    \
72     __ z_brc(Assembler::bcondLogZero, 3); /* skip trap if ok. */               \
73     __ z_illtrap(0x55);                                                        \
74     guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
75 
76 // Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
77 #define BTB_END(lbl, alignment, name)                                          \
78     uintptr_t   e_addr = (uintptr_t)__ pc();                                   \
79     unsigned int e_off = __ offset();                                          \
80     unsigned int len   = e_off-b_off;                                          \
81     if (len > alignment) {                                                     \
82       tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s",        \
83                     len, alignment, e_addr-len, name);                         \
84       guarantee(len <= alignment, "block too large");                          \
85     }                                                                          \
86     guarantee(len == e_addr-b_addr, "block len mismatch");                     \
87   }
88 #else
89 // Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
90 #define BTB_BEGIN(lbl, alignment, name)                                        \
91   __ align_address(alignment);                                                 \
92   __ bind(lbl);                                                                \
93   { unsigned int b_off = __ offset();                                          \
94     uintptr_t   b_addr = (uintptr_t)__ pc();                                   \
95     guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
96 
97 // Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
98 #define BTB_END(lbl, alignment, name)                                          \
99     uintptr_t   e_addr = (uintptr_t)__ pc();                                   \
100     unsigned int e_off = __ offset();                                          \
101     unsigned int len   = e_off-b_off;                                          \
102     if (len > alignment) {                                                     \
103       tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s",        \
104                     len, alignment, e_addr-len, name);                         \
105       guarantee(len <= alignment, "block too large");                          \
106     }                                                                          \
107     guarantee(len == e_addr-b_addr, "block len mismatch");                     \
108   }
109 #endif // ASSERT
110 
111 // Platform-dependent initialization.
112 
pd_initialize()113 void TemplateTable::pd_initialize() {
114   // No specific initialization.
115 }
116 
117 // Address computation: local variables
118 
iaddress(int n)119 static inline Address iaddress(int n) {
120   return Address(Z_locals, Interpreter::local_offset_in_bytes(n));
121 }
122 
laddress(int n)123 static inline Address laddress(int n) {
124   return iaddress(n + 1);
125 }
126 
faddress(int n)127 static inline Address faddress(int n) {
128   return iaddress(n);
129 }
130 
daddress(int n)131 static inline Address daddress(int n) {
132   return laddress(n);
133 }
134 
aaddress(int n)135 static inline Address aaddress(int n) {
136   return iaddress(n);
137 }
138 
139 // Pass NULL, if no shift instruction should be emitted.
iaddress(InterpreterMacroAssembler * masm,Register r)140 static inline Address iaddress(InterpreterMacroAssembler *masm, Register r) {
141   if (masm) {
142     masm->z_sllg(r, r, LogBytesPerWord);  // index2bytes
143   }
144   return Address(Z_locals, r, Interpreter::local_offset_in_bytes(0));
145 }
146 
147 // Pass NULL, if no shift instruction should be emitted.
laddress(InterpreterMacroAssembler * masm,Register r)148 static inline Address laddress(InterpreterMacroAssembler *masm, Register r) {
149   if (masm) {
150     masm->z_sllg(r, r, LogBytesPerWord);  // index2bytes
151   }
152   return Address(Z_locals, r, Interpreter::local_offset_in_bytes(1) );
153 }
154 
faddress(InterpreterMacroAssembler * masm,Register r)155 static inline Address faddress(InterpreterMacroAssembler *masm, Register r) {
156   return iaddress(masm, r);
157 }
158 
daddress(InterpreterMacroAssembler * masm,Register r)159 static inline Address daddress(InterpreterMacroAssembler *masm, Register r) {
160   return laddress(masm, r);
161 }
162 
aaddress(InterpreterMacroAssembler * masm,Register r)163 static inline Address aaddress(InterpreterMacroAssembler *masm, Register r) {
164   return iaddress(masm, r);
165 }
166 
167 // At top of Java expression stack which may be different than esp(). It
168 // isn't for category 1 objects.
at_tos(int slot=0)169 static inline Address at_tos(int slot = 0) {
170   return Address(Z_esp, Interpreter::expr_offset_in_bytes(slot));
171 }
172 
173 // Condition conversion
j_not(TemplateTable::Condition cc)174 static Assembler::branch_condition j_not(TemplateTable::Condition cc) {
175   switch (cc) {
176     case TemplateTable::equal :
177       return Assembler::bcondNotEqual;
178     case TemplateTable::not_equal :
179       return Assembler::bcondEqual;
180     case TemplateTable::less :
181       return Assembler::bcondNotLow;
182     case TemplateTable::less_equal :
183       return Assembler::bcondHigh;
184     case TemplateTable::greater :
185       return Assembler::bcondNotHigh;
186     case TemplateTable::greater_equal:
187       return Assembler::bcondLow;
188   }
189   ShouldNotReachHere();
190   return Assembler::bcondZero;
191 }
192 
193 // Do an oop store like *(base + offset) = val
194 // offset can be a register or a constant.
do_oop_store(InterpreterMacroAssembler * _masm,const Address & addr,Register val,Register tmp1,Register tmp2,Register tmp3,DecoratorSet decorators)195 static void do_oop_store(InterpreterMacroAssembler* _masm,
196                          const Address&     addr,
197                          Register           val,         // Noreg means always null.
198                          Register           tmp1,
199                          Register           tmp2,
200                          Register           tmp3,
201                          DecoratorSet       decorators) {
202   assert_different_registers(tmp1, tmp2, tmp3, val, addr.base());
203   __ store_heap_oop(val, addr, tmp1, tmp2, tmp3, decorators);
204 }
205 
do_oop_load(InterpreterMacroAssembler * _masm,const Address & addr,Register dst,Register tmp1,Register tmp2,DecoratorSet decorators)206 static void do_oop_load(InterpreterMacroAssembler* _masm,
207                         const Address& addr,
208                         Register dst,
209                         Register tmp1,
210                         Register tmp2,
211                         DecoratorSet decorators) {
212   assert_different_registers(addr.base(), tmp1, tmp2);
213   assert_different_registers(dst, tmp1, tmp2);
214   __ load_heap_oop(dst, addr, tmp1, tmp2, decorators);
215 }
216 
at_bcp(int offset)217 Address TemplateTable::at_bcp(int offset) {
218   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
219   return Address(Z_bcp, offset);
220 }
221 
patch_bytecode(Bytecodes::Code bc,Register bc_reg,Register temp_reg,bool load_bc_into_bc_reg,int byte_no)222 void TemplateTable::patch_bytecode(Bytecodes::Code bc,
223                                    Register        bc_reg,
224                                    Register        temp_reg,
225                                    bool            load_bc_into_bc_reg, // = true
226                                    int             byte_no) {
227   if (!RewriteBytecodes) { return; }
228 
229   NearLabel L_patch_done;
230   BLOCK_COMMENT("patch_bytecode {");
231 
232   switch (bc) {
233     case Bytecodes::_fast_aputfield:
234     case Bytecodes::_fast_bputfield:
235     case Bytecodes::_fast_zputfield:
236     case Bytecodes::_fast_cputfield:
237     case Bytecodes::_fast_dputfield:
238     case Bytecodes::_fast_fputfield:
239     case Bytecodes::_fast_iputfield:
240     case Bytecodes::_fast_lputfield:
241     case Bytecodes::_fast_sputfield:
242       {
243         // We skip bytecode quickening for putfield instructions when
244         // the put_code written to the constant pool cache is zero.
245         // This is required so that every execution of this instruction
246         // calls out to InterpreterRuntime::resolve_get_put to do
247         // additional, required work.
248         assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
249         assert(load_bc_into_bc_reg, "we use bc_reg as temp");
250         __ get_cache_and_index_and_bytecode_at_bcp(Z_R1_scratch, bc_reg,
251                                                    temp_reg, byte_no, 1);
252         __ load_const_optimized(bc_reg, bc);
253         __ compareU32_and_branch(temp_reg, (intptr_t)0,
254                                  Assembler::bcondZero, L_patch_done);
255       }
256       break;
257     default:
258       assert(byte_no == -1, "sanity");
259       // The pair bytecodes have already done the load.
260       if (load_bc_into_bc_reg) {
261         __ load_const_optimized(bc_reg, bc);
262       }
263       break;
264   }
265 
266   if (JvmtiExport::can_post_breakpoint()) {
267 
268     Label   L_fast_patch;
269 
270     // If a breakpoint is present we can't rewrite the stream directly.
271     __ z_cli(at_bcp(0), Bytecodes::_breakpoint);
272     __ z_brne(L_fast_patch);
273     __ get_method(temp_reg);
274     // Let breakpoint table handling rewrite to quicker bytecode.
275     __ call_VM_static(noreg,
276                       CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at),
277                       temp_reg, Z_R13, bc_reg);
278     __ z_bru(L_patch_done);
279 
280     __ bind(L_fast_patch);
281   }
282 
283 #ifdef ASSERT
284   NearLabel   L_okay;
285 
286   // We load into 64 bits, since this works on any CPU.
287   __ z_llgc(temp_reg, at_bcp(0));
288   __ compareU32_and_branch(temp_reg, Bytecodes::java_code(bc),
289                             Assembler::bcondEqual, L_okay        );
290   __ compareU32_and_branch(temp_reg, bc_reg, Assembler::bcondEqual, L_okay);
291   __ stop_static("patching the wrong bytecode");
292   __ bind(L_okay);
293 #endif
294 
295   // Patch bytecode.
296   __ z_stc(bc_reg, at_bcp(0));
297 
298   __ bind(L_patch_done);
299   BLOCK_COMMENT("} patch_bytecode");
300 }
301 
302 // Individual instructions
303 
nop()304 void TemplateTable::nop() {
305   transition(vtos, vtos);
306 }
307 
shouldnotreachhere()308 void TemplateTable::shouldnotreachhere() {
309   transition(vtos, vtos);
310   __ stop("shouldnotreachhere bytecode");
311 }
312 
aconst_null()313 void TemplateTable::aconst_null() {
314   transition(vtos, atos);
315   __ clear_reg(Z_tos, true, false);
316 }
317 
iconst(int value)318 void TemplateTable::iconst(int value) {
319   transition(vtos, itos);
320   // Zero extension of the iconst makes zero extension at runtime obsolete.
321   __ load_const_optimized(Z_tos, ((unsigned long)(unsigned int)value));
322 }
323 
lconst(int value)324 void TemplateTable::lconst(int value) {
325   transition(vtos, ltos);
326   __ load_const_optimized(Z_tos, value);
327 }
328 
329 // No pc-relative load/store for floats.
fconst(int value)330 void TemplateTable::fconst(int value) {
331   transition(vtos, ftos);
332   static float   one = 1.0f, two = 2.0f;
333 
334   switch (value) {
335     case 0:
336       __ z_lzer(Z_ftos);
337       return;
338     case 1:
339       __ load_absolute_address(Z_R1_scratch, (address) &one);
340       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
341       return;
342     case 2:
343       __ load_absolute_address(Z_R1_scratch, (address) &two);
344       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
345       return;
346     default:
347       ShouldNotReachHere();
348       return;
349   }
350 }
351 
dconst(int value)352 void TemplateTable::dconst(int value) {
353   transition(vtos, dtos);
354   static double one = 1.0;
355 
356   switch (value) {
357     case 0:
358       __ z_lzdr(Z_ftos);
359       return;
360     case 1:
361       __ load_absolute_address(Z_R1_scratch, (address) &one);
362       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch));
363       return;
364     default:
365       ShouldNotReachHere();
366       return;
367   }
368 }
369 
bipush()370 void TemplateTable::bipush() {
371   transition(vtos, itos);
372   __ z_lb(Z_tos, at_bcp(1));
373 }
374 
sipush()375 void TemplateTable::sipush() {
376   transition(vtos, itos);
377   __ get_2_byte_integer_at_bcp(Z_tos, 1, InterpreterMacroAssembler::Signed);
378 }
379 
380 
ldc(bool wide)381 void TemplateTable::ldc(bool wide) {
382   transition(vtos, vtos);
383   Label call_ldc, notFloat, notClass, notInt, Done;
384   const Register RcpIndex = Z_tmp_1;
385   const Register Rtags = Z_ARG2;
386 
387   if (wide) {
388     __ get_2_byte_integer_at_bcp(RcpIndex, 1, InterpreterMacroAssembler::Unsigned);
389   } else {
390     __ z_llgc(RcpIndex, at_bcp(1));
391   }
392 
393   __ get_cpool_and_tags(Z_tmp_2, Rtags);
394 
395   const int      base_offset = ConstantPool::header_size() * wordSize;
396   const int      tags_offset = Array<u1>::base_offset_in_bytes();
397   const Register Raddr_type = Rtags;
398 
399   // Get address of type.
400   __ add2reg_with_index(Raddr_type, tags_offset, RcpIndex, Rtags);
401 
402   __ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClass);
403   __ z_bre(call_ldc);    // Unresolved class - get the resolved class.
404 
405   __ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClassInError);
406   __ z_bre(call_ldc);    // Unresolved class in error state - call into runtime
407                          // to throw the error from the first resolution attempt.
408 
409   __ z_cli(0, Raddr_type, JVM_CONSTANT_Class);
410   __ z_brne(notClass);   // Resolved class - need to call vm to get java
411                          // mirror of the class.
412 
413   // We deal with a class. Call vm to do the appropriate.
414   __ bind(call_ldc);
415   __ load_const_optimized(Z_ARG2, wide);
416   call_VM(Z_RET, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), Z_ARG2);
417   __ push_ptr(Z_RET);
418   __ z_bru(Done);
419 
420   // Not a class.
421   __ bind(notClass);
422   Register RcpOffset = RcpIndex;
423   __ z_sllg(RcpOffset, RcpIndex, LogBytesPerWord); // Convert index to offset.
424   __ z_cli(0, Raddr_type, JVM_CONSTANT_Float);
425   __ z_brne(notFloat);
426 
427   // ftos
428   __ mem2freg_opt(Z_ftos, Address(Z_tmp_2, RcpOffset, base_offset), false);
429   __ push_f();
430   __ z_bru(Done);
431 
432   __ bind(notFloat);
433   __ z_cli(0, Raddr_type, JVM_CONSTANT_Integer);
434   __ z_brne(notInt);
435 
436   // itos
437   __ mem2reg_opt(Z_tos, Address(Z_tmp_2, RcpOffset, base_offset), false);
438   __ push_i(Z_tos);
439   __ z_bru(Done);
440 
441   // assume the tag is for condy; if not, the VM runtime will tell us
442   __ bind(notInt);
443   condy_helper(Done);
444 
445   __ bind(Done);
446 }
447 
448 // Fast path for caching oop constants.
449 // %%% We should use this to handle Class and String constants also.
450 // %%% It will simplify the ldc/primitive path considerably.
fast_aldc(bool wide)451 void TemplateTable::fast_aldc(bool wide) {
452   transition(vtos, atos);
453 
454   const Register index = Z_tmp_2;
455   int            index_size = wide ? sizeof(u2) : sizeof(u1);
456   Label          L_do_resolve, L_resolved;
457 
458   // We are resolved if the resolved reference cache entry contains a
459   // non-null object (CallSite, etc.).
460   __ get_cache_index_at_bcp(index, 1, index_size);  // Load index.
461   __ load_resolved_reference_at_index(Z_tos, index);
462   __ z_ltgr(Z_tos, Z_tos);
463   __ z_bre(L_do_resolve);
464 
465   // Convert null sentinel to NULL.
466   __ load_const_optimized(Z_R1_scratch, (intptr_t)Universe::the_null_sentinel_addr());
467   __ z_cg(Z_tos, Address(Z_R1_scratch));
468   __ z_brne(L_resolved);
469   __ clear_reg(Z_tos);
470   __ z_bru(L_resolved);
471 
472   __ bind(L_do_resolve);
473   // First time invocation - must resolve first.
474   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
475   __ load_const_optimized(Z_ARG1, (int)bytecode());
476   __ call_VM(Z_tos, entry, Z_ARG1);
477 
478   __ bind(L_resolved);
479   __ verify_oop(Z_tos);
480 }
481 
ldc2_w()482 void TemplateTable::ldc2_w() {
483   transition(vtos, vtos);
484   Label notDouble, notLong, Done;
485 
486   // Z_tmp_1 = index of cp entry
487   __ get_2_byte_integer_at_bcp(Z_tmp_1, 1, InterpreterMacroAssembler::Unsigned);
488 
489   __ get_cpool_and_tags(Z_tmp_2, Z_tos);
490 
491   const int base_offset = ConstantPool::header_size() * wordSize;
492   const int tags_offset = Array<u1>::base_offset_in_bytes();
493 
494   // Get address of type.
495   __ add2reg_with_index(Z_tos, tags_offset, Z_tos, Z_tmp_1);
496 
497   // Index needed in both branches, so calculate here.
498   __ z_sllg(Z_tmp_1, Z_tmp_1, LogBytesPerWord);  // index2bytes
499 
500   // Check type.
501   __ z_cli(0, Z_tos, JVM_CONSTANT_Double);
502   __ z_brne(notDouble);
503   // dtos
504   __ mem2freg_opt(Z_ftos, Address(Z_tmp_2, Z_tmp_1, base_offset));
505   __ push_d();
506   __ z_bru(Done);
507 
508   __ bind(notDouble);
509   __ z_cli(0, Z_tos, JVM_CONSTANT_Long);
510   __ z_brne(notLong);
511   // ltos
512   __ mem2reg_opt(Z_tos, Address(Z_tmp_2, Z_tmp_1, base_offset));
513   __ push_l();
514   __ z_bru(Done);
515 
516   __ bind(notLong);
517   condy_helper(Done);
518 
519   __ bind(Done);
520 }
521 
condy_helper(Label & Done)522 void TemplateTable::condy_helper(Label& Done) {
523   const Register obj   = Z_tmp_1;
524   const Register off   = Z_tmp_2;
525   const Register flags = Z_ARG1;
526   const Register rarg  = Z_ARG2;
527   __ load_const_optimized(rarg, (int)bytecode());
528   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
529   __ get_vm_result_2(flags);
530 
531   // VMr = obj = base address to find primitive value to push
532   // VMr2 = flags = (tos, off) using format of CPCE::_flags
533   assert(ConstantPoolCacheEntry::field_index_mask == 0xffff, "or use other instructions");
534   __ z_llghr(off, flags);
535   const Address field(obj, off);
536 
537   // What sort of thing are we loading?
538   __ z_srl(flags, ConstantPoolCacheEntry::tos_state_shift);
539   // Make sure we don't need to mask flags for tos_state after the above shift.
540   ConstantPoolCacheEntry::verify_tos_state_shift();
541 
542   switch (bytecode()) {
543   case Bytecodes::_ldc:
544   case Bytecodes::_ldc_w:
545     {
546       // tos in (itos, ftos, stos, btos, ctos, ztos)
547       Label notInt, notFloat, notShort, notByte, notChar, notBool;
548       __ z_cghi(flags, itos);
549       __ z_brne(notInt);
550       // itos
551       __ z_l(Z_tos, field);
552       __ push(itos);
553       __ z_bru(Done);
554 
555       __ bind(notInt);
556       __ z_cghi(flags, ftos);
557       __ z_brne(notFloat);
558       // ftos
559       __ z_le(Z_ftos, field);
560       __ push(ftos);
561       __ z_bru(Done);
562 
563       __ bind(notFloat);
564       __ z_cghi(flags, stos);
565       __ z_brne(notShort);
566       // stos
567       __ z_lh(Z_tos, field);
568       __ push(stos);
569       __ z_bru(Done);
570 
571       __ bind(notShort);
572       __ z_cghi(flags, btos);
573       __ z_brne(notByte);
574       // btos
575       __ z_lb(Z_tos, field);
576       __ push(btos);
577       __ z_bru(Done);
578 
579       __ bind(notByte);
580       __ z_cghi(flags, ctos);
581       __ z_brne(notChar);
582       // ctos
583       __ z_llh(Z_tos, field);
584       __ push(ctos);
585       __ z_bru(Done);
586 
587       __ bind(notChar);
588       __ z_cghi(flags, ztos);
589       __ z_brne(notBool);
590       // ztos
591       __ z_lb(Z_tos, field);
592       __ push(ztos);
593       __ z_bru(Done);
594 
595       __ bind(notBool);
596       break;
597     }
598 
599   case Bytecodes::_ldc2_w:
600     {
601       Label notLong, notDouble;
602       __ z_cghi(flags, ltos);
603       __ z_brne(notLong);
604       // ltos
605       __ z_lg(Z_tos, field);
606       __ push(ltos);
607       __ z_bru(Done);
608 
609       __ bind(notLong);
610       __ z_cghi(flags, dtos);
611       __ z_brne(notDouble);
612       // dtos
613       __ z_ld(Z_ftos, field);
614       __ push(dtos);
615       __ z_bru(Done);
616 
617       __ bind(notDouble);
618       break;
619     }
620 
621   default:
622     ShouldNotReachHere();
623   }
624 
625   __ stop("bad ldc/condy");
626 }
627 
locals_index(Register reg,int offset)628 void TemplateTable::locals_index(Register reg, int offset) {
629   __ z_llgc(reg, at_bcp(offset));
630   __ z_lcgr(reg);
631 }
632 
iload()633 void TemplateTable::iload() {
634   iload_internal();
635 }
636 
nofast_iload()637 void TemplateTable::nofast_iload() {
638   iload_internal(may_not_rewrite);
639 }
640 
iload_internal(RewriteControl rc)641 void TemplateTable::iload_internal(RewriteControl rc) {
642   transition(vtos, itos);
643 
644   if (RewriteFrequentPairs && rc == may_rewrite) {
645     NearLabel rewrite, done;
646     const Register bc = Z_ARG4;
647 
648     assert(Z_R1_scratch != bc, "register damaged");
649 
650     // Get next byte.
651     __ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_iload)));
652 
653     // If _iload, wait to rewrite to iload2. We only want to rewrite the
654     // last two iloads in a pair. Comparing against fast_iload means that
655     // the next bytecode is neither an iload or a caload, and therefore
656     // an iload pair.
657     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_iload,
658                              Assembler::bcondEqual, done);
659 
660     __ load_const_optimized(bc, Bytecodes::_fast_iload2);
661     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_iload,
662                              Assembler::bcondEqual, rewrite);
663 
664     // If _caload, rewrite to fast_icaload.
665     __ load_const_optimized(bc, Bytecodes::_fast_icaload);
666     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_caload,
667                              Assembler::bcondEqual, rewrite);
668 
669     // Rewrite so iload doesn't check again.
670     __ load_const_optimized(bc, Bytecodes::_fast_iload);
671 
672     // rewrite
673     // bc: fast bytecode
674     __ bind(rewrite);
675     patch_bytecode(Bytecodes::_iload, bc, Z_R1_scratch, false);
676 
677     __ bind(done);
678 
679   }
680 
681   // Get the local value into tos.
682   locals_index(Z_R1_scratch);
683   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
684 }
685 
fast_iload2()686 void TemplateTable::fast_iload2() {
687   transition(vtos, itos);
688 
689   locals_index(Z_R1_scratch);
690   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
691   __ push_i(Z_tos);
692   locals_index(Z_R1_scratch, 3);
693   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
694 }
695 
fast_iload()696 void TemplateTable::fast_iload() {
697   transition(vtos, itos);
698 
699   locals_index(Z_R1_scratch);
700   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
701 }
702 
lload()703 void TemplateTable::lload() {
704   transition(vtos, ltos);
705 
706   locals_index(Z_R1_scratch);
707   __ mem2reg_opt(Z_tos, laddress(_masm, Z_R1_scratch));
708 }
709 
fload()710 void TemplateTable::fload() {
711   transition(vtos, ftos);
712 
713   locals_index(Z_R1_scratch);
714   __ mem2freg_opt(Z_ftos, faddress(_masm, Z_R1_scratch), false);
715 }
716 
dload()717 void TemplateTable::dload() {
718   transition(vtos, dtos);
719 
720   locals_index(Z_R1_scratch);
721   __ mem2freg_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
722 }
723 
aload()724 void TemplateTable::aload() {
725   transition(vtos, atos);
726 
727   locals_index(Z_R1_scratch);
728   __ mem2reg_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
729 }
730 
locals_index_wide(Register reg)731 void TemplateTable::locals_index_wide(Register reg) {
732   __ get_2_byte_integer_at_bcp(reg, 2, InterpreterMacroAssembler::Unsigned);
733   __ z_lcgr(reg);
734 }
735 
wide_iload()736 void TemplateTable::wide_iload() {
737   transition(vtos, itos);
738 
739   locals_index_wide(Z_tmp_1);
740   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
741 }
742 
wide_lload()743 void TemplateTable::wide_lload() {
744   transition(vtos, ltos);
745 
746   locals_index_wide(Z_tmp_1);
747   __ mem2reg_opt(Z_tos, laddress(_masm, Z_tmp_1));
748 }
749 
wide_fload()750 void TemplateTable::wide_fload() {
751   transition(vtos, ftos);
752 
753   locals_index_wide(Z_tmp_1);
754   __ mem2freg_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
755 }
756 
wide_dload()757 void TemplateTable::wide_dload() {
758   transition(vtos, dtos);
759 
760   locals_index_wide(Z_tmp_1);
761   __ mem2freg_opt(Z_ftos, daddress(_masm, Z_tmp_1));
762 }
763 
wide_aload()764 void TemplateTable::wide_aload() {
765   transition(vtos, atos);
766 
767   locals_index_wide(Z_tmp_1);
768   __ mem2reg_opt(Z_tos, aaddress(_masm, Z_tmp_1));
769 }
770 
index_check(Register array,Register index,unsigned int shift)771 void TemplateTable::index_check(Register array, Register index, unsigned int shift) {
772   assert_different_registers(Z_R1_scratch, array, index);
773 
774   // Check array.
775   __ null_check(array, Z_R0_scratch, arrayOopDesc::length_offset_in_bytes());
776 
777   // Sign extend index for use by indexed load.
778   __ z_lgfr(index, index);
779 
780   // Check index.
781   Label index_ok;
782   __ z_cl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
783   __ z_brl(index_ok);
784   __ lgr_if_needed(Z_ARG3, index); // See generate_ArrayIndexOutOfBounds_handler().
785   // Pass the array to create more detailed exceptions.
786   __ lgr_if_needed(Z_ARG2, array); // See generate_ArrayIndexOutOfBounds_handler().
787   __ load_absolute_address(Z_R1_scratch,
788                            Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
789   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
790   __ bind(index_ok);
791 
792   if (shift > 0)
793     __ z_sllg(index, index, shift);
794 }
795 
iaload()796 void TemplateTable::iaload() {
797   transition(itos, itos);
798 
799   __ pop_ptr(Z_tmp_1);  // array
800   // Index is in Z_tos.
801   Register index = Z_tos;
802   index_check(Z_tmp_1, index, LogBytesPerInt); // Kills Z_ARG3.
803   // Load the value.
804   __ mem2reg_opt(Z_tos,
805                  Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
806                  false);
807 }
808 
laload()809 void TemplateTable::laload() {
810   transition(itos, ltos);
811 
812   __ pop_ptr(Z_tmp_2);
813   // Z_tos   : index
814   // Z_tmp_2 : array
815   Register index = Z_tos;
816   index_check(Z_tmp_2, index, LogBytesPerLong);
817   __ mem2reg_opt(Z_tos,
818                  Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_LONG)));
819 }
820 
faload()821 void TemplateTable::faload() {
822   transition(itos, ftos);
823 
824   __ pop_ptr(Z_tmp_2);
825   // Z_tos   : index
826   // Z_tmp_2 : array
827   Register index = Z_tos;
828   index_check(Z_tmp_2, index, LogBytesPerInt);
829   __ mem2freg_opt(Z_ftos,
830                   Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
831                   false);
832 }
833 
daload()834 void TemplateTable::daload() {
835   transition(itos, dtos);
836 
837   __ pop_ptr(Z_tmp_2);
838   // Z_tos   : index
839   // Z_tmp_2 : array
840   Register index = Z_tos;
841   index_check(Z_tmp_2, index, LogBytesPerLong);
842   __ mem2freg_opt(Z_ftos,
843                   Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
844 }
845 
aaload()846 void TemplateTable::aaload() {
847   transition(itos, atos);
848 
849   unsigned const int shift = LogBytesPerHeapOop;
850   __ pop_ptr(Z_tmp_1);  // array
851   // Index is in Z_tos.
852   Register index = Z_tos;
853   index_check(Z_tmp_1, index, shift);
854   // Now load array element.
855   do_oop_load(_masm, Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), Z_tos,
856               Z_tmp_2, Z_tmp_3, IS_ARRAY);
857   __ verify_oop(Z_tos);
858 }
859 
baload()860 void TemplateTable::baload() {
861   transition(itos, itos);
862 
863   __ pop_ptr(Z_tmp_1);
864   // Z_tos   : index
865   // Z_tmp_1 : array
866   Register index = Z_tos;
867   index_check(Z_tmp_1, index, 0);
868   __ z_lb(Z_tos,
869           Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
870 }
871 
caload()872 void TemplateTable::caload() {
873   transition(itos, itos);
874 
875   __ pop_ptr(Z_tmp_2);
876   // Z_tos   : index
877   // Z_tmp_2 : array
878   Register index = Z_tos;
879   index_check(Z_tmp_2, index, LogBytesPerShort);
880   // Load into 64 bits, works on all CPUs.
881   __ z_llgh(Z_tos,
882             Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
883 }
884 
885 // Iload followed by caload frequent pair.
fast_icaload()886 void TemplateTable::fast_icaload() {
887   transition(vtos, itos);
888 
889   // Load index out of locals.
890   locals_index(Z_R1_scratch);
891   __ mem2reg_opt(Z_ARG3, iaddress(_masm, Z_R1_scratch), false);
892   // Z_ARG3  : index
893   // Z_tmp_2 : array
894   __ pop_ptr(Z_tmp_2);
895   index_check(Z_tmp_2, Z_ARG3, LogBytesPerShort);
896   // Load into 64 bits, works on all CPUs.
897   __ z_llgh(Z_tos,
898             Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
899 }
900 
saload()901 void TemplateTable::saload() {
902   transition(itos, itos);
903 
904   __ pop_ptr(Z_tmp_2);
905   // Z_tos   : index
906   // Z_tmp_2 : array
907   Register index = Z_tos;
908   index_check(Z_tmp_2, index, LogBytesPerShort);
909   __ z_lh(Z_tos,
910           Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
911 }
912 
iload(int n)913 void TemplateTable::iload(int n) {
914   transition(vtos, itos);
915   __ z_ly(Z_tos, iaddress(n));
916 }
917 
lload(int n)918 void TemplateTable::lload(int n) {
919   transition(vtos, ltos);
920   __ z_lg(Z_tos, laddress(n));
921 }
922 
fload(int n)923 void TemplateTable::fload(int n) {
924   transition(vtos, ftos);
925   __ mem2freg_opt(Z_ftos, faddress(n), false);
926 }
927 
dload(int n)928 void TemplateTable::dload(int n) {
929   transition(vtos, dtos);
930   __ mem2freg_opt(Z_ftos, daddress(n));
931 }
932 
aload(int n)933 void TemplateTable::aload(int n) {
934   transition(vtos, atos);
935   __ mem2reg_opt(Z_tos, aaddress(n));
936 }
937 
aload_0()938 void TemplateTable::aload_0() {
939   aload_0_internal();
940 }
941 
nofast_aload_0()942 void TemplateTable::nofast_aload_0() {
943   aload_0_internal(may_not_rewrite);
944 }
945 
aload_0_internal(RewriteControl rc)946 void TemplateTable::aload_0_internal(RewriteControl rc) {
947   transition(vtos, atos);
948 
949   // According to bytecode histograms, the pairs:
950   //
951   // _aload_0, _fast_igetfield
952   // _aload_0, _fast_agetfield
953   // _aload_0, _fast_fgetfield
954   //
955   // occur frequently. If RewriteFrequentPairs is set, the (slow)
956   // _aload_0 bytecode checks if the next bytecode is either
957   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
958   // rewrites the current bytecode into a pair bytecode; otherwise it
959   // rewrites the current bytecode into _fast_aload_0 that doesn't do
960   // the pair check anymore.
961   //
962   // Note: If the next bytecode is _getfield, the rewrite must be
963   //       delayed, otherwise we may miss an opportunity for a pair.
964   //
965   // Also rewrite frequent pairs
966   //   aload_0, aload_1
967   //   aload_0, iload_1
968   // These bytecodes with a small amount of code are most profitable
969   // to rewrite.
970   if (!(RewriteFrequentPairs && (rc == may_rewrite))) {
971     aload(0);
972     return;
973   }
974 
975   NearLabel rewrite, done;
976   const Register bc = Z_ARG4;
977 
978   assert(Z_R1_scratch != bc, "register damaged");
979   // Get next byte.
980   __ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_aload_0)));
981 
982   // Do actual aload_0.
983   aload(0);
984 
985   // If _getfield then wait with rewrite.
986   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_getfield,
987                            Assembler::bcondEqual, done);
988 
989   // If _igetfield then rewrite to _fast_iaccess_0.
990   assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0)
991             == Bytecodes::_aload_0, "fix bytecode definition");
992 
993   __ load_const_optimized(bc, Bytecodes::_fast_iaccess_0);
994   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_igetfield,
995                            Assembler::bcondEqual, rewrite);
996 
997   // If _agetfield then rewrite to _fast_aaccess_0.
998   assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0)
999             == Bytecodes::_aload_0, "fix bytecode definition");
1000 
1001   __ load_const_optimized(bc, Bytecodes::_fast_aaccess_0);
1002   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_agetfield,
1003                            Assembler::bcondEqual, rewrite);
1004 
1005   // If _fgetfield then rewrite to _fast_faccess_0.
1006   assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0)
1007             == Bytecodes::_aload_0, "fix bytecode definition");
1008 
1009   __ load_const_optimized(bc, Bytecodes::_fast_faccess_0);
1010   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_fgetfield,
1011                            Assembler::bcondEqual, rewrite);
1012 
1013   // Else rewrite to _fast_aload0.
1014   assert(Bytecodes::java_code(Bytecodes::_fast_aload_0)
1015             == Bytecodes::_aload_0, "fix bytecode definition");
1016   __ load_const_optimized(bc, Bytecodes::_fast_aload_0);
1017 
1018   // rewrite
1019   // bc: fast bytecode
1020   __ bind(rewrite);
1021 
1022   patch_bytecode(Bytecodes::_aload_0, bc, Z_R1_scratch, false);
1023   // Reload local 0 because of VM call inside patch_bytecode().
1024   // this may trigger GC and thus change the oop.
1025   aload(0);
1026 
1027   __ bind(done);
1028 }
1029 
istore()1030 void TemplateTable::istore() {
1031   transition(itos, vtos);
1032   locals_index(Z_R1_scratch);
1033   __ reg2mem_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
1034 }
1035 
lstore()1036 void TemplateTable::lstore() {
1037   transition(ltos, vtos);
1038   locals_index(Z_R1_scratch);
1039   __ reg2mem_opt(Z_tos, laddress(_masm, Z_R1_scratch));
1040 }
1041 
fstore()1042 void TemplateTable::fstore() {
1043   transition(ftos, vtos);
1044   locals_index(Z_R1_scratch);
1045   __ freg2mem_opt(Z_ftos, faddress(_masm, Z_R1_scratch));
1046 }
1047 
dstore()1048 void TemplateTable::dstore() {
1049   transition(dtos, vtos);
1050   locals_index(Z_R1_scratch);
1051   __ freg2mem_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
1052 }
1053 
astore()1054 void TemplateTable::astore() {
1055   transition(vtos, vtos);
1056   __ pop_ptr(Z_tos);
1057   locals_index(Z_R1_scratch);
1058   __ reg2mem_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
1059 }
1060 
wide_istore()1061 void TemplateTable::wide_istore() {
1062   transition(vtos, vtos);
1063   __ pop_i(Z_tos);
1064   locals_index_wide(Z_tmp_1);
1065   __ reg2mem_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
1066 }
1067 
wide_lstore()1068 void TemplateTable::wide_lstore() {
1069   transition(vtos, vtos);
1070   __ pop_l(Z_tos);
1071   locals_index_wide(Z_tmp_1);
1072   __ reg2mem_opt(Z_tos, laddress(_masm, Z_tmp_1));
1073 }
1074 
wide_fstore()1075 void TemplateTable::wide_fstore() {
1076   transition(vtos, vtos);
1077   __ pop_f(Z_ftos);
1078   locals_index_wide(Z_tmp_1);
1079   __ freg2mem_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
1080 }
1081 
wide_dstore()1082 void TemplateTable::wide_dstore() {
1083   transition(vtos, vtos);
1084   __ pop_d(Z_ftos);
1085   locals_index_wide(Z_tmp_1);
1086   __ freg2mem_opt(Z_ftos, daddress(_masm, Z_tmp_1));
1087 }
1088 
wide_astore()1089 void TemplateTable::wide_astore() {
1090   transition(vtos, vtos);
1091   __ pop_ptr(Z_tos);
1092   locals_index_wide(Z_tmp_1);
1093   __ reg2mem_opt(Z_tos, aaddress(_masm, Z_tmp_1));
1094 }
1095 
iastore()1096 void TemplateTable::iastore() {
1097   transition(itos, vtos);
1098 
1099   Register index = Z_ARG3; // Index_check expects index in Z_ARG3.
1100   // Value is in Z_tos ...
1101   __ pop_i(index);        // index
1102   __ pop_ptr(Z_tmp_1);    // array
1103   index_check(Z_tmp_1, index, LogBytesPerInt);
1104   // ... and then move the value.
1105   __ reg2mem_opt(Z_tos,
1106                  Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
1107                  false);
1108 }
1109 
lastore()1110 void TemplateTable::lastore() {
1111   transition(ltos, vtos);
1112 
1113   __ pop_i(Z_ARG3);
1114   __ pop_ptr(Z_tmp_2);
1115   // Z_tos   : value
1116   // Z_ARG3  : index
1117   // Z_tmp_2 : array
1118  index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
1119   __ reg2mem_opt(Z_tos,
1120                  Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_LONG)));
1121 }
1122 
fastore()1123 void TemplateTable::fastore() {
1124   transition(ftos, vtos);
1125 
1126   __ pop_i(Z_ARG3);
1127   __ pop_ptr(Z_tmp_2);
1128   // Z_ftos  : value
1129   // Z_ARG3  : index
1130   // Z_tmp_2 : array
1131   index_check(Z_tmp_2, Z_ARG3, LogBytesPerInt); // Prefer index in Z_ARG3.
1132   __ freg2mem_opt(Z_ftos,
1133                   Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1134                   false);
1135 }
1136 
dastore()1137 void TemplateTable::dastore() {
1138   transition(dtos, vtos);
1139 
1140   __ pop_i(Z_ARG3);
1141   __ pop_ptr(Z_tmp_2);
1142   // Z_ftos  : value
1143   // Z_ARG3  : index
1144   // Z_tmp_2 : array
1145   index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
1146   __ freg2mem_opt(Z_ftos,
1147                   Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1148 }
1149 
aastore()1150 void TemplateTable::aastore() {
1151   NearLabel is_null, ok_is_subtype, done;
1152   transition(vtos, vtos);
1153 
1154   // stack: ..., array, index, value
1155 
1156   Register Rvalue = Z_tos;
1157   Register Rarray = Z_ARG2;
1158   Register Rindex = Z_ARG3; // Convention for index_check().
1159 
1160   __ load_ptr(0, Rvalue);
1161   __ z_l(Rindex, Address(Z_esp, Interpreter::expr_offset_in_bytes(1)));
1162   __ load_ptr(2, Rarray);
1163 
1164   unsigned const int shift = LogBytesPerHeapOop;
1165   index_check(Rarray, Rindex, shift); // side effect: Rindex = Rindex << shift
1166   Register Rstore_addr  = Rindex;
1167   // Address where the store goes to, i.e. &(Rarry[index])
1168   __ load_address(Rstore_addr, Address(Rarray, Rindex, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1169 
1170   // do array store check - check for NULL value first.
1171   __ compareU64_and_branch(Rvalue, (intptr_t)0, Assembler::bcondEqual, is_null);
1172 
1173   Register Rsub_klass   = Z_ARG4;
1174   Register Rsuper_klass = Z_ARG5;
1175   __ load_klass(Rsub_klass, Rvalue);
1176   // Load superklass.
1177   __ load_klass(Rsuper_klass, Rarray);
1178   __ z_lg(Rsuper_klass, Address(Rsuper_klass, ObjArrayKlass::element_klass_offset()));
1179 
1180   // Generate a fast subtype check.  Branch to ok_is_subtype if no failure.
1181   // Throw if failure.
1182   Register tmp1 = Z_tmp_1;
1183   Register tmp2 = Z_tmp_2;
1184   __ gen_subtype_check(Rsub_klass, Rsuper_klass, tmp1, tmp2, ok_is_subtype);
1185 
1186   // Fall through on failure.
1187   // Object is in Rvalue == Z_tos.
1188   assert(Rvalue == Z_tos, "that's the expected location");
1189   __ load_absolute_address(tmp1, Interpreter::_throw_ArrayStoreException_entry);
1190   __ z_br(tmp1);
1191 
1192   Register tmp3 = Rsub_klass;
1193 
1194   // Have a NULL in Rvalue.
1195   __ bind(is_null);
1196   __ profile_null_seen(tmp1);
1197 
1198   // Store a NULL.
1199   do_oop_store(_masm, Address(Rstore_addr, (intptr_t)0), noreg,
1200                tmp3, tmp2, tmp1, IS_ARRAY);
1201   __ z_bru(done);
1202 
1203   // Come here on success.
1204   __ bind(ok_is_subtype);
1205 
1206   // Now store using the appropriate barrier.
1207   do_oop_store(_masm, Address(Rstore_addr, (intptr_t)0), Rvalue,
1208                tmp3, tmp2, tmp1, IS_ARRAY | IS_NOT_NULL);
1209 
1210   // Pop stack arguments.
1211   __ bind(done);
1212   __ add2reg(Z_esp, 3 * Interpreter::stackElementSize);
1213 }
1214 
1215 
bastore()1216 void TemplateTable::bastore() {
1217   transition(itos, vtos);
1218 
1219   __ pop_i(Z_ARG3);
1220   __ pop_ptr(Z_tmp_2);
1221   // Z_tos   : value
1222   // Z_ARG3  : index
1223   // Z_tmp_2 : array
1224 
1225   // Need to check whether array is boolean or byte
1226   // since both types share the bastore bytecode.
1227   __ load_klass(Z_tmp_1, Z_tmp_2);
1228   __ z_llgf(Z_tmp_1, Address(Z_tmp_1, Klass::layout_helper_offset()));
1229   __ z_tmll(Z_tmp_1, Klass::layout_helper_boolean_diffbit());
1230   Label L_skip;
1231   __ z_bfalse(L_skip);
1232   // if it is a T_BOOLEAN array, mask the stored value to 0/1
1233   __ z_nilf(Z_tos, 0x1);
1234   __ bind(L_skip);
1235 
1236   // No index shift necessary - pass 0.
1237   index_check(Z_tmp_2, Z_ARG3, 0); // Prefer index in Z_ARG3.
1238   __ z_stc(Z_tos,
1239            Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
1240 }
1241 
castore()1242 void TemplateTable::castore() {
1243   transition(itos, vtos);
1244 
1245   __ pop_i(Z_ARG3);
1246   __ pop_ptr(Z_tmp_2);
1247   // Z_tos   : value
1248   // Z_ARG3  : index
1249   // Z_tmp_2 : array
1250   Register index = Z_ARG3; // prefer index in Z_ARG3
1251   index_check(Z_tmp_2, index, LogBytesPerShort);
1252   __ z_sth(Z_tos,
1253            Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
1254 }
1255 
sastore()1256 void TemplateTable::sastore() {
1257   castore();
1258 }
1259 
istore(int n)1260 void TemplateTable::istore(int n) {
1261   transition(itos, vtos);
1262   __ reg2mem_opt(Z_tos, iaddress(n), false);
1263 }
1264 
lstore(int n)1265 void TemplateTable::lstore(int n) {
1266   transition(ltos, vtos);
1267   __ reg2mem_opt(Z_tos, laddress(n));
1268 }
1269 
fstore(int n)1270 void TemplateTable::fstore(int n) {
1271   transition(ftos, vtos);
1272   __ freg2mem_opt(Z_ftos, faddress(n), false);
1273 }
1274 
dstore(int n)1275 void TemplateTable::dstore(int n) {
1276   transition(dtos, vtos);
1277   __ freg2mem_opt(Z_ftos, daddress(n));
1278 }
1279 
astore(int n)1280 void TemplateTable::astore(int n) {
1281   transition(vtos, vtos);
1282   __ pop_ptr(Z_tos);
1283   __ reg2mem_opt(Z_tos, aaddress(n));
1284 }
1285 
pop()1286 void TemplateTable::pop() {
1287   transition(vtos, vtos);
1288   __ add2reg(Z_esp, Interpreter::stackElementSize);
1289 }
1290 
pop2()1291 void TemplateTable::pop2() {
1292   transition(vtos, vtos);
1293   __ add2reg(Z_esp, 2 * Interpreter::stackElementSize);
1294 }
1295 
dup()1296 void TemplateTable::dup() {
1297   transition(vtos, vtos);
1298   __ load_ptr(0, Z_tos);
1299   __ push_ptr(Z_tos);
1300   // stack: ..., a, a
1301 }
1302 
dup_x1()1303 void TemplateTable::dup_x1() {
1304   transition(vtos, vtos);
1305 
1306   // stack: ..., a, b
1307   __ load_ptr(0, Z_tos);          // load b
1308   __ load_ptr(1, Z_R0_scratch);   // load a
1309   __ store_ptr(1, Z_tos);         // store b
1310   __ store_ptr(0, Z_R0_scratch);  // store a
1311   __ push_ptr(Z_tos);             // push b
1312   // stack: ..., b, a, b
1313 }
1314 
dup_x2()1315 void TemplateTable::dup_x2() {
1316   transition(vtos, vtos);
1317 
1318   // stack: ..., a, b, c
1319   __ load_ptr(0, Z_R0_scratch);   // load c
1320   __ load_ptr(2, Z_R1_scratch);   // load a
1321   __ store_ptr(2, Z_R0_scratch);  // store c in a
1322   __ push_ptr(Z_R0_scratch);      // push c
1323   // stack: ..., c, b, c, c
1324   __ load_ptr(2, Z_R0_scratch);   // load b
1325   __ store_ptr(2, Z_R1_scratch);  // store a in b
1326   // stack: ..., c, a, c, c
1327   __ store_ptr(1, Z_R0_scratch);  // store b in c
1328   // stack: ..., c, a, b, c
1329 }
1330 
dup2()1331 void TemplateTable::dup2() {
1332   transition(vtos, vtos);
1333 
1334   // stack: ..., a, b
1335   __ load_ptr(1, Z_R0_scratch);  // load a
1336   __ push_ptr(Z_R0_scratch);     // push a
1337   __ load_ptr(1, Z_R0_scratch);  // load b
1338   __ push_ptr(Z_R0_scratch);     // push b
1339   // stack: ..., a, b, a, b
1340 }
1341 
dup2_x1()1342 void TemplateTable::dup2_x1() {
1343   transition(vtos, vtos);
1344 
1345   // stack: ..., a, b, c
1346   __ load_ptr(0, Z_R0_scratch);  // load c
1347   __ load_ptr(1, Z_R1_scratch);  // load b
1348   __ push_ptr(Z_R1_scratch);     // push b
1349   __ push_ptr(Z_R0_scratch);     // push c
1350   // stack: ..., a, b, c, b, c
1351   __ store_ptr(3, Z_R0_scratch); // store c in b
1352   // stack: ..., a, c, c, b, c
1353   __ load_ptr( 4, Z_R0_scratch); // load a
1354   __ store_ptr(2, Z_R0_scratch); // store a in 2nd c
1355   // stack: ..., a, c, a, b, c
1356   __ store_ptr(4, Z_R1_scratch); // store b in a
1357   // stack: ..., b, c, a, b, c
1358 }
1359 
dup2_x2()1360 void TemplateTable::dup2_x2() {
1361   transition(vtos, vtos);
1362 
1363   // stack: ..., a, b, c, d
1364   __ load_ptr(0, Z_R0_scratch);   // load d
1365   __ load_ptr(1, Z_R1_scratch);   // load c
1366   __ push_ptr(Z_R1_scratch);      // push c
1367   __ push_ptr(Z_R0_scratch);      // push d
1368   // stack: ..., a, b, c, d, c, d
1369   __ load_ptr(4, Z_R1_scratch);   // load b
1370   __ store_ptr(2, Z_R1_scratch);  // store b in d
1371   __ store_ptr(4, Z_R0_scratch);  // store d in b
1372   // stack: ..., a, d, c, b, c, d
1373   __ load_ptr(5, Z_R0_scratch);   // load a
1374   __ load_ptr(3, Z_R1_scratch);   // load c
1375   __ store_ptr(3, Z_R0_scratch);  // store a in c
1376   __ store_ptr(5, Z_R1_scratch);  // store c in a
1377   // stack: ..., c, d, a, b, c, d
1378 }
1379 
swap()1380 void TemplateTable::swap() {
1381   transition(vtos, vtos);
1382 
1383   // stack: ..., a, b
1384   __ load_ptr(1, Z_R0_scratch);  // load a
1385   __ load_ptr(0, Z_R1_scratch);  // load b
1386   __ store_ptr(0, Z_R0_scratch);  // store a in b
1387   __ store_ptr(1, Z_R1_scratch);  // store b in a
1388   // stack: ..., b, a
1389 }
1390 
iop2(Operation op)1391 void TemplateTable::iop2(Operation op) {
1392   transition(itos, itos);
1393   switch (op) {
1394     case add  :                           __ z_ay(Z_tos,  __ stackTop()); __ pop_i(); break;
1395     case sub  :                           __ z_sy(Z_tos,  __ stackTop()); __ pop_i(); __ z_lcr(Z_tos, Z_tos); break;
1396     case mul  :                           __ z_msy(Z_tos, __ stackTop()); __ pop_i(); break;
1397     case _and :                           __ z_ny(Z_tos,  __ stackTop()); __ pop_i(); break;
1398     case _or  :                           __ z_oy(Z_tos,  __ stackTop()); __ pop_i(); break;
1399     case _xor :                           __ z_xy(Z_tos,  __ stackTop()); __ pop_i(); break;
1400     case shl  : __ z_lr(Z_tmp_1, Z_tos);
1401                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1402                                           __ pop_i(Z_tos);   __ z_sll(Z_tos, 0,  Z_tmp_1); break;
1403     case shr  : __ z_lr(Z_tmp_1, Z_tos);
1404                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1405                                           __ pop_i(Z_tos);   __ z_sra(Z_tos, 0,  Z_tmp_1); break;
1406     case ushr : __ z_lr(Z_tmp_1, Z_tos);
1407                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1408                                           __ pop_i(Z_tos);   __ z_srl(Z_tos, 0,  Z_tmp_1); break;
1409     default   : ShouldNotReachHere(); break;
1410   }
1411   return;
1412 }
1413 
lop2(Operation op)1414 void TemplateTable::lop2(Operation op) {
1415   transition(ltos, ltos);
1416 
1417   switch (op) {
1418     case add  :  __ z_ag(Z_tos,  __ stackTop()); __ pop_l(); break;
1419     case sub  :  __ z_sg(Z_tos,  __ stackTop()); __ pop_l(); __ z_lcgr(Z_tos, Z_tos); break;
1420     case mul  :  __ z_msg(Z_tos, __ stackTop()); __ pop_l(); break;
1421     case _and :  __ z_ng(Z_tos,  __ stackTop()); __ pop_l(); break;
1422     case _or  :  __ z_og(Z_tos,  __ stackTop()); __ pop_l(); break;
1423     case _xor :  __ z_xg(Z_tos,  __ stackTop()); __ pop_l(); break;
1424     default   : ShouldNotReachHere(); break;
1425   }
1426   return;
1427 }
1428 
1429 // Common part of idiv/irem.
idiv_helper(InterpreterMacroAssembler * _masm,address exception)1430 static void idiv_helper(InterpreterMacroAssembler * _masm, address exception) {
1431   NearLabel not_null;
1432 
1433   // Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
1434   assert(Z_tmp_1->successor() == Z_tmp_2, " need even/odd register pair for idiv/irem");
1435 
1436   // Get dividend.
1437   __ pop_i(Z_tmp_2);
1438 
1439   // If divisor == 0 throw exception.
1440   __ compare32_and_branch(Z_tos, (intptr_t) 0,
1441                           Assembler::bcondNotEqual, not_null   );
1442   __ load_absolute_address(Z_R1_scratch, exception);
1443   __ z_br(Z_R1_scratch);
1444 
1445   __ bind(not_null);
1446 
1447   __ z_lgfr(Z_tmp_2, Z_tmp_2);   // Sign extend dividend.
1448   __ z_dsgfr(Z_tmp_1, Z_tos);    // Do it.
1449 }
1450 
idiv()1451 void TemplateTable::idiv() {
1452   transition(itos, itos);
1453 
1454   idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
1455   __ z_llgfr(Z_tos, Z_tmp_2);     // Result is in Z_tmp_2.
1456 }
1457 
irem()1458 void TemplateTable::irem() {
1459   transition(itos, itos);
1460 
1461   idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
1462   __ z_llgfr(Z_tos, Z_tmp_1);     // Result is in Z_tmp_1.
1463 }
1464 
lmul()1465 void TemplateTable::lmul() {
1466   transition(ltos, ltos);
1467 
1468   // Multiply with memory operand.
1469   __ z_msg(Z_tos, __ stackTop());
1470   __ pop_l();  // Pop operand.
1471 }
1472 
1473 // Common part of ldiv/lrem.
1474 //
1475 // Input:
1476 //     Z_tos := the divisor (dividend still on stack)
1477 //
1478 // Updated registers:
1479 //     Z_tmp_1 := pop_l() % Z_tos     ; if is_ldiv == false
1480 //     Z_tmp_2 := pop_l() / Z_tos     ; if is_ldiv == true
1481 //
ldiv_helper(InterpreterMacroAssembler * _masm,address exception,bool is_ldiv)1482 static void ldiv_helper(InterpreterMacroAssembler * _masm, address exception, bool is_ldiv) {
1483   NearLabel not_null, done;
1484 
1485   // Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
1486   assert(Z_tmp_1->successor() == Z_tmp_2,
1487          " need even/odd register pair for idiv/irem");
1488 
1489   // Get dividend.
1490   __ pop_l(Z_tmp_2);
1491 
1492   // If divisor == 0 throw exception.
1493   __ compare64_and_branch(Z_tos, (intptr_t)0, Assembler::bcondNotEqual, not_null);
1494   __ load_absolute_address(Z_R1_scratch, exception);
1495   __ z_br(Z_R1_scratch);
1496 
1497   __ bind(not_null);
1498   // Special case for dividend == 0x8000 and divisor == -1.
1499   if (is_ldiv) {
1500     // result := Z_tmp_2 := - dividend
1501     __ z_lcgr(Z_tmp_2, Z_tmp_2);
1502   } else {
1503     // result remainder := Z_tmp_1 := 0
1504     __ clear_reg(Z_tmp_1, true, false);  // Don't set CC.
1505   }
1506 
1507   // if divisor == -1 goto done
1508   __ compare64_and_branch(Z_tos, -1, Assembler::bcondEqual, done);
1509   if (is_ldiv)
1510     // Restore sign, because divisor != -1.
1511     __ z_lcgr(Z_tmp_2, Z_tmp_2);
1512   __ z_dsgr(Z_tmp_1, Z_tos);    // Do it.
1513   __ bind(done);
1514 }
1515 
ldiv()1516 void TemplateTable::ldiv() {
1517   transition(ltos, ltos);
1518 
1519   ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, true /*is_ldiv*/);
1520   __ z_lgr(Z_tos, Z_tmp_2);     // Result is in Z_tmp_2.
1521 }
1522 
lrem()1523 void TemplateTable::lrem() {
1524   transition(ltos, ltos);
1525 
1526   ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, false /*is_ldiv*/);
1527   __ z_lgr(Z_tos, Z_tmp_1);     // Result is in Z_tmp_1.
1528 }
1529 
lshl()1530 void TemplateTable::lshl() {
1531   transition(itos, ltos);
1532 
1533   // Z_tos: shift amount
1534   __ pop_l(Z_tmp_1);              // Get shift value.
1535   __ z_sllg(Z_tos, Z_tmp_1, 0, Z_tos);
1536 }
1537 
lshr()1538 void TemplateTable::lshr() {
1539   transition(itos, ltos);
1540 
1541   // Z_tos: shift amount
1542   __ pop_l(Z_tmp_1);              // Get shift value.
1543   __ z_srag(Z_tos, Z_tmp_1, 0, Z_tos);
1544 }
1545 
lushr()1546 void TemplateTable::lushr() {
1547   transition(itos, ltos);
1548 
1549   // Z_tos: shift amount
1550   __ pop_l(Z_tmp_1);              // Get shift value.
1551   __ z_srlg(Z_tos, Z_tmp_1, 0, Z_tos);
1552 }
1553 
fop2(Operation op)1554 void TemplateTable::fop2(Operation op) {
1555   transition(ftos, ftos);
1556 
1557   switch (op) {
1558     case add:
1559       // Add memory operand.
1560       __ z_aeb(Z_ftos, __ stackTop()); __ pop_f(); return;
1561     case sub:
1562       // Sub memory operand.
1563       __ z_ler(Z_F1, Z_ftos);    // first operand
1564       __ pop_f(Z_ftos);          // second operand from stack
1565       __ z_sebr(Z_ftos, Z_F1);
1566       return;
1567     case mul:
1568       // Multiply with memory operand.
1569       __ z_meeb(Z_ftos, __ stackTop()); __ pop_f(); return;
1570     case div:
1571       __ z_ler(Z_F1, Z_ftos);    // first operand
1572       __ pop_f(Z_ftos);          // second operand from stack
1573       __ z_debr(Z_ftos, Z_F1);
1574       return;
1575     case rem:
1576       // Do runtime call.
1577       __ z_ler(Z_FARG2, Z_ftos);  // divisor
1578       __ pop_f(Z_FARG1);          // dividend
1579       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1580       // Result should be in the right place (Z_ftos == Z_FRET).
1581       return;
1582     default:
1583       ShouldNotReachHere();
1584       return;
1585   }
1586 }
1587 
dop2(Operation op)1588 void TemplateTable::dop2(Operation op) {
1589   transition(dtos, dtos);
1590 
1591   switch (op) {
1592     case add:
1593       // Add memory operand.
1594       __ z_adb(Z_ftos, __ stackTop()); __ pop_d(); return;
1595     case sub:
1596       // Sub memory operand.
1597       __ z_ldr(Z_F1, Z_ftos);    // first operand
1598       __ pop_d(Z_ftos);          // second operand from stack
1599       __ z_sdbr(Z_ftos, Z_F1);
1600       return;
1601     case mul:
1602       // Multiply with memory operand.
1603       __ z_mdb(Z_ftos, __ stackTop()); __ pop_d(); return;
1604     case div:
1605       __ z_ldr(Z_F1, Z_ftos);    // first operand
1606       __ pop_d(Z_ftos);          // second operand from stack
1607       __ z_ddbr(Z_ftos, Z_F1);
1608       return;
1609     case rem:
1610       // Do runtime call.
1611       __ z_ldr(Z_FARG2, Z_ftos);  // divisor
1612       __ pop_d(Z_FARG1);          // dividend
1613       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1614       // Result should be in the right place (Z_ftos == Z_FRET).
1615       return;
1616     default:
1617       ShouldNotReachHere();
1618       return;
1619   }
1620 }
1621 
ineg()1622 void TemplateTable::ineg() {
1623   transition(itos, itos);
1624   __ z_lcr(Z_tos);
1625 }
1626 
lneg()1627 void TemplateTable::lneg() {
1628   transition(ltos, ltos);
1629   __ z_lcgr(Z_tos);
1630 }
1631 
fneg()1632 void TemplateTable::fneg() {
1633   transition(ftos, ftos);
1634   __ z_lcebr(Z_ftos, Z_ftos);
1635 }
1636 
dneg()1637 void TemplateTable::dneg() {
1638   transition(dtos, dtos);
1639   __ z_lcdbr(Z_ftos, Z_ftos);
1640 }
1641 
iinc()1642 void TemplateTable::iinc() {
1643   transition(vtos, vtos);
1644 
1645   Address local;
1646   __ z_lb(Z_R0_scratch, at_bcp(2)); // Get constant.
1647   locals_index(Z_R1_scratch);
1648   local = iaddress(_masm, Z_R1_scratch);
1649   __ z_a(Z_R0_scratch, local);
1650   __ reg2mem_opt(Z_R0_scratch, local, false);
1651 }
1652 
wide_iinc()1653 void TemplateTable::wide_iinc() {
1654   transition(vtos, vtos);
1655 
1656   // Z_tmp_1 := increment
1657   __ get_2_byte_integer_at_bcp(Z_tmp_1, 4, InterpreterMacroAssembler::Signed);
1658   // Z_R1_scratch := index of local to increment
1659   locals_index_wide(Z_tmp_2);
1660   // Load, increment, and store.
1661   __ access_local_int(Z_tmp_2, Z_tos);
1662   __ z_agr(Z_tos,  Z_tmp_1);
1663   // Shifted index is still in Z_tmp_2.
1664   __ reg2mem_opt(Z_tos, Address(Z_locals, Z_tmp_2), false);
1665 }
1666 
1667 
convert()1668 void TemplateTable::convert() {
1669   // Checking
1670 #ifdef ASSERT
1671   TosState   tos_in  = ilgl;
1672   TosState   tos_out = ilgl;
1673 
1674   switch (bytecode()) {
1675     case Bytecodes::_i2l:
1676     case Bytecodes::_i2f:
1677     case Bytecodes::_i2d:
1678     case Bytecodes::_i2b:
1679     case Bytecodes::_i2c:
1680     case Bytecodes::_i2s:
1681       tos_in = itos;
1682       break;
1683     case Bytecodes::_l2i:
1684     case Bytecodes::_l2f:
1685     case Bytecodes::_l2d:
1686       tos_in = ltos;
1687       break;
1688     case Bytecodes::_f2i:
1689     case Bytecodes::_f2l:
1690     case Bytecodes::_f2d:
1691       tos_in = ftos;
1692       break;
1693     case Bytecodes::_d2i:
1694     case Bytecodes::_d2l:
1695     case Bytecodes::_d2f:
1696       tos_in = dtos;
1697       break;
1698     default :
1699       ShouldNotReachHere();
1700   }
1701   switch (bytecode()) {
1702     case Bytecodes::_l2i:
1703     case Bytecodes::_f2i:
1704     case Bytecodes::_d2i:
1705     case Bytecodes::_i2b:
1706     case Bytecodes::_i2c:
1707     case Bytecodes::_i2s:
1708       tos_out = itos;
1709       break;
1710     case Bytecodes::_i2l:
1711     case Bytecodes::_f2l:
1712     case Bytecodes::_d2l:
1713       tos_out = ltos;
1714       break;
1715     case Bytecodes::_i2f:
1716     case Bytecodes::_l2f:
1717     case Bytecodes::_d2f:
1718       tos_out = ftos;
1719       break;
1720     case Bytecodes::_i2d:
1721     case Bytecodes::_l2d:
1722     case Bytecodes::_f2d:
1723       tos_out = dtos;
1724       break;
1725     default :
1726       ShouldNotReachHere();
1727   }
1728 
1729   transition(tos_in, tos_out);
1730 #endif // ASSERT
1731 
1732   // Conversion
1733   Label done;
1734   switch (bytecode()) {
1735     case Bytecodes::_i2l:
1736       __ z_lgfr(Z_tos, Z_tos);
1737       return;
1738     case Bytecodes::_i2f:
1739       __ z_cefbr(Z_ftos, Z_tos);
1740       return;
1741     case Bytecodes::_i2d:
1742       __ z_cdfbr(Z_ftos, Z_tos);
1743       return;
1744     case Bytecodes::_i2b:
1745       // Sign extend least significant byte.
1746       __ move_reg_if_needed(Z_tos, T_BYTE, Z_tos, T_INT);
1747       return;
1748     case Bytecodes::_i2c:
1749       // Zero extend 2 least significant bytes.
1750       __ move_reg_if_needed(Z_tos, T_CHAR, Z_tos, T_INT);
1751       return;
1752     case Bytecodes::_i2s:
1753       // Sign extend 2 least significant bytes.
1754       __ move_reg_if_needed(Z_tos, T_SHORT, Z_tos, T_INT);
1755       return;
1756     case Bytecodes::_l2i:
1757       // Sign-extend not needed here, upper 4 bytes of int value in register are ignored.
1758       return;
1759     case Bytecodes::_l2f:
1760       __ z_cegbr(Z_ftos, Z_tos);
1761       return;
1762     case Bytecodes::_l2d:
1763       __ z_cdgbr(Z_ftos, Z_tos);
1764       return;
1765     case Bytecodes::_f2i:
1766     case Bytecodes::_f2l:
1767       __ clear_reg(Z_tos, true, false);  // Don't set CC.
1768       __ z_cebr(Z_ftos, Z_ftos);
1769       __ z_brno(done); // NaN -> 0
1770       if (bytecode() == Bytecodes::_f2i)
1771         __ z_cfebr(Z_tos, Z_ftos, Assembler::to_zero);
1772       else // bytecode() == Bytecodes::_f2l
1773         __ z_cgebr(Z_tos, Z_ftos, Assembler::to_zero);
1774       break;
1775     case Bytecodes::_f2d:
1776       __ move_freg_if_needed(Z_ftos, T_DOUBLE, Z_ftos, T_FLOAT);
1777       return;
1778     case Bytecodes::_d2i:
1779     case Bytecodes::_d2l:
1780       __ clear_reg(Z_tos, true, false);  // Ddon't set CC.
1781       __ z_cdbr(Z_ftos, Z_ftos);
1782       __ z_brno(done); // NaN -> 0
1783       if (bytecode() == Bytecodes::_d2i)
1784         __ z_cfdbr(Z_tos, Z_ftos, Assembler::to_zero);
1785       else // Bytecodes::_d2l
1786         __ z_cgdbr(Z_tos, Z_ftos, Assembler::to_zero);
1787       break;
1788     case Bytecodes::_d2f:
1789       __ move_freg_if_needed(Z_ftos, T_FLOAT, Z_ftos, T_DOUBLE);
1790       return;
1791     default:
1792       ShouldNotReachHere();
1793   }
1794   __ bind(done);
1795 }
1796 
lcmp()1797 void TemplateTable::lcmp() {
1798   transition(ltos, itos);
1799 
1800   Label   done;
1801   Register val1 = Z_R0_scratch;
1802   Register val2 = Z_R1_scratch;
1803 
1804   if (VM_Version::has_LoadStoreConditional()) {
1805     __ pop_l(val1);           // pop value 1.
1806     __ z_lghi(val2,  -1);     // lt value
1807     __ z_cgr(val1, Z_tos);    // Compare with Z_tos (value 2). Protect CC under all circumstances.
1808     __ z_lghi(val1,   1);     // gt value
1809     __ z_lghi(Z_tos,  0);     // eq value
1810 
1811     __ z_locgr(Z_tos, val1, Assembler::bcondHigh);
1812     __ z_locgr(Z_tos, val2, Assembler::bcondLow);
1813   } else {
1814     __ pop_l(val1);           // Pop value 1.
1815     __ z_cgr(val1, Z_tos);    // Compare with Z_tos (value 2). Protect CC under all circumstances.
1816 
1817     __ z_lghi(Z_tos,  0);     // eq value
1818     __ z_bre(done);
1819 
1820     __ z_lghi(Z_tos,  1);     // gt value
1821     __ z_brh(done);
1822 
1823     __ z_lghi(Z_tos, -1);     // lt value
1824   }
1825 
1826   __ bind(done);
1827 }
1828 
1829 
float_cmp(bool is_float,int unordered_result)1830 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1831   Label done;
1832 
1833   if (is_float) {
1834     __ pop_f(Z_FARG2);
1835     __ z_cebr(Z_FARG2, Z_ftos);
1836   } else {
1837     __ pop_d(Z_FARG2);
1838     __ z_cdbr(Z_FARG2, Z_ftos);
1839   }
1840 
1841   if (VM_Version::has_LoadStoreConditional()) {
1842     Register one       = Z_R0_scratch;
1843     Register minus_one = Z_R1_scratch;
1844     __ z_lghi(minus_one,  -1);
1845     __ z_lghi(one,  1);
1846     __ z_lghi(Z_tos, 0);
1847     __ z_locgr(Z_tos, one,       unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh);
1848     __ z_locgr(Z_tos, minus_one, unordered_result == 1 ? Assembler::bcondLow              : Assembler::bcondLowOrNotOrdered);
1849   } else {
1850     // Z_FARG2 == Z_ftos
1851     __ clear_reg(Z_tos, false, false);
1852     __ z_bre(done);
1853 
1854     // F_ARG2 > Z_Ftos, or unordered
1855     __ z_lhi(Z_tos, 1);
1856     __ z_brc(unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh, done);
1857 
1858     // F_ARG2 < Z_FTOS, or unordered
1859     __ z_lhi(Z_tos, -1);
1860 
1861     __ bind(done);
1862   }
1863 }
1864 
branch(bool is_jsr,bool is_wide)1865 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1866   const Register   bumped_count = Z_tmp_1;
1867   const Register   method       = Z_tmp_2;
1868   const Register   m_counters   = Z_R1_scratch;
1869   const Register   mdo          = Z_tos;
1870 
1871   BLOCK_COMMENT("TemplateTable::branch {");
1872   __ get_method(method);
1873   __ profile_taken_branch(mdo, bumped_count);
1874 
1875   const ByteSize ctr_offset = InvocationCounter::counter_offset();
1876   const ByteSize be_offset  = MethodCounters::backedge_counter_offset()   + ctr_offset;
1877   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + ctr_offset;
1878 
1879   // Get (wide) offset to disp.
1880   const Register disp = Z_ARG5;
1881   if (is_wide) {
1882     __ get_4_byte_integer_at_bcp(disp, 1);
1883   } else {
1884     __ get_2_byte_integer_at_bcp(disp, 1, InterpreterMacroAssembler::Signed);
1885   }
1886 
1887   // Handle all the JSR stuff here, then exit.
1888   // It's much shorter and cleaner than intermingling with the
1889   // non-JSR normal-branch stuff occurring below.
1890   if (is_jsr) {
1891     // Compute return address as bci in Z_tos.
1892     __ z_lgr(Z_R1_scratch, Z_bcp);
1893     __ z_sg(Z_R1_scratch, Address(method, Method::const_offset()));
1894     __ add2reg(Z_tos, (is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset()), Z_R1_scratch);
1895 
1896     // Bump bcp to target of JSR.
1897     __ z_agr(Z_bcp, disp);
1898     // Push return address for "ret" on stack.
1899     __ push_ptr(Z_tos);
1900     // And away we go!
1901     __ dispatch_next(vtos, 0 , true);
1902     return;
1903   }
1904 
1905   // Normal (non-jsr) branch handling.
1906 
1907   // Bump bytecode pointer by displacement (take the branch).
1908   __ z_agr(Z_bcp, disp);
1909 
1910   assert(UseLoopCounter || !UseOnStackReplacement,
1911          "on-stack-replacement requires loop counters");
1912 
1913   NearLabel backedge_counter_overflow;
1914   NearLabel profile_method;
1915   NearLabel dispatch;
1916   int       increment = InvocationCounter::count_increment;
1917 
1918   if (UseLoopCounter) {
1919     // Increment backedge counter for backward branches.
1920     // disp: target offset
1921     // Z_bcp: target bcp
1922     // Z_locals: locals pointer
1923     //
1924     // Count only if backward branch.
1925     __ compare32_and_branch(disp, (intptr_t)0, Assembler::bcondHigh, dispatch);
1926 
1927     if (TieredCompilation) {
1928       Label noCounters;
1929 
1930       if (ProfileInterpreter) {
1931         NearLabel   no_mdo;
1932 
1933         // Are we profiling?
1934         __ load_and_test_long(mdo, Address(method, Method::method_data_offset()));
1935         __ branch_optimized(Assembler::bcondZero, no_mdo);
1936 
1937         // Increment the MDO backedge counter.
1938         const Address mdo_backedge_counter(mdo, MethodData::backedge_counter_offset() + InvocationCounter::counter_offset());
1939 
1940         const Address mask(mdo, MethodData::backedge_mask_offset());
1941         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1942                                    Z_ARG2, false, Assembler::bcondZero,
1943                                    UseOnStackReplacement ? &backedge_counter_overflow : NULL);
1944         __ z_bru(dispatch);
1945         __ bind(no_mdo);
1946       }
1947 
1948       // Increment backedge counter in MethodCounters*.
1949       __ get_method_counters(method, m_counters, noCounters);
1950       const Address mask(m_counters, MethodCounters::backedge_mask_offset());
1951       __ increment_mask_and_jump(Address(m_counters, be_offset),
1952                                  increment, mask,
1953                                  Z_ARG2, false, Assembler::bcondZero,
1954                                  UseOnStackReplacement ? &backedge_counter_overflow : NULL);
1955       __ bind(noCounters);
1956     } else {
1957       Register counter = Z_tos;
1958       Label    noCounters;
1959       // Get address of MethodCounters object.
1960       __ get_method_counters(method, m_counters, noCounters);
1961       // Increment backedge counter.
1962       __ increment_backedge_counter(m_counters, counter);
1963 
1964       if (ProfileInterpreter) {
1965         // Test to see if we should create a method data obj.
1966         __ z_cl(counter, Address(m_counters, MethodCounters::interpreter_profile_limit_offset()));
1967         __ z_brl(dispatch);
1968 
1969         // If no method data exists, go to profile method.
1970         __ test_method_data_pointer(Z_ARG4/*result unused*/, profile_method);
1971 
1972         if (UseOnStackReplacement) {
1973           // Check for overflow against 'bumped_count' which is the MDO taken count.
1974           __ z_cl(bumped_count, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
1975           __ z_brl(dispatch);
1976 
1977           // When ProfileInterpreter is on, the backedge_count comes
1978           // from the methodDataOop, which value does not get reset on
1979           // the call to frequency_counter_overflow(). To avoid
1980           // excessive calls to the overflow routine while the method is
1981           // being compiled, add a second test to make sure the overflow
1982           // function is called only once every overflow_frequency.
1983           const int overflow_frequency = 1024;
1984           __ and_imm(bumped_count, overflow_frequency - 1);
1985           __ z_brz(backedge_counter_overflow);
1986 
1987         }
1988       } else {
1989         if (UseOnStackReplacement) {
1990           // Check for overflow against 'counter', which is the sum of the
1991           // counters.
1992           __ z_cl(counter, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
1993           __ z_brh(backedge_counter_overflow);
1994         }
1995       }
1996       __ bind(noCounters);
1997     }
1998 
1999     __ bind(dispatch);
2000   }
2001 
2002   // Pre-load the next target bytecode into rbx.
2003   __ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0));
2004 
2005   // Continue with the bytecode @ target.
2006   // Z_tos: Return bci for jsr's, unused otherwise.
2007   // Z_bytecode: target bytecode
2008   // Z_bcp: target bcp
2009   __ dispatch_only(vtos, true);
2010 
2011   // Out-of-line code runtime calls.
2012   if (UseLoopCounter) {
2013     if (ProfileInterpreter && !TieredCompilation) {
2014       // Out-of-line code to allocate method data oop.
2015       __ bind(profile_method);
2016 
2017       __ call_VM(noreg,
2018                  CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2019       __ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0));  // Restore target bytecode.
2020       __ set_method_data_pointer_for_bcp();
2021       __ z_bru(dispatch);
2022     }
2023 
2024     if (UseOnStackReplacement) {
2025 
2026       // invocation counter overflow
2027       __ bind(backedge_counter_overflow);
2028 
2029       __ z_lcgr(Z_ARG2, disp); // Z_ARG2 := -disp
2030       __ z_agr(Z_ARG2, Z_bcp); // Z_ARG2 := branch target bcp - disp == branch bcp
2031       __ call_VM(noreg,
2032                  CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
2033                  Z_ARG2);
2034 
2035       // Z_RET: osr nmethod (osr ok) or NULL (osr not possible).
2036       __ compare64_and_branch(Z_RET, (intptr_t) 0, Assembler::bcondEqual, dispatch);
2037 
2038       // Nmethod may have been invalidated (VM may block upon call_VM return).
2039       __ z_cliy(nmethod::state_offset(), Z_RET, nmethod::in_use);
2040       __ z_brne(dispatch);
2041 
2042       // Migrate the interpreter frame off of the stack.
2043 
2044       __ z_lgr(Z_tmp_1, Z_RET); // Save the nmethod.
2045 
2046       call_VM(noreg,
2047               CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2048 
2049       // Z_RET is OSR buffer, move it to expected parameter location.
2050       __ lgr_if_needed(Z_ARG1, Z_RET);
2051 
2052       // Pop the interpreter frame ...
2053       __ pop_interpreter_frame(Z_R14, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
2054 
2055       // ... and begin the OSR nmethod.
2056       __ z_lg(Z_R1_scratch, Address(Z_tmp_1, nmethod::osr_entry_point_offset()));
2057       __ z_br(Z_R1_scratch);
2058     }
2059   }
2060   BLOCK_COMMENT("} TemplateTable::branch");
2061 }
2062 
if_0cmp(Condition cc)2063 void TemplateTable::if_0cmp(Condition cc) {
2064   transition(itos, vtos);
2065 
2066   // Assume branch is more often taken than not (loops use backward branches).
2067   NearLabel not_taken;
2068   __ compare32_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
2069   branch(false, false);
2070   __ bind(not_taken);
2071   __ profile_not_taken_branch(Z_tos);
2072 }
2073 
if_icmp(Condition cc)2074 void TemplateTable::if_icmp(Condition cc) {
2075   transition(itos, vtos);
2076 
2077   // Assume branch is more often taken than not (loops use backward branches).
2078   NearLabel not_taken;
2079   __ pop_i(Z_R0_scratch);
2080   __ compare32_and_branch(Z_R0_scratch, Z_tos, j_not(cc), not_taken);
2081   branch(false, false);
2082   __ bind(not_taken);
2083   __ profile_not_taken_branch(Z_tos);
2084 }
2085 
if_nullcmp(Condition cc)2086 void TemplateTable::if_nullcmp(Condition cc) {
2087   transition(atos, vtos);
2088 
2089   // Assume branch is more often taken than not (loops use backward branches) .
2090   NearLabel not_taken;
2091   __ compare64_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
2092   branch(false, false);
2093   __ bind(not_taken);
2094   __ profile_not_taken_branch(Z_tos);
2095 }
2096 
if_acmp(Condition cc)2097 void TemplateTable::if_acmp(Condition cc) {
2098   transition(atos, vtos);
2099   // Assume branch is more often taken than not (loops use backward branches).
2100   NearLabel not_taken;
2101   __ pop_ptr(Z_ARG2);
2102   __ verify_oop(Z_ARG2);
2103   __ verify_oop(Z_tos);
2104   __ compareU64_and_branch(Z_tos, Z_ARG2, j_not(cc), not_taken);
2105   branch(false, false);
2106   __ bind(not_taken);
2107   __ profile_not_taken_branch(Z_ARG3);
2108 }
2109 
ret()2110 void TemplateTable::ret() {
2111   transition(vtos, vtos);
2112 
2113   locals_index(Z_tmp_1);
2114   // Get return bci, compute return bcp. Must load 64 bits.
2115   __ mem2reg_opt(Z_tmp_1, iaddress(_masm, Z_tmp_1));
2116   __ profile_ret(Z_tmp_1, Z_tmp_2);
2117   __ get_method(Z_tos);
2118   __ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
2119   __ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
2120   __ dispatch_next(vtos, 0 , true);
2121 }
2122 
wide_ret()2123 void TemplateTable::wide_ret() {
2124   transition(vtos, vtos);
2125 
2126   locals_index_wide(Z_tmp_1);
2127   // Get return bci, compute return bcp.
2128   __ mem2reg_opt(Z_tmp_1, aaddress(_masm, Z_tmp_1));
2129   __ profile_ret(Z_tmp_1, Z_tmp_2);
2130   __ get_method(Z_tos);
2131   __ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
2132   __ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
2133   __ dispatch_next(vtos, 0, true);
2134 }
2135 
tableswitch()2136 void TemplateTable::tableswitch () {
2137   transition(itos, vtos);
2138 
2139   NearLabel default_case, continue_execution;
2140   Register  bcp = Z_ARG5;
2141   // Align bcp.
2142   __ load_address(bcp, at_bcp(BytesPerInt));
2143   __ z_nill(bcp, (-BytesPerInt) & 0xffff);
2144 
2145   // Load lo & hi.
2146   Register low  = Z_tmp_1;
2147   Register high = Z_tmp_2;
2148 
2149   // Load low into 64 bits, since used for address calculation.
2150   __ mem2reg_signed_opt(low, Address(bcp, BytesPerInt));
2151   __ mem2reg_opt(high, Address(bcp, 2 * BytesPerInt), false);
2152   // Sign extend "label" value for address calculation.
2153   __ z_lgfr(Z_tos, Z_tos);
2154 
2155   // Check against lo & hi.
2156   __ compare32_and_branch(Z_tos, low, Assembler::bcondLow, default_case);
2157   __ compare32_and_branch(Z_tos, high, Assembler::bcondHigh, default_case);
2158 
2159   // Lookup dispatch offset.
2160   __ z_sgr(Z_tos, low);
2161   Register jump_table_offset = Z_ARG3;
2162   // Index2offset; index in Z_tos is killed by profile_switch_case.
2163   __ z_sllg(jump_table_offset, Z_tos, LogBytesPerInt);
2164   __ profile_switch_case(Z_tos, Z_ARG4 /*tmp for mdp*/, low/*tmp*/, Z_bytecode/*tmp*/);
2165 
2166   Register index = Z_tmp_2;
2167 
2168   // Load index sign extended for addressing.
2169   __ mem2reg_signed_opt(index, Address(bcp, jump_table_offset, 3 * BytesPerInt));
2170 
2171   // Continue execution.
2172   __ bind(continue_execution);
2173 
2174   // Load next bytecode.
2175   __ z_llgc(Z_bytecode, Address(Z_bcp, index));
2176   __ z_agr(Z_bcp, index); // Advance bcp.
2177   __ dispatch_only(vtos, true);
2178 
2179   // Handle default.
2180   __ bind(default_case);
2181 
2182   __ profile_switch_default(Z_tos);
2183   __ mem2reg_signed_opt(index, Address(bcp));
2184   __ z_bru(continue_execution);
2185 }
2186 
lookupswitch()2187 void TemplateTable::lookupswitch () {
2188   transition(itos, itos);
2189   __ stop("lookupswitch bytecode should have been rewritten");
2190 }
2191 
fast_linearswitch()2192 void TemplateTable::fast_linearswitch () {
2193   transition(itos, vtos);
2194 
2195   Label    loop_entry, loop, found, continue_execution;
2196   Register bcp = Z_ARG5;
2197 
2198   // Align bcp.
2199   __ load_address(bcp, at_bcp(BytesPerInt));
2200   __ z_nill(bcp, (-BytesPerInt) & 0xffff);
2201 
2202   // Start search with last case.
2203   Register current_case_offset = Z_tmp_1;
2204 
2205   __ mem2reg_signed_opt(current_case_offset, Address(bcp, BytesPerInt));
2206   __ z_sllg(current_case_offset, current_case_offset, LogBytesPerWord);   // index2bytes
2207   __ z_bru(loop_entry);
2208 
2209   // table search
2210   __ bind(loop);
2211 
2212   __ z_c(Z_tos, Address(bcp, current_case_offset, 2 * BytesPerInt));
2213   __ z_bre(found);
2214 
2215   __ bind(loop_entry);
2216   __ z_aghi(current_case_offset, -2 * BytesPerInt);  // Decrement.
2217   __ z_brnl(loop);
2218 
2219   // default case
2220   Register   offset = Z_tmp_2;
2221 
2222   __ profile_switch_default(Z_tos);
2223   // Load offset sign extended for addressing.
2224   __ mem2reg_signed_opt(offset, Address(bcp));
2225   __ z_bru(continue_execution);
2226 
2227   // Entry found -> get offset.
2228   __ bind(found);
2229   __ mem2reg_signed_opt(offset, Address(bcp, current_case_offset, 3 * BytesPerInt));
2230   // Profile that this case was taken.
2231   Register current_case_idx = Z_ARG4;
2232   __ z_srlg(current_case_idx, current_case_offset, LogBytesPerWord); // bytes2index
2233   __ profile_switch_case(current_case_idx, Z_tos, bcp, Z_bytecode);
2234 
2235   // Continue execution.
2236   __ bind(continue_execution);
2237 
2238   // Load next bytecode.
2239   __ z_llgc(Z_bytecode, Address(Z_bcp, offset, 0));
2240   __ z_agr(Z_bcp, offset); // Advance bcp.
2241   __ dispatch_only(vtos, true);
2242 }
2243 
2244 
fast_binaryswitch()2245 void TemplateTable::fast_binaryswitch() {
2246 
2247   transition(itos, vtos);
2248 
2249   // Implementation using the following core algorithm:
2250   //
2251   // int binary_search(int key, LookupswitchPair* array, int n) {
2252   //   // Binary search according to "Methodik des Programmierens" by
2253   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2254   //   int i = 0;
2255   //   int j = n;
2256   //   while (i+1 < j) {
2257   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2258   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2259   //     // where a stands for the array and assuming that the (inexisting)
2260   //     // element a[n] is infinitely big.
2261   //     int h = (i + j) >> 1;
2262   //     // i < h < j
2263   //     if (key < array[h].fast_match()) {
2264   //       j = h;
2265   //     } else {
2266   //       i = h;
2267   //     }
2268   //   }
2269   //   // R: a[i] <= key < a[i+1] or Q
2270   //   // (i.e., if key is within array, i is the correct index)
2271   //   return i;
2272   // }
2273 
2274   // Register allocation
2275   // Note: Since we use the indices in address operands, we do all the
2276   // computation in 64 bits.
2277   const Register key   = Z_tos; // Already set (tosca).
2278   const Register array = Z_tmp_1;
2279   const Register i     = Z_tmp_2;
2280   const Register j     = Z_ARG5;
2281   const Register h     = Z_ARG4;
2282   const Register temp  = Z_R1_scratch;
2283 
2284   // Find array start.
2285   __ load_address(array, at_bcp(3 * BytesPerInt));
2286   __ z_nill(array, (-BytesPerInt) & 0xffff);   // align
2287 
2288   // Initialize i & j.
2289   __ clear_reg(i, true, false);  // i = 0;  Don't set CC.
2290   __ mem2reg_signed_opt(j, Address(array, -BytesPerInt)); // j = length(array);
2291 
2292   // And start.
2293   Label entry;
2294   __ z_bru(entry);
2295 
2296   // binary search loop
2297   {
2298     NearLabel   loop;
2299 
2300     __ bind(loop);
2301 
2302     // int h = (i + j) >> 1;
2303     __ add2reg_with_index(h, 0, i, j); // h = i + j;
2304     __ z_srag(h, h, 1);                // h = (i + j) >> 1;
2305 
2306     // if (key < array[h].fast_match()) {
2307     //   j = h;
2308     // } else {
2309     //   i = h;
2310     // }
2311 
2312     // Convert array[h].match to native byte-ordering before compare.
2313     __ z_sllg(temp, h, LogBytesPerWord);   // index2bytes
2314     __ mem2reg_opt(temp, Address(array, temp), false);
2315 
2316     NearLabel  else_;
2317 
2318     __ compare32_and_branch(key, temp, Assembler::bcondNotLow, else_);
2319     // j = h if (key <  array[h].fast_match())
2320     __ z_lgr(j, h);
2321     __ z_bru(entry); // continue
2322 
2323     __ bind(else_);
2324 
2325     // i = h if (key >= array[h].fast_match())
2326     __ z_lgr(i, h);  // and fallthrough
2327 
2328     // while (i+1 < j)
2329     __ bind(entry);
2330 
2331     // if (i + 1 < j) continue search
2332     __ add2reg(h, 1, i);
2333     __ compare64_and_branch(h, j, Assembler::bcondLow, loop);
2334   }
2335 
2336   // End of binary search, result index is i (must check again!).
2337   NearLabel default_case;
2338 
2339   // h is no longer needed, so use it to hold the byte offset.
2340   __ z_sllg(h, i, LogBytesPerWord);   // index2bytes
2341   __ mem2reg_opt(temp, Address(array, h), false);
2342   __ compare32_and_branch(key, temp, Assembler::bcondNotEqual, default_case);
2343 
2344   // entry found -> j = offset
2345   __ mem2reg_signed_opt(j, Address(array, h, BytesPerInt));
2346   __ profile_switch_case(i, key, array, Z_bytecode);
2347   // Load next bytecode.
2348   __ z_llgc(Z_bytecode, Address(Z_bcp, j));
2349   __ z_agr(Z_bcp, j);       // Advance bcp.
2350   __ dispatch_only(vtos, true);
2351 
2352   // default case -> j = default offset
2353   __ bind(default_case);
2354 
2355   __ profile_switch_default(i);
2356   __ mem2reg_signed_opt(j, Address(array, -2 * BytesPerInt));
2357   // Load next bytecode.
2358   __ z_llgc(Z_bytecode, Address(Z_bcp, j));
2359   __ z_agr(Z_bcp, j);       // Advance bcp.
2360   __ dispatch_only(vtos, true);
2361 }
2362 
_return(TosState state)2363 void TemplateTable::_return(TosState state) {
2364   transition(state, state);
2365   assert(_desc->calls_vm(),
2366          "inconsistent calls_vm information"); // call in remove_activation
2367 
2368   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2369     Register Rthis  = Z_ARG2;
2370     Register Rklass = Z_ARG5;
2371     Label skip_register_finalizer;
2372     assert(state == vtos, "only valid state");
2373     __ z_lg(Rthis, aaddress(0));
2374     __ load_klass(Rklass, Rthis);
2375     __ testbit(Address(Rklass, Klass::access_flags_offset()), exact_log2(JVM_ACC_HAS_FINALIZER));
2376     __ z_bfalse(skip_register_finalizer);
2377     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Rthis);
2378     __ bind(skip_register_finalizer);
2379   }
2380 
2381   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
2382     Label no_safepoint;
2383     const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
2384     __ z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
2385     __ z_braz(no_safepoint);
2386     __ push(state);
2387     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2388     __ pop(state);
2389     __ bind(no_safepoint);
2390   }
2391 
2392   if (state == itos) {
2393     // Narrow result if state is itos but result type is smaller.
2394     // Need to narrow in the return bytecode rather than in generate_return_entry
2395     // since compiled code callers expect the result to already be narrowed.
2396     __ narrow(Z_tos, Z_tmp_1); /* fall through */
2397   }
2398 
2399   __ remove_activation(state, Z_R14);
2400   __ z_br(Z_R14);
2401 }
2402 
2403 // ----------------------------------------------------------------------------
2404 // NOTE: Cpe_offset is already computed as byte offset, so we must not
2405 // shift it afterwards!
resolve_cache_and_index(int byte_no,Register Rcache,Register cpe_offset,size_t index_size)2406 void TemplateTable::resolve_cache_and_index(int byte_no,
2407                                             Register Rcache,
2408                                             Register cpe_offset,
2409                                             size_t index_size) {
2410   BLOCK_COMMENT("resolve_cache_and_index {");
2411   NearLabel      resolved;
2412   const Register bytecode_in_cpcache = Z_R1_scratch;
2413   const int      total_f1_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f1_offset());
2414   assert_different_registers(Rcache, cpe_offset, bytecode_in_cpcache);
2415 
2416   Bytecodes::Code code = bytecode();
2417   switch (code) {
2418     case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2419     case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2420   }
2421 
2422   {
2423     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2424     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, cpe_offset, bytecode_in_cpcache, byte_no, 1, index_size);
2425     // Have we resolved this bytecode?
2426     __ compare32_and_branch(bytecode_in_cpcache, (int)code, Assembler::bcondEqual, resolved);
2427   }
2428 
2429   // Resolve first time through.
2430   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2431   __ load_const_optimized(Z_ARG2, (int) code);
2432   __ call_VM(noreg, entry, Z_ARG2);
2433 
2434   // Update registers with resolved info.
2435   __ get_cache_and_index_at_bcp(Rcache, cpe_offset, 1, index_size);
2436   __ bind(resolved);
2437   BLOCK_COMMENT("} resolve_cache_and_index");
2438 }
2439 
2440 // The Rcache and index registers must be set before call.
2441 // Index is already a byte offset, don't shift!
load_field_cp_cache_entry(Register obj,Register cache,Register index,Register off,Register flags,bool is_static=false)2442 void TemplateTable::load_field_cp_cache_entry(Register obj,
2443                                               Register cache,
2444                                               Register index,
2445                                               Register off,
2446                                               Register flags,
2447                                               bool is_static = false) {
2448   assert_different_registers(cache, index, flags, off);
2449   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2450 
2451   // Field offset
2452   __ mem2reg_opt(off, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f2_offset()));
2453   // Flags. Must load 64 bits.
2454   __ mem2reg_opt(flags, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
2455 
2456   // klass overwrite register
2457   if (is_static) {
2458     __ mem2reg_opt(obj, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f1_offset()));
2459     __ mem2reg_opt(obj, Address(obj, Klass::java_mirror_offset()));
2460     __ resolve_oop_handle(obj);
2461   }
2462 }
2463 
load_invoke_cp_cache_entry(int byte_no,Register method,Register itable_index,Register flags,bool is_invokevirtual,bool is_invokevfinal,bool is_invokedynamic)2464 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2465                                                Register method,
2466                                                Register itable_index,
2467                                                Register flags,
2468                                                bool is_invokevirtual,
2469                                                bool is_invokevfinal, // unused
2470                                                bool is_invokedynamic) {
2471   BLOCK_COMMENT("load_invoke_cp_cache_entry {");
2472   // Setup registers.
2473   const Register cache     = Z_ARG1;
2474   const Register cpe_offset= flags;
2475   const ByteSize base_off  = ConstantPoolCache::base_offset();
2476   const ByteSize f1_off    = ConstantPoolCacheEntry::f1_offset();
2477   const ByteSize f2_off    = ConstantPoolCacheEntry::f2_offset();
2478   const ByteSize flags_off = ConstantPoolCacheEntry::flags_offset();
2479   const int method_offset  = in_bytes(base_off + ((byte_no == f2_byte) ? f2_off : f1_off));
2480   const int flags_offset   = in_bytes(base_off + flags_off);
2481   // Access constant pool cache fields.
2482   const int index_offset   = in_bytes(base_off + f2_off);
2483 
2484   assert_different_registers(method, itable_index, flags, cache);
2485   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2486 
2487   if (is_invokevfinal) {
2488     // Already resolved.
2489      assert(itable_index == noreg, "register not used");
2490      __ get_cache_and_index_at_bcp(cache, cpe_offset, 1);
2491   } else {
2492     // Need to resolve.
2493     resolve_cache_and_index(byte_no, cache, cpe_offset, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2494   }
2495   __ z_lg(method, Address(cache, cpe_offset, method_offset));
2496 
2497   if (itable_index != noreg) {
2498     __ z_lg(itable_index, Address(cache, cpe_offset, index_offset));
2499   }
2500 
2501   // Only load the lower 4 bytes and fill high bytes of flags with zeros.
2502   // Callers depend on this zero-extension!!!
2503   // Attention: overwrites cpe_offset == flags
2504   __ z_llgf(flags, Address(cache, cpe_offset, flags_offset + (BytesPerLong-BytesPerInt)));
2505 
2506   BLOCK_COMMENT("} load_invoke_cp_cache_entry");
2507 }
2508 
2509 // The registers cache and index expected to be set before call.
2510 // Correct values of the cache and index registers are preserved.
jvmti_post_field_access(Register cache,Register index,bool is_static,bool has_tos)2511 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2512                                             bool is_static, bool has_tos) {
2513 
2514   // Do the JVMTI work here to avoid disturbing the register state below.
2515   // We use c_rarg registers here because we want to use the register used in
2516   // the call to the VM
2517   if (!JvmtiExport::can_post_field_access()) {
2518     return;
2519   }
2520 
2521   // Check to see if a field access watch has been set before we
2522   // take the time to call into the VM.
2523   Label exit;
2524   assert_different_registers(cache, index, Z_tos);
2525   __ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_access_count_addr());
2526   __ load_and_test_int(Z_R0, Address(Z_tos));
2527   __ z_brz(exit);
2528 
2529   // Index is returned as byte offset, do not shift!
2530   __ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
2531 
2532   // cache entry pointer
2533   __ add2reg_with_index(Z_ARG3,
2534                         in_bytes(ConstantPoolCache::base_offset()),
2535                         Z_ARG3, Z_R1_scratch);
2536 
2537   if (is_static) {
2538     __ clear_reg(Z_ARG2, true, false); // NULL object reference. Don't set CC.
2539   } else {
2540     __ mem2reg_opt(Z_ARG2, at_tos());  // Get object pointer without popping it.
2541     __ verify_oop(Z_ARG2);
2542   }
2543   // Z_ARG2: object pointer or NULL
2544   // Z_ARG3: cache entry pointer
2545   __ call_VM(noreg,
2546              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2547              Z_ARG2, Z_ARG3);
2548   __ get_cache_and_index_at_bcp(cache, index, 1);
2549 
2550   __ bind(exit);
2551 }
2552 
pop_and_check_object(Register r)2553 void TemplateTable::pop_and_check_object(Register r) {
2554   __ pop_ptr(r);
2555   __ null_check(r);  // for field access must check obj.
2556   __ verify_oop(r);
2557 }
2558 
getfield_or_static(int byte_no,bool is_static,RewriteControl rc)2559 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2560   transition(vtos, vtos);
2561 
2562   const Register cache = Z_tmp_1;
2563   const Register index = Z_tmp_2;
2564   const Register obj   = Z_tmp_1;
2565   const Register off   = Z_ARG2;
2566   const Register flags = Z_ARG1;
2567   const Register bc    = Z_tmp_1;  // Uses same reg as obj, so don't mix them.
2568 
2569   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2570   jvmti_post_field_access(cache, index, is_static, false);
2571   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2572 
2573   if (!is_static) {
2574     // Obj is on the stack.
2575     pop_and_check_object(obj);
2576   }
2577 
2578   // Displacement is 0, so any store instruction will be fine on any CPU.
2579   const Address field(obj, off);
2580 
2581   Label    is_Byte, is_Bool, is_Int, is_Short, is_Char,
2582            is_Long, is_Float, is_Object, is_Double;
2583   Label    is_badState8, is_badState9, is_badStateA, is_badStateB,
2584            is_badStateC, is_badStateD, is_badStateE, is_badStateF,
2585            is_badState;
2586   Label    branchTable, atosHandler,  Done;
2587   Register br_tab       = Z_R1_scratch;
2588   bool     do_rewrite   = !is_static && (rc == may_rewrite);
2589   bool     dont_rewrite = (is_static || (rc == may_not_rewrite));
2590 
2591   assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
2592   assert(btos == 0, "change code, btos != 0");
2593 
2594   // Calculate branch table size. Generated code size depends on ASSERT and on bytecode rewriting.
2595 #ifdef ASSERT
2596   const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2597 #else
2598   const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2599 #endif
2600 
2601   // Calculate address of branch table entry and branch there.
2602   {
2603     const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
2604     const int r_bitpos  = 63 - bit_shift;
2605     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
2606     const int n_rotate  = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
2607     __ z_larl(br_tab, branchTable);
2608     __ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
2609   }
2610   __ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
2611 
2612   __ align_address(bsize);
2613   BIND(branchTable);
2614 
2615   // btos
2616   BTB_BEGIN(is_Byte, bsize, "getfield_or_static:is_Byte");
2617   __ z_lb(Z_tos, field);
2618   __ push(btos);
2619   // Rewrite bytecode to be faster.
2620   if (do_rewrite) {
2621     patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
2622   }
2623   __ z_bru(Done);
2624   BTB_END(is_Byte, bsize, "getfield_or_static:is_Byte");
2625 
2626   // ztos
2627   BTB_BEGIN(is_Bool, bsize, "getfield_or_static:is_Bool");
2628   __ z_lb(Z_tos, field);
2629   __ push(ztos);
2630   // Rewrite bytecode to be faster.
2631   if (do_rewrite) {
2632     // Use btos rewriting, no truncating to t/f bit is needed for getfield.
2633     patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
2634   }
2635   __ z_bru(Done);
2636   BTB_END(is_Bool, bsize, "getfield_or_static:is_Bool");
2637 
2638   // ctos
2639   BTB_BEGIN(is_Char, bsize, "getfield_or_static:is_Char");
2640   // Load into 64 bits, works on all CPUs.
2641   __ z_llgh(Z_tos, field);
2642   __ push(ctos);
2643   // Rewrite bytecode to be faster.
2644   if (do_rewrite) {
2645     patch_bytecode(Bytecodes::_fast_cgetfield, bc, Z_ARG5);
2646   }
2647   __ z_bru(Done);
2648   BTB_END(is_Char, bsize, "getfield_or_static:is_Char");
2649 
2650   // stos
2651   BTB_BEGIN(is_Short, bsize, "getfield_or_static:is_Short");
2652   __ z_lh(Z_tos, field);
2653   __ push(stos);
2654   // Rewrite bytecode to be faster.
2655   if (do_rewrite) {
2656     patch_bytecode(Bytecodes::_fast_sgetfield, bc, Z_ARG5);
2657   }
2658   __ z_bru(Done);
2659   BTB_END(is_Short, bsize, "getfield_or_static:is_Short");
2660 
2661   // itos
2662   BTB_BEGIN(is_Int, bsize, "getfield_or_static:is_Int");
2663   __ mem2reg_opt(Z_tos, field, false);
2664   __ push(itos);
2665   // Rewrite bytecode to be faster.
2666   if (do_rewrite) {
2667     patch_bytecode(Bytecodes::_fast_igetfield, bc, Z_ARG5);
2668   }
2669   __ z_bru(Done);
2670   BTB_END(is_Int, bsize, "getfield_or_static:is_Int");
2671 
2672   // ltos
2673   BTB_BEGIN(is_Long, bsize, "getfield_or_static:is_Long");
2674   __ mem2reg_opt(Z_tos, field);
2675   __ push(ltos);
2676   // Rewrite bytecode to be faster.
2677   if (do_rewrite) {
2678     patch_bytecode(Bytecodes::_fast_lgetfield, bc, Z_ARG5);
2679   }
2680   __ z_bru(Done);
2681   BTB_END(is_Long, bsize, "getfield_or_static:is_Long");
2682 
2683   // ftos
2684   BTB_BEGIN(is_Float, bsize, "getfield_or_static:is_Float");
2685   __ mem2freg_opt(Z_ftos, field, false);
2686   __ push(ftos);
2687   // Rewrite bytecode to be faster.
2688   if (do_rewrite) {
2689     patch_bytecode(Bytecodes::_fast_fgetfield, bc, Z_ARG5);
2690   }
2691   __ z_bru(Done);
2692   BTB_END(is_Float, bsize, "getfield_or_static:is_Float");
2693 
2694   // dtos
2695   BTB_BEGIN(is_Double, bsize, "getfield_or_static:is_Double");
2696   __ mem2freg_opt(Z_ftos, field);
2697   __ push(dtos);
2698   // Rewrite bytecode to be faster.
2699   if (do_rewrite) {
2700     patch_bytecode(Bytecodes::_fast_dgetfield, bc, Z_ARG5);
2701   }
2702   __ z_bru(Done);
2703   BTB_END(is_Double, bsize, "getfield_or_static:is_Double");
2704 
2705   // atos
2706   BTB_BEGIN(is_Object, bsize, "getfield_or_static:is_Object");
2707   __ z_bru(atosHandler);
2708   BTB_END(is_Object, bsize, "getfield_or_static:is_Object");
2709 
2710   // Bad state detection comes at no extra runtime cost.
2711   BTB_BEGIN(is_badState8, bsize, "getfield_or_static:is_badState8");
2712   __ z_illtrap();
2713   __ z_bru(is_badState);
2714   BTB_END( is_badState8, bsize, "getfield_or_static:is_badState8");
2715   BTB_BEGIN(is_badState9, bsize, "getfield_or_static:is_badState9");
2716   __ z_illtrap();
2717   __ z_bru(is_badState);
2718   BTB_END( is_badState9, bsize, "getfield_or_static:is_badState9");
2719   BTB_BEGIN(is_badStateA, bsize, "getfield_or_static:is_badStateA");
2720   __ z_illtrap();
2721   __ z_bru(is_badState);
2722   BTB_END( is_badStateA, bsize, "getfield_or_static:is_badStateA");
2723   BTB_BEGIN(is_badStateB, bsize, "getfield_or_static:is_badStateB");
2724   __ z_illtrap();
2725   __ z_bru(is_badState);
2726   BTB_END( is_badStateB, bsize, "getfield_or_static:is_badStateB");
2727   BTB_BEGIN(is_badStateC, bsize, "getfield_or_static:is_badStateC");
2728   __ z_illtrap();
2729   __ z_bru(is_badState);
2730   BTB_END( is_badStateC, bsize, "getfield_or_static:is_badStateC");
2731   BTB_BEGIN(is_badStateD, bsize, "getfield_or_static:is_badStateD");
2732   __ z_illtrap();
2733   __ z_bru(is_badState);
2734   BTB_END( is_badStateD, bsize, "getfield_or_static:is_badStateD");
2735   BTB_BEGIN(is_badStateE, bsize, "getfield_or_static:is_badStateE");
2736   __ z_illtrap();
2737   __ z_bru(is_badState);
2738   BTB_END( is_badStateE, bsize, "getfield_or_static:is_badStateE");
2739   BTB_BEGIN(is_badStateF, bsize, "getfield_or_static:is_badStateF");
2740   __ z_illtrap();
2741   __ z_bru(is_badState);
2742   BTB_END( is_badStateF, bsize, "getfield_or_static:is_badStateF");
2743 
2744   __ align_address(64);
2745   BIND(is_badState);  // Do this outside branch table. Needs a lot of space.
2746   {
2747     unsigned int b_off = __ offset();
2748     if (is_static) {
2749       __ stop_static("Bad state in getstatic");
2750     } else {
2751       __ stop_static("Bad state in getfield");
2752     }
2753     unsigned int e_off = __ offset();
2754   }
2755 
2756   __ align_address(64);
2757   BIND(atosHandler);  // Oops are really complicated to handle.
2758                       // There is a lot of code generated.
2759                       // Therefore: generate the handler outside of branch table.
2760                       // There is no performance penalty. The additional branch
2761                       // to here is compensated for by the fallthru to "Done".
2762   {
2763     unsigned int b_off = __ offset();
2764     do_oop_load(_masm, field, Z_tos, Z_tmp_2, Z_tmp_3, IN_HEAP);
2765     __ verify_oop(Z_tos);
2766     __ push(atos);
2767     if (do_rewrite) {
2768       patch_bytecode(Bytecodes::_fast_agetfield, bc, Z_ARG5);
2769     }
2770     unsigned int e_off = __ offset();
2771   }
2772 
2773   BIND(Done);
2774 }
2775 
getfield(int byte_no)2776 void TemplateTable::getfield(int byte_no) {
2777   BLOCK_COMMENT("getfield  {");
2778   getfield_or_static(byte_no, false);
2779   BLOCK_COMMENT("} getfield");
2780 }
2781 
nofast_getfield(int byte_no)2782 void TemplateTable::nofast_getfield(int byte_no) {
2783   getfield_or_static(byte_no, false, may_not_rewrite);
2784 }
2785 
getstatic(int byte_no)2786 void TemplateTable::getstatic(int byte_no) {
2787   BLOCK_COMMENT("getstatic {");
2788   getfield_or_static(byte_no, true);
2789   BLOCK_COMMENT("} getstatic");
2790 }
2791 
2792 // The registers cache and index expected to be set before call.  The
2793 // function may destroy various registers, just not the cache and
2794 // index registers.
jvmti_post_field_mod(Register cache,Register index,bool is_static)2795 void TemplateTable::jvmti_post_field_mod(Register cache,
2796                                          Register index, bool is_static) {
2797   transition(vtos, vtos);
2798 
2799   if (!JvmtiExport::can_post_field_modification()) {
2800     return;
2801   }
2802 
2803   BLOCK_COMMENT("jvmti_post_field_mod {");
2804 
2805   // Check to see if a field modification watch has been set before
2806   // we take the time to call into the VM.
2807   Label    L1;
2808   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2809   assert_different_registers(cache, index, Z_tos);
2810 
2811   __ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_modification_count_addr());
2812   __ load_and_test_int(Z_R0, Address(Z_tos));
2813   __ z_brz(L1);
2814 
2815   // Index is returned as byte offset, do not shift!
2816   __ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
2817 
2818   if (is_static) {
2819     // Life is simple. Null out the object pointer.
2820     __ clear_reg(Z_ARG2, true, false);   // Don't set CC.
2821   } else {
2822     // Life is harder. The stack holds the value on top, followed by
2823     // the object. We don't know the size of the value, though. It
2824     // could be one or two words depending on its type. As a result,
2825     // we must find the type to determine where the object is.
2826     __ mem2reg_opt(Z_ARG4,
2827                    Address(Z_ARG3, Z_R1_scratch,
2828                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()) +
2829                            (BytesPerLong - BytesPerInt)),
2830                    false);
2831     __ z_srl(Z_ARG4, ConstantPoolCacheEntry::tos_state_shift);
2832     // Make sure we don't need to mask Z_ARG4 for tos_state after the above shift.
2833     ConstantPoolCacheEntry::verify_tos_state_shift();
2834     __ mem2reg_opt(Z_ARG2, at_tos(1));  // Initially assume a one word jvalue.
2835 
2836     NearLabel   load_dtos, cont;
2837 
2838     __ compareU32_and_branch(Z_ARG4, (intptr_t) ltos,
2839                               Assembler::bcondNotEqual, load_dtos);
2840     __ mem2reg_opt(Z_ARG2, at_tos(2)); // ltos (two word jvalue)
2841     __ z_bru(cont);
2842 
2843     __ bind(load_dtos);
2844     __ compareU32_and_branch(Z_ARG4, (intptr_t)dtos, Assembler::bcondNotEqual, cont);
2845     __ mem2reg_opt(Z_ARG2, at_tos(2)); // dtos (two word jvalue)
2846 
2847     __ bind(cont);
2848   }
2849   // cache entry pointer
2850 
2851   __ add2reg_with_index(Z_ARG3, in_bytes(cp_base_offset), Z_ARG3, Z_R1_scratch);
2852 
2853   // object(tos)
2854   __ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
2855   // Z_ARG2: object pointer set up above (NULL if static)
2856   // Z_ARG3: cache entry pointer
2857   // Z_ARG4: jvalue object on the stack
2858   __ call_VM(noreg,
2859              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2860              Z_ARG2, Z_ARG3, Z_ARG4);
2861   __ get_cache_and_index_at_bcp(cache, index, 1);
2862 
2863   __ bind(L1);
2864   BLOCK_COMMENT("} jvmti_post_field_mod");
2865 }
2866 
2867 
putfield_or_static(int byte_no,bool is_static,RewriteControl rc)2868 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2869   transition(vtos, vtos);
2870 
2871   const Register cache         = Z_tmp_1;
2872   const Register index         = Z_ARG5;
2873   const Register obj           = Z_tmp_1;
2874   const Register off           = Z_tmp_2;
2875   const Register flags         = Z_R1_scratch;
2876   const Register br_tab        = Z_ARG5;
2877   const Register bc            = Z_tmp_1;
2878   const Register oopStore_tmp1 = Z_R1_scratch;
2879   const Register oopStore_tmp2 = Z_ARG5;
2880   const Register oopStore_tmp3 = Z_R0_scratch;
2881 
2882   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2883   jvmti_post_field_mod(cache, index, is_static);
2884   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2885   // begin of life for:
2886   //   obj, off   long life range
2887   //   flags      short life range, up to branch into branch table
2888   // end of life for:
2889   //   cache, index
2890 
2891   const Address field(obj, off);
2892   Label is_Byte, is_Bool, is_Int, is_Short, is_Char,
2893         is_Long, is_Float, is_Object, is_Double;
2894   Label is_badState8, is_badState9, is_badStateA, is_badStateB,
2895         is_badStateC, is_badStateD, is_badStateE, is_badStateF,
2896         is_badState;
2897   Label branchTable, atosHandler, Done;
2898   bool  do_rewrite   = !is_static && (rc == may_rewrite);
2899   bool  dont_rewrite = (is_static || (rc == may_not_rewrite));
2900 
2901   assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
2902 
2903   assert(btos == 0, "change code, btos != 0");
2904 
2905 #ifdef ASSERT
2906   const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2907 #else
2908   const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*8;
2909 #endif
2910 
2911   // Calculate address of branch table entry and branch there.
2912   {
2913     const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
2914     const int r_bitpos  = 63 - bit_shift;
2915     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
2916     const int n_rotate  = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
2917     __ z_larl(br_tab, branchTable);
2918     __ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
2919     __ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
2920   }
2921   // end of life for:
2922   //   flags, br_tab
2923 
2924   __ align_address(bsize);
2925   BIND(branchTable);
2926 
2927   // btos
2928   BTB_BEGIN(is_Byte, bsize, "putfield_or_static:is_Byte");
2929   __ pop(btos);
2930   if (!is_static) {
2931     pop_and_check_object(obj);
2932   }
2933   __ z_stc(Z_tos, field);
2934   if (do_rewrite) {
2935     patch_bytecode(Bytecodes::_fast_bputfield, bc, Z_ARG5, true, byte_no);
2936   }
2937   __ z_bru(Done);
2938   BTB_END( is_Byte, bsize, "putfield_or_static:is_Byte");
2939 
2940   // ztos
2941   BTB_BEGIN(is_Bool, bsize, "putfield_or_static:is_Bool");
2942   __ pop(ztos);
2943   if (!is_static) {
2944     pop_and_check_object(obj);
2945   }
2946   __ z_nilf(Z_tos, 0x1);
2947   __ z_stc(Z_tos, field);
2948   if (do_rewrite) {
2949     patch_bytecode(Bytecodes::_fast_zputfield, bc, Z_ARG5, true, byte_no);
2950   }
2951   __ z_bru(Done);
2952   BTB_END(is_Bool, bsize, "putfield_or_static:is_Bool");
2953 
2954   // ctos
2955   BTB_BEGIN(is_Char, bsize, "putfield_or_static:is_Char");
2956   __ pop(ctos);
2957   if (!is_static) {
2958     pop_and_check_object(obj);
2959   }
2960   __ z_sth(Z_tos, field);
2961   if (do_rewrite) {
2962     patch_bytecode(Bytecodes::_fast_cputfield, bc, Z_ARG5, true, byte_no);
2963   }
2964   __ z_bru(Done);
2965   BTB_END( is_Char, bsize, "putfield_or_static:is_Char");
2966 
2967   // stos
2968   BTB_BEGIN(is_Short, bsize, "putfield_or_static:is_Short");
2969   __ pop(stos);
2970   if (!is_static) {
2971     pop_and_check_object(obj);
2972   }
2973   __ z_sth(Z_tos, field);
2974   if (do_rewrite) {
2975     patch_bytecode(Bytecodes::_fast_sputfield, bc, Z_ARG5, true, byte_no);
2976   }
2977   __ z_bru(Done);
2978   BTB_END( is_Short, bsize, "putfield_or_static:is_Short");
2979 
2980   // itos
2981   BTB_BEGIN(is_Int, bsize, "putfield_or_static:is_Int");
2982   __ pop(itos);
2983   if (!is_static) {
2984     pop_and_check_object(obj);
2985   }
2986   __ reg2mem_opt(Z_tos, field, false);
2987   if (do_rewrite) {
2988     patch_bytecode(Bytecodes::_fast_iputfield, bc, Z_ARG5, true, byte_no);
2989   }
2990   __ z_bru(Done);
2991   BTB_END( is_Int, bsize, "putfield_or_static:is_Int");
2992 
2993   // ltos
2994   BTB_BEGIN(is_Long, bsize, "putfield_or_static:is_Long");
2995   __ pop(ltos);
2996   if (!is_static) {
2997     pop_and_check_object(obj);
2998   }
2999   __ reg2mem_opt(Z_tos, field);
3000   if (do_rewrite) {
3001     patch_bytecode(Bytecodes::_fast_lputfield, bc, Z_ARG5, true, byte_no);
3002   }
3003   __ z_bru(Done);
3004   BTB_END( is_Long, bsize, "putfield_or_static:is_Long");
3005 
3006   // ftos
3007   BTB_BEGIN(is_Float, bsize, "putfield_or_static:is_Float");
3008   __ pop(ftos);
3009   if (!is_static) {
3010     pop_and_check_object(obj);
3011   }
3012   __ freg2mem_opt(Z_ftos, field, false);
3013   if (do_rewrite) {
3014     patch_bytecode(Bytecodes::_fast_fputfield, bc, Z_ARG5, true, byte_no);
3015   }
3016   __ z_bru(Done);
3017   BTB_END( is_Float, bsize, "putfield_or_static:is_Float");
3018 
3019   // dtos
3020   BTB_BEGIN(is_Double, bsize, "putfield_or_static:is_Double");
3021   __ pop(dtos);
3022   if (!is_static) {
3023     pop_and_check_object(obj);
3024   }
3025   __ freg2mem_opt(Z_ftos, field);
3026   if (do_rewrite) {
3027     patch_bytecode(Bytecodes::_fast_dputfield, bc, Z_ARG5, true, byte_no);
3028   }
3029   __ z_bru(Done);
3030   BTB_END( is_Double, bsize, "putfield_or_static:is_Double");
3031 
3032   // atos
3033   BTB_BEGIN(is_Object, bsize, "putfield_or_static:is_Object");
3034   __ z_bru(atosHandler);
3035   BTB_END( is_Object, bsize, "putfield_or_static:is_Object");
3036 
3037   // Bad state detection comes at no extra runtime cost.
3038   BTB_BEGIN(is_badState8, bsize, "putfield_or_static:is_badState8");
3039   __ z_illtrap();
3040   __ z_bru(is_badState);
3041   BTB_END( is_badState8, bsize, "putfield_or_static:is_badState8");
3042   BTB_BEGIN(is_badState9, bsize, "putfield_or_static:is_badState9");
3043   __ z_illtrap();
3044   __ z_bru(is_badState);
3045   BTB_END( is_badState9, bsize, "putfield_or_static:is_badState9");
3046   BTB_BEGIN(is_badStateA, bsize, "putfield_or_static:is_badStateA");
3047   __ z_illtrap();
3048   __ z_bru(is_badState);
3049   BTB_END( is_badStateA, bsize, "putfield_or_static:is_badStateA");
3050   BTB_BEGIN(is_badStateB, bsize, "putfield_or_static:is_badStateB");
3051   __ z_illtrap();
3052   __ z_bru(is_badState);
3053   BTB_END( is_badStateB, bsize, "putfield_or_static:is_badStateB");
3054   BTB_BEGIN(is_badStateC, bsize, "putfield_or_static:is_badStateC");
3055   __ z_illtrap();
3056   __ z_bru(is_badState);
3057   BTB_END( is_badStateC, bsize, "putfield_or_static:is_badStateC");
3058   BTB_BEGIN(is_badStateD, bsize, "putfield_or_static:is_badStateD");
3059   __ z_illtrap();
3060   __ z_bru(is_badState);
3061   BTB_END( is_badStateD, bsize, "putfield_or_static:is_badStateD");
3062   BTB_BEGIN(is_badStateE, bsize, "putfield_or_static:is_badStateE");
3063   __ z_illtrap();
3064   __ z_bru(is_badState);
3065   BTB_END( is_badStateE, bsize, "putfield_or_static:is_badStateE");
3066   BTB_BEGIN(is_badStateF, bsize, "putfield_or_static:is_badStateF");
3067   __ z_illtrap();
3068   __ z_bru(is_badState);
3069   BTB_END( is_badStateF, bsize, "putfield_or_static:is_badStateF");
3070 
3071   __ align_address(64);
3072   BIND(is_badState);  // Do this outside branch table. Needs a lot of space.
3073   {
3074     unsigned int b_off = __ offset();
3075     if (is_static) __ stop_static("Bad state in putstatic");
3076     else            __ stop_static("Bad state in putfield");
3077     unsigned int e_off = __ offset();
3078   }
3079 
3080   __ align_address(64);
3081   BIND(atosHandler);  // Oops are really complicated to handle.
3082                       // There is a lot of code generated.
3083                       // Therefore: generate the handler outside of branch table.
3084                       // There is no performance penalty. The additional branch
3085                       // to here is compensated for by the fallthru to "Done".
3086   {
3087     unsigned int b_off = __ offset();
3088     __ pop(atos);
3089     if (!is_static) {
3090       pop_and_check_object(obj);
3091     }
3092     // Store into the field
3093     do_oop_store(_masm, Address(obj, off), Z_tos,
3094                  oopStore_tmp1, oopStore_tmp2, oopStore_tmp3, IN_HEAP);
3095     if (do_rewrite) {
3096       patch_bytecode(Bytecodes::_fast_aputfield, bc, Z_ARG5, true, byte_no);
3097     }
3098     // __ z_bru(Done); // fallthru
3099     unsigned int e_off = __ offset();
3100   }
3101 
3102   BIND(Done);
3103 
3104   // Check for volatile store.
3105   Label notVolatile;
3106 
3107   __ testbit(Z_ARG4, ConstantPoolCacheEntry::is_volatile_shift);
3108   __ z_brz(notVolatile);
3109   __ z_fence();
3110 
3111   BIND(notVolatile);
3112 }
3113 
putfield(int byte_no)3114 void TemplateTable::putfield(int byte_no) {
3115   BLOCK_COMMENT("putfield  {");
3116   putfield_or_static(byte_no, false);
3117   BLOCK_COMMENT("} putfield");
3118 }
3119 
nofast_putfield(int byte_no)3120 void TemplateTable::nofast_putfield(int byte_no) {
3121   putfield_or_static(byte_no, false, may_not_rewrite);
3122 }
3123 
putstatic(int byte_no)3124 void TemplateTable::putstatic(int byte_no) {
3125   BLOCK_COMMENT("putstatic {");
3126   putfield_or_static(byte_no, true);
3127   BLOCK_COMMENT("} putstatic");
3128 }
3129 
3130 // Push the tos value back to the stack.
3131 // gc will find oops there and update.
jvmti_post_fast_field_mod()3132 void TemplateTable::jvmti_post_fast_field_mod() {
3133 
3134   if (!JvmtiExport::can_post_field_modification()) {
3135     return;
3136   }
3137 
3138   // Check to see if a field modification watch has been set before
3139   // we take the time to call into the VM.
3140   Label   exit;
3141 
3142   BLOCK_COMMENT("jvmti_post_fast_field_mod {");
3143 
3144   __ load_absolute_address(Z_R1_scratch,
3145                            (address) JvmtiExport::get_field_modification_count_addr());
3146   __ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
3147   __ z_brz(exit);
3148 
3149   Register obj = Z_tmp_1;
3150 
3151   __ pop_ptr(obj);                  // Copy the object pointer from tos.
3152   __ verify_oop(obj);
3153   __ push_ptr(obj);                 // Put the object pointer back on tos.
3154 
3155   // Save tos values before call_VM() clobbers them. Since we have
3156   // to do it for every data type, we use the saved values as the
3157   // jvalue object.
3158   switch (bytecode()) {          // Load values into the jvalue object.
3159     case Bytecodes::_fast_aputfield:
3160       __ push_ptr(Z_tos);
3161       break;
3162     case Bytecodes::_fast_bputfield:
3163     case Bytecodes::_fast_zputfield:
3164     case Bytecodes::_fast_sputfield:
3165     case Bytecodes::_fast_cputfield:
3166     case Bytecodes::_fast_iputfield:
3167       __ push_i(Z_tos);
3168       break;
3169     case Bytecodes::_fast_dputfield:
3170       __ push_d();
3171       break;
3172     case Bytecodes::_fast_fputfield:
3173       __ push_f();
3174       break;
3175     case Bytecodes::_fast_lputfield:
3176       __ push_l(Z_tos);
3177       break;
3178 
3179     default:
3180       ShouldNotReachHere();
3181   }
3182 
3183   // jvalue on the stack
3184   __ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
3185   // Access constant pool cache entry.
3186   __ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tos, 1);
3187   __ verify_oop(obj);
3188 
3189   // obj   : object pointer copied above
3190   // Z_ARG3: cache entry pointer
3191   // Z_ARG4: jvalue object on the stack
3192   __ call_VM(noreg,
3193              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
3194              obj, Z_ARG3, Z_ARG4);
3195 
3196   switch (bytecode()) {             // Restore tos values.
3197     case Bytecodes::_fast_aputfield:
3198       __ pop_ptr(Z_tos);
3199       break;
3200     case Bytecodes::_fast_bputfield:
3201     case Bytecodes::_fast_zputfield:
3202     case Bytecodes::_fast_sputfield:
3203     case Bytecodes::_fast_cputfield:
3204     case Bytecodes::_fast_iputfield:
3205       __ pop_i(Z_tos);
3206       break;
3207     case Bytecodes::_fast_dputfield:
3208       __ pop_d(Z_ftos);
3209       break;
3210     case Bytecodes::_fast_fputfield:
3211       __ pop_f(Z_ftos);
3212       break;
3213     case Bytecodes::_fast_lputfield:
3214       __ pop_l(Z_tos);
3215       break;
3216   }
3217 
3218   __ bind(exit);
3219   BLOCK_COMMENT("} jvmti_post_fast_field_mod");
3220 }
3221 
fast_storefield(TosState state)3222 void TemplateTable::fast_storefield(TosState state) {
3223   transition(state, vtos);
3224 
3225   ByteSize base = ConstantPoolCache::base_offset();
3226   jvmti_post_fast_field_mod();
3227 
3228   // Access constant pool cache.
3229   Register cache = Z_tmp_1;
3230   Register index = Z_tmp_2;
3231   Register flags = Z_ARG5;
3232 
3233   // Index comes in bytes, don't shift afterwards!
3234   __ get_cache_and_index_at_bcp(cache, index, 1);
3235 
3236   // Test for volatile.
3237   assert(!flags->is_volatile(), "do_oop_store could perform leaf RT call");
3238   __ z_lg(flags, Address(cache, index, base + ConstantPoolCacheEntry::flags_offset()));
3239 
3240   // Replace index with field offset from cache entry.
3241   Register field_offset = index;
3242   __ z_lg(field_offset, Address(cache, index, base + ConstantPoolCacheEntry::f2_offset()));
3243 
3244   // Get object from stack.
3245   Register   obj = cache;
3246 
3247   pop_and_check_object(obj);
3248 
3249   // field address
3250   const Address   field(obj, field_offset);
3251 
3252   // access field
3253   switch (bytecode()) {
3254     case Bytecodes::_fast_aputfield:
3255       do_oop_store(_masm, Address(obj, field_offset), Z_tos,
3256                    Z_ARG2, Z_ARG3, Z_ARG4, IN_HEAP);
3257       break;
3258     case Bytecodes::_fast_lputfield:
3259       __ reg2mem_opt(Z_tos, field);
3260       break;
3261     case Bytecodes::_fast_iputfield:
3262       __ reg2mem_opt(Z_tos, field, false);
3263       break;
3264     case Bytecodes::_fast_zputfield:
3265       __ z_nilf(Z_tos, 0x1);
3266       // fall through to bputfield
3267     case Bytecodes::_fast_bputfield:
3268       __ z_stc(Z_tos, field);
3269       break;
3270     case Bytecodes::_fast_sputfield:
3271       // fall through
3272     case Bytecodes::_fast_cputfield:
3273       __ z_sth(Z_tos, field);
3274       break;
3275     case Bytecodes::_fast_fputfield:
3276       __ freg2mem_opt(Z_ftos, field, false);
3277       break;
3278     case Bytecodes::_fast_dputfield:
3279       __ freg2mem_opt(Z_ftos, field);
3280       break;
3281     default:
3282       ShouldNotReachHere();
3283   }
3284 
3285   //  Check for volatile store.
3286   Label notVolatile;
3287 
3288   __ testbit(flags, ConstantPoolCacheEntry::is_volatile_shift);
3289   __ z_brz(notVolatile);
3290   __ z_fence();
3291 
3292   __ bind(notVolatile);
3293 }
3294 
fast_accessfield(TosState state)3295 void TemplateTable::fast_accessfield(TosState state) {
3296   transition(atos, state);
3297 
3298   Register obj = Z_tos;
3299 
3300   // Do the JVMTI work here to avoid disturbing the register state below
3301   if (JvmtiExport::can_post_field_access()) {
3302     // Check to see if a field access watch has been set before we
3303     // take the time to call into the VM.
3304     Label cont;
3305 
3306     __ load_absolute_address(Z_R1_scratch,
3307                              (address)JvmtiExport::get_field_access_count_addr());
3308     __ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
3309     __ z_brz(cont);
3310 
3311     // Access constant pool cache entry.
3312 
3313     __ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tmp_1, 1);
3314     __ verify_oop(obj);
3315     __ push_ptr(obj);  // Save object pointer before call_VM() clobbers it.
3316     __ z_lgr(Z_ARG2, obj);
3317 
3318     // Z_ARG2: object pointer copied above
3319     // Z_ARG3: cache entry pointer
3320     __ call_VM(noreg,
3321                CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
3322                Z_ARG2, Z_ARG3);
3323     __ pop_ptr(obj); // Restore object pointer.
3324 
3325     __ bind(cont);
3326   }
3327 
3328   // Access constant pool cache.
3329   Register   cache = Z_tmp_1;
3330   Register   index = Z_tmp_2;
3331 
3332   // Index comes in bytes, don't shift afterwards!
3333   __ get_cache_and_index_at_bcp(cache, index, 1);
3334   // Replace index with field offset from cache entry.
3335   __ mem2reg_opt(index,
3336                  Address(cache, index,
3337                          ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
3338 
3339   __ verify_oop(obj);
3340   __ null_check(obj);
3341 
3342   Address field(obj, index);
3343 
3344   // access field
3345   switch (bytecode()) {
3346     case Bytecodes::_fast_agetfield:
3347       do_oop_load(_masm, field, Z_tos, Z_tmp_1, Z_tmp_2, IN_HEAP);
3348       __ verify_oop(Z_tos);
3349       return;
3350     case Bytecodes::_fast_lgetfield:
3351       __ mem2reg_opt(Z_tos, field);
3352       return;
3353     case Bytecodes::_fast_igetfield:
3354       __ mem2reg_opt(Z_tos, field, false);
3355       return;
3356     case Bytecodes::_fast_bgetfield:
3357       __ z_lb(Z_tos, field);
3358       return;
3359     case Bytecodes::_fast_sgetfield:
3360       __ z_lh(Z_tos, field);
3361       return;
3362     case Bytecodes::_fast_cgetfield:
3363       __ z_llgh(Z_tos, field);   // Load into 64 bits, works on all CPUs.
3364       return;
3365     case Bytecodes::_fast_fgetfield:
3366       __ mem2freg_opt(Z_ftos, field, false);
3367       return;
3368     case Bytecodes::_fast_dgetfield:
3369       __ mem2freg_opt(Z_ftos, field);
3370       return;
3371     default:
3372       ShouldNotReachHere();
3373   }
3374 }
3375 
fast_xaccess(TosState state)3376 void TemplateTable::fast_xaccess(TosState state) {
3377   transition(vtos, state);
3378 
3379   Register receiver = Z_tos;
3380   // Get receiver.
3381   __ mem2reg_opt(Z_tos, aaddress(0));
3382 
3383   // Access constant pool cache.
3384   Register cache = Z_tmp_1;
3385   Register index = Z_tmp_2;
3386 
3387   // Index comes in bytes, don't shift afterwards!
3388   __ get_cache_and_index_at_bcp(cache, index, 2);
3389   // Replace index with field offset from cache entry.
3390   __ mem2reg_opt(index,
3391                  Address(cache, index,
3392                          ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
3393 
3394   // Make sure exception is reported in correct bcp range (getfield is
3395   // next instruction).
3396   __ add2reg(Z_bcp, 1);
3397   __ null_check(receiver);
3398   switch (state) {
3399     case itos:
3400       __ mem2reg_opt(Z_tos, Address(receiver, index), false);
3401       break;
3402     case atos:
3403       do_oop_load(_masm, Address(receiver, index), Z_tos, Z_tmp_1, Z_tmp_2, IN_HEAP);
3404       __ verify_oop(Z_tos);
3405       break;
3406     case ftos:
3407       __ mem2freg_opt(Z_ftos, Address(receiver, index));
3408       break;
3409     default:
3410       ShouldNotReachHere();
3411   }
3412 
3413   // Reset bcp to original position.
3414   __ add2reg(Z_bcp, -1);
3415 }
3416 
3417 //-----------------------------------------------------------------------------
3418 // Calls
3419 
prepare_invoke(int byte_no,Register method,Register index,Register recv,Register flags)3420 void TemplateTable::prepare_invoke(int byte_no,
3421                                    Register method,  // linked method (or i-klass)
3422                                    Register index,   // itable index, MethodType, etc.
3423                                    Register recv,    // If caller wants to see it.
3424                                    Register flags) { // If caller wants to test it.
3425   // Determine flags.
3426   const Bytecodes::Code code = bytecode();
3427   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3428   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3429   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3430   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3431   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3432   const bool load_receiver       = (recv != noreg);
3433   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3434 
3435   // Setup registers & access constant pool cache.
3436   if (recv  == noreg) { recv  = Z_ARG1; }
3437   if (flags == noreg) { flags = Z_ARG2; }
3438   assert_different_registers(method, Z_R14, index, recv, flags);
3439 
3440   BLOCK_COMMENT("prepare_invoke {");
3441 
3442   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3443 
3444   // Maybe push appendix to arguments.
3445   if (is_invokedynamic || is_invokehandle) {
3446     Label L_no_push;
3447     Register resolved_reference = Z_R1_scratch;
3448     __ testbit(flags, ConstantPoolCacheEntry::has_appendix_shift);
3449     __ z_bfalse(L_no_push);
3450     // Push the appendix as a trailing parameter.
3451     // This must be done before we get the receiver,
3452     // since the parameter_size includes it.
3453     __ load_resolved_reference_at_index(resolved_reference, index);
3454     __ verify_oop(resolved_reference);
3455     __ push_ptr(resolved_reference);  // Push appendix (MethodType, CallSite, etc.).
3456     __ bind(L_no_push);
3457   }
3458 
3459   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3460   if (load_receiver) {
3461     assert(!is_invokedynamic, "");
3462     // recv := int2long(flags & ConstantPoolCacheEntry::parameter_size_mask) << 3
3463     // Flags is zero-extended int2long when loaded during load_invoke_cp_cache_entry().
3464     // Only the least significant byte (psize) of flags is used.
3465     {
3466       const unsigned int logSES = Interpreter::logStackElementSize;
3467       const int bit_shift = logSES;
3468       const int r_bitpos  = 63 - bit_shift;
3469       const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::parameter_size_bits + 1;
3470       const int n_rotate  = bit_shift;
3471       assert(ConstantPoolCacheEntry::parameter_size_mask == 255, "adapt bitpositions");
3472       __ rotate_then_insert(recv, flags, l_bitpos, r_bitpos, n_rotate, true);
3473     }
3474     // Recv now contains #arguments * StackElementSize.
3475 
3476     Address recv_addr(Z_esp, recv);
3477     __ z_lg(recv, recv_addr);
3478     __ verify_oop(recv);
3479   }
3480 
3481   // Compute return type.
3482   // ret_type is used by callers (invokespecial, invokestatic) at least.
3483   Register ret_type = Z_R1_scratch;
3484   assert_different_registers(ret_type, method);
3485 
3486   const address table_addr = (address)Interpreter::invoke_return_entry_table_for(code);
3487   __ load_absolute_address(Z_R14, table_addr);
3488 
3489   {
3490     const int bit_shift = LogBytesPerWord;           // Size of each table entry.
3491     const int r_bitpos  = 63 - bit_shift;
3492     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
3493     const int n_rotate  = bit_shift-ConstantPoolCacheEntry::tos_state_shift;
3494     __ rotate_then_insert(ret_type, flags, l_bitpos, r_bitpos, n_rotate, true);
3495     // Make sure we don't need to mask flags for tos_state after the above shift.
3496     ConstantPoolCacheEntry::verify_tos_state_shift();
3497   }
3498 
3499     __ z_lg(Z_R14, Address(Z_R14, ret_type)); // Load return address.
3500   BLOCK_COMMENT("} prepare_invoke");
3501 }
3502 
3503 
invokevirtual_helper(Register index,Register recv,Register flags)3504 void TemplateTable::invokevirtual_helper(Register index,
3505                                          Register recv,
3506                                          Register flags) {
3507   // Uses temporary registers Z_tmp_2, Z_ARG4.
3508   assert_different_registers(index, recv, Z_tmp_2, Z_ARG4);
3509 
3510   // Test for an invoke of a final method.
3511   Label notFinal;
3512 
3513   BLOCK_COMMENT("invokevirtual_helper {");
3514 
3515   __ testbit(flags, ConstantPoolCacheEntry::is_vfinal_shift);
3516   __ z_brz(notFinal);
3517 
3518   const Register method = index;  // Method must be Z_ARG3.
3519   assert(method == Z_ARG3, "method must be second argument for interpreter calling convention");
3520 
3521   // Do the call - the index is actually the method to call.
3522   // That is, f2 is a vtable index if !is_vfinal, else f2 is a method.
3523 
3524   // It's final, need a null check here!
3525   __ null_check(recv);
3526 
3527   // Profile this call.
3528   __ profile_final_call(Z_tmp_2);
3529   __ profile_arguments_type(Z_tmp_2, method, Z_ARG5, true); // Argument type profiling.
3530   __ jump_from_interpreted(method, Z_tmp_2);
3531 
3532   __ bind(notFinal);
3533 
3534   // Get receiver klass.
3535   __ null_check(recv, Z_R0_scratch, oopDesc::klass_offset_in_bytes());
3536   __ load_klass(Z_tmp_2, recv);
3537 
3538   // Profile this call.
3539   __ profile_virtual_call(Z_tmp_2, Z_ARG4, Z_ARG5);
3540 
3541   // Get target method & entry point.
3542   __ z_sllg(index, index, exact_log2(vtableEntry::size_in_bytes()));
3543   __ mem2reg_opt(method,
3544                  Address(Z_tmp_2, index,
3545                          Klass::vtable_start_offset() + in_ByteSize(vtableEntry::method_offset_in_bytes())));
3546   __ profile_arguments_type(Z_ARG4, method, Z_ARG5, true);
3547   __ jump_from_interpreted(method, Z_ARG4);
3548   BLOCK_COMMENT("} invokevirtual_helper");
3549 }
3550 
invokevirtual(int byte_no)3551 void TemplateTable::invokevirtual(int byte_no) {
3552   transition(vtos, vtos);
3553 
3554   assert(byte_no == f2_byte, "use this argument");
3555   prepare_invoke(byte_no,
3556                  Z_ARG3,  // method or vtable index
3557                  noreg,   // unused itable index
3558                  Z_ARG1,  // recv
3559                  Z_ARG2); // flags
3560 
3561   // Z_ARG3 : index
3562   // Z_ARG1 : receiver
3563   // Z_ARG2 : flags
3564   invokevirtual_helper(Z_ARG3, Z_ARG1, Z_ARG2);
3565 }
3566 
invokespecial(int byte_no)3567 void TemplateTable::invokespecial(int byte_no) {
3568   transition(vtos, vtos);
3569 
3570   assert(byte_no == f1_byte, "use this argument");
3571   Register Rmethod = Z_tmp_2;
3572   prepare_invoke(byte_no, Rmethod, noreg, // Get f1 method.
3573                  Z_ARG3);   // Get receiver also for null check.
3574   __ verify_oop(Z_ARG3);
3575   __ null_check(Z_ARG3);
3576   // Do the call.
3577   __ profile_call(Z_ARG2);
3578   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3579   __ jump_from_interpreted(Rmethod, Z_R1_scratch);
3580 }
3581 
invokestatic(int byte_no)3582 void TemplateTable::invokestatic(int byte_no) {
3583   transition(vtos, vtos);
3584 
3585   assert(byte_no == f1_byte, "use this argument");
3586   Register Rmethod = Z_tmp_2;
3587   prepare_invoke(byte_no, Rmethod);   // Get f1 method.
3588   // Do the call.
3589   __ profile_call(Z_ARG2);
3590   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3591   __ jump_from_interpreted(Rmethod, Z_R1_scratch);
3592 }
3593 
3594 // Outdated feature, and we don't support it.
fast_invokevfinal(int byte_no)3595 void TemplateTable::fast_invokevfinal(int byte_no) {
3596   transition(vtos, vtos);
3597   assert(byte_no == f2_byte, "use this argument");
3598   __ stop("fast_invokevfinal not used on linuxs390x");
3599 }
3600 
invokeinterface(int byte_no)3601 void TemplateTable::invokeinterface(int byte_no) {
3602   transition(vtos, vtos);
3603 
3604   assert(byte_no == f1_byte, "use this argument");
3605   Register klass     = Z_ARG2,
3606            method    = Z_ARG3,
3607            interface = Z_ARG4,
3608            flags     = Z_ARG5,
3609            receiver  = Z_tmp_1;
3610 
3611   BLOCK_COMMENT("invokeinterface {");
3612 
3613   prepare_invoke(byte_no, interface, method,  // Get f1 klassOop, f2 Method*.
3614                  receiver, flags);
3615 
3616   // Z_R14 (== Z_bytecode) : return entry
3617 
3618   // First check for Object case, then private interface method,
3619   // then regular interface method.
3620 
3621   // Special case of invokeinterface called for virtual method of
3622   // java.lang.Object. See cpCache.cpp for details.
3623   NearLabel notObjectMethod, no_such_method;
3624   __ testbit(flags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3625   __ z_brz(notObjectMethod);
3626   invokevirtual_helper(method, receiver, flags);
3627   __ bind(notObjectMethod);
3628 
3629   // Check for private method invocation - indicated by vfinal
3630   NearLabel notVFinal;
3631   __ testbit(flags, ConstantPoolCacheEntry::is_vfinal_shift);
3632   __ z_brz(notVFinal);
3633 
3634   // Get receiver klass into klass - also a null check.
3635   __ load_klass(klass, receiver);
3636 
3637   NearLabel subtype, no_such_interface;
3638 
3639   __ check_klass_subtype(klass, interface, Z_tmp_2, flags/*scratch*/, subtype);
3640   // If we get here the typecheck failed
3641   __ z_bru(no_such_interface);
3642   __ bind(subtype);
3643 
3644   // do the call
3645   __ profile_final_call(Z_tmp_2);
3646   __ profile_arguments_type(Z_tmp_2, method, Z_ARG5, true);
3647   __ jump_from_interpreted(method, Z_tmp_2);
3648 
3649   __ bind(notVFinal);
3650 
3651   // Get receiver klass into klass - also a null check.
3652   __ load_klass(klass, receiver);
3653 
3654   __ lookup_interface_method(klass, interface, noreg, noreg, /*temp*/Z_ARG1,
3655                              no_such_interface, /*return_method=*/false);
3656 
3657   // Profile this call.
3658   __ profile_virtual_call(klass, Z_ARG1/*mdp*/, flags/*scratch*/);
3659 
3660   // Find entry point to call.
3661 
3662   // Get declaring interface class from method
3663   __ z_lg(interface, Address(method, Method::const_offset()));
3664   __ z_lg(interface, Address(interface, ConstMethod::constants_offset()));
3665   __ z_lg(interface, Address(interface, ConstantPool::pool_holder_offset_in_bytes()));
3666 
3667   // Get itable index from method
3668   Register index   = receiver,
3669            method2 = flags;
3670   __ z_lgf(index, Address(method, Method::itable_index_offset()));
3671   __ z_aghi(index, -Method::itable_index_max);
3672   __ z_lcgr(index, index);
3673 
3674   __ lookup_interface_method(klass, interface, index, method2, Z_tmp_2,
3675                              no_such_interface);
3676 
3677   // Check for abstract method error.
3678   // Note: This should be done more efficiently via a throw_abstract_method_error
3679   // interpreter entry point and a conditional jump to it in case of a null
3680   // method.
3681   __ compareU64_and_branch(method2, (intptr_t) 0,
3682                            Assembler::bcondZero, no_such_method);
3683 
3684   __ profile_arguments_type(Z_tmp_1, method2, Z_tmp_2, true);
3685 
3686   // Do the call.
3687   __ jump_from_interpreted(method2, Z_tmp_2);
3688   __ should_not_reach_here();
3689 
3690   // exception handling code follows...
3691   // Note: Must restore interpreter registers to canonical
3692   // state for exception handling to work correctly!
3693 
3694   __ bind(no_such_method);
3695 
3696   // Throw exception.
3697   // Pass arguments for generating a verbose error message.
3698   __ z_lgr(Z_tmp_1, method); // Prevent register clash.
3699   __ call_VM(noreg,
3700              CAST_FROM_FN_PTR(address,
3701                               InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3702                               klass, Z_tmp_1);
3703   // The call_VM checks for exception, so we should never return here.
3704   __ should_not_reach_here();
3705 
3706   __ bind(no_such_interface);
3707 
3708   // Throw exception.
3709   // Pass arguments for generating a verbose error message.
3710   __ call_VM(noreg,
3711              CAST_FROM_FN_PTR(address,
3712                               InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3713                               klass, interface);
3714   // The call_VM checks for exception, so we should never return here.
3715   __ should_not_reach_here();
3716 
3717   BLOCK_COMMENT("} invokeinterface");
3718   return;
3719 }
3720 
invokehandle(int byte_no)3721 void TemplateTable::invokehandle(int byte_no) {
3722   transition(vtos, vtos);
3723 
3724   const Register method = Z_tmp_2;
3725   const Register recv   = Z_ARG5;
3726   const Register mtype  = Z_tmp_1;
3727   prepare_invoke(byte_no,
3728                  method, mtype,   // Get f2 method, f1 MethodType.
3729                  recv);
3730   __ verify_method_ptr(method);
3731   __ verify_oop(recv);
3732   __ null_check(recv);
3733 
3734   // Note: Mtype is already pushed (if necessary) by prepare_invoke.
3735 
3736   // FIXME: profile the LambdaForm also.
3737   __ profile_final_call(Z_ARG2);
3738   __ profile_arguments_type(Z_ARG3, method, Z_ARG5, true);
3739 
3740   __ jump_from_interpreted(method, Z_ARG3);
3741 }
3742 
invokedynamic(int byte_no)3743 void TemplateTable::invokedynamic(int byte_no) {
3744   transition(vtos, vtos);
3745 
3746   const Register Rmethod   = Z_tmp_2;
3747   const Register Rcallsite = Z_tmp_1;
3748 
3749   prepare_invoke(byte_no, Rmethod, Rcallsite);
3750 
3751   // Rmethod: CallSite object (from f1)
3752   // Rcallsite: MH.linkToCallSite method (from f2)
3753 
3754   // Note: Callsite is already pushed by prepare_invoke.
3755 
3756   // TODO: should make a type profile for any invokedynamic that takes a ref argument.
3757   // Profile this call.
3758   __ profile_call(Z_ARG2);
3759   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3760   __ jump_from_interpreted(Rmethod, Z_ARG2);
3761 }
3762 
3763 //-----------------------------------------------------------------------------
3764 // Allocation
3765 
3766 // Original comment on "allow_shared_alloc":
3767 // Always go the slow path.
3768 //  + Eliminated optimization within the template-based interpreter:
3769 //    If an allocation is done within the interpreter without using
3770 //    tlabs, the interpreter tries to do the allocation directly
3771 //    on the heap.
3772 //  + That means the profiling hooks are not considered and allocations
3773 //    get lost for the profiling framework.
3774 //  + However, we do not think that this optimization is really needed,
3775 //    so we always go now the slow path through the VM in this case --
3776 //    spec jbb2005 shows no measurable performance degradation.
_new()3777 void TemplateTable::_new() {
3778   transition(vtos, atos);
3779   address prev_instr_address = NULL;
3780   Register tags  = Z_tmp_1;
3781   Register RallocatedObject   = Z_tos;
3782   Register cpool = Z_ARG2;
3783   Register tmp = Z_ARG3; // RobjectFields==tmp and Rsize==offset must be a register pair.
3784   Register offset = Z_ARG4;
3785   Label slow_case;
3786   Label done;
3787   Label initialize_header;
3788   Label allocate_shared;
3789 
3790   BLOCK_COMMENT("TemplateTable::_new {");
3791   __ get_2_byte_integer_at_bcp(offset/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
3792   __ get_cpool_and_tags(cpool, tags);
3793   // Make sure the class we're about to instantiate has been resolved.
3794   // This is done before loading InstanceKlass to be consistent with the order
3795   // how Constant Pool is updated (see ConstantPool::klass_at_put).
3796   const int tags_offset = Array<u1>::base_offset_in_bytes();
3797   __ load_address(tmp, Address(tags, offset, tags_offset));
3798   __ z_cli(0, tmp, JVM_CONSTANT_Class);
3799   __ z_brne(slow_case);
3800 
3801   __ z_sllg(offset, offset, LogBytesPerWord); // Convert to to offset.
3802   // Get InstanceKlass.
3803   Register iklass = cpool;
3804   __ load_resolved_klass_at_offset(cpool, offset, iklass);
3805 
3806   // Make sure klass is initialized & doesn't have finalizer.
3807   // Make sure klass is fully initialized.
3808   const int state_offset = in_bytes(InstanceKlass::init_state_offset());
3809   if (Immediate::is_uimm12(state_offset)) {
3810     __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
3811   } else {
3812     __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
3813   }
3814   __ z_brne(slow_case);
3815 
3816   // Get instance_size in InstanceKlass (scaled to a count of bytes).
3817   Register Rsize = offset;
3818   __ z_llgf(Rsize, Address(iklass, Klass::layout_helper_offset()));
3819   __ z_tmll(Rsize, Klass::_lh_instance_slow_path_bit);
3820   __ z_btrue(slow_case);
3821 
3822   // Allocate the instance
3823   // 1) Try to allocate in the TLAB.
3824   // 2) If the above fails (or is not applicable), go to a slow case
3825   // (creates a new TLAB, etc.).
3826   // Note: compared to other architectures, s390's implementation always goes
3827   // to the slow path if TLAB is used and fails.
3828   if (UseTLAB) {
3829     Register RoldTopValue = RallocatedObject;
3830     Register RnewTopValue = tmp;
3831     __ z_lg(RoldTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
3832     __ load_address(RnewTopValue, Address(RoldTopValue, Rsize));
3833     __ z_cg(RnewTopValue, Address(Z_thread, JavaThread::tlab_end_offset()));
3834     __ z_brh(slow_case);
3835     __ z_stg(RnewTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
3836 
3837     Register RobjectFields = tmp;
3838     Register Rzero = Z_R1_scratch;
3839     __ clear_reg(Rzero, true /*whole reg*/, false); // Load 0L into Rzero. Don't set CC.
3840 
3841     if (!ZeroTLAB) {
3842       // The object is initialized before the header. If the object size is
3843       // zero, go directly to the header initialization.
3844       __ z_aghi(Rsize, (int)-sizeof(oopDesc)); // Subtract header size, set CC.
3845       __ z_bre(initialize_header);             // Jump if size of fields is zero.
3846 
3847       // Initialize object fields.
3848       // See documentation for MVCLE instruction!!!
3849       assert(RobjectFields->encoding() % 2 == 0, "RobjectFields must be an even register");
3850       assert(Rsize->encoding() == (RobjectFields->encoding()+1),
3851              "RobjectFields and Rsize must be a register pair");
3852       assert(Rzero->encoding() % 2 == 1, "Rzero must be an odd register");
3853 
3854       // Set Rzero to 0 and use it as src length, then mvcle will copy nothing
3855       // and fill the object with the padding value 0.
3856       __ add2reg(RobjectFields, sizeof(oopDesc), RallocatedObject);
3857       __ move_long_ext(RobjectFields, as_Register(Rzero->encoding() - 1), 0);
3858     }
3859 
3860     // Initialize object header only.
3861     __ bind(initialize_header);
3862     if (UseBiasedLocking) {
3863       Register prototype = RobjectFields;
3864       __ z_lg(prototype, Address(iklass, Klass::prototype_header_offset()));
3865       __ z_stg(prototype, Address(RallocatedObject, oopDesc::mark_offset_in_bytes()));
3866     } else {
3867       __ store_const(Address(RallocatedObject, oopDesc::mark_offset_in_bytes()),
3868                      (long)markOopDesc::prototype());
3869     }
3870 
3871     __ store_klass_gap(Rzero, RallocatedObject);  // Zero klass gap for compressed oops.
3872     __ store_klass(iklass, RallocatedObject);     // Store klass last.
3873 
3874     {
3875       SkipIfEqual skip(_masm, &DTraceAllocProbes, false, Z_ARG5 /*scratch*/);
3876       // Trigger dtrace event for fastpath.
3877       __ push(atos); // Save the return value.
3878       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), RallocatedObject);
3879       __ pop(atos); // Restore the return value.
3880     }
3881     __ z_bru(done);
3882   }
3883 
3884   // slow case
3885   __ bind(slow_case);
3886   __ get_constant_pool(Z_ARG2);
3887   __ get_2_byte_integer_at_bcp(Z_ARG3/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
3888   call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Z_ARG2, Z_ARG3);
3889   __ verify_oop(Z_tos);
3890 
3891   // continue
3892   __ bind(done);
3893 
3894   BLOCK_COMMENT("} TemplateTable::_new");
3895 }
3896 
newarray()3897 void TemplateTable::newarray() {
3898   transition(itos, atos);
3899 
3900   // Call runtime.
3901   __ z_llgc(Z_ARG2, at_bcp(1));   // type
3902   __ z_lgfr(Z_ARG3, Z_tos);       // size
3903   call_VM(Z_RET,
3904           CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3905           Z_ARG2, Z_ARG3);
3906 }
3907 
anewarray()3908 void TemplateTable::anewarray() {
3909   transition(itos, atos);
3910   __ get_2_byte_integer_at_bcp(Z_ARG3, 1, InterpreterMacroAssembler::Unsigned);
3911   __ get_constant_pool(Z_ARG2);
3912   __ z_lgfr(Z_ARG4, Z_tos);
3913   call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3914           Z_ARG2, Z_ARG3, Z_ARG4);
3915 }
3916 
arraylength()3917 void TemplateTable::arraylength() {
3918   transition(atos, itos);
3919 
3920   int offset = arrayOopDesc::length_offset_in_bytes();
3921 
3922   __ null_check(Z_tos, Z_R0_scratch, offset);
3923   __ mem2reg_opt(Z_tos, Address(Z_tos, offset), false);
3924 }
3925 
checkcast()3926 void TemplateTable::checkcast() {
3927   transition(atos, atos);
3928 
3929   NearLabel done, is_null, ok_is_subtype, quicked, resolved;
3930 
3931   BLOCK_COMMENT("checkcast {");
3932   // If object is NULL, we are almost done.
3933   __ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
3934 
3935   // Get cpool & tags index.
3936   Register cpool = Z_tmp_1;
3937   Register tags = Z_tmp_2;
3938   Register index = Z_ARG5;
3939 
3940   __ get_cpool_and_tags(cpool, tags);
3941   __ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
3942   // See if bytecode has already been quicked.
3943   // Note: For CLI, we would have to add the index to the tags pointer first,
3944   // thus load and compare in a "classic" manner.
3945   __ z_llgc(Z_R0_scratch,
3946             Address(tags, index, Array<u1>::base_offset_in_bytes()));
3947   __ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class,
3948                            Assembler::bcondEqual, quicked);
3949 
3950   __ push(atos); // Save receiver for result, and for GC.
3951   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3952   __ get_vm_result_2(Z_tos);
3953 
3954   Register   receiver = Z_ARG4;
3955   Register   klass = Z_tos;
3956   Register   subklass = Z_ARG5;
3957 
3958   __ pop_ptr(receiver); // restore receiver
3959   __ z_bru(resolved);
3960 
3961   // Get superklass in klass and subklass in subklass.
3962   __ bind(quicked);
3963 
3964   __ z_lgr(Z_ARG4, Z_tos);  // Save receiver.
3965   __ z_sllg(index, index, LogBytesPerWord);  // index2bytes for addressing
3966   __ load_resolved_klass_at_offset(cpool, index, klass);
3967 
3968   __ bind(resolved);
3969 
3970   __ load_klass(subklass, receiver);
3971 
3972   // Generate subtype check. Object in receiver.
3973   // Superklass in klass. Subklass in subklass.
3974   __ gen_subtype_check(subklass, klass, Z_ARG3, Z_tmp_1, ok_is_subtype);
3975 
3976   // Come here on failure.
3977   __ push_ptr(receiver);
3978   // Object is at TOS, target klass oop expected in rax by convention.
3979   __ z_brul((address) Interpreter::_throw_ClassCastException_entry);
3980 
3981   // Come here on success.
3982   __ bind(ok_is_subtype);
3983 
3984   __ z_lgr(Z_tos, receiver); // Restore object.
3985 
3986   // Collect counts on whether this test sees NULLs a lot or not.
3987   if (ProfileInterpreter) {
3988     __ z_bru(done);
3989     __ bind(is_null);
3990     __ profile_null_seen(Z_tmp_1);
3991   } else {
3992     __ bind(is_null);   // Same as 'done'.
3993   }
3994 
3995   __ bind(done);
3996   BLOCK_COMMENT("} checkcast");
3997 }
3998 
instanceof()3999 void TemplateTable::instanceof() {
4000   transition(atos, itos);
4001 
4002   NearLabel done, is_null, ok_is_subtype, quicked, resolved;
4003 
4004   BLOCK_COMMENT("instanceof {");
4005   // If object is NULL, we are almost done.
4006   __ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
4007 
4008   // Get cpool & tags index.
4009   Register cpool = Z_tmp_1;
4010   Register tags = Z_tmp_2;
4011   Register index = Z_ARG5;
4012 
4013   __ get_cpool_and_tags(cpool, tags);
4014   __ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
4015   // See if bytecode has already been quicked.
4016   // Note: For CLI, we would have to add the index to the tags pointer first,
4017   // thus load and compare in a "classic" manner.
4018   __ z_llgc(Z_R0_scratch,
4019             Address(tags, index, Array<u1>::base_offset_in_bytes()));
4020   __ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class, Assembler::bcondEqual, quicked);
4021 
4022   __ push(atos); // Save receiver for result, and for GC.
4023   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4024   __ get_vm_result_2(Z_tos);
4025 
4026   Register receiver = Z_tmp_2;
4027   Register klass = Z_tos;
4028   Register subklass = Z_tmp_2;
4029 
4030   __ pop_ptr(receiver); // Restore receiver.
4031   __ verify_oop(receiver);
4032   __ load_klass(subklass, subklass);
4033   __ z_bru(resolved);
4034 
4035   // Get superklass in klass and subklass in subklass.
4036   __ bind(quicked);
4037 
4038   __ load_klass(subklass, Z_tos);
4039   __ z_sllg(index, index, LogBytesPerWord);  // index2bytes for addressing
4040   __ load_resolved_klass_at_offset(cpool, index, klass);
4041 
4042   __ bind(resolved);
4043 
4044   // Generate subtype check.
4045   // Superklass in klass. Subklass in subklass.
4046   __ gen_subtype_check(subklass, klass, Z_ARG4, Z_ARG5, ok_is_subtype);
4047 
4048   // Come here on failure.
4049   __ clear_reg(Z_tos, true, false);
4050   __ z_bru(done);
4051 
4052   // Come here on success.
4053   __ bind(ok_is_subtype);
4054   __ load_const_optimized(Z_tos, 1);
4055 
4056   // Collect counts on whether this test sees NULLs a lot or not.
4057   if (ProfileInterpreter) {
4058     __ z_bru(done);
4059     __ bind(is_null);
4060     __ profile_null_seen(Z_tmp_1);
4061   } else {
4062     __ bind(is_null);   // same as 'done'
4063   }
4064 
4065   __ bind(done);
4066   // tos = 0: obj == NULL or  obj is not an instanceof the specified klass
4067   // tos = 1: obj != NULL and obj is     an instanceof the specified klass
4068   BLOCK_COMMENT("} instanceof");
4069 }
4070 
4071 //-----------------------------------------------------------------------------
4072 // Breakpoints
_breakpoint()4073 void TemplateTable::_breakpoint() {
4074 
4075   // Note: We get here even if we are single stepping.
4076   // Jbug insists on setting breakpoints at every bytecode
4077   // even if we are in single step mode.
4078 
4079   transition(vtos, vtos);
4080 
4081   // Get the unpatched byte code.
4082   __ get_method(Z_ARG2);
4083   __ call_VM(noreg,
4084              CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at),
4085              Z_ARG2, Z_bcp);
4086   // Save the result to a register that is preserved over C-function calls.
4087   __ z_lgr(Z_tmp_1, Z_RET);
4088 
4089   // Post the breakpoint event.
4090   __ get_method(Z_ARG2);
4091   __ call_VM(noreg,
4092              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4093              Z_ARG2, Z_bcp);
4094 
4095   // Must restore the bytecode, because call_VM destroys Z_bytecode.
4096   __ z_lgr(Z_bytecode, Z_tmp_1);
4097 
4098   // Complete the execution of original bytecode.
4099   __ dispatch_only_normal(vtos);
4100 }
4101 
4102 
4103 // Exceptions
4104 
athrow()4105 void TemplateTable::athrow() {
4106   transition(atos, vtos);
4107   __ null_check(Z_tos);
4108   __ load_absolute_address(Z_ARG2, Interpreter::throw_exception_entry());
4109   __ z_br(Z_ARG2);
4110 }
4111 
4112 // Synchronization
4113 //
4114 // Note: monitorenter & exit are symmetric routines; which is reflected
4115 //       in the assembly code structure as well
4116 //
4117 // Stack layout:
4118 //
4119 //               callers_sp        <- Z_SP (callers_sp == Z_fp (own fp))
4120 //               return_pc
4121 //               [rest of ABI_160]
4122 //              /slot o:   free
4123 //             / ...       free
4124 //       oper. | slot n+1: free    <- Z_esp points to first free slot
4125 //       stack | slot n:   val                      caches IJAVA_STATE.esp
4126 //             | ...
4127 //              \slot 0:   val
4128 //              /slot m            <- IJAVA_STATE.monitors = monitor block top
4129 //             | ...
4130 //     monitors| slot 2
4131 //             | slot 1
4132 //              \slot 0
4133 //              /slot l            <- monitor block bot
4134 // ijava_state | ...
4135 //             | slot 2
4136 //              \slot 0
4137 //                                 <- Z_fp
monitorenter()4138 void TemplateTable::monitorenter() {
4139   transition(atos, vtos);
4140 
4141   BLOCK_COMMENT("monitorenter {");
4142 
4143   // Check for NULL object.
4144   __ null_check(Z_tos);
4145   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4146   NearLabel allocated;
4147   // Initialize entry pointer.
4148   const Register Rfree_slot = Z_tmp_1;
4149   __ clear_reg(Rfree_slot, true, false); // Points to free slot or NULL. Don't set CC.
4150 
4151   // Find a free slot in the monitor block from top to bot (result in Rfree_slot).
4152   {
4153     const Register Rcurr_monitor = Z_ARG2;
4154     const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
4155     const Register Rlocked_obj = Z_ARG4;
4156     NearLabel loop, exit, not_free;
4157     // Starting with top-most entry.
4158     __ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
4159     __ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
4160 
4161 #ifdef ASSERT
4162     address reentry = NULL;
4163     { NearLabel ok;
4164       __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
4165       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
4166       __ bind(ok);
4167     }
4168     { NearLabel ok;
4169       __ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
4170       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
4171       __ bind(ok);
4172     }
4173 #endif
4174 
4175     // Check if bottom reached, i.e. if there is at least one monitor.
4176     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, exit);
4177 
4178     __ bind(loop);
4179     // Check if current entry is used.
4180     __ load_and_test_long(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
4181     __ z_brne(not_free);
4182     // If not used then remember entry in Rfree_slot.
4183     __ z_lgr(Rfree_slot, Rcurr_monitor);
4184     __ bind(not_free);
4185     // Exit if current entry is for same object; this guarantees, that new monitor
4186     // used for recursive lock is above the older one.
4187     __ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, exit);
4188     // otherwise advance to next entry
4189     __ add2reg(Rcurr_monitor, entry_size);
4190     // Check if bottom reached, if not at bottom then check this entry.
4191     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
4192     __ bind(exit);
4193   }
4194 
4195   // Rfree_slot != NULL -> found one
4196   __ compareU64_and_branch(Rfree_slot, (intptr_t)0L, Assembler::bcondNotEqual, allocated);
4197 
4198   // Allocate one if there's no free slot.
4199   __ add_monitor_to_stack(false, Z_ARG3, Z_ARG4, Z_ARG5);
4200   __ get_monitors(Rfree_slot);
4201 
4202   // Rfree_slot: points to monitor entry.
4203   __ bind(allocated);
4204 
4205   // Increment bcp to point to the next bytecode, so exception
4206   // handling for async. exceptions work correctly.
4207   // The object has already been poped from the stack, so the
4208   // expression stack looks correct.
4209   __ add2reg(Z_bcp, 1, Z_bcp);
4210 
4211   // Store object.
4212   __ z_stg(Z_tos, BasicObjectLock::obj_offset_in_bytes(), Rfree_slot);
4213   __ lock_object(Rfree_slot, Z_tos);
4214 
4215   // Check to make sure this monitor doesn't cause stack overflow after locking.
4216   __ save_bcp();  // in case of exception
4217   __ generate_stack_overflow_check(0);
4218 
4219   // The bcp has already been incremented. Just need to dispatch to
4220   // next instruction.
4221   __ dispatch_next(vtos);
4222 
4223   BLOCK_COMMENT("} monitorenter");
4224 }
4225 
4226 
monitorexit()4227 void TemplateTable::monitorexit() {
4228   transition(atos, vtos);
4229 
4230   BLOCK_COMMENT("monitorexit {");
4231 
4232   // Check for NULL object.
4233   __ null_check(Z_tos);
4234 
4235   NearLabel found, not_found;
4236   const Register Rcurr_monitor = Z_ARG2;
4237 
4238   // Find matching slot.
4239   {
4240     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4241     NearLabel entry, loop;
4242 
4243     const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
4244     const Register Rlocked_obj = Z_ARG4;
4245     // Starting with top-most entry.
4246     __ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
4247     __ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
4248 
4249 #ifdef ASSERT
4250     address reentry = NULL;
4251     { NearLabel ok;
4252       __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
4253       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
4254       __ bind(ok);
4255     }
4256     { NearLabel ok;
4257       __ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
4258       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
4259       __ bind(ok);
4260     }
4261 #endif
4262 
4263     // Check if bottom reached, i.e. if there is at least one monitor.
4264     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, not_found);
4265 
4266     __ bind(loop);
4267     // Check if current entry is for same object.
4268     __ z_lg(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
4269     // If same object then stop searching.
4270     __ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, found);
4271     // Otherwise advance to next entry.
4272     __ add2reg(Rcurr_monitor, entry_size);
4273     // Check if bottom reached, if not at bottom then check this entry.
4274     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
4275   }
4276 
4277   __ bind(not_found);
4278   // Error handling. Unlocking was not block-structured.
4279   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4280                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4281   __ should_not_reach_here();
4282 
4283   __ bind(found);
4284   __ push_ptr(Z_tos); // Make sure object is on stack (contract with oopMaps).
4285   __ unlock_object(Rcurr_monitor, Z_tos);
4286   __ pop_ptr(Z_tos); // Discard object.
4287   BLOCK_COMMENT("} monitorexit");
4288 }
4289 
4290 // Wide instructions
wide()4291 void TemplateTable::wide() {
4292   transition(vtos, vtos);
4293 
4294   __ z_llgc(Z_R1_scratch, at_bcp(1));
4295   __ z_sllg(Z_R1_scratch, Z_R1_scratch, LogBytesPerWord);
4296   __ load_absolute_address(Z_tmp_1, (address) Interpreter::_wentry_point);
4297   __ mem2reg_opt(Z_tmp_1, Address(Z_tmp_1, Z_R1_scratch));
4298   __ z_br(Z_tmp_1);
4299   // Note: the bcp increment step is part of the individual wide
4300   // bytecode implementations.
4301 }
4302 
4303 // Multi arrays
multianewarray()4304 void TemplateTable::multianewarray() {
4305   transition(vtos, atos);
4306 
4307   __ z_llgc(Z_tmp_1, at_bcp(3)); // Get number of dimensions.
4308   // Slot count to byte offset.
4309   __ z_sllg(Z_tmp_1, Z_tmp_1, Interpreter::logStackElementSize);
4310   // Z_esp points past last_dim, so set to Z_ARG2 to first_dim address.
4311   __ load_address(Z_ARG2, Address(Z_esp, Z_tmp_1));
4312   call_VM(Z_RET,
4313           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4314           Z_ARG2);
4315   // Pop dimensions from expression stack.
4316   __ z_agr(Z_esp, Z_tmp_1);
4317 }
4318