1 /*
2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/g1/g1Analytics.hpp"
27 #include "gc/g1/g1CollectedHeap.inline.hpp"
28 #include "gc/g1/g1CollectionSet.hpp"
29 #include "gc/g1/g1ConcurrentMark.hpp"
30 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
31 #include "gc/g1/g1ConcurrentRefine.hpp"
32 #include "gc/g1/g1HotCardCache.hpp"
33 #include "gc/g1/g1IHOPControl.hpp"
34 #include "gc/g1/g1GCPhaseTimes.hpp"
35 #include "gc/g1/g1Policy.hpp"
36 #include "gc/g1/g1SurvivorRegions.hpp"
37 #include "gc/g1/g1YoungGenSizer.hpp"
38 #include "gc/g1/heapRegion.inline.hpp"
39 #include "gc/g1/heapRegionRemSet.hpp"
40 #include "gc/shared/gcPolicyCounters.hpp"
41 #include "logging/logStream.hpp"
42 #include "runtime/arguments.hpp"
43 #include "runtime/java.hpp"
44 #include "runtime/mutexLocker.hpp"
45 #include "utilities/debug.hpp"
46 #include "utilities/growableArray.hpp"
47 #include "utilities/pair.hpp"
48 
G1Policy(STWGCTimer * gc_timer)49 G1Policy::G1Policy(STWGCTimer* gc_timer) :
50   _predictor(G1ConfidencePercent / 100.0),
51   _analytics(new G1Analytics(&_predictor)),
52   _remset_tracker(),
53   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
54   _old_gen_alloc_tracker(),
55   _ihop_control(create_ihop_control(&_old_gen_alloc_tracker, &_predictor)),
56   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
57   _young_list_fixed_length(0),
58   _short_lived_surv_rate_group(new SurvRateGroup()),
59   _survivor_surv_rate_group(new SurvRateGroup()),
60   _reserve_factor((double) G1ReservePercent / 100.0),
61   _reserve_regions(0),
62   _rs_lengths_prediction(0),
63   _initial_mark_to_mixed(),
64   _collection_set(NULL),
65   _g1h(NULL),
66   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
67   _tenuring_threshold(MaxTenuringThreshold),
68   _max_survivor_regions(0),
69   _survivors_age_table(true),
70   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC) {
71 }
72 
~G1Policy()73 G1Policy::~G1Policy() {
74   delete _ihop_control;
75 }
76 
collector_state() const77 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
78 
init(G1CollectedHeap * g1h,G1CollectionSet * collection_set)79 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
80   _g1h = g1h;
81   _collection_set = collection_set;
82 
83   assert(Heap_lock->owned_by_self(), "Locking discipline.");
84 
85   if (!adaptive_young_list_length()) {
86     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
87   }
88   _young_gen_sizer.adjust_max_new_size(_g1h->max_regions());
89 
90   _free_regions_at_end_of_collection = _g1h->num_free_regions();
91 
92   update_young_list_max_and_target_length();
93   // We may immediately start allocating regions and placing them on the
94   // collection set list. Initialize the per-collection set info
95   _collection_set->start_incremental_building();
96 }
97 
note_gc_start()98 void G1Policy::note_gc_start() {
99   phase_times()->note_gc_start();
100 }
101 
102 class G1YoungLengthPredictor {
103   const bool _during_cm;
104   const double _base_time_ms;
105   const double _base_free_regions;
106   const double _target_pause_time_ms;
107   const G1Policy* const _policy;
108 
109  public:
G1YoungLengthPredictor(bool during_cm,double base_time_ms,double base_free_regions,double target_pause_time_ms,const G1Policy * policy)110   G1YoungLengthPredictor(bool during_cm,
111                          double base_time_ms,
112                          double base_free_regions,
113                          double target_pause_time_ms,
114                          const G1Policy* policy) :
115     _during_cm(during_cm),
116     _base_time_ms(base_time_ms),
117     _base_free_regions(base_free_regions),
118     _target_pause_time_ms(target_pause_time_ms),
119     _policy(policy) {}
120 
will_fit(uint young_length) const121   bool will_fit(uint young_length) const {
122     if (young_length >= _base_free_regions) {
123       // end condition 1: not enough space for the young regions
124       return false;
125     }
126 
127     const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1);
128     const size_t bytes_to_copy =
129                  (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
130     const double copy_time_ms =
131       _policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm);
132     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
133     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
134     if (pause_time_ms > _target_pause_time_ms) {
135       // end condition 2: prediction is over the target pause time
136       return false;
137     }
138 
139     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
140 
141     // When copying, we will likely need more bytes free than is live in the region.
142     // Add some safety margin to factor in the confidence of our guess, and the
143     // natural expected waste.
144     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
145     // of the calculation: the lower the confidence, the more headroom.
146     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
147     // copying due to anticipated waste in the PLABs.
148     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
149     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
150 
151     if (expected_bytes_to_copy > free_bytes) {
152       // end condition 3: out-of-space
153       return false;
154     }
155 
156     // success!
157     return true;
158   }
159 };
160 
record_new_heap_size(uint new_number_of_regions)161 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
162   // re-calculate the necessary reserve
163   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
164   // We use ceiling so that if reserve_regions_d is > 0.0 (but
165   // smaller than 1.0) we'll get 1.
166   _reserve_regions = (uint) ceil(reserve_regions_d);
167 
168   _young_gen_sizer.heap_size_changed(new_number_of_regions);
169 
170   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
171 }
172 
calculate_young_list_desired_min_length(uint base_min_length) const173 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
174   uint desired_min_length = 0;
175   if (adaptive_young_list_length()) {
176     if (_analytics->num_alloc_rate_ms() > 3) {
177       double now_sec = os::elapsedTime();
178       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
179       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
180       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
181     } else {
182       // otherwise we don't have enough info to make the prediction
183     }
184   }
185   desired_min_length += base_min_length;
186   // make sure we don't go below any user-defined minimum bound
187   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
188 }
189 
calculate_young_list_desired_max_length() const190 uint G1Policy::calculate_young_list_desired_max_length() const {
191   // Here, we might want to also take into account any additional
192   // constraints (i.e., user-defined minimum bound). Currently, we
193   // effectively don't set this bound.
194   return _young_gen_sizer.max_desired_young_length();
195 }
196 
update_young_list_max_and_target_length()197 uint G1Policy::update_young_list_max_and_target_length() {
198   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
199 }
200 
update_young_list_max_and_target_length(size_t rs_lengths)201 uint G1Policy::update_young_list_max_and_target_length(size_t rs_lengths) {
202   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
203   update_max_gc_locker_expansion();
204   return unbounded_target_length;
205 }
206 
update_young_list_target_length(size_t rs_lengths)207 uint G1Policy::update_young_list_target_length(size_t rs_lengths) {
208   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
209   _young_list_target_length = young_lengths.first;
210   return young_lengths.second;
211 }
212 
young_list_target_lengths(size_t rs_lengths) const213 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_lengths) const {
214   YoungTargetLengths result;
215 
216   // Calculate the absolute and desired min bounds first.
217 
218   // This is how many young regions we already have (currently: the survivors).
219   const uint base_min_length = _g1h->survivor_regions_count();
220   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
221   // This is the absolute minimum young length. Ensure that we
222   // will at least have one eden region available for allocation.
223   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
224   // If we shrank the young list target it should not shrink below the current size.
225   desired_min_length = MAX2(desired_min_length, absolute_min_length);
226   // Calculate the absolute and desired max bounds.
227 
228   uint desired_max_length = calculate_young_list_desired_max_length();
229 
230   uint young_list_target_length = 0;
231   if (adaptive_young_list_length()) {
232     if (collector_state()->in_young_only_phase()) {
233       young_list_target_length =
234                         calculate_young_list_target_length(rs_lengths,
235                                                            base_min_length,
236                                                            desired_min_length,
237                                                            desired_max_length);
238     } else {
239       // Don't calculate anything and let the code below bound it to
240       // the desired_min_length, i.e., do the next GC as soon as
241       // possible to maximize how many old regions we can add to it.
242     }
243   } else {
244     // The user asked for a fixed young gen so we'll fix the young gen
245     // whether the next GC is young or mixed.
246     young_list_target_length = _young_list_fixed_length;
247   }
248 
249   result.second = young_list_target_length;
250 
251   // We will try our best not to "eat" into the reserve.
252   uint absolute_max_length = 0;
253   if (_free_regions_at_end_of_collection > _reserve_regions) {
254     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
255   }
256   if (desired_max_length > absolute_max_length) {
257     desired_max_length = absolute_max_length;
258   }
259 
260   // Make sure we don't go over the desired max length, nor under the
261   // desired min length. In case they clash, desired_min_length wins
262   // which is why that test is second.
263   if (young_list_target_length > desired_max_length) {
264     young_list_target_length = desired_max_length;
265   }
266   if (young_list_target_length < desired_min_length) {
267     young_list_target_length = desired_min_length;
268   }
269 
270   assert(young_list_target_length > base_min_length,
271          "we should be able to allocate at least one eden region");
272   assert(young_list_target_length >= absolute_min_length, "post-condition");
273 
274   result.first = young_list_target_length;
275   return result;
276 }
277 
278 uint
calculate_young_list_target_length(size_t rs_lengths,uint base_min_length,uint desired_min_length,uint desired_max_length) const279 G1Policy::calculate_young_list_target_length(size_t rs_lengths,
280                                                     uint base_min_length,
281                                                     uint desired_min_length,
282                                                     uint desired_max_length) const {
283   assert(adaptive_young_list_length(), "pre-condition");
284   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
285 
286   // In case some edge-condition makes the desired max length too small...
287   if (desired_max_length <= desired_min_length) {
288     return desired_min_length;
289   }
290 
291   // We'll adjust min_young_length and max_young_length not to include
292   // the already allocated young regions (i.e., so they reflect the
293   // min and max eden regions we'll allocate). The base_min_length
294   // will be reflected in the predictions by the
295   // survivor_regions_evac_time prediction.
296   assert(desired_min_length > base_min_length, "invariant");
297   uint min_young_length = desired_min_length - base_min_length;
298   assert(desired_max_length > base_min_length, "invariant");
299   uint max_young_length = desired_max_length - base_min_length;
300 
301   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
302   const double survivor_regions_evac_time = predict_survivor_regions_evac_time();
303   const size_t pending_cards = _analytics->predict_pending_cards();
304   const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
305   const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, true /* for_young_gc */);
306   const double base_time_ms =
307     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
308     survivor_regions_evac_time;
309   const uint available_free_regions = _free_regions_at_end_of_collection;
310   const uint base_free_regions =
311     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
312 
313   // Here, we will make sure that the shortest young length that
314   // makes sense fits within the target pause time.
315 
316   G1YoungLengthPredictor p(collector_state()->mark_or_rebuild_in_progress(),
317                            base_time_ms,
318                            base_free_regions,
319                            target_pause_time_ms,
320                            this);
321   if (p.will_fit(min_young_length)) {
322     // The shortest young length will fit into the target pause time;
323     // we'll now check whether the absolute maximum number of young
324     // regions will fit in the target pause time. If not, we'll do
325     // a binary search between min_young_length and max_young_length.
326     if (p.will_fit(max_young_length)) {
327       // The maximum young length will fit into the target pause time.
328       // We are done so set min young length to the maximum length (as
329       // the result is assumed to be returned in min_young_length).
330       min_young_length = max_young_length;
331     } else {
332       // The maximum possible number of young regions will not fit within
333       // the target pause time so we'll search for the optimal
334       // length. The loop invariants are:
335       //
336       // min_young_length < max_young_length
337       // min_young_length is known to fit into the target pause time
338       // max_young_length is known not to fit into the target pause time
339       //
340       // Going into the loop we know the above hold as we've just
341       // checked them. Every time around the loop we check whether
342       // the middle value between min_young_length and
343       // max_young_length fits into the target pause time. If it
344       // does, it becomes the new min. If it doesn't, it becomes
345       // the new max. This way we maintain the loop invariants.
346 
347       assert(min_young_length < max_young_length, "invariant");
348       uint diff = (max_young_length - min_young_length) / 2;
349       while (diff > 0) {
350         uint young_length = min_young_length + diff;
351         if (p.will_fit(young_length)) {
352           min_young_length = young_length;
353         } else {
354           max_young_length = young_length;
355         }
356         assert(min_young_length <  max_young_length, "invariant");
357         diff = (max_young_length - min_young_length) / 2;
358       }
359       // The results is min_young_length which, according to the
360       // loop invariants, should fit within the target pause time.
361 
362       // These are the post-conditions of the binary search above:
363       assert(min_young_length < max_young_length,
364              "otherwise we should have discovered that max_young_length "
365              "fits into the pause target and not done the binary search");
366       assert(p.will_fit(min_young_length),
367              "min_young_length, the result of the binary search, should "
368              "fit into the pause target");
369       assert(!p.will_fit(min_young_length + 1),
370              "min_young_length, the result of the binary search, should be "
371              "optimal, so no larger length should fit into the pause target");
372     }
373   } else {
374     // Even the minimum length doesn't fit into the pause time
375     // target, return it as the result nevertheless.
376   }
377   return base_min_length + min_young_length;
378 }
379 
predict_survivor_regions_evac_time() const380 double G1Policy::predict_survivor_regions_evac_time() const {
381   double survivor_regions_evac_time = 0.0;
382   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
383 
384   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
385        it != survivor_regions->end();
386        ++it) {
387     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->in_young_only_phase());
388   }
389   return survivor_regions_evac_time;
390 }
391 
revise_young_list_target_length_if_necessary(size_t rs_lengths)392 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
393   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
394 
395   if (rs_lengths > _rs_lengths_prediction) {
396     // add 10% to avoid having to recalculate often
397     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
398     update_rs_lengths_prediction(rs_lengths_prediction);
399 
400     update_young_list_max_and_target_length(rs_lengths_prediction);
401   }
402 }
403 
update_rs_lengths_prediction()404 void G1Policy::update_rs_lengths_prediction() {
405   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
406 }
407 
update_rs_lengths_prediction(size_t prediction)408 void G1Policy::update_rs_lengths_prediction(size_t prediction) {
409   if (collector_state()->in_young_only_phase() && adaptive_young_list_length()) {
410     _rs_lengths_prediction = prediction;
411   }
412 }
413 
record_full_collection_start()414 void G1Policy::record_full_collection_start() {
415   _full_collection_start_sec = os::elapsedTime();
416   // Release the future to-space so that it is available for compaction into.
417   collector_state()->set_in_young_only_phase(false);
418   collector_state()->set_in_full_gc(true);
419   cset_chooser()->clear();
420 }
421 
record_full_collection_end()422 void G1Policy::record_full_collection_end() {
423   // Consider this like a collection pause for the purposes of allocation
424   // since last pause.
425   double end_sec = os::elapsedTime();
426   double full_gc_time_sec = end_sec - _full_collection_start_sec;
427   double full_gc_time_ms = full_gc_time_sec * 1000.0;
428 
429   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
430 
431   collector_state()->set_in_full_gc(false);
432 
433   // "Nuke" the heuristics that control the young/mixed GC
434   // transitions and make sure we start with young GCs after the Full GC.
435   collector_state()->set_in_young_only_phase(true);
436   collector_state()->set_in_young_gc_before_mixed(false);
437   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
438   collector_state()->set_in_initial_mark_gc(false);
439   collector_state()->set_mark_or_rebuild_in_progress(false);
440   collector_state()->set_clearing_next_bitmap(false);
441 
442   _short_lived_surv_rate_group->start_adding_regions();
443   // also call this on any additional surv rate groups
444 
445   _free_regions_at_end_of_collection = _g1h->num_free_regions();
446   // Reset survivors SurvRateGroup.
447   _survivor_surv_rate_group->reset();
448   update_young_list_max_and_target_length();
449   update_rs_lengths_prediction();
450 
451   _old_gen_alloc_tracker.reset_after_gc(_g1h->humongous_regions_count() * HeapRegion::GrainBytes);
452 
453   record_pause(FullGC, _full_collection_start_sec, end_sec);
454 }
455 
record_collection_pause_start(double start_time_sec)456 void G1Policy::record_collection_pause_start(double start_time_sec) {
457   // We only need to do this here as the policy will only be applied
458   // to the GC we're about to start. so, no point is calculating this
459   // every time we calculate / recalculate the target young length.
460   update_survivors_policy();
461 
462   assert(_g1h->used() == _g1h->recalculate_used(),
463          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
464          _g1h->used(), _g1h->recalculate_used());
465 
466   phase_times()->record_cur_collection_start_sec(start_time_sec);
467   _pending_cards = _g1h->pending_card_num();
468 
469   _collection_set->reset_bytes_used_before();
470   _bytes_copied_during_gc = 0;
471 
472   // do that for any other surv rate groups
473   _short_lived_surv_rate_group->stop_adding_regions();
474   _survivors_age_table.clear();
475 
476   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
477 }
478 
record_concurrent_mark_init_end(double mark_init_elapsed_time_ms)479 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
480   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
481   collector_state()->set_in_initial_mark_gc(false);
482 }
483 
record_concurrent_mark_remark_start()484 void G1Policy::record_concurrent_mark_remark_start() {
485   _mark_remark_start_sec = os::elapsedTime();
486 }
487 
record_concurrent_mark_remark_end()488 void G1Policy::record_concurrent_mark_remark_end() {
489   double end_time_sec = os::elapsedTime();
490   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
491   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
492   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
493 
494   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
495 }
496 
record_concurrent_mark_cleanup_start()497 void G1Policy::record_concurrent_mark_cleanup_start() {
498   _mark_cleanup_start_sec = os::elapsedTime();
499 }
500 
average_time_ms(G1GCPhaseTimes::GCParPhases phase) const501 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
502   return phase_times()->average_time_ms(phase);
503 }
504 
young_other_time_ms() const505 double G1Policy::young_other_time_ms() const {
506   return phase_times()->young_cset_choice_time_ms() +
507          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
508 }
509 
non_young_other_time_ms() const510 double G1Policy::non_young_other_time_ms() const {
511   return phase_times()->non_young_cset_choice_time_ms() +
512          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
513 }
514 
other_time_ms(double pause_time_ms) const515 double G1Policy::other_time_ms(double pause_time_ms) const {
516   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
517 }
518 
constant_other_time_ms(double pause_time_ms) const519 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
520   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
521 }
522 
cset_chooser() const523 CollectionSetChooser* G1Policy::cset_chooser() const {
524   return _collection_set->cset_chooser();
525 }
526 
about_to_start_mixed_phase() const527 bool G1Policy::about_to_start_mixed_phase() const {
528   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
529 }
530 
need_to_start_conc_mark(const char * source,size_t alloc_word_size)531 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
532   if (about_to_start_mixed_phase()) {
533     return false;
534   }
535 
536   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
537 
538   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
539   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
540   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
541 
542   bool result = false;
543   if (marking_request_bytes > marking_initiating_used_threshold) {
544     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
545     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
546                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
547                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
548   }
549 
550   return result;
551 }
552 
553 // Anything below that is considered to be zero
554 #define MIN_TIMER_GRANULARITY 0.0000001
555 
record_collection_pause_end(double pause_time_ms,size_t cards_scanned,size_t heap_used_bytes_before_gc)556 void G1Policy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
557   double end_time_sec = os::elapsedTime();
558 
559   size_t cur_used_bytes = _g1h->used();
560   assert(cur_used_bytes == _g1h->recalculate_used(), "It should!");
561   bool this_pause_included_initial_mark = false;
562   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
563 
564   bool update_stats = !_g1h->evacuation_failed();
565 
566   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
567 
568   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
569 
570   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
571   if (this_pause_included_initial_mark) {
572     record_concurrent_mark_init_end(0.0);
573   } else {
574     maybe_start_marking();
575   }
576 
577   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
578   if (app_time_ms < MIN_TIMER_GRANULARITY) {
579     // This usually happens due to the timer not having the required
580     // granularity. Some Linuxes are the usual culprits.
581     // We'll just set it to something (arbitrarily) small.
582     app_time_ms = 1.0;
583   }
584 
585   if (update_stats) {
586     // We maintain the invariant that all objects allocated by mutator
587     // threads will be allocated out of eden regions. So, we can use
588     // the eden region number allocated since the previous GC to
589     // calculate the application's allocate rate. The only exception
590     // to that is humongous objects that are allocated separately. But
591     // given that humongous object allocations do not really affect
592     // either the pause's duration nor when the next pause will take
593     // place we can safely ignore them here.
594     uint regions_allocated = _collection_set->eden_region_length();
595     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
596     _analytics->report_alloc_rate_ms(alloc_rate_ms);
597 
598     double interval_ms =
599       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
600     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
601     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
602   }
603 
604   if (collector_state()->in_young_gc_before_mixed()) {
605     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
606     // This has been the young GC before we start doing mixed GCs. We already
607     // decided to start mixed GCs much earlier, so there is nothing to do except
608     // advancing the state.
609     collector_state()->set_in_young_only_phase(false);
610     collector_state()->set_in_young_gc_before_mixed(false);
611   } else if (!this_pause_was_young_only) {
612     // This is a mixed GC. Here we decide whether to continue doing more
613     // mixed GCs or not.
614     if (!next_gc_should_be_mixed("continue mixed GCs",
615                                  "do not continue mixed GCs")) {
616       collector_state()->set_in_young_only_phase(true);
617 
618       clear_collection_set_candidates();
619       maybe_start_marking();
620     }
621   }
622 
623   _short_lived_surv_rate_group->start_adding_regions();
624   // Do that for any other surv rate groups
625 
626   double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
627 
628   if (update_stats) {
629     double cost_per_card_ms = 0.0;
630     if (_pending_cards > 0) {
631       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS)) / (double) _pending_cards;
632       _analytics->report_cost_per_card_ms(cost_per_card_ms);
633     }
634     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
635 
636     double cost_per_entry_ms = 0.0;
637     if (cards_scanned > 10) {
638       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
639       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, this_pause_was_young_only);
640     }
641 
642     if (_max_rs_lengths > 0) {
643       double cards_per_entry_ratio =
644         (double) cards_scanned / (double) _max_rs_lengths;
645       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, this_pause_was_young_only);
646     }
647 
648     // This is defensive. For a while _max_rs_lengths could get
649     // smaller than _recorded_rs_lengths which was causing
650     // rs_length_diff to get very large and mess up the RSet length
651     // predictions. The reason was unsafe concurrent updates to the
652     // _inc_cset_recorded_rs_lengths field which the code below guards
653     // against (see CR 7118202). This bug has now been fixed (see CR
654     // 7119027). However, I'm still worried that
655     // _inc_cset_recorded_rs_lengths might still end up somewhat
656     // inaccurate. The concurrent refinement thread calculates an
657     // RSet's length concurrently with other CR threads updating it
658     // which might cause it to calculate the length incorrectly (if,
659     // say, it's in mid-coarsening). So I'll leave in the defensive
660     // conditional below just in case.
661     size_t rs_length_diff = 0;
662     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
663     if (_max_rs_lengths > recorded_rs_lengths) {
664       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
665     }
666     _analytics->report_rs_length_diff((double) rs_length_diff);
667 
668     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
669 
670     if (_collection_set->bytes_used_before() > freed_bytes) {
671       size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
672       double average_copy_time = average_time_ms(G1GCPhaseTimes::ObjCopy);
673       double cost_per_byte_ms = average_copy_time / (double) copied_bytes;
674       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
675     }
676 
677     if (_collection_set->young_region_length() > 0) {
678       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
679                                                         _collection_set->young_region_length());
680     }
681 
682     if (_collection_set->old_region_length() > 0) {
683       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
684                                                             _collection_set->old_region_length());
685     }
686 
687     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
688 
689     // Do not update RS lengths and the number of pending cards with information from mixed gc:
690     // these are is wildly different to during young only gc and mess up young gen sizing right
691     // after the mixed gc phase.
692     // During mixed gc we do not use them for young gen sizing.
693     if (this_pause_was_young_only) {
694       _analytics->report_pending_cards((double) _pending_cards);
695       _analytics->report_rs_lengths((double) _max_rs_lengths);
696     }
697   }
698 
699   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
700          "If the last pause has been an initial mark, we should not have been in the marking window");
701   if (this_pause_included_initial_mark) {
702     collector_state()->set_mark_or_rebuild_in_progress(true);
703   }
704 
705   _free_regions_at_end_of_collection = _g1h->num_free_regions();
706   // IHOP control wants to know the expected young gen length if it were not
707   // restrained by the heap reserve. Using the actual length would make the
708   // prediction too small and the limit the young gen every time we get to the
709   // predicted target occupancy.
710   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
711   update_rs_lengths_prediction();
712 
713   _old_gen_alloc_tracker.reset_after_gc(_g1h->humongous_regions_count() * HeapRegion::GrainBytes);
714   update_ihop_prediction(app_time_ms / 1000.0,
715                          last_unrestrained_young_length * HeapRegion::GrainBytes,
716                          this_pause_was_young_only);
717 
718   _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
719 
720   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
721   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
722 
723   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
724     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
725                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
726                                 update_rs_time_goal_ms, scan_hcc_time_ms);
727 
728     update_rs_time_goal_ms = 0;
729   } else {
730     update_rs_time_goal_ms -= scan_hcc_time_ms;
731   }
732   _g1h->concurrent_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS),
733                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
734                                     update_rs_time_goal_ms);
735 
736   cset_chooser()->verify();
737 }
738 
create_ihop_control(const G1OldGenAllocationTracker * old_gen_alloc_tracker,const G1Predictions * predictor)739 G1IHOPControl* G1Policy::create_ihop_control(const G1OldGenAllocationTracker* old_gen_alloc_tracker,
740                                              const G1Predictions* predictor) {
741   if (G1UseAdaptiveIHOP) {
742     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
743                                      old_gen_alloc_tracker,
744                                      predictor,
745                                      G1ReservePercent,
746                                      G1HeapWastePercent);
747   } else {
748     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent, old_gen_alloc_tracker);
749   }
750 }
751 
update_ihop_prediction(double mutator_time_s,size_t young_gen_size,bool this_gc_was_young_only)752 void G1Policy::update_ihop_prediction(double mutator_time_s,
753                                       size_t young_gen_size,
754                                       bool this_gc_was_young_only) {
755   // Always try to update IHOP prediction. Even evacuation failures give information
756   // about e.g. whether to start IHOP earlier next time.
757 
758   // Avoid using really small application times that might create samples with
759   // very high or very low values. They may be caused by e.g. back-to-back gcs.
760   double const min_valid_time = 1e-6;
761 
762   bool report = false;
763 
764   double marking_to_mixed_time = -1.0;
765   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
766     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
767     assert(marking_to_mixed_time > 0.0,
768            "Initial mark to mixed time must be larger than zero but is %.3f",
769            marking_to_mixed_time);
770     if (marking_to_mixed_time > min_valid_time) {
771       _ihop_control->update_marking_length(marking_to_mixed_time);
772       report = true;
773     }
774   }
775 
776   // As an approximation for the young gc promotion rates during marking we use
777   // all of them. In many applications there are only a few if any young gcs during
778   // marking, which makes any prediction useless. This increases the accuracy of the
779   // prediction.
780   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
781     _ihop_control->update_allocation_info(mutator_time_s, young_gen_size);
782     report = true;
783   }
784 
785   if (report) {
786     report_ihop_statistics();
787   }
788 }
789 
report_ihop_statistics()790 void G1Policy::report_ihop_statistics() {
791   _ihop_control->print();
792 }
793 
print_phases()794 void G1Policy::print_phases() {
795   phase_times()->print();
796 }
797 
predict_yg_surv_rate(int age,SurvRateGroup * surv_rate_group) const798 double G1Policy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
799   TruncatedSeq* seq = surv_rate_group->get_seq(age);
800   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
801   double pred = _predictor.get_new_prediction(seq);
802   if (pred > 1.0) {
803     pred = 1.0;
804   }
805   return pred;
806 }
807 
accum_yg_surv_rate_pred(int age) const808 double G1Policy::accum_yg_surv_rate_pred(int age) const {
809   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
810 }
811 
predict_base_elapsed_time_ms(size_t pending_cards,size_t scanned_cards) const812 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
813                                               size_t scanned_cards) const {
814   return
815     _analytics->predict_rs_update_time_ms(pending_cards) +
816     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->in_young_only_phase()) +
817     _analytics->predict_constant_other_time_ms();
818 }
819 
predict_base_elapsed_time_ms(size_t pending_cards) const820 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
821   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
822   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->in_young_only_phase());
823   return predict_base_elapsed_time_ms(pending_cards, card_num);
824 }
825 
predict_bytes_to_copy(HeapRegion * hr) const826 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
827   size_t bytes_to_copy;
828   if (!hr->is_young()) {
829     bytes_to_copy = hr->max_live_bytes();
830   } else {
831     assert(hr->age_in_surv_rate_group() != -1, "invariant");
832     int age = hr->age_in_surv_rate_group();
833     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
834     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
835   }
836   return bytes_to_copy;
837 }
838 
predict_region_elapsed_time_ms(HeapRegion * hr,bool for_young_gc) const839 double G1Policy::predict_region_elapsed_time_ms(HeapRegion* hr,
840                                                 bool for_young_gc) const {
841   size_t rs_length = hr->rem_set()->occupied();
842   // Predicting the number of cards is based on which type of GC
843   // we're predicting for.
844   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
845   size_t bytes_to_copy = predict_bytes_to_copy(hr);
846 
847   double region_elapsed_time_ms =
848     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->in_young_only_phase()) +
849     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
850 
851   // The prediction of the "other" time for this region is based
852   // upon the region type and NOT the GC type.
853   if (hr->is_young()) {
854     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
855   } else {
856     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
857   }
858   return region_elapsed_time_ms;
859 }
860 
should_allocate_mutator_region() const861 bool G1Policy::should_allocate_mutator_region() const {
862   uint young_list_length = _g1h->young_regions_count();
863   uint young_list_target_length = _young_list_target_length;
864   return young_list_length < young_list_target_length;
865 }
866 
can_expand_young_list() const867 bool G1Policy::can_expand_young_list() const {
868   uint young_list_length = _g1h->young_regions_count();
869   uint young_list_max_length = _young_list_max_length;
870   return young_list_length < young_list_max_length;
871 }
872 
adaptive_young_list_length() const873 bool G1Policy::adaptive_young_list_length() const {
874   return _young_gen_sizer.adaptive_young_list_length();
875 }
876 
desired_survivor_size() const877 size_t G1Policy::desired_survivor_size() const {
878   size_t const survivor_capacity = HeapRegion::GrainWords * _max_survivor_regions;
879   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
880 }
881 
print_age_table()882 void G1Policy::print_age_table() {
883   _survivors_age_table.print_age_table(_tenuring_threshold);
884 }
885 
update_max_gc_locker_expansion()886 void G1Policy::update_max_gc_locker_expansion() {
887   uint expansion_region_num = 0;
888   if (GCLockerEdenExpansionPercent > 0) {
889     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
890     double expansion_region_num_d = perc * (double) _young_list_target_length;
891     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
892     // less than 1.0) we'll get 1.
893     expansion_region_num = (uint) ceil(expansion_region_num_d);
894   } else {
895     assert(expansion_region_num == 0, "sanity");
896   }
897   _young_list_max_length = _young_list_target_length + expansion_region_num;
898   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
899 }
900 
901 // Calculates survivor space parameters.
update_survivors_policy()902 void G1Policy::update_survivors_policy() {
903   double max_survivor_regions_d =
904                  (double) _young_list_target_length / (double) SurvivorRatio;
905   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
906   // smaller than 1.0) we'll get 1.
907   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
908 
909   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(desired_survivor_size());
910   if (UsePerfData) {
911     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
912     _policy_counters->desired_survivor_size()->set_value(desired_survivor_size() * oopSize);
913   }
914 }
915 
force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause)916 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
917   // We actually check whether we are marking here and not if we are in a
918   // reclamation phase. This means that we will schedule a concurrent mark
919   // even while we are still in the process of reclaiming memory.
920   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
921   if (!during_cycle) {
922     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
923     collector_state()->set_initiate_conc_mark_if_possible(true);
924     return true;
925   } else {
926     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
927     return false;
928   }
929 }
930 
initiate_conc_mark()931 void G1Policy::initiate_conc_mark() {
932   collector_state()->set_in_initial_mark_gc(true);
933   collector_state()->set_initiate_conc_mark_if_possible(false);
934 }
935 
decide_on_conc_mark_initiation()936 void G1Policy::decide_on_conc_mark_initiation() {
937   // We are about to decide on whether this pause will be an
938   // initial-mark pause.
939 
940   // First, collector_state()->in_initial_mark_gc() should not be already set. We
941   // will set it here if we have to. However, it should be cleared by
942   // the end of the pause (it's only set for the duration of an
943   // initial-mark pause).
944   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
945 
946   if (collector_state()->initiate_conc_mark_if_possible()) {
947     // We had noticed on a previous pause that the heap occupancy has
948     // gone over the initiating threshold and we should start a
949     // concurrent marking cycle. So we might initiate one.
950 
951     if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
952       // Initiate a new initial mark if there is no marking or reclamation going on.
953       initiate_conc_mark();
954       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
955     } else if (_g1h->is_user_requested_concurrent_full_gc(_g1h->gc_cause())) {
956       // Initiate a user requested initial mark. An initial mark must be young only
957       // GC, so the collector state must be updated to reflect this.
958       collector_state()->set_in_young_only_phase(true);
959       collector_state()->set_in_young_gc_before_mixed(false);
960 
961       // We might have ended up coming here about to start a mixed phase with a collection set
962       // active. The following remark might change the change the "evacuation efficiency" of
963       // the regions in this set, leading to failing asserts later.
964       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
965       clear_collection_set_candidates();
966       abort_time_to_mixed_tracking();
967       initiate_conc_mark();
968       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
969     } else {
970       // The concurrent marking thread is still finishing up the
971       // previous cycle. If we start one right now the two cycles
972       // overlap. In particular, the concurrent marking thread might
973       // be in the process of clearing the next marking bitmap (which
974       // we will use for the next cycle if we start one). Starting a
975       // cycle now will be bad given that parts of the marking
976       // information might get cleared by the marking thread. And we
977       // cannot wait for the marking thread to finish the cycle as it
978       // periodically yields while clearing the next marking bitmap
979       // and, if it's in a yield point, it's waiting for us to
980       // finish. So, at this point we will not start a cycle and we'll
981       // let the concurrent marking thread complete the last one.
982       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
983     }
984   }
985 }
986 
record_concurrent_mark_cleanup_end()987 void G1Policy::record_concurrent_mark_cleanup_end() {
988   cset_chooser()->rebuild(_g1h->workers(), _g1h->num_regions());
989 
990   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
991   if (!mixed_gc_pending) {
992     clear_collection_set_candidates();
993     abort_time_to_mixed_tracking();
994   }
995   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
996   collector_state()->set_mark_or_rebuild_in_progress(false);
997 
998   double end_sec = os::elapsedTime();
999   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1000   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1001   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1002 
1003   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1004 }
1005 
reclaimable_bytes_percent(size_t reclaimable_bytes) const1006 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1007   return percent_of(reclaimable_bytes, _g1h->capacity());
1008 }
1009 
1010 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
do_heap_region(HeapRegion * r)1011   virtual bool do_heap_region(HeapRegion* r) {
1012     r->rem_set()->clear_locked(true /* only_cardset */);
1013     return false;
1014   }
1015 };
1016 
clear_collection_set_candidates()1017 void G1Policy::clear_collection_set_candidates() {
1018   // Clear remembered sets of remaining candidate regions and the actual candidate
1019   // list.
1020   G1ClearCollectionSetCandidateRemSets cl;
1021   cset_chooser()->iterate(&cl);
1022   cset_chooser()->clear();
1023 }
1024 
maybe_start_marking()1025 void G1Policy::maybe_start_marking() {
1026   if (need_to_start_conc_mark("end of GC")) {
1027     // Note: this might have already been set, if during the last
1028     // pause we decided to start a cycle but at the beginning of
1029     // this pause we decided to postpone it. That's OK.
1030     collector_state()->set_initiate_conc_mark_if_possible(true);
1031   }
1032 }
1033 
young_gc_pause_kind() const1034 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1035   assert(!collector_state()->in_full_gc(), "must be");
1036   if (collector_state()->in_initial_mark_gc()) {
1037     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1038     return InitialMarkGC;
1039   } else if (collector_state()->in_young_gc_before_mixed()) {
1040     assert(!collector_state()->in_initial_mark_gc(), "must be");
1041     return LastYoungGC;
1042   } else if (collector_state()->in_mixed_phase()) {
1043     assert(!collector_state()->in_initial_mark_gc(), "must be");
1044     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1045     return MixedGC;
1046   } else {
1047     assert(!collector_state()->in_initial_mark_gc(), "must be");
1048     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1049     return YoungOnlyGC;
1050   }
1051 }
1052 
record_pause(PauseKind kind,double start,double end)1053 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1054   // Manage the MMU tracker. For some reason it ignores Full GCs.
1055   if (kind != FullGC) {
1056     _mmu_tracker->add_pause(start, end);
1057   }
1058   // Manage the mutator time tracking from initial mark to first mixed gc.
1059   switch (kind) {
1060     case FullGC:
1061       abort_time_to_mixed_tracking();
1062       break;
1063     case Cleanup:
1064     case Remark:
1065     case YoungOnlyGC:
1066     case LastYoungGC:
1067       _initial_mark_to_mixed.add_pause(end - start);
1068       break;
1069     case InitialMarkGC:
1070       _initial_mark_to_mixed.record_initial_mark_end(end);
1071       break;
1072     case MixedGC:
1073       _initial_mark_to_mixed.record_mixed_gc_start(start);
1074       break;
1075     default:
1076       ShouldNotReachHere();
1077   }
1078 }
1079 
abort_time_to_mixed_tracking()1080 void G1Policy::abort_time_to_mixed_tracking() {
1081   _initial_mark_to_mixed.reset();
1082 }
1083 
next_gc_should_be_mixed(const char * true_action_str,const char * false_action_str) const1084 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1085                                        const char* false_action_str) const {
1086   if (cset_chooser()->is_empty()) {
1087     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1088     return false;
1089   }
1090 
1091   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1092   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1093   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1094   double threshold = (double) G1HeapWastePercent;
1095   if (reclaimable_percent <= threshold) {
1096     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1097                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1098     return false;
1099   }
1100   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1101                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1102   return true;
1103 }
1104 
calc_min_old_cset_length() const1105 uint G1Policy::calc_min_old_cset_length() const {
1106   // The min old CSet region bound is based on the maximum desired
1107   // number of mixed GCs after a cycle. I.e., even if some old regions
1108   // look expensive, we should add them to the CSet anyway to make
1109   // sure we go through the available old regions in no more than the
1110   // maximum desired number of mixed GCs.
1111   //
1112   // The calculation is based on the number of marked regions we added
1113   // to the CSet chooser in the first place, not how many remain, so
1114   // that the result is the same during all mixed GCs that follow a cycle.
1115 
1116   const size_t region_num = (size_t) cset_chooser()->length();
1117   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1118   size_t result = region_num / gc_num;
1119   // emulate ceiling
1120   if (result * gc_num < region_num) {
1121     result += 1;
1122   }
1123   return (uint) result;
1124 }
1125 
calc_max_old_cset_length() const1126 uint G1Policy::calc_max_old_cset_length() const {
1127   // The max old CSet region bound is based on the threshold expressed
1128   // as a percentage of the heap size. I.e., it should bound the
1129   // number of old regions added to the CSet irrespective of how many
1130   // of them are available.
1131 
1132   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1133   const size_t region_num = g1h->num_regions();
1134   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1135   size_t result = region_num * perc / 100;
1136   // emulate ceiling
1137   if (100 * result < region_num * perc) {
1138     result += 1;
1139   }
1140   return (uint) result;
1141 }
1142 
finalize_collection_set(double target_pause_time_ms,G1SurvivorRegions * survivor)1143 void G1Policy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
1144   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
1145   _collection_set->finalize_old_part(time_remaining_ms);
1146 }
1147 
transfer_survivors_to_cset(const G1SurvivorRegions * survivors)1148 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1149 
1150   // Add survivor regions to SurvRateGroup.
1151   note_start_adding_survivor_regions();
1152   finished_recalculating_age_indexes(true /* is_survivors */);
1153 
1154   HeapRegion* last = NULL;
1155   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1156        it != survivors->regions()->end();
1157        ++it) {
1158     HeapRegion* curr = *it;
1159     set_region_survivor(curr);
1160 
1161     // The region is a non-empty survivor so let's add it to
1162     // the incremental collection set for the next evacuation
1163     // pause.
1164     _collection_set->add_survivor_regions(curr);
1165 
1166     last = curr;
1167   }
1168   note_stop_adding_survivor_regions();
1169 
1170   // Don't clear the survivor list handles until the start of
1171   // the next evacuation pause - we need it in order to re-tag
1172   // the survivor regions from this evacuation pause as 'young'
1173   // at the start of the next.
1174 
1175   finished_recalculating_age_indexes(false /* is_survivors */);
1176 }
1177