1 /*
2 * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "gc/g1/g1Analytics.hpp"
27 #include "gc/g1/g1CollectedHeap.inline.hpp"
28 #include "gc/g1/g1CollectionSet.hpp"
29 #include "gc/g1/g1ConcurrentMark.hpp"
30 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
31 #include "gc/g1/g1ConcurrentRefine.hpp"
32 #include "gc/g1/g1HotCardCache.hpp"
33 #include "gc/g1/g1IHOPControl.hpp"
34 #include "gc/g1/g1GCPhaseTimes.hpp"
35 #include "gc/g1/g1Policy.hpp"
36 #include "gc/g1/g1SurvivorRegions.hpp"
37 #include "gc/g1/g1YoungGenSizer.hpp"
38 #include "gc/g1/heapRegion.inline.hpp"
39 #include "gc/g1/heapRegionRemSet.hpp"
40 #include "gc/shared/gcPolicyCounters.hpp"
41 #include "logging/logStream.hpp"
42 #include "runtime/arguments.hpp"
43 #include "runtime/java.hpp"
44 #include "runtime/mutexLocker.hpp"
45 #include "utilities/debug.hpp"
46 #include "utilities/growableArray.hpp"
47 #include "utilities/pair.hpp"
48
G1Policy(STWGCTimer * gc_timer)49 G1Policy::G1Policy(STWGCTimer* gc_timer) :
50 _predictor(G1ConfidencePercent / 100.0),
51 _analytics(new G1Analytics(&_predictor)),
52 _remset_tracker(),
53 _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
54 _old_gen_alloc_tracker(),
55 _ihop_control(create_ihop_control(&_old_gen_alloc_tracker, &_predictor)),
56 _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
57 _young_list_fixed_length(0),
58 _short_lived_surv_rate_group(new SurvRateGroup()),
59 _survivor_surv_rate_group(new SurvRateGroup()),
60 _reserve_factor((double) G1ReservePercent / 100.0),
61 _reserve_regions(0),
62 _rs_lengths_prediction(0),
63 _initial_mark_to_mixed(),
64 _collection_set(NULL),
65 _g1h(NULL),
66 _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
67 _tenuring_threshold(MaxTenuringThreshold),
68 _max_survivor_regions(0),
69 _survivors_age_table(true),
70 _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC) {
71 }
72
~G1Policy()73 G1Policy::~G1Policy() {
74 delete _ihop_control;
75 }
76
collector_state() const77 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
78
init(G1CollectedHeap * g1h,G1CollectionSet * collection_set)79 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
80 _g1h = g1h;
81 _collection_set = collection_set;
82
83 assert(Heap_lock->owned_by_self(), "Locking discipline.");
84
85 if (!adaptive_young_list_length()) {
86 _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
87 }
88 _young_gen_sizer.adjust_max_new_size(_g1h->max_regions());
89
90 _free_regions_at_end_of_collection = _g1h->num_free_regions();
91
92 update_young_list_max_and_target_length();
93 // We may immediately start allocating regions and placing them on the
94 // collection set list. Initialize the per-collection set info
95 _collection_set->start_incremental_building();
96 }
97
note_gc_start()98 void G1Policy::note_gc_start() {
99 phase_times()->note_gc_start();
100 }
101
102 class G1YoungLengthPredictor {
103 const bool _during_cm;
104 const double _base_time_ms;
105 const double _base_free_regions;
106 const double _target_pause_time_ms;
107 const G1Policy* const _policy;
108
109 public:
G1YoungLengthPredictor(bool during_cm,double base_time_ms,double base_free_regions,double target_pause_time_ms,const G1Policy * policy)110 G1YoungLengthPredictor(bool during_cm,
111 double base_time_ms,
112 double base_free_regions,
113 double target_pause_time_ms,
114 const G1Policy* policy) :
115 _during_cm(during_cm),
116 _base_time_ms(base_time_ms),
117 _base_free_regions(base_free_regions),
118 _target_pause_time_ms(target_pause_time_ms),
119 _policy(policy) {}
120
will_fit(uint young_length) const121 bool will_fit(uint young_length) const {
122 if (young_length >= _base_free_regions) {
123 // end condition 1: not enough space for the young regions
124 return false;
125 }
126
127 const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1);
128 const size_t bytes_to_copy =
129 (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
130 const double copy_time_ms =
131 _policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm);
132 const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
133 const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
134 if (pause_time_ms > _target_pause_time_ms) {
135 // end condition 2: prediction is over the target pause time
136 return false;
137 }
138
139 const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
140
141 // When copying, we will likely need more bytes free than is live in the region.
142 // Add some safety margin to factor in the confidence of our guess, and the
143 // natural expected waste.
144 // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
145 // of the calculation: the lower the confidence, the more headroom.
146 // (100 + TargetPLABWastePct) represents the increase in expected bytes during
147 // copying due to anticipated waste in the PLABs.
148 const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
149 const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
150
151 if (expected_bytes_to_copy > free_bytes) {
152 // end condition 3: out-of-space
153 return false;
154 }
155
156 // success!
157 return true;
158 }
159 };
160
record_new_heap_size(uint new_number_of_regions)161 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
162 // re-calculate the necessary reserve
163 double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
164 // We use ceiling so that if reserve_regions_d is > 0.0 (but
165 // smaller than 1.0) we'll get 1.
166 _reserve_regions = (uint) ceil(reserve_regions_d);
167
168 _young_gen_sizer.heap_size_changed(new_number_of_regions);
169
170 _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
171 }
172
calculate_young_list_desired_min_length(uint base_min_length) const173 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
174 uint desired_min_length = 0;
175 if (adaptive_young_list_length()) {
176 if (_analytics->num_alloc_rate_ms() > 3) {
177 double now_sec = os::elapsedTime();
178 double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
179 double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
180 desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
181 } else {
182 // otherwise we don't have enough info to make the prediction
183 }
184 }
185 desired_min_length += base_min_length;
186 // make sure we don't go below any user-defined minimum bound
187 return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
188 }
189
calculate_young_list_desired_max_length() const190 uint G1Policy::calculate_young_list_desired_max_length() const {
191 // Here, we might want to also take into account any additional
192 // constraints (i.e., user-defined minimum bound). Currently, we
193 // effectively don't set this bound.
194 return _young_gen_sizer.max_desired_young_length();
195 }
196
update_young_list_max_and_target_length()197 uint G1Policy::update_young_list_max_and_target_length() {
198 return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
199 }
200
update_young_list_max_and_target_length(size_t rs_lengths)201 uint G1Policy::update_young_list_max_and_target_length(size_t rs_lengths) {
202 uint unbounded_target_length = update_young_list_target_length(rs_lengths);
203 update_max_gc_locker_expansion();
204 return unbounded_target_length;
205 }
206
update_young_list_target_length(size_t rs_lengths)207 uint G1Policy::update_young_list_target_length(size_t rs_lengths) {
208 YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
209 _young_list_target_length = young_lengths.first;
210 return young_lengths.second;
211 }
212
young_list_target_lengths(size_t rs_lengths) const213 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_lengths) const {
214 YoungTargetLengths result;
215
216 // Calculate the absolute and desired min bounds first.
217
218 // This is how many young regions we already have (currently: the survivors).
219 const uint base_min_length = _g1h->survivor_regions_count();
220 uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
221 // This is the absolute minimum young length. Ensure that we
222 // will at least have one eden region available for allocation.
223 uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
224 // If we shrank the young list target it should not shrink below the current size.
225 desired_min_length = MAX2(desired_min_length, absolute_min_length);
226 // Calculate the absolute and desired max bounds.
227
228 uint desired_max_length = calculate_young_list_desired_max_length();
229
230 uint young_list_target_length = 0;
231 if (adaptive_young_list_length()) {
232 if (collector_state()->in_young_only_phase()) {
233 young_list_target_length =
234 calculate_young_list_target_length(rs_lengths,
235 base_min_length,
236 desired_min_length,
237 desired_max_length);
238 } else {
239 // Don't calculate anything and let the code below bound it to
240 // the desired_min_length, i.e., do the next GC as soon as
241 // possible to maximize how many old regions we can add to it.
242 }
243 } else {
244 // The user asked for a fixed young gen so we'll fix the young gen
245 // whether the next GC is young or mixed.
246 young_list_target_length = _young_list_fixed_length;
247 }
248
249 result.second = young_list_target_length;
250
251 // We will try our best not to "eat" into the reserve.
252 uint absolute_max_length = 0;
253 if (_free_regions_at_end_of_collection > _reserve_regions) {
254 absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
255 }
256 if (desired_max_length > absolute_max_length) {
257 desired_max_length = absolute_max_length;
258 }
259
260 // Make sure we don't go over the desired max length, nor under the
261 // desired min length. In case they clash, desired_min_length wins
262 // which is why that test is second.
263 if (young_list_target_length > desired_max_length) {
264 young_list_target_length = desired_max_length;
265 }
266 if (young_list_target_length < desired_min_length) {
267 young_list_target_length = desired_min_length;
268 }
269
270 assert(young_list_target_length > base_min_length,
271 "we should be able to allocate at least one eden region");
272 assert(young_list_target_length >= absolute_min_length, "post-condition");
273
274 result.first = young_list_target_length;
275 return result;
276 }
277
278 uint
calculate_young_list_target_length(size_t rs_lengths,uint base_min_length,uint desired_min_length,uint desired_max_length) const279 G1Policy::calculate_young_list_target_length(size_t rs_lengths,
280 uint base_min_length,
281 uint desired_min_length,
282 uint desired_max_length) const {
283 assert(adaptive_young_list_length(), "pre-condition");
284 assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
285
286 // In case some edge-condition makes the desired max length too small...
287 if (desired_max_length <= desired_min_length) {
288 return desired_min_length;
289 }
290
291 // We'll adjust min_young_length and max_young_length not to include
292 // the already allocated young regions (i.e., so they reflect the
293 // min and max eden regions we'll allocate). The base_min_length
294 // will be reflected in the predictions by the
295 // survivor_regions_evac_time prediction.
296 assert(desired_min_length > base_min_length, "invariant");
297 uint min_young_length = desired_min_length - base_min_length;
298 assert(desired_max_length > base_min_length, "invariant");
299 uint max_young_length = desired_max_length - base_min_length;
300
301 const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
302 const double survivor_regions_evac_time = predict_survivor_regions_evac_time();
303 const size_t pending_cards = _analytics->predict_pending_cards();
304 const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
305 const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, true /* for_young_gc */);
306 const double base_time_ms =
307 predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
308 survivor_regions_evac_time;
309 const uint available_free_regions = _free_regions_at_end_of_collection;
310 const uint base_free_regions =
311 available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
312
313 // Here, we will make sure that the shortest young length that
314 // makes sense fits within the target pause time.
315
316 G1YoungLengthPredictor p(collector_state()->mark_or_rebuild_in_progress(),
317 base_time_ms,
318 base_free_regions,
319 target_pause_time_ms,
320 this);
321 if (p.will_fit(min_young_length)) {
322 // The shortest young length will fit into the target pause time;
323 // we'll now check whether the absolute maximum number of young
324 // regions will fit in the target pause time. If not, we'll do
325 // a binary search between min_young_length and max_young_length.
326 if (p.will_fit(max_young_length)) {
327 // The maximum young length will fit into the target pause time.
328 // We are done so set min young length to the maximum length (as
329 // the result is assumed to be returned in min_young_length).
330 min_young_length = max_young_length;
331 } else {
332 // The maximum possible number of young regions will not fit within
333 // the target pause time so we'll search for the optimal
334 // length. The loop invariants are:
335 //
336 // min_young_length < max_young_length
337 // min_young_length is known to fit into the target pause time
338 // max_young_length is known not to fit into the target pause time
339 //
340 // Going into the loop we know the above hold as we've just
341 // checked them. Every time around the loop we check whether
342 // the middle value between min_young_length and
343 // max_young_length fits into the target pause time. If it
344 // does, it becomes the new min. If it doesn't, it becomes
345 // the new max. This way we maintain the loop invariants.
346
347 assert(min_young_length < max_young_length, "invariant");
348 uint diff = (max_young_length - min_young_length) / 2;
349 while (diff > 0) {
350 uint young_length = min_young_length + diff;
351 if (p.will_fit(young_length)) {
352 min_young_length = young_length;
353 } else {
354 max_young_length = young_length;
355 }
356 assert(min_young_length < max_young_length, "invariant");
357 diff = (max_young_length - min_young_length) / 2;
358 }
359 // The results is min_young_length which, according to the
360 // loop invariants, should fit within the target pause time.
361
362 // These are the post-conditions of the binary search above:
363 assert(min_young_length < max_young_length,
364 "otherwise we should have discovered that max_young_length "
365 "fits into the pause target and not done the binary search");
366 assert(p.will_fit(min_young_length),
367 "min_young_length, the result of the binary search, should "
368 "fit into the pause target");
369 assert(!p.will_fit(min_young_length + 1),
370 "min_young_length, the result of the binary search, should be "
371 "optimal, so no larger length should fit into the pause target");
372 }
373 } else {
374 // Even the minimum length doesn't fit into the pause time
375 // target, return it as the result nevertheless.
376 }
377 return base_min_length + min_young_length;
378 }
379
predict_survivor_regions_evac_time() const380 double G1Policy::predict_survivor_regions_evac_time() const {
381 double survivor_regions_evac_time = 0.0;
382 const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
383
384 for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
385 it != survivor_regions->end();
386 ++it) {
387 survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->in_young_only_phase());
388 }
389 return survivor_regions_evac_time;
390 }
391
revise_young_list_target_length_if_necessary(size_t rs_lengths)392 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
393 guarantee( adaptive_young_list_length(), "should not call this otherwise" );
394
395 if (rs_lengths > _rs_lengths_prediction) {
396 // add 10% to avoid having to recalculate often
397 size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
398 update_rs_lengths_prediction(rs_lengths_prediction);
399
400 update_young_list_max_and_target_length(rs_lengths_prediction);
401 }
402 }
403
update_rs_lengths_prediction()404 void G1Policy::update_rs_lengths_prediction() {
405 update_rs_lengths_prediction(_analytics->predict_rs_lengths());
406 }
407
update_rs_lengths_prediction(size_t prediction)408 void G1Policy::update_rs_lengths_prediction(size_t prediction) {
409 if (collector_state()->in_young_only_phase() && adaptive_young_list_length()) {
410 _rs_lengths_prediction = prediction;
411 }
412 }
413
record_full_collection_start()414 void G1Policy::record_full_collection_start() {
415 _full_collection_start_sec = os::elapsedTime();
416 // Release the future to-space so that it is available for compaction into.
417 collector_state()->set_in_young_only_phase(false);
418 collector_state()->set_in_full_gc(true);
419 cset_chooser()->clear();
420 }
421
record_full_collection_end()422 void G1Policy::record_full_collection_end() {
423 // Consider this like a collection pause for the purposes of allocation
424 // since last pause.
425 double end_sec = os::elapsedTime();
426 double full_gc_time_sec = end_sec - _full_collection_start_sec;
427 double full_gc_time_ms = full_gc_time_sec * 1000.0;
428
429 _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
430
431 collector_state()->set_in_full_gc(false);
432
433 // "Nuke" the heuristics that control the young/mixed GC
434 // transitions and make sure we start with young GCs after the Full GC.
435 collector_state()->set_in_young_only_phase(true);
436 collector_state()->set_in_young_gc_before_mixed(false);
437 collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
438 collector_state()->set_in_initial_mark_gc(false);
439 collector_state()->set_mark_or_rebuild_in_progress(false);
440 collector_state()->set_clearing_next_bitmap(false);
441
442 _short_lived_surv_rate_group->start_adding_regions();
443 // also call this on any additional surv rate groups
444
445 _free_regions_at_end_of_collection = _g1h->num_free_regions();
446 // Reset survivors SurvRateGroup.
447 _survivor_surv_rate_group->reset();
448 update_young_list_max_and_target_length();
449 update_rs_lengths_prediction();
450
451 _old_gen_alloc_tracker.reset_after_gc(_g1h->humongous_regions_count() * HeapRegion::GrainBytes);
452
453 record_pause(FullGC, _full_collection_start_sec, end_sec);
454 }
455
record_collection_pause_start(double start_time_sec)456 void G1Policy::record_collection_pause_start(double start_time_sec) {
457 // We only need to do this here as the policy will only be applied
458 // to the GC we're about to start. so, no point is calculating this
459 // every time we calculate / recalculate the target young length.
460 update_survivors_policy();
461
462 assert(_g1h->used() == _g1h->recalculate_used(),
463 "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
464 _g1h->used(), _g1h->recalculate_used());
465
466 phase_times()->record_cur_collection_start_sec(start_time_sec);
467 _pending_cards = _g1h->pending_card_num();
468
469 _collection_set->reset_bytes_used_before();
470 _bytes_copied_during_gc = 0;
471
472 // do that for any other surv rate groups
473 _short_lived_surv_rate_group->stop_adding_regions();
474 _survivors_age_table.clear();
475
476 assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
477 }
478
record_concurrent_mark_init_end(double mark_init_elapsed_time_ms)479 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
480 assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
481 collector_state()->set_in_initial_mark_gc(false);
482 }
483
record_concurrent_mark_remark_start()484 void G1Policy::record_concurrent_mark_remark_start() {
485 _mark_remark_start_sec = os::elapsedTime();
486 }
487
record_concurrent_mark_remark_end()488 void G1Policy::record_concurrent_mark_remark_end() {
489 double end_time_sec = os::elapsedTime();
490 double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
491 _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
492 _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
493
494 record_pause(Remark, _mark_remark_start_sec, end_time_sec);
495 }
496
record_concurrent_mark_cleanup_start()497 void G1Policy::record_concurrent_mark_cleanup_start() {
498 _mark_cleanup_start_sec = os::elapsedTime();
499 }
500
average_time_ms(G1GCPhaseTimes::GCParPhases phase) const501 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
502 return phase_times()->average_time_ms(phase);
503 }
504
young_other_time_ms() const505 double G1Policy::young_other_time_ms() const {
506 return phase_times()->young_cset_choice_time_ms() +
507 phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
508 }
509
non_young_other_time_ms() const510 double G1Policy::non_young_other_time_ms() const {
511 return phase_times()->non_young_cset_choice_time_ms() +
512 phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
513 }
514
other_time_ms(double pause_time_ms) const515 double G1Policy::other_time_ms(double pause_time_ms) const {
516 return pause_time_ms - phase_times()->cur_collection_par_time_ms();
517 }
518
constant_other_time_ms(double pause_time_ms) const519 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
520 return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
521 }
522
cset_chooser() const523 CollectionSetChooser* G1Policy::cset_chooser() const {
524 return _collection_set->cset_chooser();
525 }
526
about_to_start_mixed_phase() const527 bool G1Policy::about_to_start_mixed_phase() const {
528 return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
529 }
530
need_to_start_conc_mark(const char * source,size_t alloc_word_size)531 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
532 if (about_to_start_mixed_phase()) {
533 return false;
534 }
535
536 size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
537
538 size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
539 size_t alloc_byte_size = alloc_word_size * HeapWordSize;
540 size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
541
542 bool result = false;
543 if (marking_request_bytes > marking_initiating_used_threshold) {
544 result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
545 log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
546 result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
547 cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
548 }
549
550 return result;
551 }
552
553 // Anything below that is considered to be zero
554 #define MIN_TIMER_GRANULARITY 0.0000001
555
record_collection_pause_end(double pause_time_ms,size_t cards_scanned,size_t heap_used_bytes_before_gc)556 void G1Policy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
557 double end_time_sec = os::elapsedTime();
558
559 size_t cur_used_bytes = _g1h->used();
560 assert(cur_used_bytes == _g1h->recalculate_used(), "It should!");
561 bool this_pause_included_initial_mark = false;
562 bool this_pause_was_young_only = collector_state()->in_young_only_phase();
563
564 bool update_stats = !_g1h->evacuation_failed();
565
566 record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
567
568 _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
569
570 this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
571 if (this_pause_included_initial_mark) {
572 record_concurrent_mark_init_end(0.0);
573 } else {
574 maybe_start_marking();
575 }
576
577 double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
578 if (app_time_ms < MIN_TIMER_GRANULARITY) {
579 // This usually happens due to the timer not having the required
580 // granularity. Some Linuxes are the usual culprits.
581 // We'll just set it to something (arbitrarily) small.
582 app_time_ms = 1.0;
583 }
584
585 if (update_stats) {
586 // We maintain the invariant that all objects allocated by mutator
587 // threads will be allocated out of eden regions. So, we can use
588 // the eden region number allocated since the previous GC to
589 // calculate the application's allocate rate. The only exception
590 // to that is humongous objects that are allocated separately. But
591 // given that humongous object allocations do not really affect
592 // either the pause's duration nor when the next pause will take
593 // place we can safely ignore them here.
594 uint regions_allocated = _collection_set->eden_region_length();
595 double alloc_rate_ms = (double) regions_allocated / app_time_ms;
596 _analytics->report_alloc_rate_ms(alloc_rate_ms);
597
598 double interval_ms =
599 (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
600 _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
601 _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
602 }
603
604 if (collector_state()->in_young_gc_before_mixed()) {
605 assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
606 // This has been the young GC before we start doing mixed GCs. We already
607 // decided to start mixed GCs much earlier, so there is nothing to do except
608 // advancing the state.
609 collector_state()->set_in_young_only_phase(false);
610 collector_state()->set_in_young_gc_before_mixed(false);
611 } else if (!this_pause_was_young_only) {
612 // This is a mixed GC. Here we decide whether to continue doing more
613 // mixed GCs or not.
614 if (!next_gc_should_be_mixed("continue mixed GCs",
615 "do not continue mixed GCs")) {
616 collector_state()->set_in_young_only_phase(true);
617
618 clear_collection_set_candidates();
619 maybe_start_marking();
620 }
621 }
622
623 _short_lived_surv_rate_group->start_adding_regions();
624 // Do that for any other surv rate groups
625
626 double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
627
628 if (update_stats) {
629 double cost_per_card_ms = 0.0;
630 if (_pending_cards > 0) {
631 cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS)) / (double) _pending_cards;
632 _analytics->report_cost_per_card_ms(cost_per_card_ms);
633 }
634 _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
635
636 double cost_per_entry_ms = 0.0;
637 if (cards_scanned > 10) {
638 cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
639 _analytics->report_cost_per_entry_ms(cost_per_entry_ms, this_pause_was_young_only);
640 }
641
642 if (_max_rs_lengths > 0) {
643 double cards_per_entry_ratio =
644 (double) cards_scanned / (double) _max_rs_lengths;
645 _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, this_pause_was_young_only);
646 }
647
648 // This is defensive. For a while _max_rs_lengths could get
649 // smaller than _recorded_rs_lengths which was causing
650 // rs_length_diff to get very large and mess up the RSet length
651 // predictions. The reason was unsafe concurrent updates to the
652 // _inc_cset_recorded_rs_lengths field which the code below guards
653 // against (see CR 7118202). This bug has now been fixed (see CR
654 // 7119027). However, I'm still worried that
655 // _inc_cset_recorded_rs_lengths might still end up somewhat
656 // inaccurate. The concurrent refinement thread calculates an
657 // RSet's length concurrently with other CR threads updating it
658 // which might cause it to calculate the length incorrectly (if,
659 // say, it's in mid-coarsening). So I'll leave in the defensive
660 // conditional below just in case.
661 size_t rs_length_diff = 0;
662 size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
663 if (_max_rs_lengths > recorded_rs_lengths) {
664 rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
665 }
666 _analytics->report_rs_length_diff((double) rs_length_diff);
667
668 size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
669
670 if (_collection_set->bytes_used_before() > freed_bytes) {
671 size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
672 double average_copy_time = average_time_ms(G1GCPhaseTimes::ObjCopy);
673 double cost_per_byte_ms = average_copy_time / (double) copied_bytes;
674 _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
675 }
676
677 if (_collection_set->young_region_length() > 0) {
678 _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
679 _collection_set->young_region_length());
680 }
681
682 if (_collection_set->old_region_length() > 0) {
683 _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
684 _collection_set->old_region_length());
685 }
686
687 _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
688
689 // Do not update RS lengths and the number of pending cards with information from mixed gc:
690 // these are is wildly different to during young only gc and mess up young gen sizing right
691 // after the mixed gc phase.
692 // During mixed gc we do not use them for young gen sizing.
693 if (this_pause_was_young_only) {
694 _analytics->report_pending_cards((double) _pending_cards);
695 _analytics->report_rs_lengths((double) _max_rs_lengths);
696 }
697 }
698
699 assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
700 "If the last pause has been an initial mark, we should not have been in the marking window");
701 if (this_pause_included_initial_mark) {
702 collector_state()->set_mark_or_rebuild_in_progress(true);
703 }
704
705 _free_regions_at_end_of_collection = _g1h->num_free_regions();
706 // IHOP control wants to know the expected young gen length if it were not
707 // restrained by the heap reserve. Using the actual length would make the
708 // prediction too small and the limit the young gen every time we get to the
709 // predicted target occupancy.
710 size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
711 update_rs_lengths_prediction();
712
713 _old_gen_alloc_tracker.reset_after_gc(_g1h->humongous_regions_count() * HeapRegion::GrainBytes);
714 update_ihop_prediction(app_time_ms / 1000.0,
715 last_unrestrained_young_length * HeapRegion::GrainBytes,
716 this_pause_was_young_only);
717
718 _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
719
720 // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
721 double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
722
723 if (update_rs_time_goal_ms < scan_hcc_time_ms) {
724 log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
725 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
726 update_rs_time_goal_ms, scan_hcc_time_ms);
727
728 update_rs_time_goal_ms = 0;
729 } else {
730 update_rs_time_goal_ms -= scan_hcc_time_ms;
731 }
732 _g1h->concurrent_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS),
733 phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
734 update_rs_time_goal_ms);
735
736 cset_chooser()->verify();
737 }
738
create_ihop_control(const G1OldGenAllocationTracker * old_gen_alloc_tracker,const G1Predictions * predictor)739 G1IHOPControl* G1Policy::create_ihop_control(const G1OldGenAllocationTracker* old_gen_alloc_tracker,
740 const G1Predictions* predictor) {
741 if (G1UseAdaptiveIHOP) {
742 return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
743 old_gen_alloc_tracker,
744 predictor,
745 G1ReservePercent,
746 G1HeapWastePercent);
747 } else {
748 return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent, old_gen_alloc_tracker);
749 }
750 }
751
update_ihop_prediction(double mutator_time_s,size_t young_gen_size,bool this_gc_was_young_only)752 void G1Policy::update_ihop_prediction(double mutator_time_s,
753 size_t young_gen_size,
754 bool this_gc_was_young_only) {
755 // Always try to update IHOP prediction. Even evacuation failures give information
756 // about e.g. whether to start IHOP earlier next time.
757
758 // Avoid using really small application times that might create samples with
759 // very high or very low values. They may be caused by e.g. back-to-back gcs.
760 double const min_valid_time = 1e-6;
761
762 bool report = false;
763
764 double marking_to_mixed_time = -1.0;
765 if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
766 marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
767 assert(marking_to_mixed_time > 0.0,
768 "Initial mark to mixed time must be larger than zero but is %.3f",
769 marking_to_mixed_time);
770 if (marking_to_mixed_time > min_valid_time) {
771 _ihop_control->update_marking_length(marking_to_mixed_time);
772 report = true;
773 }
774 }
775
776 // As an approximation for the young gc promotion rates during marking we use
777 // all of them. In many applications there are only a few if any young gcs during
778 // marking, which makes any prediction useless. This increases the accuracy of the
779 // prediction.
780 if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
781 _ihop_control->update_allocation_info(mutator_time_s, young_gen_size);
782 report = true;
783 }
784
785 if (report) {
786 report_ihop_statistics();
787 }
788 }
789
report_ihop_statistics()790 void G1Policy::report_ihop_statistics() {
791 _ihop_control->print();
792 }
793
print_phases()794 void G1Policy::print_phases() {
795 phase_times()->print();
796 }
797
predict_yg_surv_rate(int age,SurvRateGroup * surv_rate_group) const798 double G1Policy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
799 TruncatedSeq* seq = surv_rate_group->get_seq(age);
800 guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
801 double pred = _predictor.get_new_prediction(seq);
802 if (pred > 1.0) {
803 pred = 1.0;
804 }
805 return pred;
806 }
807
accum_yg_surv_rate_pred(int age) const808 double G1Policy::accum_yg_surv_rate_pred(int age) const {
809 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
810 }
811
predict_base_elapsed_time_ms(size_t pending_cards,size_t scanned_cards) const812 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
813 size_t scanned_cards) const {
814 return
815 _analytics->predict_rs_update_time_ms(pending_cards) +
816 _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->in_young_only_phase()) +
817 _analytics->predict_constant_other_time_ms();
818 }
819
predict_base_elapsed_time_ms(size_t pending_cards) const820 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
821 size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
822 size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->in_young_only_phase());
823 return predict_base_elapsed_time_ms(pending_cards, card_num);
824 }
825
predict_bytes_to_copy(HeapRegion * hr) const826 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
827 size_t bytes_to_copy;
828 if (!hr->is_young()) {
829 bytes_to_copy = hr->max_live_bytes();
830 } else {
831 assert(hr->age_in_surv_rate_group() != -1, "invariant");
832 int age = hr->age_in_surv_rate_group();
833 double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
834 bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
835 }
836 return bytes_to_copy;
837 }
838
predict_region_elapsed_time_ms(HeapRegion * hr,bool for_young_gc) const839 double G1Policy::predict_region_elapsed_time_ms(HeapRegion* hr,
840 bool for_young_gc) const {
841 size_t rs_length = hr->rem_set()->occupied();
842 // Predicting the number of cards is based on which type of GC
843 // we're predicting for.
844 size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
845 size_t bytes_to_copy = predict_bytes_to_copy(hr);
846
847 double region_elapsed_time_ms =
848 _analytics->predict_rs_scan_time_ms(card_num, collector_state()->in_young_only_phase()) +
849 _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
850
851 // The prediction of the "other" time for this region is based
852 // upon the region type and NOT the GC type.
853 if (hr->is_young()) {
854 region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
855 } else {
856 region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
857 }
858 return region_elapsed_time_ms;
859 }
860
should_allocate_mutator_region() const861 bool G1Policy::should_allocate_mutator_region() const {
862 uint young_list_length = _g1h->young_regions_count();
863 uint young_list_target_length = _young_list_target_length;
864 return young_list_length < young_list_target_length;
865 }
866
can_expand_young_list() const867 bool G1Policy::can_expand_young_list() const {
868 uint young_list_length = _g1h->young_regions_count();
869 uint young_list_max_length = _young_list_max_length;
870 return young_list_length < young_list_max_length;
871 }
872
adaptive_young_list_length() const873 bool G1Policy::adaptive_young_list_length() const {
874 return _young_gen_sizer.adaptive_young_list_length();
875 }
876
desired_survivor_size() const877 size_t G1Policy::desired_survivor_size() const {
878 size_t const survivor_capacity = HeapRegion::GrainWords * _max_survivor_regions;
879 return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
880 }
881
print_age_table()882 void G1Policy::print_age_table() {
883 _survivors_age_table.print_age_table(_tenuring_threshold);
884 }
885
update_max_gc_locker_expansion()886 void G1Policy::update_max_gc_locker_expansion() {
887 uint expansion_region_num = 0;
888 if (GCLockerEdenExpansionPercent > 0) {
889 double perc = (double) GCLockerEdenExpansionPercent / 100.0;
890 double expansion_region_num_d = perc * (double) _young_list_target_length;
891 // We use ceiling so that if expansion_region_num_d is > 0.0 (but
892 // less than 1.0) we'll get 1.
893 expansion_region_num = (uint) ceil(expansion_region_num_d);
894 } else {
895 assert(expansion_region_num == 0, "sanity");
896 }
897 _young_list_max_length = _young_list_target_length + expansion_region_num;
898 assert(_young_list_target_length <= _young_list_max_length, "post-condition");
899 }
900
901 // Calculates survivor space parameters.
update_survivors_policy()902 void G1Policy::update_survivors_policy() {
903 double max_survivor_regions_d =
904 (double) _young_list_target_length / (double) SurvivorRatio;
905 // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
906 // smaller than 1.0) we'll get 1.
907 _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
908
909 _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(desired_survivor_size());
910 if (UsePerfData) {
911 _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
912 _policy_counters->desired_survivor_size()->set_value(desired_survivor_size() * oopSize);
913 }
914 }
915
force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause)916 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
917 // We actually check whether we are marking here and not if we are in a
918 // reclamation phase. This means that we will schedule a concurrent mark
919 // even while we are still in the process of reclaiming memory.
920 bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
921 if (!during_cycle) {
922 log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
923 collector_state()->set_initiate_conc_mark_if_possible(true);
924 return true;
925 } else {
926 log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
927 return false;
928 }
929 }
930
initiate_conc_mark()931 void G1Policy::initiate_conc_mark() {
932 collector_state()->set_in_initial_mark_gc(true);
933 collector_state()->set_initiate_conc_mark_if_possible(false);
934 }
935
decide_on_conc_mark_initiation()936 void G1Policy::decide_on_conc_mark_initiation() {
937 // We are about to decide on whether this pause will be an
938 // initial-mark pause.
939
940 // First, collector_state()->in_initial_mark_gc() should not be already set. We
941 // will set it here if we have to. However, it should be cleared by
942 // the end of the pause (it's only set for the duration of an
943 // initial-mark pause).
944 assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
945
946 if (collector_state()->initiate_conc_mark_if_possible()) {
947 // We had noticed on a previous pause that the heap occupancy has
948 // gone over the initiating threshold and we should start a
949 // concurrent marking cycle. So we might initiate one.
950
951 if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
952 // Initiate a new initial mark if there is no marking or reclamation going on.
953 initiate_conc_mark();
954 log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
955 } else if (_g1h->is_user_requested_concurrent_full_gc(_g1h->gc_cause())) {
956 // Initiate a user requested initial mark. An initial mark must be young only
957 // GC, so the collector state must be updated to reflect this.
958 collector_state()->set_in_young_only_phase(true);
959 collector_state()->set_in_young_gc_before_mixed(false);
960
961 // We might have ended up coming here about to start a mixed phase with a collection set
962 // active. The following remark might change the change the "evacuation efficiency" of
963 // the regions in this set, leading to failing asserts later.
964 // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
965 clear_collection_set_candidates();
966 abort_time_to_mixed_tracking();
967 initiate_conc_mark();
968 log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
969 } else {
970 // The concurrent marking thread is still finishing up the
971 // previous cycle. If we start one right now the two cycles
972 // overlap. In particular, the concurrent marking thread might
973 // be in the process of clearing the next marking bitmap (which
974 // we will use for the next cycle if we start one). Starting a
975 // cycle now will be bad given that parts of the marking
976 // information might get cleared by the marking thread. And we
977 // cannot wait for the marking thread to finish the cycle as it
978 // periodically yields while clearing the next marking bitmap
979 // and, if it's in a yield point, it's waiting for us to
980 // finish. So, at this point we will not start a cycle and we'll
981 // let the concurrent marking thread complete the last one.
982 log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
983 }
984 }
985 }
986
record_concurrent_mark_cleanup_end()987 void G1Policy::record_concurrent_mark_cleanup_end() {
988 cset_chooser()->rebuild(_g1h->workers(), _g1h->num_regions());
989
990 bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
991 if (!mixed_gc_pending) {
992 clear_collection_set_candidates();
993 abort_time_to_mixed_tracking();
994 }
995 collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
996 collector_state()->set_mark_or_rebuild_in_progress(false);
997
998 double end_sec = os::elapsedTime();
999 double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1000 _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1001 _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1002
1003 record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1004 }
1005
reclaimable_bytes_percent(size_t reclaimable_bytes) const1006 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1007 return percent_of(reclaimable_bytes, _g1h->capacity());
1008 }
1009
1010 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
do_heap_region(HeapRegion * r)1011 virtual bool do_heap_region(HeapRegion* r) {
1012 r->rem_set()->clear_locked(true /* only_cardset */);
1013 return false;
1014 }
1015 };
1016
clear_collection_set_candidates()1017 void G1Policy::clear_collection_set_candidates() {
1018 // Clear remembered sets of remaining candidate regions and the actual candidate
1019 // list.
1020 G1ClearCollectionSetCandidateRemSets cl;
1021 cset_chooser()->iterate(&cl);
1022 cset_chooser()->clear();
1023 }
1024
maybe_start_marking()1025 void G1Policy::maybe_start_marking() {
1026 if (need_to_start_conc_mark("end of GC")) {
1027 // Note: this might have already been set, if during the last
1028 // pause we decided to start a cycle but at the beginning of
1029 // this pause we decided to postpone it. That's OK.
1030 collector_state()->set_initiate_conc_mark_if_possible(true);
1031 }
1032 }
1033
young_gc_pause_kind() const1034 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1035 assert(!collector_state()->in_full_gc(), "must be");
1036 if (collector_state()->in_initial_mark_gc()) {
1037 assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1038 return InitialMarkGC;
1039 } else if (collector_state()->in_young_gc_before_mixed()) {
1040 assert(!collector_state()->in_initial_mark_gc(), "must be");
1041 return LastYoungGC;
1042 } else if (collector_state()->in_mixed_phase()) {
1043 assert(!collector_state()->in_initial_mark_gc(), "must be");
1044 assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1045 return MixedGC;
1046 } else {
1047 assert(!collector_state()->in_initial_mark_gc(), "must be");
1048 assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1049 return YoungOnlyGC;
1050 }
1051 }
1052
record_pause(PauseKind kind,double start,double end)1053 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1054 // Manage the MMU tracker. For some reason it ignores Full GCs.
1055 if (kind != FullGC) {
1056 _mmu_tracker->add_pause(start, end);
1057 }
1058 // Manage the mutator time tracking from initial mark to first mixed gc.
1059 switch (kind) {
1060 case FullGC:
1061 abort_time_to_mixed_tracking();
1062 break;
1063 case Cleanup:
1064 case Remark:
1065 case YoungOnlyGC:
1066 case LastYoungGC:
1067 _initial_mark_to_mixed.add_pause(end - start);
1068 break;
1069 case InitialMarkGC:
1070 _initial_mark_to_mixed.record_initial_mark_end(end);
1071 break;
1072 case MixedGC:
1073 _initial_mark_to_mixed.record_mixed_gc_start(start);
1074 break;
1075 default:
1076 ShouldNotReachHere();
1077 }
1078 }
1079
abort_time_to_mixed_tracking()1080 void G1Policy::abort_time_to_mixed_tracking() {
1081 _initial_mark_to_mixed.reset();
1082 }
1083
next_gc_should_be_mixed(const char * true_action_str,const char * false_action_str) const1084 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1085 const char* false_action_str) const {
1086 if (cset_chooser()->is_empty()) {
1087 log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1088 return false;
1089 }
1090
1091 // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1092 size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1093 double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1094 double threshold = (double) G1HeapWastePercent;
1095 if (reclaimable_percent <= threshold) {
1096 log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1097 false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1098 return false;
1099 }
1100 log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1101 true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1102 return true;
1103 }
1104
calc_min_old_cset_length() const1105 uint G1Policy::calc_min_old_cset_length() const {
1106 // The min old CSet region bound is based on the maximum desired
1107 // number of mixed GCs after a cycle. I.e., even if some old regions
1108 // look expensive, we should add them to the CSet anyway to make
1109 // sure we go through the available old regions in no more than the
1110 // maximum desired number of mixed GCs.
1111 //
1112 // The calculation is based on the number of marked regions we added
1113 // to the CSet chooser in the first place, not how many remain, so
1114 // that the result is the same during all mixed GCs that follow a cycle.
1115
1116 const size_t region_num = (size_t) cset_chooser()->length();
1117 const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1118 size_t result = region_num / gc_num;
1119 // emulate ceiling
1120 if (result * gc_num < region_num) {
1121 result += 1;
1122 }
1123 return (uint) result;
1124 }
1125
calc_max_old_cset_length() const1126 uint G1Policy::calc_max_old_cset_length() const {
1127 // The max old CSet region bound is based on the threshold expressed
1128 // as a percentage of the heap size. I.e., it should bound the
1129 // number of old regions added to the CSet irrespective of how many
1130 // of them are available.
1131
1132 const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1133 const size_t region_num = g1h->num_regions();
1134 const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1135 size_t result = region_num * perc / 100;
1136 // emulate ceiling
1137 if (100 * result < region_num * perc) {
1138 result += 1;
1139 }
1140 return (uint) result;
1141 }
1142
finalize_collection_set(double target_pause_time_ms,G1SurvivorRegions * survivor)1143 void G1Policy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
1144 double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
1145 _collection_set->finalize_old_part(time_remaining_ms);
1146 }
1147
transfer_survivors_to_cset(const G1SurvivorRegions * survivors)1148 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1149
1150 // Add survivor regions to SurvRateGroup.
1151 note_start_adding_survivor_regions();
1152 finished_recalculating_age_indexes(true /* is_survivors */);
1153
1154 HeapRegion* last = NULL;
1155 for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1156 it != survivors->regions()->end();
1157 ++it) {
1158 HeapRegion* curr = *it;
1159 set_region_survivor(curr);
1160
1161 // The region is a non-empty survivor so let's add it to
1162 // the incremental collection set for the next evacuation
1163 // pause.
1164 _collection_set->add_survivor_regions(curr);
1165
1166 last = curr;
1167 }
1168 note_stop_adding_survivor_regions();
1169
1170 // Don't clear the survivor list handles until the start of
1171 // the next evacuation pause - we need it in order to re-tag
1172 // the survivor regions from this evacuation pause as 'young'
1173 // at the start of the next.
1174
1175 finished_recalculating_age_indexes(false /* is_survivors */);
1176 }
1177