1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
27 
28 #include "gc/shared/gcCause.hpp"
29 #include "gc/shared/gcWhen.hpp"
30 #include "memory/allocation.hpp"
31 #include "runtime/handles.hpp"
32 #include "runtime/perfData.hpp"
33 #include "runtime/safepoint.hpp"
34 #include "utilities/debug.hpp"
35 #include "utilities/events.hpp"
36 #include "utilities/formatBuffer.hpp"
37 #include "utilities/growableArray.hpp"
38 #include "utilities/macros.hpp"
39 
40 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
41 // is an abstract class: there may be many different kinds of heaps.  This
42 // class defines the functions that a heap must implement, and contains
43 // infrastructure common to all heaps.
44 
45 class AdaptiveSizePolicy;
46 class BarrierSet;
47 class CollectorPolicy;
48 class GCHeapSummary;
49 class GCTimer;
50 class GCTracer;
51 class GCMemoryManager;
52 class MemoryPool;
53 class MetaspaceSummary;
54 class SoftRefPolicy;
55 class Thread;
56 class ThreadClosure;
57 class VirtualSpaceSummary;
58 class WorkGang;
59 class nmethod;
60 
61 class GCMessage : public FormatBuffer<1024> {
62  public:
63   bool is_before;
64 
65  public:
GCMessage()66   GCMessage() {}
67 };
68 
69 class CollectedHeap;
70 
71 class GCHeapLog : public EventLogBase<GCMessage> {
72  private:
73   void log_heap(CollectedHeap* heap, bool before);
74 
75  public:
GCHeapLog()76   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
77 
log_heap_before(CollectedHeap * heap)78   void log_heap_before(CollectedHeap* heap) {
79     log_heap(heap, true);
80   }
log_heap_after(CollectedHeap * heap)81   void log_heap_after(CollectedHeap* heap) {
82     log_heap(heap, false);
83   }
84 };
85 
86 //
87 // CollectedHeap
88 //   GenCollectedHeap
89 //     SerialHeap
90 //     CMSHeap
91 //   G1CollectedHeap
92 //   ParallelScavengeHeap
93 //   ShenandoahHeap
94 //   ZCollectedHeap
95 //
96 class CollectedHeap : public CHeapObj<mtInternal> {
97   friend class VMStructs;
98   friend class JVMCIVMStructs;
99   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
100   friend class MemAllocator;
101 
102  private:
103 #ifdef ASSERT
104   static int       _fire_out_of_memory_count;
105 #endif
106 
107   GCHeapLog* _gc_heap_log;
108 
109   MemRegion _reserved;
110 
111  protected:
112   bool _is_gc_active;
113 
114   // Used for filler objects (static, but initialized in ctor).
115   static size_t _filler_array_max_size;
116 
117   unsigned int _total_collections;          // ... started
118   unsigned int _total_full_collections;     // ... started
119   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
120   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
121 
122   // Reason for current garbage collection.  Should be set to
123   // a value reflecting no collection between collections.
124   GCCause::Cause _gc_cause;
125   GCCause::Cause _gc_lastcause;
126   PerfStringVariable* _perf_gc_cause;
127   PerfStringVariable* _perf_gc_lastcause;
128 
129   // Constructor
130   CollectedHeap();
131 
132   // Create a new tlab. All TLAB allocations must go through this.
133   // To allow more flexible TLAB allocations min_size specifies
134   // the minimum size needed, while requested_size is the requested
135   // size based on ergonomics. The actually allocated size will be
136   // returned in actual_size.
137   virtual HeapWord* allocate_new_tlab(size_t min_size,
138                                       size_t requested_size,
139                                       size_t* actual_size);
140 
141   // Accumulate statistics on all tlabs.
142   virtual void accumulate_statistics_all_tlabs();
143 
144   // Reinitialize tlabs before resuming mutators.
145   virtual void resize_all_tlabs();
146 
147   // Raw memory allocation facilities
148   // The obj and array allocate methods are covers for these methods.
149   // mem_allocate() should never be
150   // called to allocate TLABs, only individual objects.
151   virtual HeapWord* mem_allocate(size_t size,
152                                  bool* gc_overhead_limit_was_exceeded) = 0;
153 
154   // Filler object utilities.
155   static inline size_t filler_array_hdr_size();
156   static inline size_t filler_array_min_size();
157 
158   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
159   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
160 
161   // Fill with a single array; caller must ensure filler_array_min_size() <=
162   // words <= filler_array_max_size().
163   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
164 
165   // Fill with a single object (either an int array or a java.lang.Object).
166   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
167 
168   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
169 
170   // Verification functions
171   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
172     PRODUCT_RETURN;
173   debug_only(static void check_for_valid_allocation_state();)
174 
175  public:
176   enum Name {
177     None,
178     Serial,
179     Parallel,
180     CMS,
181     G1,
182     Epsilon,
183     Z
184 #if INCLUDE_SHENANDOAHGC
185     ,Shenandoah
186 #endif
187   };
188 
filler_array_max_size()189   static inline size_t filler_array_max_size() {
190     return _filler_array_max_size;
191   }
192 
193   virtual Name kind() const = 0;
194 
195   virtual const char* name() const = 0;
196 
197   /**
198    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
199    * and JNI_OK on success.
200    */
201   virtual jint initialize() = 0;
202 
203   // In many heaps, there will be a need to perform some initialization activities
204   // after the Universe is fully formed, but before general heap allocation is allowed.
205   // This is the correct place to place such initialization methods.
206   virtual void post_initialize();
207 
208   // Stop any onging concurrent work and prepare for exit.
stop()209   virtual void stop() {}
210 
211   // Stop and resume concurrent GC threads interfering with safepoint operations
safepoint_synchronize_begin()212   virtual void safepoint_synchronize_begin() {}
safepoint_synchronize_end()213   virtual void safepoint_synchronize_end() {}
214 
215   void initialize_reserved_region(HeapWord *start, HeapWord *end);
reserved_region() const216   MemRegion reserved_region() const { return _reserved; }
base() const217   address base() const { return (address)reserved_region().start(); }
218 
219   virtual size_t capacity() const = 0;
220   virtual size_t used() const = 0;
221 
222   // Return "true" if the part of the heap that allocates Java
223   // objects has reached the maximal committed limit that it can
224   // reach, without a garbage collection.
225   virtual bool is_maximal_no_gc() const = 0;
226 
227   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
228   // memory that the vm could make available for storing 'normal' java objects.
229   // This is based on the reserved address space, but should not include space
230   // that the vm uses internally for bookkeeping or temporary storage
231   // (e.g., in the case of the young gen, one of the survivor
232   // spaces).
233   virtual size_t max_capacity() const = 0;
234 
235   // Returns "TRUE" if "p" points into the reserved area of the heap.
is_in_reserved(const void * p) const236   bool is_in_reserved(const void* p) const {
237     return _reserved.contains(p);
238   }
239 
is_in_reserved_or_null(const void * p) const240   bool is_in_reserved_or_null(const void* p) const {
241     return p == NULL || is_in_reserved(p);
242   }
243 
244   // Returns "TRUE" iff "p" points into the committed areas of the heap.
245   // This method can be expensive so avoid using it in performance critical
246   // code.
247   virtual bool is_in(const void* p) const = 0;
248 
DEBUG_ONLY(bool is_in_or_null (const void * p)const{ return p == NULL || is_in(p); })249   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
250 
251   // Let's define some terms: a "closed" subset of a heap is one that
252   //
253   // 1) contains all currently-allocated objects, and
254   //
255   // 2) is closed under reference: no object in the closed subset
256   //    references one outside the closed subset.
257   //
258   // Membership in a heap's closed subset is useful for assertions.
259   // Clearly, the entire heap is a closed subset, so the default
260   // implementation is to use "is_in_reserved".  But this may not be too
261   // liberal to perform useful checking.  Also, the "is_in" predicate
262   // defines a closed subset, but may be too expensive, since "is_in"
263   // verifies that its argument points to an object head.  The
264   // "closed_subset" method allows a heap to define an intermediate
265   // predicate, allowing more precise checking than "is_in_reserved" at
266   // lower cost than "is_in."
267 
268   // One important case is a heap composed of disjoint contiguous spaces,
269   // such as the Garbage-First collector.  Such heaps have a convenient
270   // closed subset consisting of the allocated portions of those
271   // contiguous spaces.
272 
273   // Return "TRUE" iff the given pointer points into the heap's defined
274   // closed subset (which defaults to the entire heap).
275   virtual bool is_in_closed_subset(const void* p) const {
276     return is_in_reserved(p);
277   }
278 
is_in_closed_subset_or_null(const void * p) const279   bool is_in_closed_subset_or_null(const void* p) const {
280     return p == NULL || is_in_closed_subset(p);
281   }
282 
set_gc_cause(GCCause::Cause v)283   void set_gc_cause(GCCause::Cause v) {
284      if (UsePerfData) {
285        _gc_lastcause = _gc_cause;
286        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
287        _perf_gc_cause->set_value(GCCause::to_string(v));
288      }
289     _gc_cause = v;
290   }
gc_cause()291   GCCause::Cause gc_cause() { return _gc_cause; }
292 
293   virtual oop obj_allocate(Klass* klass, int size, TRAPS);
294   virtual oop array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS);
295   virtual oop class_allocate(Klass* klass, int size, TRAPS);
296 
297   // Utilities for turning raw memory into filler objects.
298   //
299   // min_fill_size() is the smallest region that can be filled.
300   // fill_with_objects() can fill arbitrary-sized regions of the heap using
301   // multiple objects.  fill_with_object() is for regions known to be smaller
302   // than the largest array of integers; it uses a single object to fill the
303   // region and has slightly less overhead.
min_fill_size()304   static size_t min_fill_size() {
305     return size_t(align_object_size(oopDesc::header_size()));
306   }
307 
308   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
309 
310   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
fill_with_object(MemRegion region,bool zap=true)311   static void fill_with_object(MemRegion region, bool zap = true) {
312     fill_with_object(region.start(), region.word_size(), zap);
313   }
fill_with_object(HeapWord * start,HeapWord * end,bool zap=true)314   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
315     fill_with_object(start, pointer_delta(end, start), zap);
316   }
317 
318   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
319 
320   // Return the address "addr" aligned by "alignment_in_bytes" if such
321   // an address is below "end".  Return NULL otherwise.
322   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
323                                                    HeapWord* end,
324                                                    unsigned short alignment_in_bytes);
325 
326   // Some heaps may offer a contiguous region for shared non-blocking
327   // allocation, via inlined code (by exporting the address of the top and
328   // end fields defining the extent of the contiguous allocation region.)
329 
330   // This function returns "true" iff the heap supports this kind of
331   // allocation.  (Default is "no".)
supports_inline_contig_alloc() const332   virtual bool supports_inline_contig_alloc() const {
333     return false;
334   }
335   // These functions return the addresses of the fields that define the
336   // boundaries of the contiguous allocation area.  (These fields should be
337   // physically near to one another.)
top_addr() const338   virtual HeapWord* volatile* top_addr() const {
339     guarantee(false, "inline contiguous allocation not supported");
340     return NULL;
341   }
end_addr() const342   virtual HeapWord** end_addr() const {
343     guarantee(false, "inline contiguous allocation not supported");
344     return NULL;
345   }
346 
347   // Some heaps may be in an unparseable state at certain times between
348   // collections. This may be necessary for efficient implementation of
349   // certain allocation-related activities. Calling this function before
350   // attempting to parse a heap ensures that the heap is in a parsable
351   // state (provided other concurrent activity does not introduce
352   // unparsability). It is normally expected, therefore, that this
353   // method is invoked with the world stopped.
354   // NOTE: if you override this method, make sure you call
355   // super::ensure_parsability so that the non-generational
356   // part of the work gets done. See implementation of
357   // CollectedHeap::ensure_parsability and, for instance,
358   // that of GenCollectedHeap::ensure_parsability().
359   // The argument "retire_tlabs" controls whether existing TLABs
360   // are merely filled or also retired, thus preventing further
361   // allocation from them and necessitating allocation of new TLABs.
362   virtual void ensure_parsability(bool retire_tlabs);
363 
364   // Section on thread-local allocation buffers (TLABs)
365   // If the heap supports thread-local allocation buffers, it should override
366   // the following methods:
367   // Returns "true" iff the heap supports thread-local allocation buffers.
368   // The default is "no".
369   virtual bool supports_tlab_allocation() const = 0;
370 
371   // The amount of space available for thread-local allocation buffers.
372   virtual size_t tlab_capacity(Thread *thr) const = 0;
373 
374   // The amount of used space for thread-local allocation buffers for the given thread.
375   virtual size_t tlab_used(Thread *thr) const = 0;
376 
377   virtual size_t max_tlab_size() const;
378 
379   // An estimate of the maximum allocation that could be performed
380   // for thread-local allocation buffers without triggering any
381   // collection or expansion activity.
unsafe_max_tlab_alloc(Thread * thr) const382   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
383     guarantee(false, "thread-local allocation buffers not supported");
384     return 0;
385   }
386 
387   // Perform a collection of the heap; intended for use in implementing
388   // "System.gc".  This probably implies as full a collection as the
389   // "CollectedHeap" supports.
390   virtual void collect(GCCause::Cause cause) = 0;
391 
392   // Perform a full collection
393   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
394 
395   // This interface assumes that it's being called by the
396   // vm thread. It collects the heap assuming that the
397   // heap lock is already held and that we are executing in
398   // the context of the vm thread.
399   virtual void collect_as_vm_thread(GCCause::Cause cause);
400 
401   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
402                                                        size_t size,
403                                                        Metaspace::MetadataType mdtype);
404 
405   // Returns "true" iff there is a stop-world GC in progress.  (I assume
406   // that it should answer "false" for the concurrent part of a concurrent
407   // collector -- dld).
is_gc_active() const408   bool is_gc_active() const { return _is_gc_active; }
409 
410   // Total number of GC collections (started)
total_collections() const411   unsigned int total_collections() const { return _total_collections; }
total_full_collections() const412   unsigned int total_full_collections() const { return _total_full_collections;}
413 
414   // Increment total number of GC collections (started)
415   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
increment_total_collections(bool full=false)416   void increment_total_collections(bool full = false) {
417     _total_collections++;
418     if (full) {
419       increment_total_full_collections();
420     }
421   }
422 
increment_total_full_collections()423   void increment_total_full_collections() { _total_full_collections++; }
424 
425   // Return the CollectorPolicy for the heap
426   virtual CollectorPolicy* collector_policy() const = 0;
427 
428   // Return the SoftRefPolicy for the heap;
429   virtual SoftRefPolicy* soft_ref_policy() = 0;
430 
431   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
432   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
433 
434   // Iterate over all objects, calling "cl.do_object" on each.
435   virtual void object_iterate(ObjectClosure* cl) = 0;
436 
437   // Similar to object_iterate() except iterates only
438   // over live objects.
439   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
440 
441   // NOTE! There is no requirement that a collector implement these
442   // functions.
443   //
444   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
445   // each address in the (reserved) heap is a member of exactly
446   // one block.  The defining characteristic of a block is that it is
447   // possible to find its size, and thus to progress forward to the next
448   // block.  (Blocks may be of different sizes.)  Thus, blocks may
449   // represent Java objects, or they might be free blocks in a
450   // free-list-based heap (or subheap), as long as the two kinds are
451   // distinguishable and the size of each is determinable.
452 
453   // Returns the address of the start of the "block" that contains the
454   // address "addr".  We say "blocks" instead of "object" since some heaps
455   // may not pack objects densely; a chunk may either be an object or a
456   // non-object.
457   virtual HeapWord* block_start(const void* addr) const = 0;
458 
459   // Requires "addr" to be the start of a chunk, and returns its size.
460   // "addr + size" is required to be the start of a new chunk, or the end
461   // of the active area of the heap.
462   virtual size_t block_size(const HeapWord* addr) const = 0;
463 
464   // Requires "addr" to be the start of a block, and returns "TRUE" iff
465   // the block is an object.
466   virtual bool block_is_obj(const HeapWord* addr) const = 0;
467 
468   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
keep_alive(oop obj)469   virtual void keep_alive(oop obj) {}
470 
471   // Returns the longest time (in ms) that has elapsed since the last
472   // time that any part of the heap was examined by a garbage collection.
473   virtual jlong millis_since_last_gc() = 0;
474 
475   // Perform any cleanup actions necessary before allowing a verification.
476   virtual void prepare_for_verify() = 0;
477 
478   // Generate any dumps preceding or following a full gc
479  private:
480   void full_gc_dump(GCTimer* timer, bool before);
481 
482   virtual void initialize_serviceability() = 0;
483 
484  public:
485   void pre_full_gc_dump(GCTimer* timer);
486   void post_full_gc_dump(GCTimer* timer);
487 
488   virtual VirtualSpaceSummary create_heap_space_summary();
489   GCHeapSummary create_heap_summary();
490 
491   MetaspaceSummary create_metaspace_summary();
492 
493   // Print heap information on the given outputStream.
494   virtual void print_on(outputStream* st) const = 0;
495   // The default behavior is to call print_on() on tty.
print() const496   virtual void print() const {
497     print_on(tty);
498   }
499   // Print more detailed heap information on the given
500   // outputStream. The default behavior is to call print_on(). It is
501   // up to each subclass to override it and add any additional output
502   // it needs.
print_extended_on(outputStream * st) const503   virtual void print_extended_on(outputStream* st) const {
504     print_on(st);
505   }
506 
507   virtual void print_on_error(outputStream* st) const;
508 
509   // Print all GC threads (other than the VM thread)
510   // used by this heap.
511   virtual void print_gc_threads_on(outputStream* st) const = 0;
512   // The default behavior is to call print_gc_threads_on() on tty.
print_gc_threads()513   void print_gc_threads() {
514     print_gc_threads_on(tty);
515   }
516   // Iterator for all GC threads (other than VM thread)
517   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
518 
519   // Print any relevant tracing info that flags imply.
520   // Default implementation does nothing.
521   virtual void print_tracing_info() const = 0;
522 
523   void print_heap_before_gc();
524   void print_heap_after_gc();
525 
526   // An object is scavengable if its location may move during a scavenge.
527   // (A scavenge is a GC which is not a full GC.)
528   virtual bool is_scavengable(oop obj) = 0;
529   // Registering and unregistering an nmethod (compiled code) with the heap.
530   // Override with specific mechanism for each specialized heap type.
register_nmethod(nmethod * nm)531   virtual void register_nmethod(nmethod* nm) {}
unregister_nmethod(nmethod * nm)532   virtual void unregister_nmethod(nmethod* nm) {}
verify_nmethod(nmethod * nmethod)533   virtual void verify_nmethod(nmethod* nmethod) {}
534 
535   void trace_heap_before_gc(const GCTracer* gc_tracer);
536   void trace_heap_after_gc(const GCTracer* gc_tracer);
537 
538   // Heap verification
539   virtual void verify(VerifyOption option) = 0;
540 
541   // Return true if concurrent phase control (via
542   // request_concurrent_phase_control) is supported by this collector.
543   // The default implementation returns false.
544   virtual bool supports_concurrent_phase_control() const;
545 
546   // Return a NULL terminated array of concurrent phase names provided
547   // by this collector.  Supports Whitebox testing.  These are the
548   // names recognized by request_concurrent_phase(). The default
549   // implementation returns an array of one NULL element.
550   virtual const char* const* concurrent_phases() const;
551 
552   // Request the collector enter the indicated concurrent phase, and
553   // wait until it does so.  Supports WhiteBox testing.  Only one
554   // request may be active at a time.  Phases are designated by name;
555   // the set of names and their meaning is GC-specific.  Once the
556   // requested phase has been reached, the collector will attempt to
557   // avoid transitioning to a new phase until a new request is made.
558   // [Note: A collector might not be able to remain in a given phase.
559   // For example, a full collection might cancel an in-progress
560   // concurrent collection.]
561   //
562   // Returns true when the phase is reached.  Returns false for an
563   // unknown phase.  The default implementation returns false.
564   virtual bool request_concurrent_phase(const char* phase);
565 
566   // Provides a thread pool to SafepointSynchronize to use
567   // for parallel safepoint cleanup.
568   // GCs that use a GC worker thread pool may want to share
569   // it for use during safepoint cleanup. This is only possible
570   // if the GC can pause and resume concurrent work (e.g. G1
571   // concurrent marking) for an intermittent non-GC safepoint.
572   // If this method returns NULL, SafepointSynchronize will
573   // perform cleanup tasks serially in the VMThread.
get_safepoint_workers()574   virtual WorkGang* get_safepoint_workers() { return NULL; }
575 
576   // Support for object pinning. This is used by JNI Get*Critical()
577   // and Release*Critical() family of functions. If supported, the GC
578   // must guarantee that pinned objects never move.
579   virtual bool supports_object_pinning() const;
580   virtual oop pin_object(JavaThread* thread, oop obj);
581   virtual void unpin_object(JavaThread* thread, oop obj);
582 
583   // Deduplicate the string, iff the GC supports string deduplication.
584   virtual void deduplicate_string(oop str);
585 
586   virtual bool is_oop(oop object) const;
587 
588   // Non product verification and debugging.
589 #ifndef PRODUCT
590   // Support for PromotionFailureALot.  Return true if it's time to cause a
591   // promotion failure.  The no-argument version uses
592   // this->_promotion_failure_alot_count as the counter.
593   bool promotion_should_fail(volatile size_t* count);
594   bool promotion_should_fail();
595 
596   // Reset the PromotionFailureALot counters.  Should be called at the end of a
597   // GC in which promotion failure occurred.
598   void reset_promotion_should_fail(volatile size_t* count);
599   void reset_promotion_should_fail();
600 #endif  // #ifndef PRODUCT
601 
602 #ifdef ASSERT
fired_fake_oom()603   static int fired_fake_oom() {
604     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
605   }
606 #endif
607 };
608 
609 // Class to set and reset the GC cause for a CollectedHeap.
610 
611 class GCCauseSetter : StackObj {
612   CollectedHeap* _heap;
613   GCCause::Cause _previous_cause;
614  public:
GCCauseSetter(CollectedHeap * heap,GCCause::Cause cause)615   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
616     _heap = heap;
617     _previous_cause = _heap->gc_cause();
618     _heap->set_gc_cause(cause);
619   }
620 
~GCCauseSetter()621   ~GCCauseSetter() {
622     _heap->set_gc_cause(_previous_cause);
623   }
624 };
625 
626 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
627