1 /*
2  * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/gcUtil.hpp"
27 
28 // Catch-all file for utility classes
29 
compute_adaptive_average(float new_sample,float average)30 float AdaptiveWeightedAverage::compute_adaptive_average(float new_sample,
31                                                         float average) {
32   // We smooth the samples by not using weight() directly until we've
33   // had enough data to make it meaningful. We'd like the first weight
34   // used to be 1, the second to be 1/2, etc until we have
35   // OLD_THRESHOLD/weight samples.
36   unsigned count_weight = 0;
37 
38   // Avoid division by zero if the counter wraps (7158457)
39   if (!is_old()) {
40     count_weight = OLD_THRESHOLD/count();
41   }
42 
43   unsigned adaptive_weight = (MAX2(weight(), count_weight));
44 
45   float new_avg = exp_avg(average, new_sample, adaptive_weight);
46 
47   return new_avg;
48 }
49 
sample(float new_sample)50 void AdaptiveWeightedAverage::sample(float new_sample) {
51   increment_count();
52 
53   // Compute the new weighted average
54   float new_avg = compute_adaptive_average(new_sample, average());
55   set_average(new_avg);
56   _last_sample = new_sample;
57 }
58 
print() const59 void AdaptiveWeightedAverage::print() const {
60   print_on(tty);
61 }
62 
print_on(outputStream * st) const63 void AdaptiveWeightedAverage::print_on(outputStream* st) const {
64   guarantee(false, "NYI");
65 }
66 
print() const67 void AdaptivePaddedAverage::print() const {
68   print_on(tty);
69 }
70 
print_on(outputStream * st) const71 void AdaptivePaddedAverage::print_on(outputStream* st) const {
72   guarantee(false, "NYI");
73 }
74 
print() const75 void AdaptivePaddedNoZeroDevAverage::print() const {
76   print_on(tty);
77 }
78 
print_on(outputStream * st) const79 void AdaptivePaddedNoZeroDevAverage::print_on(outputStream* st) const {
80   guarantee(false, "NYI");
81 }
82 
sample(float new_sample)83 void AdaptivePaddedAverage::sample(float new_sample) {
84   // Compute new adaptive weighted average based on new sample.
85   AdaptiveWeightedAverage::sample(new_sample);
86 
87   // Now update the deviation and the padded average.
88   float new_avg = average();
89   float new_dev = compute_adaptive_average(fabsd(new_sample - new_avg),
90                                            deviation());
91   set_deviation(new_dev);
92   set_padded_average(new_avg + padding() * new_dev);
93   _last_sample = new_sample;
94 }
95 
sample(float new_sample)96 void AdaptivePaddedNoZeroDevAverage::sample(float new_sample) {
97   // Compute our parent classes sample information
98   AdaptiveWeightedAverage::sample(new_sample);
99 
100   float new_avg = average();
101   if (new_sample != 0) {
102     // We only create a new deviation if the sample is non-zero
103     float new_dev = compute_adaptive_average(fabsd(new_sample - new_avg),
104                                              deviation());
105 
106     set_deviation(new_dev);
107   }
108   set_padded_average(new_avg + padding() * deviation());
109   _last_sample = new_sample;
110 }
111 
LinearLeastSquareFit(unsigned weight)112 LinearLeastSquareFit::LinearLeastSquareFit(unsigned weight) :
113   _sum_x(0), _sum_x_squared(0), _sum_y(0), _sum_xy(0),
114   _intercept(0), _slope(0), _mean_x(weight), _mean_y(weight) {}
115 
update(double x,double y)116 void LinearLeastSquareFit::update(double x, double y) {
117   _sum_x = _sum_x + x;
118   _sum_x_squared = _sum_x_squared + x * x;
119   _sum_y = _sum_y + y;
120   _sum_xy = _sum_xy + x * y;
121   _mean_x.sample(x);
122   _mean_y.sample(y);
123   assert(_mean_x.count() == _mean_y.count(), "Incorrect count");
124   if ( _mean_x.count() > 1 ) {
125     double slope_denominator;
126     slope_denominator = (_mean_x.count() * _sum_x_squared - _sum_x * _sum_x);
127     // Some tolerance should be injected here.  A denominator that is
128     // nearly 0 should be avoided.
129 
130     if (slope_denominator != 0.0) {
131       double slope_numerator;
132       slope_numerator = (_mean_x.count() * _sum_xy - _sum_x * _sum_y);
133       _slope = slope_numerator / slope_denominator;
134 
135       // The _mean_y and _mean_x are decaying averages and can
136       // be used to discount earlier data.  If they are used,
137       // first consider whether all the quantities should be
138       // kept as decaying averages.
139       // _intercept = _mean_y.average() - _slope * _mean_x.average();
140       _intercept = (_sum_y - _slope * _sum_x) / ((double) _mean_x.count());
141     }
142   }
143 }
144 
y(double x)145 double LinearLeastSquareFit::y(double x) {
146   double new_y;
147 
148   if ( _mean_x.count() > 1 ) {
149     new_y = (_intercept + _slope * x);
150     return new_y;
151   } else {
152     return _mean_y.average();
153   }
154 }
155 
156 // Both decrement_will_decrease() and increment_will_decrease() return
157 // true for a slope of 0.  That is because a change is necessary before
158 // a slope can be calculated and a 0 slope will, in general, indicate
159 // that no calculation of the slope has yet been done.  Returning true
160 // for a slope equal to 0 reflects the intuitive expectation of the
161 // dependence on the slope.  Don't use the complement of these functions
162 // since that intuitive expectation is not built into the complement.
decrement_will_decrease()163 bool LinearLeastSquareFit::decrement_will_decrease() {
164   return (_slope >= 0.00);
165 }
166 
increment_will_decrease()167 bool LinearLeastSquareFit::increment_will_decrease() {
168   return (_slope <= 0.00);
169 }
170