1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "jvm.h"
27 #include "aot/aotLoader.hpp"
28 #include "code/compiledMethod.inline.hpp"
29 #include "classfile/stringTable.hpp"
30 #include "classfile/systemDictionary.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/codeCache.hpp"
33 #include "code/compiledIC.hpp"
34 #include "code/scopeDesc.hpp"
35 #include "code/vtableStubs.hpp"
36 #include "compiler/abstractCompiler.hpp"
37 #include "compiler/compileBroker.hpp"
38 #include "compiler/disassembler.hpp"
39 #include "gc/shared/barrierSet.hpp"
40 #include "gc/shared/gcLocker.inline.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "interpreter/interpreterRuntime.hpp"
43 #include "jfr/jfrEvents.hpp"
44 #include "logging/log.hpp"
45 #include "memory/metaspaceShared.hpp"
46 #include "memory/resourceArea.hpp"
47 #include "memory/universe.hpp"
48 #include "oops/klass.hpp"
49 #include "oops/method.inline.hpp"
50 #include "oops/objArrayKlass.hpp"
51 #include "oops/oop.inline.hpp"
52 #include "prims/forte.hpp"
53 #include "prims/jvmtiExport.hpp"
54 #include "prims/methodHandles.hpp"
55 #include "prims/nativeLookup.hpp"
56 #include "runtime/arguments.hpp"
57 #include "runtime/atomic.hpp"
58 #include "runtime/biasedLocking.hpp"
59 #include "runtime/compilationPolicy.hpp"
60 #include "runtime/frame.inline.hpp"
61 #include "runtime/handles.inline.hpp"
62 #include "runtime/init.hpp"
63 #include "runtime/interfaceSupport.inline.hpp"
64 #include "runtime/java.hpp"
65 #include "runtime/javaCalls.hpp"
66 #include "runtime/sharedRuntime.hpp"
67 #include "runtime/stubRoutines.hpp"
68 #include "runtime/vframe.inline.hpp"
69 #include "runtime/vframeArray.hpp"
70 #include "utilities/copy.hpp"
71 #include "utilities/dtrace.hpp"
72 #include "utilities/events.hpp"
73 #include "utilities/hashtable.inline.hpp"
74 #include "utilities/macros.hpp"
75 #include "utilities/xmlstream.hpp"
76 #ifdef COMPILER1
77 #include "c1/c1_Runtime1.hpp"
78 #endif
79 
80 // Shared stub locations
81 RuntimeStub*        SharedRuntime::_wrong_method_blob;
82 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
83 RuntimeStub*        SharedRuntime::_ic_miss_blob;
84 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
85 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
86 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
87 address             SharedRuntime::_resolve_static_call_entry;
88 
89 DeoptimizationBlob* SharedRuntime::_deopt_blob;
90 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
91 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
92 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
93 
94 #ifdef COMPILER2
95 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
96 #endif // COMPILER2
97 
98 
99 //----------------------------generate_stubs-----------------------------------
generate_stubs()100 void SharedRuntime::generate_stubs() {
101   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
102   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
103   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
104   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
105   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
106   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
107   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
108 
109 #if COMPILER2_OR_JVMCI
110   // Vectors are generated only by C2 and JVMCI.
111   bool support_wide = is_wide_vector(MaxVectorSize);
112   if (support_wide) {
113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
114   }
115 #endif // COMPILER2_OR_JVMCI
116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
118 
119   generate_deopt_blob();
120 
121 #ifdef COMPILER2
122   generate_uncommon_trap_blob();
123 #endif // COMPILER2
124 }
125 
126 #include <math.h>
127 
128 // Implementation of SharedRuntime
129 
130 #ifndef PRODUCT
131 // For statistics
132 int SharedRuntime::_ic_miss_ctr = 0;
133 int SharedRuntime::_wrong_method_ctr = 0;
134 int SharedRuntime::_resolve_static_ctr = 0;
135 int SharedRuntime::_resolve_virtual_ctr = 0;
136 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
137 int SharedRuntime::_implicit_null_throws = 0;
138 int SharedRuntime::_implicit_div0_throws = 0;
139 int SharedRuntime::_throw_null_ctr = 0;
140 
141 int64_t SharedRuntime::_nof_normal_calls = 0;
142 int64_t SharedRuntime::_nof_optimized_calls = 0;
143 int64_t SharedRuntime::_nof_inlined_calls = 0;
144 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
145 int64_t SharedRuntime::_nof_static_calls = 0;
146 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
147 int64_t SharedRuntime::_nof_interface_calls = 0;
148 int64_t SharedRuntime::_nof_optimized_interface_calls = 0;
149 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
150 int64_t SharedRuntime::_nof_megamorphic_interface_calls = 0;
151 int     SharedRuntime::_nof_removable_exceptions = 0;
152 
153 int SharedRuntime::_new_instance_ctr=0;
154 int SharedRuntime::_new_array_ctr=0;
155 int SharedRuntime::_multi1_ctr=0;
156 int SharedRuntime::_multi2_ctr=0;
157 int SharedRuntime::_multi3_ctr=0;
158 int SharedRuntime::_multi4_ctr=0;
159 int SharedRuntime::_multi5_ctr=0;
160 int SharedRuntime::_mon_enter_stub_ctr=0;
161 int SharedRuntime::_mon_exit_stub_ctr=0;
162 int SharedRuntime::_mon_enter_ctr=0;
163 int SharedRuntime::_mon_exit_ctr=0;
164 int SharedRuntime::_partial_subtype_ctr=0;
165 int SharedRuntime::_jbyte_array_copy_ctr=0;
166 int SharedRuntime::_jshort_array_copy_ctr=0;
167 int SharedRuntime::_jint_array_copy_ctr=0;
168 int SharedRuntime::_jlong_array_copy_ctr=0;
169 int SharedRuntime::_oop_array_copy_ctr=0;
170 int SharedRuntime::_checkcast_array_copy_ctr=0;
171 int SharedRuntime::_unsafe_array_copy_ctr=0;
172 int SharedRuntime::_generic_array_copy_ctr=0;
173 int SharedRuntime::_slow_array_copy_ctr=0;
174 int SharedRuntime::_find_handler_ctr=0;
175 int SharedRuntime::_rethrow_ctr=0;
176 
177 int     SharedRuntime::_ICmiss_index                    = 0;
178 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
179 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
180 
181 
trace_ic_miss(address at)182 void SharedRuntime::trace_ic_miss(address at) {
183   for (int i = 0; i < _ICmiss_index; i++) {
184     if (_ICmiss_at[i] == at) {
185       _ICmiss_count[i]++;
186       return;
187     }
188   }
189   int index = _ICmiss_index++;
190   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
191   _ICmiss_at[index] = at;
192   _ICmiss_count[index] = 1;
193 }
194 
print_ic_miss_histogram()195 void SharedRuntime::print_ic_miss_histogram() {
196   if (ICMissHistogram) {
197     tty->print_cr("IC Miss Histogram:");
198     int tot_misses = 0;
199     for (int i = 0; i < _ICmiss_index; i++) {
200       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
201       tot_misses += _ICmiss_count[i];
202     }
203     tty->print_cr("Total IC misses: %7d", tot_misses);
204   }
205 }
206 #endif // PRODUCT
207 
208 
209 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
210   return x * y;
211 JRT_END
212 
213 
214 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
215   if (x == min_jlong && y == CONST64(-1)) {
216     return x;
217   } else {
218     return x / y;
219   }
220 JRT_END
221 
222 
223 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
224   if (x == min_jlong && y == CONST64(-1)) {
225     return 0;
226   } else {
227     return x % y;
228   }
229 JRT_END
230 
231 
232 const juint  float_sign_mask  = 0x7FFFFFFF;
233 const juint  float_infinity   = 0x7F800000;
234 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
235 const julong double_infinity  = CONST64(0x7FF0000000000000);
236 
237 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
238 #ifdef _WIN64
239   // 64-bit Windows on amd64 returns the wrong values for
240   // infinity operands.
241   union { jfloat f; juint i; } xbits, ybits;
242   xbits.f = x;
243   ybits.f = y;
244   // x Mod Infinity == x unless x is infinity
245   if (((xbits.i & float_sign_mask) != float_infinity) &&
246        ((ybits.i & float_sign_mask) == float_infinity) ) {
247     return x;
248   }
249   return ((jfloat)fmod_winx64((double)x, (double)y));
250 #else
251   return ((jfloat)fmod((double)x,(double)y));
252 #endif
253 JRT_END
254 
255 
256 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
257 #ifdef _WIN64
258   union { jdouble d; julong l; } xbits, ybits;
259   xbits.d = x;
260   ybits.d = y;
261   // x Mod Infinity == x unless x is infinity
262   if (((xbits.l & double_sign_mask) != double_infinity) &&
263        ((ybits.l & double_sign_mask) == double_infinity) ) {
264     return x;
265   }
266   return ((jdouble)fmod_winx64((double)x, (double)y));
267 #else
268   return ((jdouble)fmod((double)x,(double)y));
269 #endif
270 JRT_END
271 
272 #ifdef __SOFTFP__
273 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
274   return x + y;
275 JRT_END
276 
277 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
278   return x - y;
279 JRT_END
280 
281 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
282   return x * y;
283 JRT_END
284 
285 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
286   return x / y;
287 JRT_END
288 
289 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
290   return x + y;
291 JRT_END
292 
293 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
294   return x - y;
295 JRT_END
296 
297 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
298   return x * y;
299 JRT_END
300 
301 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
302   return x / y;
303 JRT_END
304 
305 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
306   return (jfloat)x;
307 JRT_END
308 
309 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
310   return (jdouble)x;
311 JRT_END
312 
313 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
314   return (jdouble)x;
315 JRT_END
316 
317 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
318   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
319 JRT_END
320 
321 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
322   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
323 JRT_END
324 
325 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
326   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
327 JRT_END
328 
329 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
330   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
331 JRT_END
332 
333 // Functions to return the opposite of the aeabi functions for nan.
334 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
335   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
336 JRT_END
337 
338 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
340 JRT_END
341 
342 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
343   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
344 JRT_END
345 
346 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
348 JRT_END
349 
350 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
351   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
352 JRT_END
353 
354 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
356 JRT_END
357 
358 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
359   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
360 JRT_END
361 
362 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
364 JRT_END
365 
366 // Intrinsics make gcc generate code for these.
fneg(float f)367 float  SharedRuntime::fneg(float f)   {
368   return -f;
369 }
370 
dneg(double f)371 double SharedRuntime::dneg(double f)  {
372   return -f;
373 }
374 
375 #endif // __SOFTFP__
376 
377 #if defined(__SOFTFP__) || defined(E500V2)
378 // Intrinsics make gcc generate code for these.
dabs(double f)379 double SharedRuntime::dabs(double f)  {
380   return (f <= (double)0.0) ? (double)0.0 - f : f;
381 }
382 
383 #endif
384 
385 #if defined(__SOFTFP__) || defined(PPC)
dsqrt(double f)386 double SharedRuntime::dsqrt(double f) {
387   return sqrt(f);
388 }
389 #endif
390 
391 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
392   if (g_isnan(x))
393     return 0;
394   if (x >= (jfloat) max_jint)
395     return max_jint;
396   if (x <= (jfloat) min_jint)
397     return min_jint;
398   return (jint) x;
399 JRT_END
400 
401 
402 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
403   if (g_isnan(x))
404     return 0;
405   if (x >= (jfloat) max_jlong)
406     return max_jlong;
407   if (x <= (jfloat) min_jlong)
408     return min_jlong;
409   return (jlong) x;
410 JRT_END
411 
412 
413 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
414   if (g_isnan(x))
415     return 0;
416   if (x >= (jdouble) max_jint)
417     return max_jint;
418   if (x <= (jdouble) min_jint)
419     return min_jint;
420   return (jint) x;
421 JRT_END
422 
423 
424 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
425   if (g_isnan(x))
426     return 0;
427   if (x >= (jdouble) max_jlong)
428     return max_jlong;
429   if (x <= (jdouble) min_jlong)
430     return min_jlong;
431   return (jlong) x;
432 JRT_END
433 
434 
435 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
436   return (jfloat)x;
437 JRT_END
438 
439 
440 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
441   return (jfloat)x;
442 JRT_END
443 
444 
445 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
446   return (jdouble)x;
447 JRT_END
448 
449 // Exception handling across interpreter/compiler boundaries
450 //
451 // exception_handler_for_return_address(...) returns the continuation address.
452 // The continuation address is the entry point of the exception handler of the
453 // previous frame depending on the return address.
454 
raw_exception_handler_for_return_address(JavaThread * thread,address return_address)455 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
456   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
457   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
458 
459   // Reset method handle flag.
460   thread->set_is_method_handle_return(false);
461 
462 #if INCLUDE_JVMCI
463   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
464   // and other exception handler continuations do not read it
465   thread->set_exception_pc(NULL);
466 #endif // INCLUDE_JVMCI
467 
468   // The fastest case first
469   CodeBlob* blob = CodeCache::find_blob(return_address);
470   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
471   if (nm != NULL) {
472     // Set flag if return address is a method handle call site.
473     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
474     // native nmethods don't have exception handlers
475     assert(!nm->is_native_method(), "no exception handler");
476     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
477     if (nm->is_deopt_pc(return_address)) {
478       // If we come here because of a stack overflow, the stack may be
479       // unguarded. Reguard the stack otherwise if we return to the
480       // deopt blob and the stack bang causes a stack overflow we
481       // crash.
482       bool guard_pages_enabled = thread->stack_guards_enabled();
483       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
484       if (thread->reserved_stack_activation() != thread->stack_base()) {
485         thread->set_reserved_stack_activation(thread->stack_base());
486       }
487       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
488       return SharedRuntime::deopt_blob()->unpack_with_exception();
489     } else {
490       return nm->exception_begin();
491     }
492   }
493 
494   // Entry code
495   if (StubRoutines::returns_to_call_stub(return_address)) {
496     return StubRoutines::catch_exception_entry();
497   }
498   // Interpreted code
499   if (Interpreter::contains(return_address)) {
500     return Interpreter::rethrow_exception_entry();
501   }
502 
503   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
504   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
505 
506 #ifndef PRODUCT
507   { ResourceMark rm;
508     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
509     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
510     tty->print_cr("b) other problem");
511   }
512 #endif // PRODUCT
513 
514   ShouldNotReachHere();
515   return NULL;
516 }
517 
518 
519 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
520   return raw_exception_handler_for_return_address(thread, return_address);
521 JRT_END
522 
523 
get_poll_stub(address pc)524 address SharedRuntime::get_poll_stub(address pc) {
525   address stub;
526   // Look up the code blob
527   CodeBlob *cb = CodeCache::find_blob(pc);
528 
529   // Should be an nmethod
530   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
531 
532   // Look up the relocation information
533   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
534     "safepoint polling: type must be poll");
535 
536 #ifdef ASSERT
537   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
538     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
539     Disassembler::decode(cb);
540     fatal("Only polling locations are used for safepoint");
541   }
542 #endif
543 
544   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
545   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
546   if (at_poll_return) {
547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
548            "polling page return stub not created yet");
549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
550   } else if (has_wide_vectors) {
551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
552            "polling page vectors safepoint stub not created yet");
553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
554   } else {
555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
556            "polling page safepoint stub not created yet");
557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
558   }
559   log_debug(safepoint)("... found polling page %s exception at pc = "
560                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
561                        at_poll_return ? "return" : "loop",
562                        (intptr_t)pc, (intptr_t)stub);
563   return stub;
564 }
565 
566 
retrieve_receiver(Symbol * sig,frame caller)567 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
568   assert(caller.is_interpreted_frame(), "");
569   int args_size = ArgumentSizeComputer(sig).size() + 1;
570   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
571   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
572   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
573   return result;
574 }
575 
576 
throw_and_post_jvmti_exception(JavaThread * thread,Handle h_exception)577 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
578   if (JvmtiExport::can_post_on_exceptions()) {
579     vframeStream vfst(thread, true);
580     methodHandle method = methodHandle(thread, vfst.method());
581     address bcp = method()->bcp_from(vfst.bci());
582     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
583   }
584 
585 #if INCLUDE_JVMCI
586   if (EnableJVMCI && UseJVMCICompiler) {
587     vframeStream vfst(thread, true);
588     methodHandle method = methodHandle(thread, vfst.method());
589     int bci = vfst.bci();
590     MethodData* trap_mdo = method->method_data();
591     if (trap_mdo != NULL) {
592       // Set exception_seen if the exceptional bytecode is an invoke
593       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
594       if (call.is_valid()) {
595         ResourceMark rm(thread);
596         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL);
597         if (pdata != NULL && pdata->is_BitData()) {
598           BitData* bit_data = (BitData*) pdata;
599           bit_data->set_exception_seen();
600         }
601       }
602     }
603   }
604 #endif
605 
606   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
607 }
608 
throw_and_post_jvmti_exception(JavaThread * thread,Symbol * name,const char * message)609 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
610   Handle h_exception = Exceptions::new_exception(thread, name, message);
611   throw_and_post_jvmti_exception(thread, h_exception);
612 }
613 
614 // The interpreter code to call this tracing function is only
615 // called/generated when UL is on for redefine, class and has the right level
616 // and tags. Since obsolete methods are never compiled, we don't have
617 // to modify the compilers to generate calls to this function.
618 //
619 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
620     JavaThread* thread, Method* method))
621   if (method->is_obsolete()) {
622     // We are calling an obsolete method, but this is not necessarily
623     // an error. Our method could have been redefined just after we
624     // fetched the Method* from the constant pool.
625     ResourceMark rm;
626     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
627   }
628   return 0;
629 JRT_END
630 
631 // ret_pc points into caller; we are returning caller's exception handler
632 // for given exception
compute_compiled_exc_handler(CompiledMethod * cm,address ret_pc,Handle & exception,bool force_unwind,bool top_frame_only,bool & recursive_exception_occurred)633 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
634                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
635   assert(cm != NULL, "must exist");
636   ResourceMark rm;
637 
638 #if INCLUDE_JVMCI
639   if (cm->is_compiled_by_jvmci()) {
640     // lookup exception handler for this pc
641     int catch_pco = ret_pc - cm->code_begin();
642     ExceptionHandlerTable table(cm);
643     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
644     if (t != NULL) {
645       return cm->code_begin() + t->pco();
646     } else {
647       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
648     }
649   }
650 #endif // INCLUDE_JVMCI
651 
652   nmethod* nm = cm->as_nmethod();
653   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
654   // determine handler bci, if any
655   EXCEPTION_MARK;
656 
657   int handler_bci = -1;
658   int scope_depth = 0;
659   if (!force_unwind) {
660     int bci = sd->bci();
661     bool recursive_exception = false;
662     do {
663       bool skip_scope_increment = false;
664       // exception handler lookup
665       Klass* ek = exception->klass();
666       methodHandle mh(THREAD, sd->method());
667       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
668       if (HAS_PENDING_EXCEPTION) {
669         recursive_exception = true;
670         // We threw an exception while trying to find the exception handler.
671         // Transfer the new exception to the exception handle which will
672         // be set into thread local storage, and do another lookup for an
673         // exception handler for this exception, this time starting at the
674         // BCI of the exception handler which caused the exception to be
675         // thrown (bugs 4307310 and 4546590). Set "exception" reference
676         // argument to ensure that the correct exception is thrown (4870175).
677         recursive_exception_occurred = true;
678         exception = Handle(THREAD, PENDING_EXCEPTION);
679         CLEAR_PENDING_EXCEPTION;
680         if (handler_bci >= 0) {
681           bci = handler_bci;
682           handler_bci = -1;
683           skip_scope_increment = true;
684         }
685       }
686       else {
687         recursive_exception = false;
688       }
689       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
690         sd = sd->sender();
691         if (sd != NULL) {
692           bci = sd->bci();
693         }
694         ++scope_depth;
695       }
696     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
697   }
698 
699   // found handling method => lookup exception handler
700   int catch_pco = ret_pc - nm->code_begin();
701 
702   ExceptionHandlerTable table(nm);
703   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
704   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
705     // Allow abbreviated catch tables.  The idea is to allow a method
706     // to materialize its exceptions without committing to the exact
707     // routing of exceptions.  In particular this is needed for adding
708     // a synthetic handler to unlock monitors when inlining
709     // synchronized methods since the unlock path isn't represented in
710     // the bytecodes.
711     t = table.entry_for(catch_pco, -1, 0);
712   }
713 
714 #ifdef COMPILER1
715   if (t == NULL && nm->is_compiled_by_c1()) {
716     assert(nm->unwind_handler_begin() != NULL, "");
717     return nm->unwind_handler_begin();
718   }
719 #endif
720 
721   if (t == NULL) {
722     ttyLocker ttyl;
723     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
724     tty->print_cr("   Exception:");
725     exception->print();
726     tty->cr();
727     tty->print_cr(" Compiled exception table :");
728     table.print();
729     nm->print_code();
730     guarantee(false, "missing exception handler");
731     return NULL;
732   }
733 
734   return nm->code_begin() + t->pco();
735 }
736 
737 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
738   // These errors occur only at call sites
739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
740 JRT_END
741 
742 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
743   // These errors occur only at call sites
744   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
745 JRT_END
746 
747 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
748   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
749 JRT_END
750 
751 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
753 JRT_END
754 
755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
756   // This entry point is effectively only used for NullPointerExceptions which occur at inline
757   // cache sites (when the callee activation is not yet set up) so we are at a call site
758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
759 JRT_END
760 
761 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
762   throw_StackOverflowError_common(thread, false);
763 JRT_END
764 
765 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
766   throw_StackOverflowError_common(thread, true);
767 JRT_END
768 
throw_StackOverflowError_common(JavaThread * thread,bool delayed)769 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
770   // We avoid using the normal exception construction in this case because
771   // it performs an upcall to Java, and we're already out of stack space.
772   Thread* THREAD = thread;
773   Klass* k = SystemDictionary::StackOverflowError_klass();
774   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
775   if (delayed) {
776     java_lang_Throwable::set_message(exception_oop,
777                                      Universe::delayed_stack_overflow_error_message());
778   }
779   Handle exception (thread, exception_oop);
780   if (StackTraceInThrowable) {
781     java_lang_Throwable::fill_in_stack_trace(exception);
782   }
783   // Increment counter for hs_err file reporting
784   Atomic::inc(&Exceptions::_stack_overflow_errors);
785   throw_and_post_jvmti_exception(thread, exception);
786 }
787 
788 #if INCLUDE_JVMCI
deoptimize_for_implicit_exception(JavaThread * thread,address pc,CompiledMethod * nm,int deopt_reason)789 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
790   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
791   thread->set_jvmci_implicit_exception_pc(pc);
792   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
793   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
794 }
795 #endif // INCLUDE_JVMCI
796 
continuation_for_implicit_exception(JavaThread * thread,address pc,SharedRuntime::ImplicitExceptionKind exception_kind)797 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
798                                                            address pc,
799                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
800 {
801   address target_pc = NULL;
802 
803   if (Interpreter::contains(pc)) {
804 #ifdef CC_INTERP
805     // C++ interpreter doesn't throw implicit exceptions
806     ShouldNotReachHere();
807 #else
808     switch (exception_kind) {
809       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
810       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
811       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
812       default:                      ShouldNotReachHere();
813     }
814 #endif // !CC_INTERP
815   } else {
816     switch (exception_kind) {
817       case STACK_OVERFLOW: {
818         // Stack overflow only occurs upon frame setup; the callee is
819         // going to be unwound. Dispatch to a shared runtime stub
820         // which will cause the StackOverflowError to be fabricated
821         // and processed.
822         // Stack overflow should never occur during deoptimization:
823         // the compiled method bangs the stack by as much as the
824         // interpreter would need in case of a deoptimization. The
825         // deoptimization blob and uncommon trap blob bang the stack
826         // in a debug VM to verify the correctness of the compiled
827         // method stack banging.
828         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
829         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
830         return StubRoutines::throw_StackOverflowError_entry();
831       }
832 
833       case IMPLICIT_NULL: {
834         if (VtableStubs::contains(pc)) {
835           // We haven't yet entered the callee frame. Fabricate an
836           // exception and begin dispatching it in the caller. Since
837           // the caller was at a call site, it's safe to destroy all
838           // caller-saved registers, as these entry points do.
839           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
840 
841           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
842           if (vt_stub == NULL) return NULL;
843 
844           if (vt_stub->is_abstract_method_error(pc)) {
845             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
846             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
847             // Instead of throwing the abstract method error here directly, we re-resolve
848             // and will throw the AbstractMethodError during resolve. As a result, we'll
849             // get a more detailed error message.
850             return SharedRuntime::get_handle_wrong_method_stub();
851           } else {
852             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
853             // Assert that the signal comes from the expected location in stub code.
854             assert(vt_stub->is_null_pointer_exception(pc),
855                    "obtained signal from unexpected location in stub code");
856             return StubRoutines::throw_NullPointerException_at_call_entry();
857           }
858         } else {
859           CodeBlob* cb = CodeCache::find_blob(pc);
860 
861           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
862           if (cb == NULL) return NULL;
863 
864           // Exception happened in CodeCache. Must be either:
865           // 1. Inline-cache check in C2I handler blob,
866           // 2. Inline-cache check in nmethod, or
867           // 3. Implicit null exception in nmethod
868 
869           if (!cb->is_compiled()) {
870             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
871             if (!is_in_blob) {
872               // Allow normal crash reporting to handle this
873               return NULL;
874             }
875             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
876             // There is no handler here, so we will simply unwind.
877             return StubRoutines::throw_NullPointerException_at_call_entry();
878           }
879 
880           // Otherwise, it's a compiled method.  Consult its exception handlers.
881           CompiledMethod* cm = (CompiledMethod*)cb;
882           if (cm->inlinecache_check_contains(pc)) {
883             // exception happened inside inline-cache check code
884             // => the nmethod is not yet active (i.e., the frame
885             // is not set up yet) => use return address pushed by
886             // caller => don't push another return address
887             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
888             return StubRoutines::throw_NullPointerException_at_call_entry();
889           }
890 
891           if (cm->method()->is_method_handle_intrinsic()) {
892             // exception happened inside MH dispatch code, similar to a vtable stub
893             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
894             return StubRoutines::throw_NullPointerException_at_call_entry();
895           }
896 
897 #ifndef PRODUCT
898           _implicit_null_throws++;
899 #endif
900 #if INCLUDE_JVMCI
901           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
902             // If there's no PcDesc then we'll die way down inside of
903             // deopt instead of just getting normal error reporting,
904             // so only go there if it will succeed.
905             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
906           } else {
907 #endif // INCLUDE_JVMCI
908           assert (cm->is_nmethod(), "Expect nmethod");
909           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
910 #if INCLUDE_JVMCI
911           }
912 #endif // INCLUDE_JVMCI
913           // If there's an unexpected fault, target_pc might be NULL,
914           // in which case we want to fall through into the normal
915           // error handling code.
916         }
917 
918         break; // fall through
919       }
920 
921 
922       case IMPLICIT_DIVIDE_BY_ZERO: {
923         CompiledMethod* cm = CodeCache::find_compiled(pc);
924         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
925 #ifndef PRODUCT
926         _implicit_div0_throws++;
927 #endif
928 #if INCLUDE_JVMCI
929         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
930           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
931         } else {
932 #endif // INCLUDE_JVMCI
933         target_pc = cm->continuation_for_implicit_exception(pc);
934 #if INCLUDE_JVMCI
935         }
936 #endif // INCLUDE_JVMCI
937         // If there's an unexpected fault, target_pc might be NULL,
938         // in which case we want to fall through into the normal
939         // error handling code.
940         break; // fall through
941       }
942 
943       default: ShouldNotReachHere();
944     }
945 
946     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
947 
948     if (exception_kind == IMPLICIT_NULL) {
949 #ifndef PRODUCT
950       // for AbortVMOnException flag
951       Exceptions::debug_check_abort("java.lang.NullPointerException");
952 #endif //PRODUCT
953       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
954     } else {
955 #ifndef PRODUCT
956       // for AbortVMOnException flag
957       Exceptions::debug_check_abort("java.lang.ArithmeticException");
958 #endif //PRODUCT
959       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
960     }
961     return target_pc;
962   }
963 
964   ShouldNotReachHere();
965   return NULL;
966 }
967 
968 
969 /**
970  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
971  * installed in the native function entry of all native Java methods before
972  * they get linked to their actual native methods.
973  *
974  * \note
975  * This method actually never gets called!  The reason is because
976  * the interpreter's native entries call NativeLookup::lookup() which
977  * throws the exception when the lookup fails.  The exception is then
978  * caught and forwarded on the return from NativeLookup::lookup() call
979  * before the call to the native function.  This might change in the future.
980  */
JNI_ENTRY(void *,throw_unsatisfied_link_error (JNIEnv * env,...))981 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
982 {
983   // We return a bad value here to make sure that the exception is
984   // forwarded before we look at the return value.
985   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
986 }
987 JNI_END
988 
native_method_throw_unsatisfied_link_error_entry()989 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
990   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
991 }
992 
993 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
994 #if INCLUDE_JVMCI
995   if (!obj->klass()->has_finalizer()) {
996     return;
997   }
998 #endif // INCLUDE_JVMCI
999   assert(oopDesc::is_oop(obj), "must be a valid oop");
1000   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1001   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1002 JRT_END
1003 
1004 
get_java_tid(Thread * thread)1005 jlong SharedRuntime::get_java_tid(Thread* thread) {
1006   if (thread != NULL) {
1007     if (thread->is_Java_thread()) {
1008       oop obj = ((JavaThread*)thread)->threadObj();
1009       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1010     }
1011   }
1012   return 0;
1013 }
1014 
1015 /**
1016  * This function ought to be a void function, but cannot be because
1017  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1018  * 6254741.  Once that is fixed we can remove the dummy return value.
1019  */
dtrace_object_alloc(oopDesc * o,int size)1020 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1021   return dtrace_object_alloc_base(Thread::current(), o, size);
1022 }
1023 
dtrace_object_alloc_base(Thread * thread,oopDesc * o,int size)1024 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1025   assert(DTraceAllocProbes, "wrong call");
1026   Klass* klass = o->klass();
1027   Symbol* name = klass->name();
1028   HOTSPOT_OBJECT_ALLOC(
1029                    get_java_tid(thread),
1030                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1031   return 0;
1032 }
1033 
1034 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1035     JavaThread* thread, Method* method))
1036   assert(DTraceMethodProbes, "wrong call");
1037   Symbol* kname = method->klass_name();
1038   Symbol* name = method->name();
1039   Symbol* sig = method->signature();
1040   HOTSPOT_METHOD_ENTRY(
1041       get_java_tid(thread),
1042       (char *) kname->bytes(), kname->utf8_length(),
1043       (char *) name->bytes(), name->utf8_length(),
1044       (char *) sig->bytes(), sig->utf8_length());
1045   return 0;
1046 JRT_END
1047 
1048 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1049     JavaThread* thread, Method* method))
1050   assert(DTraceMethodProbes, "wrong call");
1051   Symbol* kname = method->klass_name();
1052   Symbol* name = method->name();
1053   Symbol* sig = method->signature();
1054   HOTSPOT_METHOD_RETURN(
1055       get_java_tid(thread),
1056       (char *) kname->bytes(), kname->utf8_length(),
1057       (char *) name->bytes(), name->utf8_length(),
1058       (char *) sig->bytes(), sig->utf8_length());
1059   return 0;
1060 JRT_END
1061 
1062 
1063 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1064 // for a call current in progress, i.e., arguments has been pushed on stack
1065 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1066 // vtable updates, etc.  Caller frame must be compiled.
find_callee_info(JavaThread * thread,Bytecodes::Code & bc,CallInfo & callinfo,TRAPS)1067 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1068   ResourceMark rm(THREAD);
1069 
1070   // last java frame on stack (which includes native call frames)
1071   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1072 
1073   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1074 }
1075 
extract_attached_method(vframeStream & vfst)1076 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1077   CompiledMethod* caller = vfst.nm();
1078 
1079   nmethodLocker caller_lock(caller);
1080 
1081   address pc = vfst.frame_pc();
1082   { // Get call instruction under lock because another thread may be busy patching it.
1083     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1084     return caller->attached_method_before_pc(pc);
1085   }
1086   return NULL;
1087 }
1088 
1089 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1090 // for a call current in progress, i.e., arguments has been pushed on stack
1091 // but callee has not been invoked yet.  Caller frame must be compiled.
find_callee_info_helper(JavaThread * thread,vframeStream & vfst,Bytecodes::Code & bc,CallInfo & callinfo,TRAPS)1092 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1093                                               vframeStream& vfst,
1094                                               Bytecodes::Code& bc,
1095                                               CallInfo& callinfo, TRAPS) {
1096   Handle receiver;
1097   Handle nullHandle;  //create a handy null handle for exception returns
1098 
1099   assert(!vfst.at_end(), "Java frame must exist");
1100 
1101   // Find caller and bci from vframe
1102   methodHandle caller(THREAD, vfst.method());
1103   int          bci   = vfst.bci();
1104 
1105   Bytecode_invoke bytecode(caller, bci);
1106   int bytecode_index = bytecode.index();
1107   bc = bytecode.invoke_code();
1108 
1109   methodHandle attached_method = extract_attached_method(vfst);
1110   if (attached_method.not_null()) {
1111     methodHandle callee = bytecode.static_target(CHECK_NH);
1112     vmIntrinsics::ID id = callee->intrinsic_id();
1113     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1114     // it attaches statically resolved method to the call site.
1115     if (MethodHandles::is_signature_polymorphic(id) &&
1116         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1117       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1118 
1119       // Adjust invocation mode according to the attached method.
1120       switch (bc) {
1121         case Bytecodes::_invokevirtual:
1122           if (attached_method->method_holder()->is_interface()) {
1123             bc = Bytecodes::_invokeinterface;
1124           }
1125           break;
1126         case Bytecodes::_invokeinterface:
1127           if (!attached_method->method_holder()->is_interface()) {
1128             bc = Bytecodes::_invokevirtual;
1129           }
1130           break;
1131         case Bytecodes::_invokehandle:
1132           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1133             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1134                                               : Bytecodes::_invokevirtual;
1135           }
1136           break;
1137         default:
1138           break;
1139       }
1140     }
1141   }
1142 
1143   assert(bc != Bytecodes::_illegal, "not initialized");
1144 
1145   bool has_receiver = bc != Bytecodes::_invokestatic &&
1146                       bc != Bytecodes::_invokedynamic &&
1147                       bc != Bytecodes::_invokehandle;
1148 
1149   // Find receiver for non-static call
1150   if (has_receiver) {
1151     // This register map must be update since we need to find the receiver for
1152     // compiled frames. The receiver might be in a register.
1153     RegisterMap reg_map2(thread);
1154     frame stubFrame   = thread->last_frame();
1155     // Caller-frame is a compiled frame
1156     frame callerFrame = stubFrame.sender(&reg_map2);
1157 
1158     if (attached_method.is_null()) {
1159       methodHandle callee = bytecode.static_target(CHECK_NH);
1160       if (callee.is_null()) {
1161         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1162       }
1163     }
1164 
1165     // Retrieve from a compiled argument list
1166     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1167 
1168     if (receiver.is_null()) {
1169       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1170     }
1171   }
1172 
1173   // Resolve method
1174   if (attached_method.not_null()) {
1175     // Parameterized by attached method.
1176     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1177   } else {
1178     // Parameterized by bytecode.
1179     constantPoolHandle constants(THREAD, caller->constants());
1180     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1181   }
1182 
1183 #ifdef ASSERT
1184   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1185   if (has_receiver) {
1186     assert(receiver.not_null(), "should have thrown exception");
1187     Klass* receiver_klass = receiver->klass();
1188     Klass* rk = NULL;
1189     if (attached_method.not_null()) {
1190       // In case there's resolved method attached, use its holder during the check.
1191       rk = attached_method->method_holder();
1192     } else {
1193       // Klass is already loaded.
1194       constantPoolHandle constants(THREAD, caller->constants());
1195       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1196     }
1197     Klass* static_receiver_klass = rk;
1198     methodHandle callee = callinfo.selected_method();
1199     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1200            "actual receiver must be subclass of static receiver klass");
1201     if (receiver_klass->is_instance_klass()) {
1202       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1203         tty->print_cr("ERROR: Klass not yet initialized!!");
1204         receiver_klass->print();
1205       }
1206       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1207     }
1208   }
1209 #endif
1210 
1211   return receiver;
1212 }
1213 
find_callee_method(JavaThread * thread,TRAPS)1214 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1215   ResourceMark rm(THREAD);
1216   // We need first to check if any Java activations (compiled, interpreted)
1217   // exist on the stack since last JavaCall.  If not, we need
1218   // to get the target method from the JavaCall wrapper.
1219   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1220   methodHandle callee_method;
1221   if (vfst.at_end()) {
1222     // No Java frames were found on stack since we did the JavaCall.
1223     // Hence the stack can only contain an entry_frame.  We need to
1224     // find the target method from the stub frame.
1225     RegisterMap reg_map(thread, false);
1226     frame fr = thread->last_frame();
1227     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1228     fr = fr.sender(&reg_map);
1229     assert(fr.is_entry_frame(), "must be");
1230     // fr is now pointing to the entry frame.
1231     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1232   } else {
1233     Bytecodes::Code bc;
1234     CallInfo callinfo;
1235     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1236     callee_method = callinfo.selected_method();
1237   }
1238   assert(callee_method()->is_method(), "must be");
1239   return callee_method;
1240 }
1241 
1242 // Resolves a call.
resolve_helper(JavaThread * thread,bool is_virtual,bool is_optimized,TRAPS)1243 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1244                                            bool is_virtual,
1245                                            bool is_optimized, TRAPS) {
1246   methodHandle callee_method;
1247   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1248   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1249     int retry_count = 0;
1250     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1251            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1252       // If has a pending exception then there is no need to re-try to
1253       // resolve this method.
1254       // If the method has been redefined, we need to try again.
1255       // Hack: we have no way to update the vtables of arrays, so don't
1256       // require that java.lang.Object has been updated.
1257 
1258       // It is very unlikely that method is redefined more than 100 times
1259       // in the middle of resolve. If it is looping here more than 100 times
1260       // means then there could be a bug here.
1261       guarantee((retry_count++ < 100),
1262                 "Could not resolve to latest version of redefined method");
1263       // method is redefined in the middle of resolve so re-try.
1264       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1265     }
1266   }
1267   return callee_method;
1268 }
1269 
1270 // Resolves a call.  The compilers generate code for calls that go here
1271 // and are patched with the real destination of the call.
resolve_sub_helper(JavaThread * thread,bool is_virtual,bool is_optimized,TRAPS)1272 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1273                                            bool is_virtual,
1274                                            bool is_optimized, TRAPS) {
1275 
1276   ResourceMark rm(thread);
1277   RegisterMap cbl_map(thread, false);
1278   frame caller_frame = thread->last_frame().sender(&cbl_map);
1279 
1280   CodeBlob* caller_cb = caller_frame.cb();
1281   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1282   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1283 
1284   // make sure caller is not getting deoptimized
1285   // and removed before we are done with it.
1286   // CLEANUP - with lazy deopt shouldn't need this lock
1287   nmethodLocker caller_lock(caller_nm);
1288 
1289   // determine call info & receiver
1290   // note: a) receiver is NULL for static calls
1291   //       b) an exception is thrown if receiver is NULL for non-static calls
1292   CallInfo call_info;
1293   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1294   Handle receiver = find_callee_info(thread, invoke_code,
1295                                      call_info, CHECK_(methodHandle()));
1296   methodHandle callee_method = call_info.selected_method();
1297 
1298   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1299          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1300          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1301          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1302          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1303 
1304   assert(caller_nm->is_alive(), "It should be alive");
1305 
1306 #ifndef PRODUCT
1307   // tracing/debugging/statistics
1308   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1309                 (is_virtual) ? (&_resolve_virtual_ctr) :
1310                                (&_resolve_static_ctr);
1311   Atomic::inc(addr);
1312 
1313   if (TraceCallFixup) {
1314     ResourceMark rm(thread);
1315     tty->print("resolving %s%s (%s) call to",
1316       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1317       Bytecodes::name(invoke_code));
1318     callee_method->print_short_name(tty);
1319     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1320                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1321   }
1322 #endif
1323 
1324   // Do not patch call site for static call when the class is not
1325   // fully initialized.
1326   if (invoke_code == Bytecodes::_invokestatic &&
1327       !callee_method->method_holder()->is_initialized()) {
1328     assert(callee_method->method_holder()->is_linked(), "must be");
1329     return callee_method;
1330   }
1331 
1332   // JSR 292 key invariant:
1333   // If the resolved method is a MethodHandle invoke target, the call
1334   // site must be a MethodHandle call site, because the lambda form might tail-call
1335   // leaving the stack in a state unknown to either caller or callee
1336   // TODO detune for now but we might need it again
1337 //  assert(!callee_method->is_compiled_lambda_form() ||
1338 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1339 
1340   // Compute entry points. This might require generation of C2I converter
1341   // frames, so we cannot be holding any locks here. Furthermore, the
1342   // computation of the entry points is independent of patching the call.  We
1343   // always return the entry-point, but we only patch the stub if the call has
1344   // not been deoptimized.  Return values: For a virtual call this is an
1345   // (cached_oop, destination address) pair. For a static call/optimized
1346   // virtual this is just a destination address.
1347 
1348   StaticCallInfo static_call_info;
1349   CompiledICInfo virtual_call_info;
1350 
1351   // Make sure the callee nmethod does not get deoptimized and removed before
1352   // we are done patching the code.
1353   CompiledMethod* callee = callee_method->code();
1354 
1355   if (callee != NULL) {
1356     assert(callee->is_compiled(), "must be nmethod for patching");
1357   }
1358 
1359   if (callee != NULL && !callee->is_in_use()) {
1360     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1361     callee = NULL;
1362   }
1363   nmethodLocker nl_callee(callee);
1364 #ifdef ASSERT
1365   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1366 #endif
1367 
1368   bool is_nmethod = caller_nm->is_nmethod();
1369 
1370   if (is_virtual) {
1371     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1372     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1373     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1374     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1375                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1376                      CHECK_(methodHandle()));
1377   } else {
1378     // static call
1379     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1380   }
1381 
1382   // grab lock, check for deoptimization and potentially patch caller
1383   {
1384     MutexLocker ml_patch(CompiledIC_lock);
1385 
1386     // Lock blocks for safepoint during which both nmethods can change state.
1387 
1388     // Now that we are ready to patch if the Method* was redefined then
1389     // don't update call site and let the caller retry.
1390     // Don't update call site if callee nmethod was unloaded or deoptimized.
1391     // Don't update call site if callee nmethod was replaced by an other nmethod
1392     // which may happen when multiply alive nmethod (tiered compilation)
1393     // will be supported.
1394     if (!callee_method->is_old() &&
1395         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1396 #ifdef ASSERT
1397       // We must not try to patch to jump to an already unloaded method.
1398       if (dest_entry_point != 0) {
1399         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1400         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1401                "should not call unloaded nmethod");
1402       }
1403 #endif
1404       if (is_virtual) {
1405         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1406         if (inline_cache->is_clean()) {
1407           inline_cache->set_to_monomorphic(virtual_call_info);
1408         }
1409       } else {
1410         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1411         if (ssc->is_clean()) ssc->set(static_call_info);
1412       }
1413     }
1414 
1415   } // unlock CompiledIC_lock
1416 
1417   return callee_method;
1418 }
1419 
1420 
1421 // Inline caches exist only in compiled code
1422 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1423 #ifdef ASSERT
1424   RegisterMap reg_map(thread, false);
1425   frame stub_frame = thread->last_frame();
1426   assert(stub_frame.is_runtime_frame(), "sanity check");
1427   frame caller_frame = stub_frame.sender(&reg_map);
1428   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1429 #endif /* ASSERT */
1430 
1431   methodHandle callee_method;
1432   JRT_BLOCK
1433     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1434     // Return Method* through TLS
1435     thread->set_vm_result_2(callee_method());
1436   JRT_BLOCK_END
1437   // return compiled code entry point after potential safepoints
1438   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1439   return callee_method->verified_code_entry();
1440 JRT_END
1441 
1442 
1443 // Handle call site that has been made non-entrant
1444 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1445   // 6243940 We might end up in here if the callee is deoptimized
1446   // as we race to call it.  We don't want to take a safepoint if
1447   // the caller was interpreted because the caller frame will look
1448   // interpreted to the stack walkers and arguments are now
1449   // "compiled" so it is much better to make this transition
1450   // invisible to the stack walking code. The i2c path will
1451   // place the callee method in the callee_target. It is stashed
1452   // there because if we try and find the callee by normal means a
1453   // safepoint is possible and have trouble gc'ing the compiled args.
1454   RegisterMap reg_map(thread, false);
1455   frame stub_frame = thread->last_frame();
1456   assert(stub_frame.is_runtime_frame(), "sanity check");
1457   frame caller_frame = stub_frame.sender(&reg_map);
1458 
1459   if (caller_frame.is_interpreted_frame() ||
1460       caller_frame.is_entry_frame()) {
1461     Method* callee = thread->callee_target();
1462     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1463     thread->set_vm_result_2(callee);
1464     thread->set_callee_target(NULL);
1465     return callee->get_c2i_entry();
1466   }
1467 
1468   // Must be compiled to compiled path which is safe to stackwalk
1469   methodHandle callee_method;
1470   JRT_BLOCK
1471     // Force resolving of caller (if we called from compiled frame)
1472     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1473     thread->set_vm_result_2(callee_method());
1474   JRT_BLOCK_END
1475   // return compiled code entry point after potential safepoints
1476   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1477   return callee_method->verified_code_entry();
1478 JRT_END
1479 
1480 // Handle abstract method call
1481 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1482   // Verbose error message for AbstractMethodError.
1483   // Get the called method from the invoke bytecode.
1484   vframeStream vfst(thread, true);
1485   assert(!vfst.at_end(), "Java frame must exist");
1486   methodHandle caller(vfst.method());
1487   Bytecode_invoke invoke(caller, vfst.bci());
1488   DEBUG_ONLY( invoke.verify(); )
1489 
1490   // Find the compiled caller frame.
1491   RegisterMap reg_map(thread);
1492   frame stubFrame = thread->last_frame();
1493   assert(stubFrame.is_runtime_frame(), "must be");
1494   frame callerFrame = stubFrame.sender(&reg_map);
1495   assert(callerFrame.is_compiled_frame(), "must be");
1496 
1497   // Install exception and return forward entry.
1498   address res = StubRoutines::throw_AbstractMethodError_entry();
1499   JRT_BLOCK
1500     methodHandle callee = invoke.static_target(thread);
1501     if (!callee.is_null()) {
1502       oop recv = callerFrame.retrieve_receiver(&reg_map);
1503       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1504       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1505       res = StubRoutines::forward_exception_entry();
1506     }
1507   JRT_BLOCK_END
1508   return res;
1509 JRT_END
1510 
1511 
1512 // resolve a static call and patch code
1513 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1514   methodHandle callee_method;
1515   JRT_BLOCK
1516     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1517     thread->set_vm_result_2(callee_method());
1518   JRT_BLOCK_END
1519   // return compiled code entry point after potential safepoints
1520   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1521   return callee_method->verified_code_entry();
1522 JRT_END
1523 
1524 
1525 // resolve virtual call and update inline cache to monomorphic
1526 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1527   methodHandle callee_method;
1528   JRT_BLOCK
1529     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1530     thread->set_vm_result_2(callee_method());
1531   JRT_BLOCK_END
1532   // return compiled code entry point after potential safepoints
1533   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1534   return callee_method->verified_code_entry();
1535 JRT_END
1536 
1537 
1538 // Resolve a virtual call that can be statically bound (e.g., always
1539 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1540 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1541   methodHandle callee_method;
1542   JRT_BLOCK
1543     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1544     thread->set_vm_result_2(callee_method());
1545   JRT_BLOCK_END
1546   // return compiled code entry point after potential safepoints
1547   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1548   return callee_method->verified_code_entry();
1549 JRT_END
1550 
1551 
1552 
handle_ic_miss_helper(JavaThread * thread,TRAPS)1553 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1554   ResourceMark rm(thread);
1555   CallInfo call_info;
1556   Bytecodes::Code bc;
1557 
1558   // receiver is NULL for static calls. An exception is thrown for NULL
1559   // receivers for non-static calls
1560   Handle receiver = find_callee_info(thread, bc, call_info,
1561                                      CHECK_(methodHandle()));
1562   // Compiler1 can produce virtual call sites that can actually be statically bound
1563   // If we fell thru to below we would think that the site was going megamorphic
1564   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1565   // we'd try and do a vtable dispatch however methods that can be statically bound
1566   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1567   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1568   // plain ic_miss) and the site will be converted to an optimized virtual call site
1569   // never to miss again. I don't believe C2 will produce code like this but if it
1570   // did this would still be the correct thing to do for it too, hence no ifdef.
1571   //
1572   if (call_info.resolved_method()->can_be_statically_bound()) {
1573     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1574     if (TraceCallFixup) {
1575       RegisterMap reg_map(thread, false);
1576       frame caller_frame = thread->last_frame().sender(&reg_map);
1577       ResourceMark rm(thread);
1578       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1579       callee_method->print_short_name(tty);
1580       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1581       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1582     }
1583     return callee_method;
1584   }
1585 
1586   methodHandle callee_method = call_info.selected_method();
1587 
1588   bool should_be_mono = false;
1589 
1590 #ifndef PRODUCT
1591   Atomic::inc(&_ic_miss_ctr);
1592 
1593   // Statistics & Tracing
1594   if (TraceCallFixup) {
1595     ResourceMark rm(thread);
1596     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1597     callee_method->print_short_name(tty);
1598     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1599   }
1600 
1601   if (ICMissHistogram) {
1602     MutexLocker m(VMStatistic_lock);
1603     RegisterMap reg_map(thread, false);
1604     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1605     // produce statistics under the lock
1606     trace_ic_miss(f.pc());
1607   }
1608 #endif
1609 
1610   // install an event collector so that when a vtable stub is created the
1611   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1612   // event can't be posted when the stub is created as locks are held
1613   // - instead the event will be deferred until the event collector goes
1614   // out of scope.
1615   JvmtiDynamicCodeEventCollector event_collector;
1616 
1617   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1618   { MutexLocker ml_patch (CompiledIC_lock);
1619     RegisterMap reg_map(thread, false);
1620     frame caller_frame = thread->last_frame().sender(&reg_map);
1621     CodeBlob* cb = caller_frame.cb();
1622     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1623     if (cb->is_compiled()) {
1624       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1625       bool should_be_mono = false;
1626       if (inline_cache->is_optimized()) {
1627         if (TraceCallFixup) {
1628           ResourceMark rm(thread);
1629           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1630           callee_method->print_short_name(tty);
1631           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1632         }
1633         should_be_mono = true;
1634       } else if (inline_cache->is_icholder_call()) {
1635         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1636         if (ic_oop != NULL) {
1637 
1638           if (receiver()->klass() == ic_oop->holder_klass()) {
1639             // This isn't a real miss. We must have seen that compiled code
1640             // is now available and we want the call site converted to a
1641             // monomorphic compiled call site.
1642             // We can't assert for callee_method->code() != NULL because it
1643             // could have been deoptimized in the meantime
1644             if (TraceCallFixup) {
1645               ResourceMark rm(thread);
1646               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1647               callee_method->print_short_name(tty);
1648               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1649             }
1650             should_be_mono = true;
1651           }
1652         }
1653       }
1654 
1655       if (should_be_mono) {
1656 
1657         // We have a path that was monomorphic but was going interpreted
1658         // and now we have (or had) a compiled entry. We correct the IC
1659         // by using a new icBuffer.
1660         CompiledICInfo info;
1661         Klass* receiver_klass = receiver()->klass();
1662         inline_cache->compute_monomorphic_entry(callee_method,
1663                                                 receiver_klass,
1664                                                 inline_cache->is_optimized(),
1665                                                 false, caller_nm->is_nmethod(),
1666                                                 info, CHECK_(methodHandle()));
1667         inline_cache->set_to_monomorphic(info);
1668       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1669         // Potential change to megamorphic
1670         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1671         if (!successful) {
1672           inline_cache->set_to_clean();
1673         }
1674       } else {
1675         // Either clean or megamorphic
1676       }
1677     } else {
1678       fatal("Unimplemented");
1679     }
1680   } // Release CompiledIC_lock
1681 
1682   return callee_method;
1683 }
1684 
1685 //
1686 // Resets a call-site in compiled code so it will get resolved again.
1687 // This routines handles both virtual call sites, optimized virtual call
1688 // sites, and static call sites. Typically used to change a call sites
1689 // destination from compiled to interpreted.
1690 //
reresolve_call_site(JavaThread * thread,TRAPS)1691 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1692   ResourceMark rm(thread);
1693   RegisterMap reg_map(thread, false);
1694   frame stub_frame = thread->last_frame();
1695   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1696   frame caller = stub_frame.sender(&reg_map);
1697 
1698   // Do nothing if the frame isn't a live compiled frame.
1699   // nmethod could be deoptimized by the time we get here
1700   // so no update to the caller is needed.
1701 
1702   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1703 
1704     address pc = caller.pc();
1705 
1706     // Check for static or virtual call
1707     bool is_static_call = false;
1708     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1709 
1710     // Default call_addr is the location of the "basic" call.
1711     // Determine the address of the call we a reresolving. With
1712     // Inline Caches we will always find a recognizable call.
1713     // With Inline Caches disabled we may or may not find a
1714     // recognizable call. We will always find a call for static
1715     // calls and for optimized virtual calls. For vanilla virtual
1716     // calls it depends on the state of the UseInlineCaches switch.
1717     //
1718     // With Inline Caches disabled we can get here for a virtual call
1719     // for two reasons:
1720     //   1 - calling an abstract method. The vtable for abstract methods
1721     //       will run us thru handle_wrong_method and we will eventually
1722     //       end up in the interpreter to throw the ame.
1723     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1724     //       call and between the time we fetch the entry address and
1725     //       we jump to it the target gets deoptimized. Similar to 1
1726     //       we will wind up in the interprter (thru a c2i with c2).
1727     //
1728     address call_addr = NULL;
1729     {
1730       // Get call instruction under lock because another thread may be
1731       // busy patching it.
1732       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1733       // Location of call instruction
1734       call_addr = caller_nm->call_instruction_address(pc);
1735     }
1736     // Make sure nmethod doesn't get deoptimized and removed until
1737     // this is done with it.
1738     // CLEANUP - with lazy deopt shouldn't need this lock
1739     nmethodLocker nmlock(caller_nm);
1740 
1741     if (call_addr != NULL) {
1742       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1743       int ret = iter.next(); // Get item
1744       if (ret) {
1745         assert(iter.addr() == call_addr, "must find call");
1746         if (iter.type() == relocInfo::static_call_type) {
1747           is_static_call = true;
1748         } else {
1749           assert(iter.type() == relocInfo::virtual_call_type ||
1750                  iter.type() == relocInfo::opt_virtual_call_type
1751                 , "unexpected relocInfo. type");
1752         }
1753       } else {
1754         assert(!UseInlineCaches, "relocation info. must exist for this address");
1755       }
1756 
1757       // Cleaning the inline cache will force a new resolve. This is more robust
1758       // than directly setting it to the new destination, since resolving of calls
1759       // is always done through the same code path. (experience shows that it
1760       // leads to very hard to track down bugs, if an inline cache gets updated
1761       // to a wrong method). It should not be performance critical, since the
1762       // resolve is only done once.
1763 
1764       bool is_nmethod = caller_nm->is_nmethod();
1765       MutexLocker ml(CompiledIC_lock);
1766       if (is_static_call) {
1767         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1768         ssc->set_to_clean();
1769       } else {
1770         // compiled, dispatched call (which used to call an interpreted method)
1771         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1772         inline_cache->set_to_clean();
1773       }
1774     }
1775   }
1776 
1777   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1778 
1779 
1780 #ifndef PRODUCT
1781   Atomic::inc(&_wrong_method_ctr);
1782 
1783   if (TraceCallFixup) {
1784     ResourceMark rm(thread);
1785     tty->print("handle_wrong_method reresolving call to");
1786     callee_method->print_short_name(tty);
1787     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1788   }
1789 #endif
1790 
1791   return callee_method;
1792 }
1793 
handle_unsafe_access(JavaThread * thread,address next_pc)1794 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1795   // The faulting unsafe accesses should be changed to throw the error
1796   // synchronously instead. Meanwhile the faulting instruction will be
1797   // skipped over (effectively turning it into a no-op) and an
1798   // asynchronous exception will be raised which the thread will
1799   // handle at a later point. If the instruction is a load it will
1800   // return garbage.
1801 
1802   // Request an async exception.
1803   thread->set_pending_unsafe_access_error();
1804 
1805   // Return address of next instruction to execute.
1806   return next_pc;
1807 }
1808 
1809 #ifdef ASSERT
check_member_name_argument_is_last_argument(const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)1810 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1811                                                                 const BasicType* sig_bt,
1812                                                                 const VMRegPair* regs) {
1813   ResourceMark rm;
1814   const int total_args_passed = method->size_of_parameters();
1815   const VMRegPair*    regs_with_member_name = regs;
1816         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1817 
1818   const int member_arg_pos = total_args_passed - 1;
1819   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1820   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1821 
1822   const bool is_outgoing = method->is_method_handle_intrinsic();
1823   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1824 
1825   for (int i = 0; i < member_arg_pos; i++) {
1826     VMReg a =    regs_with_member_name[i].first();
1827     VMReg b = regs_without_member_name[i].first();
1828     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1829   }
1830   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1831 }
1832 #endif
1833 
should_fixup_call_destination(address destination,address entry_point,address caller_pc,Method * moop,CodeBlob * cb)1834 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1835   if (destination != entry_point) {
1836     CodeBlob* callee = CodeCache::find_blob(destination);
1837     // callee == cb seems weird. It means calling interpreter thru stub.
1838     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1839       // static call or optimized virtual
1840       if (TraceCallFixup) {
1841         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1842         moop->print_short_name(tty);
1843         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1844       }
1845       return true;
1846     } else {
1847       if (TraceCallFixup) {
1848         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1849         moop->print_short_name(tty);
1850         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1851       }
1852       // assert is too strong could also be resolve destinations.
1853       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1854     }
1855   } else {
1856     if (TraceCallFixup) {
1857       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1858       moop->print_short_name(tty);
1859       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1860     }
1861   }
1862   return false;
1863 }
1864 
1865 // ---------------------------------------------------------------------------
1866 // We are calling the interpreter via a c2i. Normally this would mean that
1867 // we were called by a compiled method. However we could have lost a race
1868 // where we went int -> i2c -> c2i and so the caller could in fact be
1869 // interpreted. If the caller is compiled we attempt to patch the caller
1870 // so he no longer calls into the interpreter.
1871 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1872   Method* moop(method);
1873 
1874   address entry_point = moop->from_compiled_entry_no_trampoline();
1875 
1876   // It's possible that deoptimization can occur at a call site which hasn't
1877   // been resolved yet, in which case this function will be called from
1878   // an nmethod that has been patched for deopt and we can ignore the
1879   // request for a fixup.
1880   // Also it is possible that we lost a race in that from_compiled_entry
1881   // is now back to the i2c in that case we don't need to patch and if
1882   // we did we'd leap into space because the callsite needs to use
1883   // "to interpreter" stub in order to load up the Method*. Don't
1884   // ask me how I know this...
1885 
1886   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1887   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1888     return;
1889   }
1890 
1891   // The check above makes sure this is a nmethod.
1892   CompiledMethod* nm = cb->as_compiled_method_or_null();
1893   assert(nm, "must be");
1894 
1895   // Get the return PC for the passed caller PC.
1896   address return_pc = caller_pc + frame::pc_return_offset;
1897 
1898   // There is a benign race here. We could be attempting to patch to a compiled
1899   // entry point at the same time the callee is being deoptimized. If that is
1900   // the case then entry_point may in fact point to a c2i and we'd patch the
1901   // call site with the same old data. clear_code will set code() to NULL
1902   // at the end of it. If we happen to see that NULL then we can skip trying
1903   // to patch. If we hit the window where the callee has a c2i in the
1904   // from_compiled_entry and the NULL isn't present yet then we lose the race
1905   // and patch the code with the same old data. Asi es la vida.
1906 
1907   if (moop->code() == NULL) return;
1908 
1909   if (nm->is_in_use()) {
1910 
1911     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1912     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1913     if (NativeCall::is_call_before(return_pc)) {
1914       ResourceMark mark;
1915       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1916       //
1917       // bug 6281185. We might get here after resolving a call site to a vanilla
1918       // virtual call. Because the resolvee uses the verified entry it may then
1919       // see compiled code and attempt to patch the site by calling us. This would
1920       // then incorrectly convert the call site to optimized and its downhill from
1921       // there. If you're lucky you'll get the assert in the bugid, if not you've
1922       // just made a call site that could be megamorphic into a monomorphic site
1923       // for the rest of its life! Just another racing bug in the life of
1924       // fixup_callers_callsite ...
1925       //
1926       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1927       iter.next();
1928       assert(iter.has_current(), "must have a reloc at java call site");
1929       relocInfo::relocType typ = iter.reloc()->type();
1930       if (typ != relocInfo::static_call_type &&
1931            typ != relocInfo::opt_virtual_call_type &&
1932            typ != relocInfo::static_stub_type) {
1933         return;
1934       }
1935       address destination = call->destination();
1936       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1937         call->set_destination_mt_safe(entry_point);
1938       }
1939     }
1940   }
1941 IRT_END
1942 
1943 
1944 // same as JVM_Arraycopy, but called directly from compiled code
JRT_ENTRY(void,SharedRuntime::slow_arraycopy_C (oopDesc * src,jint src_pos,oopDesc * dest,jint dest_pos,jint length,JavaThread * thread))1945 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1946                                                 oopDesc* dest, jint dest_pos,
1947                                                 jint length,
1948                                                 JavaThread* thread)) {
1949 #ifndef PRODUCT
1950   _slow_array_copy_ctr++;
1951 #endif
1952   // Check if we have null pointers
1953   if (src == NULL || dest == NULL) {
1954     THROW(vmSymbols::java_lang_NullPointerException());
1955   }
1956   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1957   // even though the copy_array API also performs dynamic checks to ensure
1958   // that src and dest are truly arrays (and are conformable).
1959   // The copy_array mechanism is awkward and could be removed, but
1960   // the compilers don't call this function except as a last resort,
1961   // so it probably doesn't matter.
1962   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1963                                         (arrayOopDesc*)dest, dest_pos,
1964                                         length, thread);
1965 }
1966 JRT_END
1967 
1968 // The caller of generate_class_cast_message() (or one of its callers)
1969 // must use a ResourceMark in order to correctly free the result.
generate_class_cast_message(JavaThread * thread,Klass * caster_klass)1970 char* SharedRuntime::generate_class_cast_message(
1971     JavaThread* thread, Klass* caster_klass) {
1972 
1973   // Get target class name from the checkcast instruction
1974   vframeStream vfst(thread, true);
1975   assert(!vfst.at_end(), "Java frame must exist");
1976   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1977   constantPoolHandle cpool(thread, vfst.method()->constants());
1978   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1979   Symbol* target_klass_name = NULL;
1980   if (target_klass == NULL) {
1981     // This klass should be resolved, but just in case, get the name in the klass slot.
1982     target_klass_name = cpool->klass_name_at(cc.index());
1983   }
1984   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1985 }
1986 
1987 
1988 // The caller of generate_class_cast_message() (or one of its callers)
1989 // must use a ResourceMark in order to correctly free the result.
generate_class_cast_message(Klass * caster_klass,Klass * target_klass,Symbol * target_klass_name)1990 char* SharedRuntime::generate_class_cast_message(
1991     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1992   const char* caster_name = caster_klass->external_name();
1993 
1994   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1995   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
1996                                                    target_klass->external_name();
1997 
1998   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1999 
2000   const char* caster_klass_description = "";
2001   const char* target_klass_description = "";
2002   const char* klass_separator = "";
2003   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2004     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2005   } else {
2006     caster_klass_description = caster_klass->class_in_module_of_loader();
2007     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2008     klass_separator = (target_klass != NULL) ? "; " : "";
2009   }
2010 
2011   // add 3 for parenthesis and preceeding space
2012   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2013 
2014   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2015   if (message == NULL) {
2016     // Shouldn't happen, but don't cause even more problems if it does
2017     message = const_cast<char*>(caster_klass->external_name());
2018   } else {
2019     jio_snprintf(message,
2020                  msglen,
2021                  "class %s cannot be cast to class %s (%s%s%s)",
2022                  caster_name,
2023                  target_name,
2024                  caster_klass_description,
2025                  klass_separator,
2026                  target_klass_description
2027                  );
2028   }
2029   return message;
2030 }
2031 
2032 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2033   (void) JavaThread::current()->reguard_stack();
2034 JRT_END
2035 
monitor_enter_helper(oopDesc * obj,BasicLock * lock,JavaThread * thread,bool use_inlined_fast_locking)2036 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread,
2037                                          bool use_inlined_fast_locking) {
2038   if (!SafepointSynchronize::is_synchronizing()) {
2039     // Only try quick_enter() if we're not trying to reach a safepoint
2040     // so that the calling thread reaches the safepoint more quickly.
2041     if (ObjectSynchronizer::quick_enter(obj, thread, lock)) return;
2042   }
2043   // NO_ASYNC required because an async exception on the state transition destructor
2044   // would leave you with the lock held and it would never be released.
2045   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2046   // and the model is that an exception implies the method failed.
2047   JRT_BLOCK_NO_ASYNC
2048 
2049   if (PrintBiasedLockingStatistics) {
2050     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2051   }
2052   Handle h_obj(THREAD, obj);
2053   if (UseBiasedLocking) {
2054     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2055     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2056   } else {
2057     if (use_inlined_fast_locking) {
2058       ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2059     } else {
2060       ObjectSynchronizer::fast_enter(h_obj, lock, false, CHECK);
2061     }
2062   }
2063   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2064   JRT_BLOCK_END
2065 }
2066 
2067 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2068 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2069   SharedRuntime::monitor_enter_helper(obj, lock, thread, true);
2070 JRT_END
2071 
monitor_exit_helper(oopDesc * obj,BasicLock * lock,JavaThread * thread,bool use_inlined_fast_locking)2072 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread,
2073                                         bool use_inlined_fast_locking) {
2074   assert(JavaThread::current() == thread, "invariant");
2075   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2076   EXCEPTION_MARK;
2077   if (use_inlined_fast_locking) {
2078     // When using fast locking, the compiled code has already tried the fast case
2079     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2080   } else {
2081     ObjectSynchronizer::fast_exit(obj, lock, THREAD);
2082   }
2083 }
2084 
2085 // Handles the uncommon cases of monitor unlocking in compiled code
2086 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2087   SharedRuntime::monitor_exit_helper(obj, lock, thread, true);
2088 JRT_END
2089 
2090 #ifndef PRODUCT
2091 
print_statistics()2092 void SharedRuntime::print_statistics() {
2093   ttyLocker ttyl;
2094   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2095 
2096   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2097 
2098   SharedRuntime::print_ic_miss_histogram();
2099 
2100   if (CountRemovableExceptions) {
2101     if (_nof_removable_exceptions > 0) {
2102       Unimplemented(); // this counter is not yet incremented
2103       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2104     }
2105   }
2106 
2107   // Dump the JRT_ENTRY counters
2108   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2109   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2110   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2111   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2112   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2113   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2114   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2115 
2116   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2117   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2118   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2119   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2120   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2121 
2122   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2123   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2124   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2125   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2126   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2127   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2128   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2129   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2130   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2131   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2132   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2133   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2134   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2135   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2136   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2137   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2138 
2139   AdapterHandlerLibrary::print_statistics();
2140 
2141   if (xtty != NULL)  xtty->tail("statistics");
2142 }
2143 
percent(int x,int y)2144 inline double percent(int x, int y) {
2145   return 100.0 * x / MAX2(y, 1);
2146 }
2147 
percent(int64_t x,int64_t y)2148 inline double percent(int64_t x, int64_t y) {
2149   return 100.0 * x / MAX2(y, (int64_t)1);
2150 }
2151 
2152 class MethodArityHistogram {
2153  public:
2154   enum { MAX_ARITY = 256 };
2155  private:
2156   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2157   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2158   static uint64_t _total_compiled_calls;
2159   static uint64_t _max_compiled_calls_per_method;
2160   static int _max_arity;                       // max. arity seen
2161   static int _max_size;                        // max. arg size seen
2162 
add_method_to_histogram(nmethod * nm)2163   static void add_method_to_histogram(nmethod* nm) {
2164     Method* method = (nm == NULL) ? NULL : nm->method();
2165     if ((method != NULL) && nm->is_alive()) {
2166       ArgumentCount args(method->signature());
2167       int arity   = args.size() + (method->is_static() ? 0 : 1);
2168       int argsize = method->size_of_parameters();
2169       arity   = MIN2(arity, MAX_ARITY-1);
2170       argsize = MIN2(argsize, MAX_ARITY-1);
2171       uint64_t count = (uint64_t)method->compiled_invocation_count();
2172       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2173       _total_compiled_calls    += count;
2174       _arity_histogram[arity]  += count;
2175       _size_histogram[argsize] += count;
2176       _max_arity = MAX2(_max_arity, arity);
2177       _max_size  = MAX2(_max_size, argsize);
2178     }
2179   }
2180 
print_histogram_helper(int n,uint64_t * histo,const char * name)2181   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2182     const int N = MIN2(9, n);
2183     double sum = 0;
2184     double weighted_sum = 0;
2185     for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2186     if (sum >= 1.0) { // prevent divide by zero or divide overflow
2187       double rest = sum;
2188       double percent = sum / 100;
2189       for (int i = 0; i <= N; i++) {
2190         rest -= histo[i];
2191         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent);
2192       }
2193       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2194       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2195       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2196       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2197     } else {
2198       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2199     }
2200   }
2201 
print_histogram()2202   void print_histogram() {
2203     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2204     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2205     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2206     print_histogram_helper(_max_size, _size_histogram, "size");
2207     tty->cr();
2208   }
2209 
2210  public:
MethodArityHistogram()2211   MethodArityHistogram() {
2212     // Take the Compile_lock to protect against changes in the CodeBlob structures
2213     MutexLockerEx mu1(Compile_lock, Mutex::_no_safepoint_check_flag);
2214     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2215     MutexLockerEx mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2216     _max_arity = _max_size = 0;
2217     _total_compiled_calls = 0;
2218     _max_compiled_calls_per_method = 0;
2219     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2220     CodeCache::nmethods_do(add_method_to_histogram);
2221     print_histogram();
2222   }
2223 };
2224 
2225 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2226 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2227 uint64_t MethodArityHistogram::_total_compiled_calls;
2228 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2229 int MethodArityHistogram::_max_arity;
2230 int MethodArityHistogram::_max_size;
2231 
print_call_statistics(uint64_t comp_total)2232 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2233   tty->print_cr("Calls from compiled code:");
2234   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2235   int64_t mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2236   int64_t mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2237   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2238   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2239   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2240   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2241   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2242   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2243   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2244   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2245   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2246   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2247   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2248   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2249   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2250   tty->cr();
2251   tty->print_cr("Note 1: counter updates are not MT-safe.");
2252   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2253   tty->print_cr("        %% in nested categories are relative to their category");
2254   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2255   tty->cr();
2256 
2257   MethodArityHistogram h;
2258 }
2259 #endif
2260 
2261 
2262 // A simple wrapper class around the calling convention information
2263 // that allows sharing of adapters for the same calling convention.
2264 class AdapterFingerPrint : public CHeapObj<mtCode> {
2265  private:
2266   enum {
2267     _basic_type_bits = 4,
2268     _basic_type_mask = right_n_bits(_basic_type_bits),
2269     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2270     _compact_int_count = 3
2271   };
2272   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2273   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2274 
2275   union {
2276     int  _compact[_compact_int_count];
2277     int* _fingerprint;
2278   } _value;
2279   int _length; // A negative length indicates the fingerprint is in the compact form,
2280                // Otherwise _value._fingerprint is the array.
2281 
2282   // Remap BasicTypes that are handled equivalently by the adapters.
2283   // These are correct for the current system but someday it might be
2284   // necessary to make this mapping platform dependent.
adapter_encoding(BasicType in)2285   static int adapter_encoding(BasicType in) {
2286     switch (in) {
2287       case T_BOOLEAN:
2288       case T_BYTE:
2289       case T_SHORT:
2290       case T_CHAR:
2291         // There are all promoted to T_INT in the calling convention
2292         return T_INT;
2293 
2294       case T_OBJECT:
2295       case T_ARRAY:
2296         // In other words, we assume that any register good enough for
2297         // an int or long is good enough for a managed pointer.
2298 #ifdef _LP64
2299         return T_LONG;
2300 #else
2301         return T_INT;
2302 #endif
2303 
2304       case T_INT:
2305       case T_LONG:
2306       case T_FLOAT:
2307       case T_DOUBLE:
2308       case T_VOID:
2309         return in;
2310 
2311       default:
2312         ShouldNotReachHere();
2313         return T_CONFLICT;
2314     }
2315   }
2316 
2317  public:
AdapterFingerPrint(int total_args_passed,BasicType * sig_bt)2318   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2319     // The fingerprint is based on the BasicType signature encoded
2320     // into an array of ints with eight entries per int.
2321     int* ptr;
2322     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2323     if (len <= _compact_int_count) {
2324       assert(_compact_int_count == 3, "else change next line");
2325       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2326       // Storing the signature encoded as signed chars hits about 98%
2327       // of the time.
2328       _length = -len;
2329       ptr = _value._compact;
2330     } else {
2331       _length = len;
2332       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2333       ptr = _value._fingerprint;
2334     }
2335 
2336     // Now pack the BasicTypes with 8 per int
2337     int sig_index = 0;
2338     for (int index = 0; index < len; index++) {
2339       int value = 0;
2340       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2341         int bt = ((sig_index < total_args_passed)
2342                   ? adapter_encoding(sig_bt[sig_index++])
2343                   : 0);
2344         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2345         value = (value << _basic_type_bits) | bt;
2346       }
2347       ptr[index] = value;
2348     }
2349   }
2350 
~AdapterFingerPrint()2351   ~AdapterFingerPrint() {
2352     if (_length > 0) {
2353       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2354     }
2355   }
2356 
value(int index)2357   int value(int index) {
2358     if (_length < 0) {
2359       return _value._compact[index];
2360     }
2361     return _value._fingerprint[index];
2362   }
length()2363   int length() {
2364     if (_length < 0) return -_length;
2365     return _length;
2366   }
2367 
is_compact()2368   bool is_compact() {
2369     return _length <= 0;
2370   }
2371 
compute_hash()2372   unsigned int compute_hash() {
2373     int hash = 0;
2374     for (int i = 0; i < length(); i++) {
2375       int v = value(i);
2376       hash = (hash << 8) ^ v ^ (hash >> 5);
2377     }
2378     return (unsigned int)hash;
2379   }
2380 
as_string()2381   const char* as_string() {
2382     stringStream st;
2383     st.print("0x");
2384     for (int i = 0; i < length(); i++) {
2385       st.print("%08x", value(i));
2386     }
2387     return st.as_string();
2388   }
2389 
equals(AdapterFingerPrint * other)2390   bool equals(AdapterFingerPrint* other) {
2391     if (other->_length != _length) {
2392       return false;
2393     }
2394     if (_length < 0) {
2395       assert(_compact_int_count == 3, "else change next line");
2396       return _value._compact[0] == other->_value._compact[0] &&
2397              _value._compact[1] == other->_value._compact[1] &&
2398              _value._compact[2] == other->_value._compact[2];
2399     } else {
2400       for (int i = 0; i < _length; i++) {
2401         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2402           return false;
2403         }
2404       }
2405     }
2406     return true;
2407   }
2408 };
2409 
2410 
2411 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2412 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2413   friend class AdapterHandlerTableIterator;
2414 
2415  private:
2416 
2417 #ifndef PRODUCT
2418   static int _lookups; // number of calls to lookup
2419   static int _buckets; // number of buckets checked
2420   static int _equals;  // number of buckets checked with matching hash
2421   static int _hits;    // number of successful lookups
2422   static int _compact; // number of equals calls with compact signature
2423 #endif
2424 
bucket(int i)2425   AdapterHandlerEntry* bucket(int i) {
2426     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2427   }
2428 
2429  public:
AdapterHandlerTable()2430   AdapterHandlerTable()
2431     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2432 
2433   // Create a new entry suitable for insertion in the table
new_entry(AdapterFingerPrint * fingerprint,address i2c_entry,address c2i_entry,address c2i_unverified_entry)2434   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2435     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2436     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2437     if (DumpSharedSpaces) {
2438       ((CDSAdapterHandlerEntry*)entry)->init();
2439     }
2440     return entry;
2441   }
2442 
2443   // Insert an entry into the table
add(AdapterHandlerEntry * entry)2444   void add(AdapterHandlerEntry* entry) {
2445     int index = hash_to_index(entry->hash());
2446     add_entry(index, entry);
2447   }
2448 
free_entry(AdapterHandlerEntry * entry)2449   void free_entry(AdapterHandlerEntry* entry) {
2450     entry->deallocate();
2451     BasicHashtable<mtCode>::free_entry(entry);
2452   }
2453 
2454   // Find a entry with the same fingerprint if it exists
lookup(int total_args_passed,BasicType * sig_bt)2455   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2456     NOT_PRODUCT(_lookups++);
2457     AdapterFingerPrint fp(total_args_passed, sig_bt);
2458     unsigned int hash = fp.compute_hash();
2459     int index = hash_to_index(hash);
2460     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2461       NOT_PRODUCT(_buckets++);
2462       if (e->hash() == hash) {
2463         NOT_PRODUCT(_equals++);
2464         if (fp.equals(e->fingerprint())) {
2465 #ifndef PRODUCT
2466           if (fp.is_compact()) _compact++;
2467           _hits++;
2468 #endif
2469           return e;
2470         }
2471       }
2472     }
2473     return NULL;
2474   }
2475 
2476 #ifndef PRODUCT
print_statistics()2477   void print_statistics() {
2478     ResourceMark rm;
2479     int longest = 0;
2480     int empty = 0;
2481     int total = 0;
2482     int nonempty = 0;
2483     for (int index = 0; index < table_size(); index++) {
2484       int count = 0;
2485       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2486         count++;
2487       }
2488       if (count != 0) nonempty++;
2489       if (count == 0) empty++;
2490       if (count > longest) longest = count;
2491       total += count;
2492     }
2493     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2494                   empty, longest, total, total / (double)nonempty);
2495     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2496                   _lookups, _buckets, _equals, _hits, _compact);
2497   }
2498 #endif
2499 };
2500 
2501 
2502 #ifndef PRODUCT
2503 
2504 int AdapterHandlerTable::_lookups;
2505 int AdapterHandlerTable::_buckets;
2506 int AdapterHandlerTable::_equals;
2507 int AdapterHandlerTable::_hits;
2508 int AdapterHandlerTable::_compact;
2509 
2510 #endif
2511 
2512 class AdapterHandlerTableIterator : public StackObj {
2513  private:
2514   AdapterHandlerTable* _table;
2515   int _index;
2516   AdapterHandlerEntry* _current;
2517 
scan()2518   void scan() {
2519     while (_index < _table->table_size()) {
2520       AdapterHandlerEntry* a = _table->bucket(_index);
2521       _index++;
2522       if (a != NULL) {
2523         _current = a;
2524         return;
2525       }
2526     }
2527   }
2528 
2529  public:
AdapterHandlerTableIterator(AdapterHandlerTable * table)2530   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2531     scan();
2532   }
has_next()2533   bool has_next() {
2534     return _current != NULL;
2535   }
next()2536   AdapterHandlerEntry* next() {
2537     if (_current != NULL) {
2538       AdapterHandlerEntry* result = _current;
2539       _current = _current->next();
2540       if (_current == NULL) scan();
2541       return result;
2542     } else {
2543       return NULL;
2544     }
2545   }
2546 };
2547 
2548 
2549 // ---------------------------------------------------------------------------
2550 // Implementation of AdapterHandlerLibrary
2551 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2552 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2553 const int AdapterHandlerLibrary_size = 16*K;
2554 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2555 
buffer_blob()2556 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2557   // Should be called only when AdapterHandlerLibrary_lock is active.
2558   if (_buffer == NULL) // Initialize lazily
2559       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2560   return _buffer;
2561 }
2562 
unexpected_adapter_call()2563 extern "C" void unexpected_adapter_call() {
2564   ShouldNotCallThis();
2565 }
2566 
initialize()2567 void AdapterHandlerLibrary::initialize() {
2568   if (_adapters != NULL) return;
2569   _adapters = new AdapterHandlerTable();
2570 
2571   // Create a special handler for abstract methods.  Abstract methods
2572   // are never compiled so an i2c entry is somewhat meaningless, but
2573   // throw AbstractMethodError just in case.
2574   // Pass wrong_method_abstract for the c2i transitions to return
2575   // AbstractMethodError for invalid invocations.
2576   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2577   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2578                                                               StubRoutines::throw_AbstractMethodError_entry(),
2579                                                               wrong_method_abstract, wrong_method_abstract);
2580 }
2581 
new_entry(AdapterFingerPrint * fingerprint,address i2c_entry,address c2i_entry,address c2i_unverified_entry)2582 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2583                                                       address i2c_entry,
2584                                                       address c2i_entry,
2585                                                       address c2i_unverified_entry) {
2586   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2587 }
2588 
get_adapter(const methodHandle & method)2589 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2590   AdapterHandlerEntry* entry = get_adapter0(method);
2591   if (entry != NULL && method->is_shared()) {
2592     // See comments around Method::link_method()
2593     MutexLocker mu(AdapterHandlerLibrary_lock);
2594     if (method->adapter() == NULL) {
2595       method->update_adapter_trampoline(entry);
2596     }
2597     address trampoline = method->from_compiled_entry();
2598     if (*(int*)trampoline == 0) {
2599       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2600       MacroAssembler _masm(&buffer);
2601       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2602       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2603       _masm.flush();
2604 
2605       if (PrintInterpreter) {
2606         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2607       }
2608     }
2609   }
2610 
2611   return entry;
2612 }
2613 
get_adapter0(const methodHandle & method)2614 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2615   // Use customized signature handler.  Need to lock around updates to
2616   // the AdapterHandlerTable (it is not safe for concurrent readers
2617   // and a single writer: this could be fixed if it becomes a
2618   // problem).
2619 
2620   ResourceMark rm;
2621 
2622   NOT_PRODUCT(int insts_size);
2623   AdapterBlob* new_adapter = NULL;
2624   AdapterHandlerEntry* entry = NULL;
2625   AdapterFingerPrint* fingerprint = NULL;
2626   {
2627     MutexLocker mu(AdapterHandlerLibrary_lock);
2628     // make sure data structure is initialized
2629     initialize();
2630 
2631     if (method->is_abstract()) {
2632       return _abstract_method_handler;
2633     }
2634 
2635     // Fill in the signature array, for the calling-convention call.
2636     int total_args_passed = method->size_of_parameters(); // All args on stack
2637 
2638     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2639     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2640     int i = 0;
2641     if (!method->is_static())  // Pass in receiver first
2642       sig_bt[i++] = T_OBJECT;
2643     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2644       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2645       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2646         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2647     }
2648     assert(i == total_args_passed, "");
2649 
2650     // Lookup method signature's fingerprint
2651     entry = _adapters->lookup(total_args_passed, sig_bt);
2652 
2653 #ifdef ASSERT
2654     AdapterHandlerEntry* shared_entry = NULL;
2655     // Start adapter sharing verification only after the VM is booted.
2656     if (VerifyAdapterSharing && (entry != NULL)) {
2657       shared_entry = entry;
2658       entry = NULL;
2659     }
2660 #endif
2661 
2662     if (entry != NULL) {
2663       return entry;
2664     }
2665 
2666     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2667     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2668 
2669     // Make a C heap allocated version of the fingerprint to store in the adapter
2670     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2671 
2672     // StubRoutines::code2() is initialized after this function can be called. As a result,
2673     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2674     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2675     // stub that ensure that an I2C stub is called from an interpreter frame.
2676     bool contains_all_checks = StubRoutines::code2() != NULL;
2677 
2678     // Create I2C & C2I handlers
2679     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2680     if (buf != NULL) {
2681       CodeBuffer buffer(buf);
2682       short buffer_locs[20];
2683       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2684                                              sizeof(buffer_locs)/sizeof(relocInfo));
2685 
2686       MacroAssembler _masm(&buffer);
2687       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2688                                                      total_args_passed,
2689                                                      comp_args_on_stack,
2690                                                      sig_bt,
2691                                                      regs,
2692                                                      fingerprint);
2693 #ifdef ASSERT
2694       if (VerifyAdapterSharing) {
2695         if (shared_entry != NULL) {
2696           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2697           // Release the one just created and return the original
2698           _adapters->free_entry(entry);
2699           return shared_entry;
2700         } else  {
2701           entry->save_code(buf->code_begin(), buffer.insts_size());
2702         }
2703       }
2704 #endif
2705 
2706       new_adapter = AdapterBlob::create(&buffer);
2707       NOT_PRODUCT(insts_size = buffer.insts_size());
2708     }
2709     if (new_adapter == NULL) {
2710       // CodeCache is full, disable compilation
2711       // Ought to log this but compile log is only per compile thread
2712       // and we're some non descript Java thread.
2713       return NULL; // Out of CodeCache space
2714     }
2715     entry->relocate(new_adapter->content_begin());
2716 #ifndef PRODUCT
2717     // debugging suppport
2718     if (PrintAdapterHandlers || PrintStubCode) {
2719       ttyLocker ttyl;
2720       entry->print_adapter_on(tty);
2721       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2722                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2723                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2724       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2725       if (Verbose || PrintStubCode) {
2726         address first_pc = entry->base_address();
2727         if (first_pc != NULL) {
2728           Disassembler::decode(first_pc, first_pc + insts_size);
2729           tty->cr();
2730         }
2731       }
2732     }
2733 #endif
2734     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2735     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2736     if (contains_all_checks || !VerifyAdapterCalls) {
2737       _adapters->add(entry);
2738     }
2739   }
2740   // Outside of the lock
2741   if (new_adapter != NULL) {
2742     char blob_id[256];
2743     jio_snprintf(blob_id,
2744                  sizeof(blob_id),
2745                  "%s(%s)@" PTR_FORMAT,
2746                  new_adapter->name(),
2747                  fingerprint->as_string(),
2748                  new_adapter->content_begin());
2749     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2750 
2751     if (JvmtiExport::should_post_dynamic_code_generated()) {
2752       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2753     }
2754   }
2755   return entry;
2756 }
2757 
base_address()2758 address AdapterHandlerEntry::base_address() {
2759   address base = _i2c_entry;
2760   if (base == NULL)  base = _c2i_entry;
2761   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2762   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2763   return base;
2764 }
2765 
relocate(address new_base)2766 void AdapterHandlerEntry::relocate(address new_base) {
2767   address old_base = base_address();
2768   assert(old_base != NULL, "");
2769   ptrdiff_t delta = new_base - old_base;
2770   if (_i2c_entry != NULL)
2771     _i2c_entry += delta;
2772   if (_c2i_entry != NULL)
2773     _c2i_entry += delta;
2774   if (_c2i_unverified_entry != NULL)
2775     _c2i_unverified_entry += delta;
2776   assert(base_address() == new_base, "");
2777 }
2778 
2779 
deallocate()2780 void AdapterHandlerEntry::deallocate() {
2781   delete _fingerprint;
2782 #ifdef ASSERT
2783   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2784 #endif
2785 }
2786 
2787 
2788 #ifdef ASSERT
2789 // Capture the code before relocation so that it can be compared
2790 // against other versions.  If the code is captured after relocation
2791 // then relative instructions won't be equivalent.
save_code(unsigned char * buffer,int length)2792 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2793   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2794   _saved_code_length = length;
2795   memcpy(_saved_code, buffer, length);
2796 }
2797 
2798 
compare_code(unsigned char * buffer,int length)2799 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2800   if (length != _saved_code_length) {
2801     return false;
2802   }
2803 
2804   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2805 }
2806 #endif
2807 
2808 
2809 /**
2810  * Create a native wrapper for this native method.  The wrapper converts the
2811  * Java-compiled calling convention to the native convention, handles
2812  * arguments, and transitions to native.  On return from the native we transition
2813  * back to java blocking if a safepoint is in progress.
2814  */
create_native_wrapper(const methodHandle & method)2815 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2816   ResourceMark rm;
2817   nmethod* nm = NULL;
2818   address critical_entry = NULL;
2819 
2820   assert(method->is_native(), "must be native");
2821   assert(method->is_method_handle_intrinsic() ||
2822          method->has_native_function(), "must have something valid to call!");
2823 
2824   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2825     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2826     critical_entry = NativeLookup::lookup_critical_entry(method);
2827   }
2828 
2829   {
2830     // Perform the work while holding the lock, but perform any printing outside the lock
2831     MutexLocker mu(AdapterHandlerLibrary_lock);
2832     // See if somebody beat us to it
2833     if (method->code() != NULL) {
2834       return;
2835     }
2836 
2837     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2838     assert(compile_id > 0, "Must generate native wrapper");
2839 
2840 
2841     ResourceMark rm;
2842     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2843     if (buf != NULL) {
2844       CodeBuffer buffer(buf);
2845       struct { double data[20]; } locs_buf;
2846       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, (sizeof(locs_buf)) / (sizeof(relocInfo)));
2847       MacroAssembler _masm(&buffer);
2848 
2849       // Fill in the signature array, for the calling-convention call.
2850       const int total_args_passed = method->size_of_parameters();
2851 
2852       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2853       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2854       int i=0;
2855       if (!method->is_static())  // Pass in receiver first
2856         sig_bt[i++] = T_OBJECT;
2857       SignatureStream ss(method->signature());
2858       for (; !ss.at_return_type(); ss.next()) {
2859         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2860         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2861           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2862       }
2863       assert(i == total_args_passed, "");
2864       BasicType ret_type = ss.type();
2865 
2866       // Now get the compiled-Java layout as input (or output) arguments.
2867       // NOTE: Stubs for compiled entry points of method handle intrinsics
2868       // are just trampolines so the argument registers must be outgoing ones.
2869       const bool is_outgoing = method->is_method_handle_intrinsic();
2870       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2871 
2872       // Generate the compiled-to-native wrapper code
2873       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2874 
2875       if (nm != NULL) {
2876         method->set_code(method, nm);
2877 
2878         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2879         if (directive->PrintAssemblyOption) {
2880           nm->print_code();
2881         }
2882         DirectivesStack::release(directive);
2883       }
2884     }
2885   } // Unlock AdapterHandlerLibrary_lock
2886 
2887 
2888   // Install the generated code.
2889   if (nm != NULL) {
2890     const char *msg = method->is_static() ? "(static)" : "";
2891     CompileTask::print_ul(nm, msg);
2892     if (PrintCompilation) {
2893       ttyLocker ttyl;
2894       CompileTask::print(tty, nm, msg);
2895     }
2896     nm->post_compiled_method_load_event();
2897   }
2898 }
2899 
2900 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2901   assert(thread == JavaThread::current(), "must be");
2902   // The code is about to enter a JNI lazy critical native method and
2903   // _needs_gc is true, so if this thread is already in a critical
2904   // section then just return, otherwise this thread should block
2905   // until needs_gc has been cleared.
2906   if (thread->in_critical()) {
2907     return;
2908   }
2909   // Lock and unlock a critical section to give the system a chance to block
2910   GCLocker::lock_critical(thread);
2911   GCLocker::unlock_critical(thread);
2912 JRT_END
2913 
2914 #if INCLUDE_SHENANDOAHGC
2915 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2916   assert(Universe::heap()->supports_object_pinning(), "Why we here?");
2917   assert(obj != NULL, "Should not be null");
2918   oop o(obj);
2919   o = Universe::heap()->pin_object(thread, o);
2920   assert(o != NULL, "Should not be null");
2921   return o;
2922 JRT_END
2923 
2924 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2925   assert(Universe::heap()->supports_object_pinning(), "Why we here?");
2926   assert(obj != NULL, "Should not be null");
2927   oop o(obj);
2928   Universe::heap()->unpin_object(thread, o);
2929 JRT_END
2930 #endif
2931 
2932 // -------------------------------------------------------------------------
2933 // Java-Java calling convention
2934 // (what you use when Java calls Java)
2935 
2936 //------------------------------name_for_receiver----------------------------------
2937 // For a given signature, return the VMReg for parameter 0.
name_for_receiver()2938 VMReg SharedRuntime::name_for_receiver() {
2939   VMRegPair regs;
2940   BasicType sig_bt = T_OBJECT;
2941   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2942   // Return argument 0 register.  In the LP64 build pointers
2943   // take 2 registers, but the VM wants only the 'main' name.
2944   return regs.first();
2945 }
2946 
find_callee_arguments(Symbol * sig,bool has_receiver,bool has_appendix,int * arg_size)2947 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2948   // This method is returning a data structure allocating as a
2949   // ResourceObject, so do not put any ResourceMarks in here.
2950   char *s = sig->as_C_string();
2951   int len = (int)strlen(s);
2952   s++; len--;                   // Skip opening paren
2953 
2954   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2955   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2956   int cnt = 0;
2957   if (has_receiver) {
2958     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2959   }
2960 
2961   while (*s != ')') {          // Find closing right paren
2962     switch (*s++) {            // Switch on signature character
2963     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2964     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2965     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2966     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2967     case 'I': sig_bt[cnt++] = T_INT;     break;
2968     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2969     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2970     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2971     case 'V': sig_bt[cnt++] = T_VOID;    break;
2972     case 'L':                   // Oop
2973       while (*s++ != ';');   // Skip signature
2974       sig_bt[cnt++] = T_OBJECT;
2975       break;
2976     case '[': {                 // Array
2977       do {                      // Skip optional size
2978         while (*s >= '0' && *s <= '9') s++;
2979       } while (*s++ == '[');   // Nested arrays?
2980       // Skip element type
2981       if (s[-1] == 'L')
2982         while (*s++ != ';'); // Skip signature
2983       sig_bt[cnt++] = T_ARRAY;
2984       break;
2985     }
2986     default : ShouldNotReachHere();
2987     }
2988   }
2989 
2990   if (has_appendix) {
2991     sig_bt[cnt++] = T_OBJECT;
2992   }
2993 
2994   assert(cnt < 256, "grow table size");
2995 
2996   int comp_args_on_stack;
2997   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2998 
2999   // the calling convention doesn't count out_preserve_stack_slots so
3000   // we must add that in to get "true" stack offsets.
3001 
3002   if (comp_args_on_stack) {
3003     for (int i = 0; i < cnt; i++) {
3004       VMReg reg1 = regs[i].first();
3005       if (reg1->is_stack()) {
3006         // Yuck
3007         reg1 = reg1->bias(out_preserve_stack_slots());
3008       }
3009       VMReg reg2 = regs[i].second();
3010       if (reg2->is_stack()) {
3011         // Yuck
3012         reg2 = reg2->bias(out_preserve_stack_slots());
3013       }
3014       regs[i].set_pair(reg2, reg1);
3015     }
3016   }
3017 
3018   // results
3019   *arg_size = cnt;
3020   return regs;
3021 }
3022 
3023 // OSR Migration Code
3024 //
3025 // This code is used convert interpreter frames into compiled frames.  It is
3026 // called from very start of a compiled OSR nmethod.  A temp array is
3027 // allocated to hold the interesting bits of the interpreter frame.  All
3028 // active locks are inflated to allow them to move.  The displaced headers and
3029 // active interpreter locals are copied into the temp buffer.  Then we return
3030 // back to the compiled code.  The compiled code then pops the current
3031 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3032 // copies the interpreter locals and displaced headers where it wants.
3033 // Finally it calls back to free the temp buffer.
3034 //
3035 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3036 
3037 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3038 
3039   //
3040   // This code is dependent on the memory layout of the interpreter local
3041   // array and the monitors. On all of our platforms the layout is identical
3042   // so this code is shared. If some platform lays the their arrays out
3043   // differently then this code could move to platform specific code or
3044   // the code here could be modified to copy items one at a time using
3045   // frame accessor methods and be platform independent.
3046 
3047   frame fr = thread->last_frame();
3048   assert(fr.is_interpreted_frame(), "");
3049   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3050 
3051   // Figure out how many monitors are active.
3052   int active_monitor_count = 0;
3053   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3054        kptr < fr.interpreter_frame_monitor_begin();
3055        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3056     if (kptr->obj() != NULL) active_monitor_count++;
3057   }
3058 
3059   // QQQ we could place number of active monitors in the array so that compiled code
3060   // could double check it.
3061 
3062   Method* moop = fr.interpreter_frame_method();
3063   int max_locals = moop->max_locals();
3064   // Allocate temp buffer, 1 word per local & 2 per active monitor
3065   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3066   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3067 
3068   // Copy the locals.  Order is preserved so that loading of longs works.
3069   // Since there's no GC I can copy the oops blindly.
3070   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3071   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3072                        (HeapWord*)&buf[0],
3073                        max_locals);
3074 
3075   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3076   int i = max_locals;
3077   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3078        kptr2 < fr.interpreter_frame_monitor_begin();
3079        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3080     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3081       BasicLock *lock = kptr2->lock();
3082       // Inflate so the displaced header becomes position-independent
3083       if (lock->displaced_header()->is_unlocked())
3084         ObjectSynchronizer::inflate_helper(kptr2->obj());
3085       // Now the displaced header is free to move
3086       buf[i++] = (intptr_t)lock->displaced_header();
3087       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3088     }
3089   }
3090   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3091 
3092   return buf;
3093 JRT_END
3094 
3095 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3096   FREE_C_HEAP_ARRAY(intptr_t, buf);
3097 JRT_END
3098 
contains(const CodeBlob * b)3099 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3100   AdapterHandlerTableIterator iter(_adapters);
3101   while (iter.has_next()) {
3102     AdapterHandlerEntry* a = iter.next();
3103     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3104   }
3105   return false;
3106 }
3107 
print_handler_on(outputStream * st,const CodeBlob * b)3108 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3109   AdapterHandlerTableIterator iter(_adapters);
3110   while (iter.has_next()) {
3111     AdapterHandlerEntry* a = iter.next();
3112     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3113       st->print("Adapter for signature: ");
3114       a->print_adapter_on(tty);
3115       return;
3116     }
3117   }
3118   assert(false, "Should have found handler");
3119 }
3120 
print_adapter_on(outputStream * st) const3121 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3122   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3123                p2i(this), fingerprint()->as_string(),
3124                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3125 
3126 }
3127 
3128 #if INCLUDE_CDS
3129 
init()3130 void CDSAdapterHandlerEntry::init() {
3131   assert(DumpSharedSpaces, "used during dump time only");
3132   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3133   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3134 };
3135 
3136 #endif // INCLUDE_CDS
3137 
3138 
3139 #ifndef PRODUCT
3140 
print_statistics()3141 void AdapterHandlerLibrary::print_statistics() {
3142   _adapters->print_statistics();
3143 }
3144 
3145 #endif /* PRODUCT */
3146 
3147 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3148   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3149   if (thread->stack_reserved_zone_disabled()) {
3150   thread->enable_stack_reserved_zone();
3151   }
3152   thread->set_reserved_stack_activation(thread->stack_base());
3153 JRT_END
3154 
look_for_reserved_stack_annotated_method(JavaThread * thread,frame fr)3155 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3156   ResourceMark rm(thread);
3157   frame activation;
3158   CompiledMethod* nm = NULL;
3159   int count = 1;
3160 
3161   assert(fr.is_java_frame(), "Must start on Java frame");
3162 
3163   while (true) {
3164     Method* method = NULL;
3165     bool found = false;
3166     if (fr.is_interpreted_frame()) {
3167       method = fr.interpreter_frame_method();
3168       if (method != NULL && method->has_reserved_stack_access()) {
3169         found = true;
3170       }
3171     } else {
3172       CodeBlob* cb = fr.cb();
3173       if (cb != NULL && cb->is_compiled()) {
3174         nm = cb->as_compiled_method();
3175         method = nm->method();
3176         // scope_desc_near() must be used, instead of scope_desc_at() because on
3177         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3178         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3179           method = sd->method();
3180           if (method != NULL && method->has_reserved_stack_access()) {
3181             found = true;
3182       }
3183     }
3184       }
3185     }
3186     if (found) {
3187       activation = fr;
3188       warning("Potentially dangerous stack overflow in "
3189               "ReservedStackAccess annotated method %s [%d]",
3190               method->name_and_sig_as_C_string(), count++);
3191       EventReservedStackActivation event;
3192       if (event.should_commit()) {
3193         event.set_method(method);
3194         event.commit();
3195       }
3196     }
3197     if (fr.is_first_java_frame()) {
3198       break;
3199     } else {
3200       fr = fr.java_sender();
3201     }
3202   }
3203   return activation;
3204 }
3205 
on_slowpath_allocation_exit(JavaThread * thread)3206 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3207   // After any safepoint, just before going back to compiled code,
3208   // we inform the GC that we will be doing initializing writes to
3209   // this object in the future without emitting card-marks, so
3210   // GC may take any compensating steps.
3211 
3212   oop new_obj = thread->vm_result();
3213   if (new_obj == NULL) return;
3214 
3215   BarrierSet *bs = BarrierSet::barrier_set();
3216   bs->on_slowpath_allocation_exit(thread, new_obj);
3217 }
3218