1 /*
2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "jvm.h"
27 #include "aot/aotLoader.hpp"
28 #include "code/compiledMethod.inline.hpp"
29 #include "classfile/stringTable.hpp"
30 #include "classfile/systemDictionary.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/codeCache.hpp"
33 #include "code/compiledIC.hpp"
34 #include "code/scopeDesc.hpp"
35 #include "code/vtableStubs.hpp"
36 #include "compiler/abstractCompiler.hpp"
37 #include "compiler/compileBroker.hpp"
38 #include "compiler/disassembler.hpp"
39 #include "gc/shared/barrierSet.hpp"
40 #include "gc/shared/gcLocker.inline.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "interpreter/interpreterRuntime.hpp"
43 #include "jfr/jfrEvents.hpp"
44 #include "logging/log.hpp"
45 #include "memory/metaspaceShared.hpp"
46 #include "memory/resourceArea.hpp"
47 #include "memory/universe.hpp"
48 #include "oops/klass.hpp"
49 #include "oops/method.inline.hpp"
50 #include "oops/objArrayKlass.hpp"
51 #include "oops/oop.inline.hpp"
52 #include "prims/forte.hpp"
53 #include "prims/jvmtiExport.hpp"
54 #include "prims/methodHandles.hpp"
55 #include "prims/nativeLookup.hpp"
56 #include "runtime/arguments.hpp"
57 #include "runtime/atomic.hpp"
58 #include "runtime/biasedLocking.hpp"
59 #include "runtime/compilationPolicy.hpp"
60 #include "runtime/frame.inline.hpp"
61 #include "runtime/handles.inline.hpp"
62 #include "runtime/init.hpp"
63 #include "runtime/interfaceSupport.inline.hpp"
64 #include "runtime/java.hpp"
65 #include "runtime/javaCalls.hpp"
66 #include "runtime/sharedRuntime.hpp"
67 #include "runtime/stubRoutines.hpp"
68 #include "runtime/vframe.inline.hpp"
69 #include "runtime/vframeArray.hpp"
70 #include "utilities/copy.hpp"
71 #include "utilities/dtrace.hpp"
72 #include "utilities/events.hpp"
73 #include "utilities/hashtable.inline.hpp"
74 #include "utilities/macros.hpp"
75 #include "utilities/xmlstream.hpp"
76 #ifdef COMPILER1
77 #include "c1/c1_Runtime1.hpp"
78 #endif
79
80 // Shared stub locations
81 RuntimeStub* SharedRuntime::_wrong_method_blob;
82 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob;
83 RuntimeStub* SharedRuntime::_ic_miss_blob;
84 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
85 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
86 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
87 address SharedRuntime::_resolve_static_call_entry;
88
89 DeoptimizationBlob* SharedRuntime::_deopt_blob;
90 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
91 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
92 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
93
94 #ifdef COMPILER2
95 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
96 #endif // COMPILER2
97
98
99 //----------------------------generate_stubs-----------------------------------
generate_stubs()100 void SharedRuntime::generate_stubs() {
101 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
102 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
103 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
104 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
105 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
106 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
107 _resolve_static_call_entry = _resolve_static_call_blob->entry_point();
108
109 #if COMPILER2_OR_JVMCI
110 // Vectors are generated only by C2 and JVMCI.
111 bool support_wide = is_wide_vector(MaxVectorSize);
112 if (support_wide) {
113 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
114 }
115 #endif // COMPILER2_OR_JVMCI
116 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
117 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
118
119 generate_deopt_blob();
120
121 #ifdef COMPILER2
122 generate_uncommon_trap_blob();
123 #endif // COMPILER2
124 }
125
126 #include <math.h>
127
128 // Implementation of SharedRuntime
129
130 #ifndef PRODUCT
131 // For statistics
132 int SharedRuntime::_ic_miss_ctr = 0;
133 int SharedRuntime::_wrong_method_ctr = 0;
134 int SharedRuntime::_resolve_static_ctr = 0;
135 int SharedRuntime::_resolve_virtual_ctr = 0;
136 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
137 int SharedRuntime::_implicit_null_throws = 0;
138 int SharedRuntime::_implicit_div0_throws = 0;
139 int SharedRuntime::_throw_null_ctr = 0;
140
141 int64_t SharedRuntime::_nof_normal_calls = 0;
142 int64_t SharedRuntime::_nof_optimized_calls = 0;
143 int64_t SharedRuntime::_nof_inlined_calls = 0;
144 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
145 int64_t SharedRuntime::_nof_static_calls = 0;
146 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
147 int64_t SharedRuntime::_nof_interface_calls = 0;
148 int64_t SharedRuntime::_nof_optimized_interface_calls = 0;
149 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
150 int64_t SharedRuntime::_nof_megamorphic_interface_calls = 0;
151 int SharedRuntime::_nof_removable_exceptions = 0;
152
153 int SharedRuntime::_new_instance_ctr=0;
154 int SharedRuntime::_new_array_ctr=0;
155 int SharedRuntime::_multi1_ctr=0;
156 int SharedRuntime::_multi2_ctr=0;
157 int SharedRuntime::_multi3_ctr=0;
158 int SharedRuntime::_multi4_ctr=0;
159 int SharedRuntime::_multi5_ctr=0;
160 int SharedRuntime::_mon_enter_stub_ctr=0;
161 int SharedRuntime::_mon_exit_stub_ctr=0;
162 int SharedRuntime::_mon_enter_ctr=0;
163 int SharedRuntime::_mon_exit_ctr=0;
164 int SharedRuntime::_partial_subtype_ctr=0;
165 int SharedRuntime::_jbyte_array_copy_ctr=0;
166 int SharedRuntime::_jshort_array_copy_ctr=0;
167 int SharedRuntime::_jint_array_copy_ctr=0;
168 int SharedRuntime::_jlong_array_copy_ctr=0;
169 int SharedRuntime::_oop_array_copy_ctr=0;
170 int SharedRuntime::_checkcast_array_copy_ctr=0;
171 int SharedRuntime::_unsafe_array_copy_ctr=0;
172 int SharedRuntime::_generic_array_copy_ctr=0;
173 int SharedRuntime::_slow_array_copy_ctr=0;
174 int SharedRuntime::_find_handler_ctr=0;
175 int SharedRuntime::_rethrow_ctr=0;
176
177 int SharedRuntime::_ICmiss_index = 0;
178 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
179 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
180
181
trace_ic_miss(address at)182 void SharedRuntime::trace_ic_miss(address at) {
183 for (int i = 0; i < _ICmiss_index; i++) {
184 if (_ICmiss_at[i] == at) {
185 _ICmiss_count[i]++;
186 return;
187 }
188 }
189 int index = _ICmiss_index++;
190 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
191 _ICmiss_at[index] = at;
192 _ICmiss_count[index] = 1;
193 }
194
print_ic_miss_histogram()195 void SharedRuntime::print_ic_miss_histogram() {
196 if (ICMissHistogram) {
197 tty->print_cr("IC Miss Histogram:");
198 int tot_misses = 0;
199 for (int i = 0; i < _ICmiss_index; i++) {
200 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
201 tot_misses += _ICmiss_count[i];
202 }
203 tty->print_cr("Total IC misses: %7d", tot_misses);
204 }
205 }
206 #endif // PRODUCT
207
208
209 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
210 return x * y;
211 JRT_END
212
213
214 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
215 if (x == min_jlong && y == CONST64(-1)) {
216 return x;
217 } else {
218 return x / y;
219 }
220 JRT_END
221
222
223 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
224 if (x == min_jlong && y == CONST64(-1)) {
225 return 0;
226 } else {
227 return x % y;
228 }
229 JRT_END
230
231
232 const juint float_sign_mask = 0x7FFFFFFF;
233 const juint float_infinity = 0x7F800000;
234 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
235 const julong double_infinity = CONST64(0x7FF0000000000000);
236
237 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
238 #ifdef _WIN64
239 // 64-bit Windows on amd64 returns the wrong values for
240 // infinity operands.
241 union { jfloat f; juint i; } xbits, ybits;
242 xbits.f = x;
243 ybits.f = y;
244 // x Mod Infinity == x unless x is infinity
245 if (((xbits.i & float_sign_mask) != float_infinity) &&
246 ((ybits.i & float_sign_mask) == float_infinity) ) {
247 return x;
248 }
249 return ((jfloat)fmod_winx64((double)x, (double)y));
250 #else
251 return ((jfloat)fmod((double)x,(double)y));
252 #endif
253 JRT_END
254
255
256 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
257 #ifdef _WIN64
258 union { jdouble d; julong l; } xbits, ybits;
259 xbits.d = x;
260 ybits.d = y;
261 // x Mod Infinity == x unless x is infinity
262 if (((xbits.l & double_sign_mask) != double_infinity) &&
263 ((ybits.l & double_sign_mask) == double_infinity) ) {
264 return x;
265 }
266 return ((jdouble)fmod_winx64((double)x, (double)y));
267 #else
268 return ((jdouble)fmod((double)x,(double)y));
269 #endif
270 JRT_END
271
272 #ifdef __SOFTFP__
273 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
274 return x + y;
275 JRT_END
276
277 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
278 return x - y;
279 JRT_END
280
281 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
282 return x * y;
283 JRT_END
284
285 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
286 return x / y;
287 JRT_END
288
289 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
290 return x + y;
291 JRT_END
292
293 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
294 return x - y;
295 JRT_END
296
297 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
298 return x * y;
299 JRT_END
300
301 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
302 return x / y;
303 JRT_END
304
305 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
306 return (jfloat)x;
307 JRT_END
308
309 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
310 return (jdouble)x;
311 JRT_END
312
313 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
314 return (jdouble)x;
315 JRT_END
316
317 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
318 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
319 JRT_END
320
321 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
322 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
323 JRT_END
324
325 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
326 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
327 JRT_END
328
329 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
330 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
331 JRT_END
332
333 // Functions to return the opposite of the aeabi functions for nan.
334 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
335 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
336 JRT_END
337
338 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
339 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
340 JRT_END
341
342 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
343 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
344 JRT_END
345
346 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
347 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
348 JRT_END
349
350 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
351 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
352 JRT_END
353
354 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
355 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
356 JRT_END
357
358 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
359 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
360 JRT_END
361
362 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
363 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
364 JRT_END
365
366 // Intrinsics make gcc generate code for these.
fneg(float f)367 float SharedRuntime::fneg(float f) {
368 return -f;
369 }
370
dneg(double f)371 double SharedRuntime::dneg(double f) {
372 return -f;
373 }
374
375 #endif // __SOFTFP__
376
377 #if defined(__SOFTFP__) || defined(E500V2)
378 // Intrinsics make gcc generate code for these.
dabs(double f)379 double SharedRuntime::dabs(double f) {
380 return (f <= (double)0.0) ? (double)0.0 - f : f;
381 }
382
383 #endif
384
385 #if defined(__SOFTFP__) || defined(PPC)
dsqrt(double f)386 double SharedRuntime::dsqrt(double f) {
387 return sqrt(f);
388 }
389 #endif
390
391 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
392 if (g_isnan(x))
393 return 0;
394 if (x >= (jfloat) max_jint)
395 return max_jint;
396 if (x <= (jfloat) min_jint)
397 return min_jint;
398 return (jint) x;
399 JRT_END
400
401
402 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
403 if (g_isnan(x))
404 return 0;
405 if (x >= (jfloat) max_jlong)
406 return max_jlong;
407 if (x <= (jfloat) min_jlong)
408 return min_jlong;
409 return (jlong) x;
410 JRT_END
411
412
413 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
414 if (g_isnan(x))
415 return 0;
416 if (x >= (jdouble) max_jint)
417 return max_jint;
418 if (x <= (jdouble) min_jint)
419 return min_jint;
420 return (jint) x;
421 JRT_END
422
423
424 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
425 if (g_isnan(x))
426 return 0;
427 if (x >= (jdouble) max_jlong)
428 return max_jlong;
429 if (x <= (jdouble) min_jlong)
430 return min_jlong;
431 return (jlong) x;
432 JRT_END
433
434
435 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
436 return (jfloat)x;
437 JRT_END
438
439
440 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
441 return (jfloat)x;
442 JRT_END
443
444
445 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
446 return (jdouble)x;
447 JRT_END
448
449 // Exception handling across interpreter/compiler boundaries
450 //
451 // exception_handler_for_return_address(...) returns the continuation address.
452 // The continuation address is the entry point of the exception handler of the
453 // previous frame depending on the return address.
454
raw_exception_handler_for_return_address(JavaThread * thread,address return_address)455 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
456 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
457 assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
458
459 // Reset method handle flag.
460 thread->set_is_method_handle_return(false);
461
462 #if INCLUDE_JVMCI
463 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
464 // and other exception handler continuations do not read it
465 thread->set_exception_pc(NULL);
466 #endif // INCLUDE_JVMCI
467
468 // The fastest case first
469 CodeBlob* blob = CodeCache::find_blob(return_address);
470 CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
471 if (nm != NULL) {
472 // Set flag if return address is a method handle call site.
473 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
474 // native nmethods don't have exception handlers
475 assert(!nm->is_native_method(), "no exception handler");
476 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
477 if (nm->is_deopt_pc(return_address)) {
478 // If we come here because of a stack overflow, the stack may be
479 // unguarded. Reguard the stack otherwise if we return to the
480 // deopt blob and the stack bang causes a stack overflow we
481 // crash.
482 bool guard_pages_enabled = thread->stack_guards_enabled();
483 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
484 if (thread->reserved_stack_activation() != thread->stack_base()) {
485 thread->set_reserved_stack_activation(thread->stack_base());
486 }
487 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
488 return SharedRuntime::deopt_blob()->unpack_with_exception();
489 } else {
490 return nm->exception_begin();
491 }
492 }
493
494 // Entry code
495 if (StubRoutines::returns_to_call_stub(return_address)) {
496 return StubRoutines::catch_exception_entry();
497 }
498 // Interpreted code
499 if (Interpreter::contains(return_address)) {
500 return Interpreter::rethrow_exception_entry();
501 }
502
503 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
504 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
505
506 #ifndef PRODUCT
507 { ResourceMark rm;
508 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
509 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
510 tty->print_cr("b) other problem");
511 }
512 #endif // PRODUCT
513
514 ShouldNotReachHere();
515 return NULL;
516 }
517
518
519 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
520 return raw_exception_handler_for_return_address(thread, return_address);
521 JRT_END
522
523
get_poll_stub(address pc)524 address SharedRuntime::get_poll_stub(address pc) {
525 address stub;
526 // Look up the code blob
527 CodeBlob *cb = CodeCache::find_blob(pc);
528
529 // Should be an nmethod
530 guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
531
532 // Look up the relocation information
533 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
534 "safepoint polling: type must be poll");
535
536 #ifdef ASSERT
537 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
538 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
539 Disassembler::decode(cb);
540 fatal("Only polling locations are used for safepoint");
541 }
542 #endif
543
544 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
545 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
546 if (at_poll_return) {
547 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
548 "polling page return stub not created yet");
549 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
550 } else if (has_wide_vectors) {
551 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
552 "polling page vectors safepoint stub not created yet");
553 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
554 } else {
555 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
556 "polling page safepoint stub not created yet");
557 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
558 }
559 log_debug(safepoint)("... found polling page %s exception at pc = "
560 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
561 at_poll_return ? "return" : "loop",
562 (intptr_t)pc, (intptr_t)stub);
563 return stub;
564 }
565
566
retrieve_receiver(Symbol * sig,frame caller)567 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
568 assert(caller.is_interpreted_frame(), "");
569 int args_size = ArgumentSizeComputer(sig).size() + 1;
570 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
571 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
572 assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
573 return result;
574 }
575
576
throw_and_post_jvmti_exception(JavaThread * thread,Handle h_exception)577 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
578 if (JvmtiExport::can_post_on_exceptions()) {
579 vframeStream vfst(thread, true);
580 methodHandle method = methodHandle(thread, vfst.method());
581 address bcp = method()->bcp_from(vfst.bci());
582 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
583 }
584
585 #if INCLUDE_JVMCI
586 if (EnableJVMCI && UseJVMCICompiler) {
587 vframeStream vfst(thread, true);
588 methodHandle method = methodHandle(thread, vfst.method());
589 int bci = vfst.bci();
590 MethodData* trap_mdo = method->method_data();
591 if (trap_mdo != NULL) {
592 // Set exception_seen if the exceptional bytecode is an invoke
593 Bytecode_invoke call = Bytecode_invoke_check(method, bci);
594 if (call.is_valid()) {
595 ResourceMark rm(thread);
596 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL);
597 if (pdata != NULL && pdata->is_BitData()) {
598 BitData* bit_data = (BitData*) pdata;
599 bit_data->set_exception_seen();
600 }
601 }
602 }
603 }
604 #endif
605
606 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
607 }
608
throw_and_post_jvmti_exception(JavaThread * thread,Symbol * name,const char * message)609 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
610 Handle h_exception = Exceptions::new_exception(thread, name, message);
611 throw_and_post_jvmti_exception(thread, h_exception);
612 }
613
614 // The interpreter code to call this tracing function is only
615 // called/generated when UL is on for redefine, class and has the right level
616 // and tags. Since obsolete methods are never compiled, we don't have
617 // to modify the compilers to generate calls to this function.
618 //
619 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
620 JavaThread* thread, Method* method))
621 if (method->is_obsolete()) {
622 // We are calling an obsolete method, but this is not necessarily
623 // an error. Our method could have been redefined just after we
624 // fetched the Method* from the constant pool.
625 ResourceMark rm;
626 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
627 }
628 return 0;
629 JRT_END
630
631 // ret_pc points into caller; we are returning caller's exception handler
632 // for given exception
compute_compiled_exc_handler(CompiledMethod * cm,address ret_pc,Handle & exception,bool force_unwind,bool top_frame_only,bool & recursive_exception_occurred)633 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
634 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
635 assert(cm != NULL, "must exist");
636 ResourceMark rm;
637
638 #if INCLUDE_JVMCI
639 if (cm->is_compiled_by_jvmci()) {
640 // lookup exception handler for this pc
641 int catch_pco = ret_pc - cm->code_begin();
642 ExceptionHandlerTable table(cm);
643 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
644 if (t != NULL) {
645 return cm->code_begin() + t->pco();
646 } else {
647 return Deoptimization::deoptimize_for_missing_exception_handler(cm);
648 }
649 }
650 #endif // INCLUDE_JVMCI
651
652 nmethod* nm = cm->as_nmethod();
653 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
654 // determine handler bci, if any
655 EXCEPTION_MARK;
656
657 int handler_bci = -1;
658 int scope_depth = 0;
659 if (!force_unwind) {
660 int bci = sd->bci();
661 bool recursive_exception = false;
662 do {
663 bool skip_scope_increment = false;
664 // exception handler lookup
665 Klass* ek = exception->klass();
666 methodHandle mh(THREAD, sd->method());
667 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
668 if (HAS_PENDING_EXCEPTION) {
669 recursive_exception = true;
670 // We threw an exception while trying to find the exception handler.
671 // Transfer the new exception to the exception handle which will
672 // be set into thread local storage, and do another lookup for an
673 // exception handler for this exception, this time starting at the
674 // BCI of the exception handler which caused the exception to be
675 // thrown (bugs 4307310 and 4546590). Set "exception" reference
676 // argument to ensure that the correct exception is thrown (4870175).
677 recursive_exception_occurred = true;
678 exception = Handle(THREAD, PENDING_EXCEPTION);
679 CLEAR_PENDING_EXCEPTION;
680 if (handler_bci >= 0) {
681 bci = handler_bci;
682 handler_bci = -1;
683 skip_scope_increment = true;
684 }
685 }
686 else {
687 recursive_exception = false;
688 }
689 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
690 sd = sd->sender();
691 if (sd != NULL) {
692 bci = sd->bci();
693 }
694 ++scope_depth;
695 }
696 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
697 }
698
699 // found handling method => lookup exception handler
700 int catch_pco = ret_pc - nm->code_begin();
701
702 ExceptionHandlerTable table(nm);
703 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
704 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
705 // Allow abbreviated catch tables. The idea is to allow a method
706 // to materialize its exceptions without committing to the exact
707 // routing of exceptions. In particular this is needed for adding
708 // a synthetic handler to unlock monitors when inlining
709 // synchronized methods since the unlock path isn't represented in
710 // the bytecodes.
711 t = table.entry_for(catch_pco, -1, 0);
712 }
713
714 #ifdef COMPILER1
715 if (t == NULL && nm->is_compiled_by_c1()) {
716 assert(nm->unwind_handler_begin() != NULL, "");
717 return nm->unwind_handler_begin();
718 }
719 #endif
720
721 if (t == NULL) {
722 ttyLocker ttyl;
723 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
724 tty->print_cr(" Exception:");
725 exception->print();
726 tty->cr();
727 tty->print_cr(" Compiled exception table :");
728 table.print();
729 nm->print_code();
730 guarantee(false, "missing exception handler");
731 return NULL;
732 }
733
734 return nm->code_begin() + t->pco();
735 }
736
737 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
738 // These errors occur only at call sites
739 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
740 JRT_END
741
742 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
743 // These errors occur only at call sites
744 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
745 JRT_END
746
747 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
748 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
749 JRT_END
750
751 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
752 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
753 JRT_END
754
755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
756 // This entry point is effectively only used for NullPointerExceptions which occur at inline
757 // cache sites (when the callee activation is not yet set up) so we are at a call site
758 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
759 JRT_END
760
761 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
762 throw_StackOverflowError_common(thread, false);
763 JRT_END
764
765 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
766 throw_StackOverflowError_common(thread, true);
767 JRT_END
768
throw_StackOverflowError_common(JavaThread * thread,bool delayed)769 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
770 // We avoid using the normal exception construction in this case because
771 // it performs an upcall to Java, and we're already out of stack space.
772 Thread* THREAD = thread;
773 Klass* k = SystemDictionary::StackOverflowError_klass();
774 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
775 if (delayed) {
776 java_lang_Throwable::set_message(exception_oop,
777 Universe::delayed_stack_overflow_error_message());
778 }
779 Handle exception (thread, exception_oop);
780 if (StackTraceInThrowable) {
781 java_lang_Throwable::fill_in_stack_trace(exception);
782 }
783 // Increment counter for hs_err file reporting
784 Atomic::inc(&Exceptions::_stack_overflow_errors);
785 throw_and_post_jvmti_exception(thread, exception);
786 }
787
788 #if INCLUDE_JVMCI
deoptimize_for_implicit_exception(JavaThread * thread,address pc,CompiledMethod * nm,int deopt_reason)789 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
790 assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
791 thread->set_jvmci_implicit_exception_pc(pc);
792 thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
793 return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
794 }
795 #endif // INCLUDE_JVMCI
796
continuation_for_implicit_exception(JavaThread * thread,address pc,SharedRuntime::ImplicitExceptionKind exception_kind)797 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
798 address pc,
799 SharedRuntime::ImplicitExceptionKind exception_kind)
800 {
801 address target_pc = NULL;
802
803 if (Interpreter::contains(pc)) {
804 #ifdef CC_INTERP
805 // C++ interpreter doesn't throw implicit exceptions
806 ShouldNotReachHere();
807 #else
808 switch (exception_kind) {
809 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
810 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
811 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
812 default: ShouldNotReachHere();
813 }
814 #endif // !CC_INTERP
815 } else {
816 switch (exception_kind) {
817 case STACK_OVERFLOW: {
818 // Stack overflow only occurs upon frame setup; the callee is
819 // going to be unwound. Dispatch to a shared runtime stub
820 // which will cause the StackOverflowError to be fabricated
821 // and processed.
822 // Stack overflow should never occur during deoptimization:
823 // the compiled method bangs the stack by as much as the
824 // interpreter would need in case of a deoptimization. The
825 // deoptimization blob and uncommon trap blob bang the stack
826 // in a debug VM to verify the correctness of the compiled
827 // method stack banging.
828 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
829 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
830 return StubRoutines::throw_StackOverflowError_entry();
831 }
832
833 case IMPLICIT_NULL: {
834 if (VtableStubs::contains(pc)) {
835 // We haven't yet entered the callee frame. Fabricate an
836 // exception and begin dispatching it in the caller. Since
837 // the caller was at a call site, it's safe to destroy all
838 // caller-saved registers, as these entry points do.
839 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
840
841 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
842 if (vt_stub == NULL) return NULL;
843
844 if (vt_stub->is_abstract_method_error(pc)) {
845 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
846 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
847 // Instead of throwing the abstract method error here directly, we re-resolve
848 // and will throw the AbstractMethodError during resolve. As a result, we'll
849 // get a more detailed error message.
850 return SharedRuntime::get_handle_wrong_method_stub();
851 } else {
852 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
853 // Assert that the signal comes from the expected location in stub code.
854 assert(vt_stub->is_null_pointer_exception(pc),
855 "obtained signal from unexpected location in stub code");
856 return StubRoutines::throw_NullPointerException_at_call_entry();
857 }
858 } else {
859 CodeBlob* cb = CodeCache::find_blob(pc);
860
861 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
862 if (cb == NULL) return NULL;
863
864 // Exception happened in CodeCache. Must be either:
865 // 1. Inline-cache check in C2I handler blob,
866 // 2. Inline-cache check in nmethod, or
867 // 3. Implicit null exception in nmethod
868
869 if (!cb->is_compiled()) {
870 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
871 if (!is_in_blob) {
872 // Allow normal crash reporting to handle this
873 return NULL;
874 }
875 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
876 // There is no handler here, so we will simply unwind.
877 return StubRoutines::throw_NullPointerException_at_call_entry();
878 }
879
880 // Otherwise, it's a compiled method. Consult its exception handlers.
881 CompiledMethod* cm = (CompiledMethod*)cb;
882 if (cm->inlinecache_check_contains(pc)) {
883 // exception happened inside inline-cache check code
884 // => the nmethod is not yet active (i.e., the frame
885 // is not set up yet) => use return address pushed by
886 // caller => don't push another return address
887 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
888 return StubRoutines::throw_NullPointerException_at_call_entry();
889 }
890
891 if (cm->method()->is_method_handle_intrinsic()) {
892 // exception happened inside MH dispatch code, similar to a vtable stub
893 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
894 return StubRoutines::throw_NullPointerException_at_call_entry();
895 }
896
897 #ifndef PRODUCT
898 _implicit_null_throws++;
899 #endif
900 #if INCLUDE_JVMCI
901 if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
902 // If there's no PcDesc then we'll die way down inside of
903 // deopt instead of just getting normal error reporting,
904 // so only go there if it will succeed.
905 return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
906 } else {
907 #endif // INCLUDE_JVMCI
908 assert (cm->is_nmethod(), "Expect nmethod");
909 target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
910 #if INCLUDE_JVMCI
911 }
912 #endif // INCLUDE_JVMCI
913 // If there's an unexpected fault, target_pc might be NULL,
914 // in which case we want to fall through into the normal
915 // error handling code.
916 }
917
918 break; // fall through
919 }
920
921
922 case IMPLICIT_DIVIDE_BY_ZERO: {
923 CompiledMethod* cm = CodeCache::find_compiled(pc);
924 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
925 #ifndef PRODUCT
926 _implicit_div0_throws++;
927 #endif
928 #if INCLUDE_JVMCI
929 if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
930 return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
931 } else {
932 #endif // INCLUDE_JVMCI
933 target_pc = cm->continuation_for_implicit_exception(pc);
934 #if INCLUDE_JVMCI
935 }
936 #endif // INCLUDE_JVMCI
937 // If there's an unexpected fault, target_pc might be NULL,
938 // in which case we want to fall through into the normal
939 // error handling code.
940 break; // fall through
941 }
942
943 default: ShouldNotReachHere();
944 }
945
946 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
947
948 if (exception_kind == IMPLICIT_NULL) {
949 #ifndef PRODUCT
950 // for AbortVMOnException flag
951 Exceptions::debug_check_abort("java.lang.NullPointerException");
952 #endif //PRODUCT
953 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
954 } else {
955 #ifndef PRODUCT
956 // for AbortVMOnException flag
957 Exceptions::debug_check_abort("java.lang.ArithmeticException");
958 #endif //PRODUCT
959 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
960 }
961 return target_pc;
962 }
963
964 ShouldNotReachHere();
965 return NULL;
966 }
967
968
969 /**
970 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
971 * installed in the native function entry of all native Java methods before
972 * they get linked to their actual native methods.
973 *
974 * \note
975 * This method actually never gets called! The reason is because
976 * the interpreter's native entries call NativeLookup::lookup() which
977 * throws the exception when the lookup fails. The exception is then
978 * caught and forwarded on the return from NativeLookup::lookup() call
979 * before the call to the native function. This might change in the future.
980 */
JNI_ENTRY(void *,throw_unsatisfied_link_error (JNIEnv * env,...))981 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
982 {
983 // We return a bad value here to make sure that the exception is
984 // forwarded before we look at the return value.
985 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
986 }
987 JNI_END
988
native_method_throw_unsatisfied_link_error_entry()989 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
990 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
991 }
992
993 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
994 #if INCLUDE_JVMCI
995 if (!obj->klass()->has_finalizer()) {
996 return;
997 }
998 #endif // INCLUDE_JVMCI
999 assert(oopDesc::is_oop(obj), "must be a valid oop");
1000 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1001 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1002 JRT_END
1003
1004
get_java_tid(Thread * thread)1005 jlong SharedRuntime::get_java_tid(Thread* thread) {
1006 if (thread != NULL) {
1007 if (thread->is_Java_thread()) {
1008 oop obj = ((JavaThread*)thread)->threadObj();
1009 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1010 }
1011 }
1012 return 0;
1013 }
1014
1015 /**
1016 * This function ought to be a void function, but cannot be because
1017 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1018 * 6254741. Once that is fixed we can remove the dummy return value.
1019 */
dtrace_object_alloc(oopDesc * o,int size)1020 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1021 return dtrace_object_alloc_base(Thread::current(), o, size);
1022 }
1023
dtrace_object_alloc_base(Thread * thread,oopDesc * o,int size)1024 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1025 assert(DTraceAllocProbes, "wrong call");
1026 Klass* klass = o->klass();
1027 Symbol* name = klass->name();
1028 HOTSPOT_OBJECT_ALLOC(
1029 get_java_tid(thread),
1030 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1031 return 0;
1032 }
1033
1034 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1035 JavaThread* thread, Method* method))
1036 assert(DTraceMethodProbes, "wrong call");
1037 Symbol* kname = method->klass_name();
1038 Symbol* name = method->name();
1039 Symbol* sig = method->signature();
1040 HOTSPOT_METHOD_ENTRY(
1041 get_java_tid(thread),
1042 (char *) kname->bytes(), kname->utf8_length(),
1043 (char *) name->bytes(), name->utf8_length(),
1044 (char *) sig->bytes(), sig->utf8_length());
1045 return 0;
1046 JRT_END
1047
1048 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1049 JavaThread* thread, Method* method))
1050 assert(DTraceMethodProbes, "wrong call");
1051 Symbol* kname = method->klass_name();
1052 Symbol* name = method->name();
1053 Symbol* sig = method->signature();
1054 HOTSPOT_METHOD_RETURN(
1055 get_java_tid(thread),
1056 (char *) kname->bytes(), kname->utf8_length(),
1057 (char *) name->bytes(), name->utf8_length(),
1058 (char *) sig->bytes(), sig->utf8_length());
1059 return 0;
1060 JRT_END
1061
1062
1063 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1064 // for a call current in progress, i.e., arguments has been pushed on stack
1065 // put callee has not been invoked yet. Used by: resolve virtual/static,
1066 // vtable updates, etc. Caller frame must be compiled.
find_callee_info(JavaThread * thread,Bytecodes::Code & bc,CallInfo & callinfo,TRAPS)1067 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1068 ResourceMark rm(THREAD);
1069
1070 // last java frame on stack (which includes native call frames)
1071 vframeStream vfst(thread, true); // Do not skip and javaCalls
1072
1073 return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1074 }
1075
extract_attached_method(vframeStream & vfst)1076 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1077 CompiledMethod* caller = vfst.nm();
1078
1079 nmethodLocker caller_lock(caller);
1080
1081 address pc = vfst.frame_pc();
1082 { // Get call instruction under lock because another thread may be busy patching it.
1083 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1084 return caller->attached_method_before_pc(pc);
1085 }
1086 return NULL;
1087 }
1088
1089 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1090 // for a call current in progress, i.e., arguments has been pushed on stack
1091 // but callee has not been invoked yet. Caller frame must be compiled.
find_callee_info_helper(JavaThread * thread,vframeStream & vfst,Bytecodes::Code & bc,CallInfo & callinfo,TRAPS)1092 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1093 vframeStream& vfst,
1094 Bytecodes::Code& bc,
1095 CallInfo& callinfo, TRAPS) {
1096 Handle receiver;
1097 Handle nullHandle; //create a handy null handle for exception returns
1098
1099 assert(!vfst.at_end(), "Java frame must exist");
1100
1101 // Find caller and bci from vframe
1102 methodHandle caller(THREAD, vfst.method());
1103 int bci = vfst.bci();
1104
1105 Bytecode_invoke bytecode(caller, bci);
1106 int bytecode_index = bytecode.index();
1107 bc = bytecode.invoke_code();
1108
1109 methodHandle attached_method = extract_attached_method(vfst);
1110 if (attached_method.not_null()) {
1111 methodHandle callee = bytecode.static_target(CHECK_NH);
1112 vmIntrinsics::ID id = callee->intrinsic_id();
1113 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1114 // it attaches statically resolved method to the call site.
1115 if (MethodHandles::is_signature_polymorphic(id) &&
1116 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1117 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1118
1119 // Adjust invocation mode according to the attached method.
1120 switch (bc) {
1121 case Bytecodes::_invokevirtual:
1122 if (attached_method->method_holder()->is_interface()) {
1123 bc = Bytecodes::_invokeinterface;
1124 }
1125 break;
1126 case Bytecodes::_invokeinterface:
1127 if (!attached_method->method_holder()->is_interface()) {
1128 bc = Bytecodes::_invokevirtual;
1129 }
1130 break;
1131 case Bytecodes::_invokehandle:
1132 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1133 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1134 : Bytecodes::_invokevirtual;
1135 }
1136 break;
1137 default:
1138 break;
1139 }
1140 }
1141 }
1142
1143 assert(bc != Bytecodes::_illegal, "not initialized");
1144
1145 bool has_receiver = bc != Bytecodes::_invokestatic &&
1146 bc != Bytecodes::_invokedynamic &&
1147 bc != Bytecodes::_invokehandle;
1148
1149 // Find receiver for non-static call
1150 if (has_receiver) {
1151 // This register map must be update since we need to find the receiver for
1152 // compiled frames. The receiver might be in a register.
1153 RegisterMap reg_map2(thread);
1154 frame stubFrame = thread->last_frame();
1155 // Caller-frame is a compiled frame
1156 frame callerFrame = stubFrame.sender(®_map2);
1157
1158 if (attached_method.is_null()) {
1159 methodHandle callee = bytecode.static_target(CHECK_NH);
1160 if (callee.is_null()) {
1161 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1162 }
1163 }
1164
1165 // Retrieve from a compiled argument list
1166 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2));
1167
1168 if (receiver.is_null()) {
1169 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1170 }
1171 }
1172
1173 // Resolve method
1174 if (attached_method.not_null()) {
1175 // Parameterized by attached method.
1176 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1177 } else {
1178 // Parameterized by bytecode.
1179 constantPoolHandle constants(THREAD, caller->constants());
1180 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1181 }
1182
1183 #ifdef ASSERT
1184 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1185 if (has_receiver) {
1186 assert(receiver.not_null(), "should have thrown exception");
1187 Klass* receiver_klass = receiver->klass();
1188 Klass* rk = NULL;
1189 if (attached_method.not_null()) {
1190 // In case there's resolved method attached, use its holder during the check.
1191 rk = attached_method->method_holder();
1192 } else {
1193 // Klass is already loaded.
1194 constantPoolHandle constants(THREAD, caller->constants());
1195 rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1196 }
1197 Klass* static_receiver_klass = rk;
1198 methodHandle callee = callinfo.selected_method();
1199 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1200 "actual receiver must be subclass of static receiver klass");
1201 if (receiver_klass->is_instance_klass()) {
1202 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1203 tty->print_cr("ERROR: Klass not yet initialized!!");
1204 receiver_klass->print();
1205 }
1206 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1207 }
1208 }
1209 #endif
1210
1211 return receiver;
1212 }
1213
find_callee_method(JavaThread * thread,TRAPS)1214 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1215 ResourceMark rm(THREAD);
1216 // We need first to check if any Java activations (compiled, interpreted)
1217 // exist on the stack since last JavaCall. If not, we need
1218 // to get the target method from the JavaCall wrapper.
1219 vframeStream vfst(thread, true); // Do not skip any javaCalls
1220 methodHandle callee_method;
1221 if (vfst.at_end()) {
1222 // No Java frames were found on stack since we did the JavaCall.
1223 // Hence the stack can only contain an entry_frame. We need to
1224 // find the target method from the stub frame.
1225 RegisterMap reg_map(thread, false);
1226 frame fr = thread->last_frame();
1227 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1228 fr = fr.sender(®_map);
1229 assert(fr.is_entry_frame(), "must be");
1230 // fr is now pointing to the entry frame.
1231 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1232 } else {
1233 Bytecodes::Code bc;
1234 CallInfo callinfo;
1235 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1236 callee_method = callinfo.selected_method();
1237 }
1238 assert(callee_method()->is_method(), "must be");
1239 return callee_method;
1240 }
1241
1242 // Resolves a call.
resolve_helper(JavaThread * thread,bool is_virtual,bool is_optimized,TRAPS)1243 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1244 bool is_virtual,
1245 bool is_optimized, TRAPS) {
1246 methodHandle callee_method;
1247 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1248 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1249 int retry_count = 0;
1250 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1251 callee_method->method_holder() != SystemDictionary::Object_klass()) {
1252 // If has a pending exception then there is no need to re-try to
1253 // resolve this method.
1254 // If the method has been redefined, we need to try again.
1255 // Hack: we have no way to update the vtables of arrays, so don't
1256 // require that java.lang.Object has been updated.
1257
1258 // It is very unlikely that method is redefined more than 100 times
1259 // in the middle of resolve. If it is looping here more than 100 times
1260 // means then there could be a bug here.
1261 guarantee((retry_count++ < 100),
1262 "Could not resolve to latest version of redefined method");
1263 // method is redefined in the middle of resolve so re-try.
1264 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1265 }
1266 }
1267 return callee_method;
1268 }
1269
1270 // Resolves a call. The compilers generate code for calls that go here
1271 // and are patched with the real destination of the call.
resolve_sub_helper(JavaThread * thread,bool is_virtual,bool is_optimized,TRAPS)1272 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1273 bool is_virtual,
1274 bool is_optimized, TRAPS) {
1275
1276 ResourceMark rm(thread);
1277 RegisterMap cbl_map(thread, false);
1278 frame caller_frame = thread->last_frame().sender(&cbl_map);
1279
1280 CodeBlob* caller_cb = caller_frame.cb();
1281 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1282 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1283
1284 // make sure caller is not getting deoptimized
1285 // and removed before we are done with it.
1286 // CLEANUP - with lazy deopt shouldn't need this lock
1287 nmethodLocker caller_lock(caller_nm);
1288
1289 // determine call info & receiver
1290 // note: a) receiver is NULL for static calls
1291 // b) an exception is thrown if receiver is NULL for non-static calls
1292 CallInfo call_info;
1293 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1294 Handle receiver = find_callee_info(thread, invoke_code,
1295 call_info, CHECK_(methodHandle()));
1296 methodHandle callee_method = call_info.selected_method();
1297
1298 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1299 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1300 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1301 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1302 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1303
1304 assert(caller_nm->is_alive(), "It should be alive");
1305
1306 #ifndef PRODUCT
1307 // tracing/debugging/statistics
1308 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1309 (is_virtual) ? (&_resolve_virtual_ctr) :
1310 (&_resolve_static_ctr);
1311 Atomic::inc(addr);
1312
1313 if (TraceCallFixup) {
1314 ResourceMark rm(thread);
1315 tty->print("resolving %s%s (%s) call to",
1316 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1317 Bytecodes::name(invoke_code));
1318 callee_method->print_short_name(tty);
1319 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1320 p2i(caller_frame.pc()), p2i(callee_method->code()));
1321 }
1322 #endif
1323
1324 // Do not patch call site for static call when the class is not
1325 // fully initialized.
1326 if (invoke_code == Bytecodes::_invokestatic &&
1327 !callee_method->method_holder()->is_initialized()) {
1328 assert(callee_method->method_holder()->is_linked(), "must be");
1329 return callee_method;
1330 }
1331
1332 // JSR 292 key invariant:
1333 // If the resolved method is a MethodHandle invoke target, the call
1334 // site must be a MethodHandle call site, because the lambda form might tail-call
1335 // leaving the stack in a state unknown to either caller or callee
1336 // TODO detune for now but we might need it again
1337 // assert(!callee_method->is_compiled_lambda_form() ||
1338 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1339
1340 // Compute entry points. This might require generation of C2I converter
1341 // frames, so we cannot be holding any locks here. Furthermore, the
1342 // computation of the entry points is independent of patching the call. We
1343 // always return the entry-point, but we only patch the stub if the call has
1344 // not been deoptimized. Return values: For a virtual call this is an
1345 // (cached_oop, destination address) pair. For a static call/optimized
1346 // virtual this is just a destination address.
1347
1348 StaticCallInfo static_call_info;
1349 CompiledICInfo virtual_call_info;
1350
1351 // Make sure the callee nmethod does not get deoptimized and removed before
1352 // we are done patching the code.
1353 CompiledMethod* callee = callee_method->code();
1354
1355 if (callee != NULL) {
1356 assert(callee->is_compiled(), "must be nmethod for patching");
1357 }
1358
1359 if (callee != NULL && !callee->is_in_use()) {
1360 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1361 callee = NULL;
1362 }
1363 nmethodLocker nl_callee(callee);
1364 #ifdef ASSERT
1365 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1366 #endif
1367
1368 bool is_nmethod = caller_nm->is_nmethod();
1369
1370 if (is_virtual) {
1371 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1372 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1373 Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1374 CompiledIC::compute_monomorphic_entry(callee_method, klass,
1375 is_optimized, static_bound, is_nmethod, virtual_call_info,
1376 CHECK_(methodHandle()));
1377 } else {
1378 // static call
1379 CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1380 }
1381
1382 // grab lock, check for deoptimization and potentially patch caller
1383 {
1384 MutexLocker ml_patch(CompiledIC_lock);
1385
1386 // Lock blocks for safepoint during which both nmethods can change state.
1387
1388 // Now that we are ready to patch if the Method* was redefined then
1389 // don't update call site and let the caller retry.
1390 // Don't update call site if callee nmethod was unloaded or deoptimized.
1391 // Don't update call site if callee nmethod was replaced by an other nmethod
1392 // which may happen when multiply alive nmethod (tiered compilation)
1393 // will be supported.
1394 if (!callee_method->is_old() &&
1395 (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1396 #ifdef ASSERT
1397 // We must not try to patch to jump to an already unloaded method.
1398 if (dest_entry_point != 0) {
1399 CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1400 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1401 "should not call unloaded nmethod");
1402 }
1403 #endif
1404 if (is_virtual) {
1405 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1406 if (inline_cache->is_clean()) {
1407 inline_cache->set_to_monomorphic(virtual_call_info);
1408 }
1409 } else {
1410 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1411 if (ssc->is_clean()) ssc->set(static_call_info);
1412 }
1413 }
1414
1415 } // unlock CompiledIC_lock
1416
1417 return callee_method;
1418 }
1419
1420
1421 // Inline caches exist only in compiled code
1422 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1423 #ifdef ASSERT
1424 RegisterMap reg_map(thread, false);
1425 frame stub_frame = thread->last_frame();
1426 assert(stub_frame.is_runtime_frame(), "sanity check");
1427 frame caller_frame = stub_frame.sender(®_map);
1428 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1429 #endif /* ASSERT */
1430
1431 methodHandle callee_method;
1432 JRT_BLOCK
1433 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1434 // Return Method* through TLS
1435 thread->set_vm_result_2(callee_method());
1436 JRT_BLOCK_END
1437 // return compiled code entry point after potential safepoints
1438 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1439 return callee_method->verified_code_entry();
1440 JRT_END
1441
1442
1443 // Handle call site that has been made non-entrant
1444 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1445 // 6243940 We might end up in here if the callee is deoptimized
1446 // as we race to call it. We don't want to take a safepoint if
1447 // the caller was interpreted because the caller frame will look
1448 // interpreted to the stack walkers and arguments are now
1449 // "compiled" so it is much better to make this transition
1450 // invisible to the stack walking code. The i2c path will
1451 // place the callee method in the callee_target. It is stashed
1452 // there because if we try and find the callee by normal means a
1453 // safepoint is possible and have trouble gc'ing the compiled args.
1454 RegisterMap reg_map(thread, false);
1455 frame stub_frame = thread->last_frame();
1456 assert(stub_frame.is_runtime_frame(), "sanity check");
1457 frame caller_frame = stub_frame.sender(®_map);
1458
1459 if (caller_frame.is_interpreted_frame() ||
1460 caller_frame.is_entry_frame()) {
1461 Method* callee = thread->callee_target();
1462 guarantee(callee != NULL && callee->is_method(), "bad handshake");
1463 thread->set_vm_result_2(callee);
1464 thread->set_callee_target(NULL);
1465 return callee->get_c2i_entry();
1466 }
1467
1468 // Must be compiled to compiled path which is safe to stackwalk
1469 methodHandle callee_method;
1470 JRT_BLOCK
1471 // Force resolving of caller (if we called from compiled frame)
1472 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1473 thread->set_vm_result_2(callee_method());
1474 JRT_BLOCK_END
1475 // return compiled code entry point after potential safepoints
1476 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1477 return callee_method->verified_code_entry();
1478 JRT_END
1479
1480 // Handle abstract method call
1481 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1482 // Verbose error message for AbstractMethodError.
1483 // Get the called method from the invoke bytecode.
1484 vframeStream vfst(thread, true);
1485 assert(!vfst.at_end(), "Java frame must exist");
1486 methodHandle caller(vfst.method());
1487 Bytecode_invoke invoke(caller, vfst.bci());
1488 DEBUG_ONLY( invoke.verify(); )
1489
1490 // Find the compiled caller frame.
1491 RegisterMap reg_map(thread);
1492 frame stubFrame = thread->last_frame();
1493 assert(stubFrame.is_runtime_frame(), "must be");
1494 frame callerFrame = stubFrame.sender(®_map);
1495 assert(callerFrame.is_compiled_frame(), "must be");
1496
1497 // Install exception and return forward entry.
1498 address res = StubRoutines::throw_AbstractMethodError_entry();
1499 JRT_BLOCK
1500 methodHandle callee = invoke.static_target(thread);
1501 if (!callee.is_null()) {
1502 oop recv = callerFrame.retrieve_receiver(®_map);
1503 Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1504 LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1505 res = StubRoutines::forward_exception_entry();
1506 }
1507 JRT_BLOCK_END
1508 return res;
1509 JRT_END
1510
1511
1512 // resolve a static call and patch code
1513 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1514 methodHandle callee_method;
1515 JRT_BLOCK
1516 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1517 thread->set_vm_result_2(callee_method());
1518 JRT_BLOCK_END
1519 // return compiled code entry point after potential safepoints
1520 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1521 return callee_method->verified_code_entry();
1522 JRT_END
1523
1524
1525 // resolve virtual call and update inline cache to monomorphic
1526 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1527 methodHandle callee_method;
1528 JRT_BLOCK
1529 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1530 thread->set_vm_result_2(callee_method());
1531 JRT_BLOCK_END
1532 // return compiled code entry point after potential safepoints
1533 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1534 return callee_method->verified_code_entry();
1535 JRT_END
1536
1537
1538 // Resolve a virtual call that can be statically bound (e.g., always
1539 // monomorphic, so it has no inline cache). Patch code to resolved target.
1540 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1541 methodHandle callee_method;
1542 JRT_BLOCK
1543 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1544 thread->set_vm_result_2(callee_method());
1545 JRT_BLOCK_END
1546 // return compiled code entry point after potential safepoints
1547 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1548 return callee_method->verified_code_entry();
1549 JRT_END
1550
1551
1552
handle_ic_miss_helper(JavaThread * thread,TRAPS)1553 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1554 ResourceMark rm(thread);
1555 CallInfo call_info;
1556 Bytecodes::Code bc;
1557
1558 // receiver is NULL for static calls. An exception is thrown for NULL
1559 // receivers for non-static calls
1560 Handle receiver = find_callee_info(thread, bc, call_info,
1561 CHECK_(methodHandle()));
1562 // Compiler1 can produce virtual call sites that can actually be statically bound
1563 // If we fell thru to below we would think that the site was going megamorphic
1564 // when in fact the site can never miss. Worse because we'd think it was megamorphic
1565 // we'd try and do a vtable dispatch however methods that can be statically bound
1566 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1567 // reresolution of the call site (as if we did a handle_wrong_method and not an
1568 // plain ic_miss) and the site will be converted to an optimized virtual call site
1569 // never to miss again. I don't believe C2 will produce code like this but if it
1570 // did this would still be the correct thing to do for it too, hence no ifdef.
1571 //
1572 if (call_info.resolved_method()->can_be_statically_bound()) {
1573 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1574 if (TraceCallFixup) {
1575 RegisterMap reg_map(thread, false);
1576 frame caller_frame = thread->last_frame().sender(®_map);
1577 ResourceMark rm(thread);
1578 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1579 callee_method->print_short_name(tty);
1580 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1581 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1582 }
1583 return callee_method;
1584 }
1585
1586 methodHandle callee_method = call_info.selected_method();
1587
1588 bool should_be_mono = false;
1589
1590 #ifndef PRODUCT
1591 Atomic::inc(&_ic_miss_ctr);
1592
1593 // Statistics & Tracing
1594 if (TraceCallFixup) {
1595 ResourceMark rm(thread);
1596 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1597 callee_method->print_short_name(tty);
1598 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1599 }
1600
1601 if (ICMissHistogram) {
1602 MutexLocker m(VMStatistic_lock);
1603 RegisterMap reg_map(thread, false);
1604 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub
1605 // produce statistics under the lock
1606 trace_ic_miss(f.pc());
1607 }
1608 #endif
1609
1610 // install an event collector so that when a vtable stub is created the
1611 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1612 // event can't be posted when the stub is created as locks are held
1613 // - instead the event will be deferred until the event collector goes
1614 // out of scope.
1615 JvmtiDynamicCodeEventCollector event_collector;
1616
1617 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1618 { MutexLocker ml_patch (CompiledIC_lock);
1619 RegisterMap reg_map(thread, false);
1620 frame caller_frame = thread->last_frame().sender(®_map);
1621 CodeBlob* cb = caller_frame.cb();
1622 CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1623 if (cb->is_compiled()) {
1624 CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1625 bool should_be_mono = false;
1626 if (inline_cache->is_optimized()) {
1627 if (TraceCallFixup) {
1628 ResourceMark rm(thread);
1629 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1630 callee_method->print_short_name(tty);
1631 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1632 }
1633 should_be_mono = true;
1634 } else if (inline_cache->is_icholder_call()) {
1635 CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1636 if (ic_oop != NULL) {
1637
1638 if (receiver()->klass() == ic_oop->holder_klass()) {
1639 // This isn't a real miss. We must have seen that compiled code
1640 // is now available and we want the call site converted to a
1641 // monomorphic compiled call site.
1642 // We can't assert for callee_method->code() != NULL because it
1643 // could have been deoptimized in the meantime
1644 if (TraceCallFixup) {
1645 ResourceMark rm(thread);
1646 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1647 callee_method->print_short_name(tty);
1648 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1649 }
1650 should_be_mono = true;
1651 }
1652 }
1653 }
1654
1655 if (should_be_mono) {
1656
1657 // We have a path that was monomorphic but was going interpreted
1658 // and now we have (or had) a compiled entry. We correct the IC
1659 // by using a new icBuffer.
1660 CompiledICInfo info;
1661 Klass* receiver_klass = receiver()->klass();
1662 inline_cache->compute_monomorphic_entry(callee_method,
1663 receiver_klass,
1664 inline_cache->is_optimized(),
1665 false, caller_nm->is_nmethod(),
1666 info, CHECK_(methodHandle()));
1667 inline_cache->set_to_monomorphic(info);
1668 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1669 // Potential change to megamorphic
1670 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1671 if (!successful) {
1672 inline_cache->set_to_clean();
1673 }
1674 } else {
1675 // Either clean or megamorphic
1676 }
1677 } else {
1678 fatal("Unimplemented");
1679 }
1680 } // Release CompiledIC_lock
1681
1682 return callee_method;
1683 }
1684
1685 //
1686 // Resets a call-site in compiled code so it will get resolved again.
1687 // This routines handles both virtual call sites, optimized virtual call
1688 // sites, and static call sites. Typically used to change a call sites
1689 // destination from compiled to interpreted.
1690 //
reresolve_call_site(JavaThread * thread,TRAPS)1691 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1692 ResourceMark rm(thread);
1693 RegisterMap reg_map(thread, false);
1694 frame stub_frame = thread->last_frame();
1695 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1696 frame caller = stub_frame.sender(®_map);
1697
1698 // Do nothing if the frame isn't a live compiled frame.
1699 // nmethod could be deoptimized by the time we get here
1700 // so no update to the caller is needed.
1701
1702 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1703
1704 address pc = caller.pc();
1705
1706 // Check for static or virtual call
1707 bool is_static_call = false;
1708 CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1709
1710 // Default call_addr is the location of the "basic" call.
1711 // Determine the address of the call we a reresolving. With
1712 // Inline Caches we will always find a recognizable call.
1713 // With Inline Caches disabled we may or may not find a
1714 // recognizable call. We will always find a call for static
1715 // calls and for optimized virtual calls. For vanilla virtual
1716 // calls it depends on the state of the UseInlineCaches switch.
1717 //
1718 // With Inline Caches disabled we can get here for a virtual call
1719 // for two reasons:
1720 // 1 - calling an abstract method. The vtable for abstract methods
1721 // will run us thru handle_wrong_method and we will eventually
1722 // end up in the interpreter to throw the ame.
1723 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1724 // call and between the time we fetch the entry address and
1725 // we jump to it the target gets deoptimized. Similar to 1
1726 // we will wind up in the interprter (thru a c2i with c2).
1727 //
1728 address call_addr = NULL;
1729 {
1730 // Get call instruction under lock because another thread may be
1731 // busy patching it.
1732 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1733 // Location of call instruction
1734 call_addr = caller_nm->call_instruction_address(pc);
1735 }
1736 // Make sure nmethod doesn't get deoptimized and removed until
1737 // this is done with it.
1738 // CLEANUP - with lazy deopt shouldn't need this lock
1739 nmethodLocker nmlock(caller_nm);
1740
1741 if (call_addr != NULL) {
1742 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1743 int ret = iter.next(); // Get item
1744 if (ret) {
1745 assert(iter.addr() == call_addr, "must find call");
1746 if (iter.type() == relocInfo::static_call_type) {
1747 is_static_call = true;
1748 } else {
1749 assert(iter.type() == relocInfo::virtual_call_type ||
1750 iter.type() == relocInfo::opt_virtual_call_type
1751 , "unexpected relocInfo. type");
1752 }
1753 } else {
1754 assert(!UseInlineCaches, "relocation info. must exist for this address");
1755 }
1756
1757 // Cleaning the inline cache will force a new resolve. This is more robust
1758 // than directly setting it to the new destination, since resolving of calls
1759 // is always done through the same code path. (experience shows that it
1760 // leads to very hard to track down bugs, if an inline cache gets updated
1761 // to a wrong method). It should not be performance critical, since the
1762 // resolve is only done once.
1763
1764 bool is_nmethod = caller_nm->is_nmethod();
1765 MutexLocker ml(CompiledIC_lock);
1766 if (is_static_call) {
1767 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1768 ssc->set_to_clean();
1769 } else {
1770 // compiled, dispatched call (which used to call an interpreted method)
1771 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1772 inline_cache->set_to_clean();
1773 }
1774 }
1775 }
1776
1777 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1778
1779
1780 #ifndef PRODUCT
1781 Atomic::inc(&_wrong_method_ctr);
1782
1783 if (TraceCallFixup) {
1784 ResourceMark rm(thread);
1785 tty->print("handle_wrong_method reresolving call to");
1786 callee_method->print_short_name(tty);
1787 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1788 }
1789 #endif
1790
1791 return callee_method;
1792 }
1793
handle_unsafe_access(JavaThread * thread,address next_pc)1794 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1795 // The faulting unsafe accesses should be changed to throw the error
1796 // synchronously instead. Meanwhile the faulting instruction will be
1797 // skipped over (effectively turning it into a no-op) and an
1798 // asynchronous exception will be raised which the thread will
1799 // handle at a later point. If the instruction is a load it will
1800 // return garbage.
1801
1802 // Request an async exception.
1803 thread->set_pending_unsafe_access_error();
1804
1805 // Return address of next instruction to execute.
1806 return next_pc;
1807 }
1808
1809 #ifdef ASSERT
check_member_name_argument_is_last_argument(const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)1810 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1811 const BasicType* sig_bt,
1812 const VMRegPair* regs) {
1813 ResourceMark rm;
1814 const int total_args_passed = method->size_of_parameters();
1815 const VMRegPair* regs_with_member_name = regs;
1816 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1817
1818 const int member_arg_pos = total_args_passed - 1;
1819 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1820 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1821
1822 const bool is_outgoing = method->is_method_handle_intrinsic();
1823 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1824
1825 for (int i = 0; i < member_arg_pos; i++) {
1826 VMReg a = regs_with_member_name[i].first();
1827 VMReg b = regs_without_member_name[i].first();
1828 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1829 }
1830 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1831 }
1832 #endif
1833
should_fixup_call_destination(address destination,address entry_point,address caller_pc,Method * moop,CodeBlob * cb)1834 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1835 if (destination != entry_point) {
1836 CodeBlob* callee = CodeCache::find_blob(destination);
1837 // callee == cb seems weird. It means calling interpreter thru stub.
1838 if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1839 // static call or optimized virtual
1840 if (TraceCallFixup) {
1841 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1842 moop->print_short_name(tty);
1843 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1844 }
1845 return true;
1846 } else {
1847 if (TraceCallFixup) {
1848 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1849 moop->print_short_name(tty);
1850 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1851 }
1852 // assert is too strong could also be resolve destinations.
1853 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1854 }
1855 } else {
1856 if (TraceCallFixup) {
1857 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1858 moop->print_short_name(tty);
1859 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1860 }
1861 }
1862 return false;
1863 }
1864
1865 // ---------------------------------------------------------------------------
1866 // We are calling the interpreter via a c2i. Normally this would mean that
1867 // we were called by a compiled method. However we could have lost a race
1868 // where we went int -> i2c -> c2i and so the caller could in fact be
1869 // interpreted. If the caller is compiled we attempt to patch the caller
1870 // so he no longer calls into the interpreter.
1871 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1872 Method* moop(method);
1873
1874 address entry_point = moop->from_compiled_entry_no_trampoline();
1875
1876 // It's possible that deoptimization can occur at a call site which hasn't
1877 // been resolved yet, in which case this function will be called from
1878 // an nmethod that has been patched for deopt and we can ignore the
1879 // request for a fixup.
1880 // Also it is possible that we lost a race in that from_compiled_entry
1881 // is now back to the i2c in that case we don't need to patch and if
1882 // we did we'd leap into space because the callsite needs to use
1883 // "to interpreter" stub in order to load up the Method*. Don't
1884 // ask me how I know this...
1885
1886 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1887 if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1888 return;
1889 }
1890
1891 // The check above makes sure this is a nmethod.
1892 CompiledMethod* nm = cb->as_compiled_method_or_null();
1893 assert(nm, "must be");
1894
1895 // Get the return PC for the passed caller PC.
1896 address return_pc = caller_pc + frame::pc_return_offset;
1897
1898 // There is a benign race here. We could be attempting to patch to a compiled
1899 // entry point at the same time the callee is being deoptimized. If that is
1900 // the case then entry_point may in fact point to a c2i and we'd patch the
1901 // call site with the same old data. clear_code will set code() to NULL
1902 // at the end of it. If we happen to see that NULL then we can skip trying
1903 // to patch. If we hit the window where the callee has a c2i in the
1904 // from_compiled_entry and the NULL isn't present yet then we lose the race
1905 // and patch the code with the same old data. Asi es la vida.
1906
1907 if (moop->code() == NULL) return;
1908
1909 if (nm->is_in_use()) {
1910
1911 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1912 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1913 if (NativeCall::is_call_before(return_pc)) {
1914 ResourceMark mark;
1915 NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1916 //
1917 // bug 6281185. We might get here after resolving a call site to a vanilla
1918 // virtual call. Because the resolvee uses the verified entry it may then
1919 // see compiled code and attempt to patch the site by calling us. This would
1920 // then incorrectly convert the call site to optimized and its downhill from
1921 // there. If you're lucky you'll get the assert in the bugid, if not you've
1922 // just made a call site that could be megamorphic into a monomorphic site
1923 // for the rest of its life! Just another racing bug in the life of
1924 // fixup_callers_callsite ...
1925 //
1926 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1927 iter.next();
1928 assert(iter.has_current(), "must have a reloc at java call site");
1929 relocInfo::relocType typ = iter.reloc()->type();
1930 if (typ != relocInfo::static_call_type &&
1931 typ != relocInfo::opt_virtual_call_type &&
1932 typ != relocInfo::static_stub_type) {
1933 return;
1934 }
1935 address destination = call->destination();
1936 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1937 call->set_destination_mt_safe(entry_point);
1938 }
1939 }
1940 }
1941 IRT_END
1942
1943
1944 // same as JVM_Arraycopy, but called directly from compiled code
JRT_ENTRY(void,SharedRuntime::slow_arraycopy_C (oopDesc * src,jint src_pos,oopDesc * dest,jint dest_pos,jint length,JavaThread * thread))1945 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1946 oopDesc* dest, jint dest_pos,
1947 jint length,
1948 JavaThread* thread)) {
1949 #ifndef PRODUCT
1950 _slow_array_copy_ctr++;
1951 #endif
1952 // Check if we have null pointers
1953 if (src == NULL || dest == NULL) {
1954 THROW(vmSymbols::java_lang_NullPointerException());
1955 }
1956 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1957 // even though the copy_array API also performs dynamic checks to ensure
1958 // that src and dest are truly arrays (and are conformable).
1959 // The copy_array mechanism is awkward and could be removed, but
1960 // the compilers don't call this function except as a last resort,
1961 // so it probably doesn't matter.
1962 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1963 (arrayOopDesc*)dest, dest_pos,
1964 length, thread);
1965 }
1966 JRT_END
1967
1968 // The caller of generate_class_cast_message() (or one of its callers)
1969 // must use a ResourceMark in order to correctly free the result.
generate_class_cast_message(JavaThread * thread,Klass * caster_klass)1970 char* SharedRuntime::generate_class_cast_message(
1971 JavaThread* thread, Klass* caster_klass) {
1972
1973 // Get target class name from the checkcast instruction
1974 vframeStream vfst(thread, true);
1975 assert(!vfst.at_end(), "Java frame must exist");
1976 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1977 constantPoolHandle cpool(thread, vfst.method()->constants());
1978 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1979 Symbol* target_klass_name = NULL;
1980 if (target_klass == NULL) {
1981 // This klass should be resolved, but just in case, get the name in the klass slot.
1982 target_klass_name = cpool->klass_name_at(cc.index());
1983 }
1984 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1985 }
1986
1987
1988 // The caller of generate_class_cast_message() (or one of its callers)
1989 // must use a ResourceMark in order to correctly free the result.
generate_class_cast_message(Klass * caster_klass,Klass * target_klass,Symbol * target_klass_name)1990 char* SharedRuntime::generate_class_cast_message(
1991 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1992 const char* caster_name = caster_klass->external_name();
1993
1994 assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1995 const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
1996 target_klass->external_name();
1997
1998 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1999
2000 const char* caster_klass_description = "";
2001 const char* target_klass_description = "";
2002 const char* klass_separator = "";
2003 if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2004 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2005 } else {
2006 caster_klass_description = caster_klass->class_in_module_of_loader();
2007 target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2008 klass_separator = (target_klass != NULL) ? "; " : "";
2009 }
2010
2011 // add 3 for parenthesis and preceeding space
2012 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2013
2014 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2015 if (message == NULL) {
2016 // Shouldn't happen, but don't cause even more problems if it does
2017 message = const_cast<char*>(caster_klass->external_name());
2018 } else {
2019 jio_snprintf(message,
2020 msglen,
2021 "class %s cannot be cast to class %s (%s%s%s)",
2022 caster_name,
2023 target_name,
2024 caster_klass_description,
2025 klass_separator,
2026 target_klass_description
2027 );
2028 }
2029 return message;
2030 }
2031
2032 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2033 (void) JavaThread::current()->reguard_stack();
2034 JRT_END
2035
monitor_enter_helper(oopDesc * obj,BasicLock * lock,JavaThread * thread,bool use_inlined_fast_locking)2036 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread,
2037 bool use_inlined_fast_locking) {
2038 if (!SafepointSynchronize::is_synchronizing()) {
2039 // Only try quick_enter() if we're not trying to reach a safepoint
2040 // so that the calling thread reaches the safepoint more quickly.
2041 if (ObjectSynchronizer::quick_enter(obj, thread, lock)) return;
2042 }
2043 // NO_ASYNC required because an async exception on the state transition destructor
2044 // would leave you with the lock held and it would never be released.
2045 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2046 // and the model is that an exception implies the method failed.
2047 JRT_BLOCK_NO_ASYNC
2048
2049 if (PrintBiasedLockingStatistics) {
2050 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2051 }
2052 Handle h_obj(THREAD, obj);
2053 if (UseBiasedLocking) {
2054 // Retry fast entry if bias is revoked to avoid unnecessary inflation
2055 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2056 } else {
2057 if (use_inlined_fast_locking) {
2058 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2059 } else {
2060 ObjectSynchronizer::fast_enter(h_obj, lock, false, CHECK);
2061 }
2062 }
2063 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2064 JRT_BLOCK_END
2065 }
2066
2067 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2068 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2069 SharedRuntime::monitor_enter_helper(obj, lock, thread, true);
2070 JRT_END
2071
monitor_exit_helper(oopDesc * obj,BasicLock * lock,JavaThread * thread,bool use_inlined_fast_locking)2072 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread,
2073 bool use_inlined_fast_locking) {
2074 assert(JavaThread::current() == thread, "invariant");
2075 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2076 EXCEPTION_MARK;
2077 if (use_inlined_fast_locking) {
2078 // When using fast locking, the compiled code has already tried the fast case
2079 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2080 } else {
2081 ObjectSynchronizer::fast_exit(obj, lock, THREAD);
2082 }
2083 }
2084
2085 // Handles the uncommon cases of monitor unlocking in compiled code
2086 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2087 SharedRuntime::monitor_exit_helper(obj, lock, thread, true);
2088 JRT_END
2089
2090 #ifndef PRODUCT
2091
print_statistics()2092 void SharedRuntime::print_statistics() {
2093 ttyLocker ttyl;
2094 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
2095
2096 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2097
2098 SharedRuntime::print_ic_miss_histogram();
2099
2100 if (CountRemovableExceptions) {
2101 if (_nof_removable_exceptions > 0) {
2102 Unimplemented(); // this counter is not yet incremented
2103 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2104 }
2105 }
2106
2107 // Dump the JRT_ENTRY counters
2108 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2109 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2110 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2111 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2112 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2113 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2114 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2115
2116 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2117 tty->print_cr("%5d wrong method", _wrong_method_ctr);
2118 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2119 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2120 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2121
2122 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2123 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2124 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2125 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2126 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2127 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2128 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2129 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2130 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2131 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2132 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2133 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2134 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2135 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2136 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2137 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2138
2139 AdapterHandlerLibrary::print_statistics();
2140
2141 if (xtty != NULL) xtty->tail("statistics");
2142 }
2143
percent(int x,int y)2144 inline double percent(int x, int y) {
2145 return 100.0 * x / MAX2(y, 1);
2146 }
2147
percent(int64_t x,int64_t y)2148 inline double percent(int64_t x, int64_t y) {
2149 return 100.0 * x / MAX2(y, (int64_t)1);
2150 }
2151
2152 class MethodArityHistogram {
2153 public:
2154 enum { MAX_ARITY = 256 };
2155 private:
2156 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2157 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
2158 static uint64_t _total_compiled_calls;
2159 static uint64_t _max_compiled_calls_per_method;
2160 static int _max_arity; // max. arity seen
2161 static int _max_size; // max. arg size seen
2162
add_method_to_histogram(nmethod * nm)2163 static void add_method_to_histogram(nmethod* nm) {
2164 Method* method = (nm == NULL) ? NULL : nm->method();
2165 if ((method != NULL) && nm->is_alive()) {
2166 ArgumentCount args(method->signature());
2167 int arity = args.size() + (method->is_static() ? 0 : 1);
2168 int argsize = method->size_of_parameters();
2169 arity = MIN2(arity, MAX_ARITY-1);
2170 argsize = MIN2(argsize, MAX_ARITY-1);
2171 uint64_t count = (uint64_t)method->compiled_invocation_count();
2172 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2173 _total_compiled_calls += count;
2174 _arity_histogram[arity] += count;
2175 _size_histogram[argsize] += count;
2176 _max_arity = MAX2(_max_arity, arity);
2177 _max_size = MAX2(_max_size, argsize);
2178 }
2179 }
2180
print_histogram_helper(int n,uint64_t * histo,const char * name)2181 void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2182 const int N = MIN2(9, n);
2183 double sum = 0;
2184 double weighted_sum = 0;
2185 for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2186 if (sum >= 1.0) { // prevent divide by zero or divide overflow
2187 double rest = sum;
2188 double percent = sum / 100;
2189 for (int i = 0; i <= N; i++) {
2190 rest -= histo[i];
2191 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent);
2192 }
2193 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2194 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2195 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2196 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2197 } else {
2198 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2199 }
2200 }
2201
print_histogram()2202 void print_histogram() {
2203 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2204 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2205 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2206 print_histogram_helper(_max_size, _size_histogram, "size");
2207 tty->cr();
2208 }
2209
2210 public:
MethodArityHistogram()2211 MethodArityHistogram() {
2212 // Take the Compile_lock to protect against changes in the CodeBlob structures
2213 MutexLockerEx mu1(Compile_lock, Mutex::_no_safepoint_check_flag);
2214 // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2215 MutexLockerEx mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2216 _max_arity = _max_size = 0;
2217 _total_compiled_calls = 0;
2218 _max_compiled_calls_per_method = 0;
2219 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2220 CodeCache::nmethods_do(add_method_to_histogram);
2221 print_histogram();
2222 }
2223 };
2224
2225 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2226 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2227 uint64_t MethodArityHistogram::_total_compiled_calls;
2228 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2229 int MethodArityHistogram::_max_arity;
2230 int MethodArityHistogram::_max_size;
2231
print_call_statistics(uint64_t comp_total)2232 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2233 tty->print_cr("Calls from compiled code:");
2234 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2235 int64_t mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2236 int64_t mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2237 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
2238 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2239 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2240 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2241 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2242 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2243 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2244 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2245 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2246 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2247 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2248 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2249 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2250 tty->cr();
2251 tty->print_cr("Note 1: counter updates are not MT-safe.");
2252 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2253 tty->print_cr(" %% in nested categories are relative to their category");
2254 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2255 tty->cr();
2256
2257 MethodArityHistogram h;
2258 }
2259 #endif
2260
2261
2262 // A simple wrapper class around the calling convention information
2263 // that allows sharing of adapters for the same calling convention.
2264 class AdapterFingerPrint : public CHeapObj<mtCode> {
2265 private:
2266 enum {
2267 _basic_type_bits = 4,
2268 _basic_type_mask = right_n_bits(_basic_type_bits),
2269 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2270 _compact_int_count = 3
2271 };
2272 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2273 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2274
2275 union {
2276 int _compact[_compact_int_count];
2277 int* _fingerprint;
2278 } _value;
2279 int _length; // A negative length indicates the fingerprint is in the compact form,
2280 // Otherwise _value._fingerprint is the array.
2281
2282 // Remap BasicTypes that are handled equivalently by the adapters.
2283 // These are correct for the current system but someday it might be
2284 // necessary to make this mapping platform dependent.
adapter_encoding(BasicType in)2285 static int adapter_encoding(BasicType in) {
2286 switch (in) {
2287 case T_BOOLEAN:
2288 case T_BYTE:
2289 case T_SHORT:
2290 case T_CHAR:
2291 // There are all promoted to T_INT in the calling convention
2292 return T_INT;
2293
2294 case T_OBJECT:
2295 case T_ARRAY:
2296 // In other words, we assume that any register good enough for
2297 // an int or long is good enough for a managed pointer.
2298 #ifdef _LP64
2299 return T_LONG;
2300 #else
2301 return T_INT;
2302 #endif
2303
2304 case T_INT:
2305 case T_LONG:
2306 case T_FLOAT:
2307 case T_DOUBLE:
2308 case T_VOID:
2309 return in;
2310
2311 default:
2312 ShouldNotReachHere();
2313 return T_CONFLICT;
2314 }
2315 }
2316
2317 public:
AdapterFingerPrint(int total_args_passed,BasicType * sig_bt)2318 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2319 // The fingerprint is based on the BasicType signature encoded
2320 // into an array of ints with eight entries per int.
2321 int* ptr;
2322 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2323 if (len <= _compact_int_count) {
2324 assert(_compact_int_count == 3, "else change next line");
2325 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2326 // Storing the signature encoded as signed chars hits about 98%
2327 // of the time.
2328 _length = -len;
2329 ptr = _value._compact;
2330 } else {
2331 _length = len;
2332 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2333 ptr = _value._fingerprint;
2334 }
2335
2336 // Now pack the BasicTypes with 8 per int
2337 int sig_index = 0;
2338 for (int index = 0; index < len; index++) {
2339 int value = 0;
2340 for (int byte = 0; byte < _basic_types_per_int; byte++) {
2341 int bt = ((sig_index < total_args_passed)
2342 ? adapter_encoding(sig_bt[sig_index++])
2343 : 0);
2344 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2345 value = (value << _basic_type_bits) | bt;
2346 }
2347 ptr[index] = value;
2348 }
2349 }
2350
~AdapterFingerPrint()2351 ~AdapterFingerPrint() {
2352 if (_length > 0) {
2353 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2354 }
2355 }
2356
value(int index)2357 int value(int index) {
2358 if (_length < 0) {
2359 return _value._compact[index];
2360 }
2361 return _value._fingerprint[index];
2362 }
length()2363 int length() {
2364 if (_length < 0) return -_length;
2365 return _length;
2366 }
2367
is_compact()2368 bool is_compact() {
2369 return _length <= 0;
2370 }
2371
compute_hash()2372 unsigned int compute_hash() {
2373 int hash = 0;
2374 for (int i = 0; i < length(); i++) {
2375 int v = value(i);
2376 hash = (hash << 8) ^ v ^ (hash >> 5);
2377 }
2378 return (unsigned int)hash;
2379 }
2380
as_string()2381 const char* as_string() {
2382 stringStream st;
2383 st.print("0x");
2384 for (int i = 0; i < length(); i++) {
2385 st.print("%08x", value(i));
2386 }
2387 return st.as_string();
2388 }
2389
equals(AdapterFingerPrint * other)2390 bool equals(AdapterFingerPrint* other) {
2391 if (other->_length != _length) {
2392 return false;
2393 }
2394 if (_length < 0) {
2395 assert(_compact_int_count == 3, "else change next line");
2396 return _value._compact[0] == other->_value._compact[0] &&
2397 _value._compact[1] == other->_value._compact[1] &&
2398 _value._compact[2] == other->_value._compact[2];
2399 } else {
2400 for (int i = 0; i < _length; i++) {
2401 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2402 return false;
2403 }
2404 }
2405 }
2406 return true;
2407 }
2408 };
2409
2410
2411 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2412 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2413 friend class AdapterHandlerTableIterator;
2414
2415 private:
2416
2417 #ifndef PRODUCT
2418 static int _lookups; // number of calls to lookup
2419 static int _buckets; // number of buckets checked
2420 static int _equals; // number of buckets checked with matching hash
2421 static int _hits; // number of successful lookups
2422 static int _compact; // number of equals calls with compact signature
2423 #endif
2424
bucket(int i)2425 AdapterHandlerEntry* bucket(int i) {
2426 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2427 }
2428
2429 public:
AdapterHandlerTable()2430 AdapterHandlerTable()
2431 : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2432
2433 // Create a new entry suitable for insertion in the table
new_entry(AdapterFingerPrint * fingerprint,address i2c_entry,address c2i_entry,address c2i_unverified_entry)2434 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2435 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2436 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2437 if (DumpSharedSpaces) {
2438 ((CDSAdapterHandlerEntry*)entry)->init();
2439 }
2440 return entry;
2441 }
2442
2443 // Insert an entry into the table
add(AdapterHandlerEntry * entry)2444 void add(AdapterHandlerEntry* entry) {
2445 int index = hash_to_index(entry->hash());
2446 add_entry(index, entry);
2447 }
2448
free_entry(AdapterHandlerEntry * entry)2449 void free_entry(AdapterHandlerEntry* entry) {
2450 entry->deallocate();
2451 BasicHashtable<mtCode>::free_entry(entry);
2452 }
2453
2454 // Find a entry with the same fingerprint if it exists
lookup(int total_args_passed,BasicType * sig_bt)2455 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2456 NOT_PRODUCT(_lookups++);
2457 AdapterFingerPrint fp(total_args_passed, sig_bt);
2458 unsigned int hash = fp.compute_hash();
2459 int index = hash_to_index(hash);
2460 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2461 NOT_PRODUCT(_buckets++);
2462 if (e->hash() == hash) {
2463 NOT_PRODUCT(_equals++);
2464 if (fp.equals(e->fingerprint())) {
2465 #ifndef PRODUCT
2466 if (fp.is_compact()) _compact++;
2467 _hits++;
2468 #endif
2469 return e;
2470 }
2471 }
2472 }
2473 return NULL;
2474 }
2475
2476 #ifndef PRODUCT
print_statistics()2477 void print_statistics() {
2478 ResourceMark rm;
2479 int longest = 0;
2480 int empty = 0;
2481 int total = 0;
2482 int nonempty = 0;
2483 for (int index = 0; index < table_size(); index++) {
2484 int count = 0;
2485 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2486 count++;
2487 }
2488 if (count != 0) nonempty++;
2489 if (count == 0) empty++;
2490 if (count > longest) longest = count;
2491 total += count;
2492 }
2493 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2494 empty, longest, total, total / (double)nonempty);
2495 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2496 _lookups, _buckets, _equals, _hits, _compact);
2497 }
2498 #endif
2499 };
2500
2501
2502 #ifndef PRODUCT
2503
2504 int AdapterHandlerTable::_lookups;
2505 int AdapterHandlerTable::_buckets;
2506 int AdapterHandlerTable::_equals;
2507 int AdapterHandlerTable::_hits;
2508 int AdapterHandlerTable::_compact;
2509
2510 #endif
2511
2512 class AdapterHandlerTableIterator : public StackObj {
2513 private:
2514 AdapterHandlerTable* _table;
2515 int _index;
2516 AdapterHandlerEntry* _current;
2517
scan()2518 void scan() {
2519 while (_index < _table->table_size()) {
2520 AdapterHandlerEntry* a = _table->bucket(_index);
2521 _index++;
2522 if (a != NULL) {
2523 _current = a;
2524 return;
2525 }
2526 }
2527 }
2528
2529 public:
AdapterHandlerTableIterator(AdapterHandlerTable * table)2530 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2531 scan();
2532 }
has_next()2533 bool has_next() {
2534 return _current != NULL;
2535 }
next()2536 AdapterHandlerEntry* next() {
2537 if (_current != NULL) {
2538 AdapterHandlerEntry* result = _current;
2539 _current = _current->next();
2540 if (_current == NULL) scan();
2541 return result;
2542 } else {
2543 return NULL;
2544 }
2545 }
2546 };
2547
2548
2549 // ---------------------------------------------------------------------------
2550 // Implementation of AdapterHandlerLibrary
2551 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2552 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2553 const int AdapterHandlerLibrary_size = 16*K;
2554 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2555
buffer_blob()2556 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2557 // Should be called only when AdapterHandlerLibrary_lock is active.
2558 if (_buffer == NULL) // Initialize lazily
2559 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2560 return _buffer;
2561 }
2562
unexpected_adapter_call()2563 extern "C" void unexpected_adapter_call() {
2564 ShouldNotCallThis();
2565 }
2566
initialize()2567 void AdapterHandlerLibrary::initialize() {
2568 if (_adapters != NULL) return;
2569 _adapters = new AdapterHandlerTable();
2570
2571 // Create a special handler for abstract methods. Abstract methods
2572 // are never compiled so an i2c entry is somewhat meaningless, but
2573 // throw AbstractMethodError just in case.
2574 // Pass wrong_method_abstract for the c2i transitions to return
2575 // AbstractMethodError for invalid invocations.
2576 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2577 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2578 StubRoutines::throw_AbstractMethodError_entry(),
2579 wrong_method_abstract, wrong_method_abstract);
2580 }
2581
new_entry(AdapterFingerPrint * fingerprint,address i2c_entry,address c2i_entry,address c2i_unverified_entry)2582 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2583 address i2c_entry,
2584 address c2i_entry,
2585 address c2i_unverified_entry) {
2586 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2587 }
2588
get_adapter(const methodHandle & method)2589 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2590 AdapterHandlerEntry* entry = get_adapter0(method);
2591 if (entry != NULL && method->is_shared()) {
2592 // See comments around Method::link_method()
2593 MutexLocker mu(AdapterHandlerLibrary_lock);
2594 if (method->adapter() == NULL) {
2595 method->update_adapter_trampoline(entry);
2596 }
2597 address trampoline = method->from_compiled_entry();
2598 if (*(int*)trampoline == 0) {
2599 CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2600 MacroAssembler _masm(&buffer);
2601 SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2602 assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2603 _masm.flush();
2604
2605 if (PrintInterpreter) {
2606 Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2607 }
2608 }
2609 }
2610
2611 return entry;
2612 }
2613
get_adapter0(const methodHandle & method)2614 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2615 // Use customized signature handler. Need to lock around updates to
2616 // the AdapterHandlerTable (it is not safe for concurrent readers
2617 // and a single writer: this could be fixed if it becomes a
2618 // problem).
2619
2620 ResourceMark rm;
2621
2622 NOT_PRODUCT(int insts_size);
2623 AdapterBlob* new_adapter = NULL;
2624 AdapterHandlerEntry* entry = NULL;
2625 AdapterFingerPrint* fingerprint = NULL;
2626 {
2627 MutexLocker mu(AdapterHandlerLibrary_lock);
2628 // make sure data structure is initialized
2629 initialize();
2630
2631 if (method->is_abstract()) {
2632 return _abstract_method_handler;
2633 }
2634
2635 // Fill in the signature array, for the calling-convention call.
2636 int total_args_passed = method->size_of_parameters(); // All args on stack
2637
2638 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2639 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2640 int i = 0;
2641 if (!method->is_static()) // Pass in receiver first
2642 sig_bt[i++] = T_OBJECT;
2643 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2644 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
2645 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2646 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
2647 }
2648 assert(i == total_args_passed, "");
2649
2650 // Lookup method signature's fingerprint
2651 entry = _adapters->lookup(total_args_passed, sig_bt);
2652
2653 #ifdef ASSERT
2654 AdapterHandlerEntry* shared_entry = NULL;
2655 // Start adapter sharing verification only after the VM is booted.
2656 if (VerifyAdapterSharing && (entry != NULL)) {
2657 shared_entry = entry;
2658 entry = NULL;
2659 }
2660 #endif
2661
2662 if (entry != NULL) {
2663 return entry;
2664 }
2665
2666 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2667 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2668
2669 // Make a C heap allocated version of the fingerprint to store in the adapter
2670 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2671
2672 // StubRoutines::code2() is initialized after this function can be called. As a result,
2673 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2674 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2675 // stub that ensure that an I2C stub is called from an interpreter frame.
2676 bool contains_all_checks = StubRoutines::code2() != NULL;
2677
2678 // Create I2C & C2I handlers
2679 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2680 if (buf != NULL) {
2681 CodeBuffer buffer(buf);
2682 short buffer_locs[20];
2683 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2684 sizeof(buffer_locs)/sizeof(relocInfo));
2685
2686 MacroAssembler _masm(&buffer);
2687 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2688 total_args_passed,
2689 comp_args_on_stack,
2690 sig_bt,
2691 regs,
2692 fingerprint);
2693 #ifdef ASSERT
2694 if (VerifyAdapterSharing) {
2695 if (shared_entry != NULL) {
2696 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2697 // Release the one just created and return the original
2698 _adapters->free_entry(entry);
2699 return shared_entry;
2700 } else {
2701 entry->save_code(buf->code_begin(), buffer.insts_size());
2702 }
2703 }
2704 #endif
2705
2706 new_adapter = AdapterBlob::create(&buffer);
2707 NOT_PRODUCT(insts_size = buffer.insts_size());
2708 }
2709 if (new_adapter == NULL) {
2710 // CodeCache is full, disable compilation
2711 // Ought to log this but compile log is only per compile thread
2712 // and we're some non descript Java thread.
2713 return NULL; // Out of CodeCache space
2714 }
2715 entry->relocate(new_adapter->content_begin());
2716 #ifndef PRODUCT
2717 // debugging suppport
2718 if (PrintAdapterHandlers || PrintStubCode) {
2719 ttyLocker ttyl;
2720 entry->print_adapter_on(tty);
2721 tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2722 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2723 method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2724 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2725 if (Verbose || PrintStubCode) {
2726 address first_pc = entry->base_address();
2727 if (first_pc != NULL) {
2728 Disassembler::decode(first_pc, first_pc + insts_size);
2729 tty->cr();
2730 }
2731 }
2732 }
2733 #endif
2734 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2735 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2736 if (contains_all_checks || !VerifyAdapterCalls) {
2737 _adapters->add(entry);
2738 }
2739 }
2740 // Outside of the lock
2741 if (new_adapter != NULL) {
2742 char blob_id[256];
2743 jio_snprintf(blob_id,
2744 sizeof(blob_id),
2745 "%s(%s)@" PTR_FORMAT,
2746 new_adapter->name(),
2747 fingerprint->as_string(),
2748 new_adapter->content_begin());
2749 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2750
2751 if (JvmtiExport::should_post_dynamic_code_generated()) {
2752 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2753 }
2754 }
2755 return entry;
2756 }
2757
base_address()2758 address AdapterHandlerEntry::base_address() {
2759 address base = _i2c_entry;
2760 if (base == NULL) base = _c2i_entry;
2761 assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2762 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2763 return base;
2764 }
2765
relocate(address new_base)2766 void AdapterHandlerEntry::relocate(address new_base) {
2767 address old_base = base_address();
2768 assert(old_base != NULL, "");
2769 ptrdiff_t delta = new_base - old_base;
2770 if (_i2c_entry != NULL)
2771 _i2c_entry += delta;
2772 if (_c2i_entry != NULL)
2773 _c2i_entry += delta;
2774 if (_c2i_unverified_entry != NULL)
2775 _c2i_unverified_entry += delta;
2776 assert(base_address() == new_base, "");
2777 }
2778
2779
deallocate()2780 void AdapterHandlerEntry::deallocate() {
2781 delete _fingerprint;
2782 #ifdef ASSERT
2783 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2784 #endif
2785 }
2786
2787
2788 #ifdef ASSERT
2789 // Capture the code before relocation so that it can be compared
2790 // against other versions. If the code is captured after relocation
2791 // then relative instructions won't be equivalent.
save_code(unsigned char * buffer,int length)2792 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2793 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2794 _saved_code_length = length;
2795 memcpy(_saved_code, buffer, length);
2796 }
2797
2798
compare_code(unsigned char * buffer,int length)2799 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2800 if (length != _saved_code_length) {
2801 return false;
2802 }
2803
2804 return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2805 }
2806 #endif
2807
2808
2809 /**
2810 * Create a native wrapper for this native method. The wrapper converts the
2811 * Java-compiled calling convention to the native convention, handles
2812 * arguments, and transitions to native. On return from the native we transition
2813 * back to java blocking if a safepoint is in progress.
2814 */
create_native_wrapper(const methodHandle & method)2815 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2816 ResourceMark rm;
2817 nmethod* nm = NULL;
2818 address critical_entry = NULL;
2819
2820 assert(method->is_native(), "must be native");
2821 assert(method->is_method_handle_intrinsic() ||
2822 method->has_native_function(), "must have something valid to call!");
2823
2824 if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2825 // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2826 critical_entry = NativeLookup::lookup_critical_entry(method);
2827 }
2828
2829 {
2830 // Perform the work while holding the lock, but perform any printing outside the lock
2831 MutexLocker mu(AdapterHandlerLibrary_lock);
2832 // See if somebody beat us to it
2833 if (method->code() != NULL) {
2834 return;
2835 }
2836
2837 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2838 assert(compile_id > 0, "Must generate native wrapper");
2839
2840
2841 ResourceMark rm;
2842 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2843 if (buf != NULL) {
2844 CodeBuffer buffer(buf);
2845 struct { double data[20]; } locs_buf;
2846 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, (sizeof(locs_buf)) / (sizeof(relocInfo)));
2847 MacroAssembler _masm(&buffer);
2848
2849 // Fill in the signature array, for the calling-convention call.
2850 const int total_args_passed = method->size_of_parameters();
2851
2852 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2853 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2854 int i=0;
2855 if (!method->is_static()) // Pass in receiver first
2856 sig_bt[i++] = T_OBJECT;
2857 SignatureStream ss(method->signature());
2858 for (; !ss.at_return_type(); ss.next()) {
2859 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
2860 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2861 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
2862 }
2863 assert(i == total_args_passed, "");
2864 BasicType ret_type = ss.type();
2865
2866 // Now get the compiled-Java layout as input (or output) arguments.
2867 // NOTE: Stubs for compiled entry points of method handle intrinsics
2868 // are just trampolines so the argument registers must be outgoing ones.
2869 const bool is_outgoing = method->is_method_handle_intrinsic();
2870 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2871
2872 // Generate the compiled-to-native wrapper code
2873 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2874
2875 if (nm != NULL) {
2876 method->set_code(method, nm);
2877
2878 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2879 if (directive->PrintAssemblyOption) {
2880 nm->print_code();
2881 }
2882 DirectivesStack::release(directive);
2883 }
2884 }
2885 } // Unlock AdapterHandlerLibrary_lock
2886
2887
2888 // Install the generated code.
2889 if (nm != NULL) {
2890 const char *msg = method->is_static() ? "(static)" : "";
2891 CompileTask::print_ul(nm, msg);
2892 if (PrintCompilation) {
2893 ttyLocker ttyl;
2894 CompileTask::print(tty, nm, msg);
2895 }
2896 nm->post_compiled_method_load_event();
2897 }
2898 }
2899
2900 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2901 assert(thread == JavaThread::current(), "must be");
2902 // The code is about to enter a JNI lazy critical native method and
2903 // _needs_gc is true, so if this thread is already in a critical
2904 // section then just return, otherwise this thread should block
2905 // until needs_gc has been cleared.
2906 if (thread->in_critical()) {
2907 return;
2908 }
2909 // Lock and unlock a critical section to give the system a chance to block
2910 GCLocker::lock_critical(thread);
2911 GCLocker::unlock_critical(thread);
2912 JRT_END
2913
2914 #if INCLUDE_SHENANDOAHGC
2915 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2916 assert(Universe::heap()->supports_object_pinning(), "Why we here?");
2917 assert(obj != NULL, "Should not be null");
2918 oop o(obj);
2919 o = Universe::heap()->pin_object(thread, o);
2920 assert(o != NULL, "Should not be null");
2921 return o;
2922 JRT_END
2923
2924 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2925 assert(Universe::heap()->supports_object_pinning(), "Why we here?");
2926 assert(obj != NULL, "Should not be null");
2927 oop o(obj);
2928 Universe::heap()->unpin_object(thread, o);
2929 JRT_END
2930 #endif
2931
2932 // -------------------------------------------------------------------------
2933 // Java-Java calling convention
2934 // (what you use when Java calls Java)
2935
2936 //------------------------------name_for_receiver----------------------------------
2937 // For a given signature, return the VMReg for parameter 0.
name_for_receiver()2938 VMReg SharedRuntime::name_for_receiver() {
2939 VMRegPair regs;
2940 BasicType sig_bt = T_OBJECT;
2941 (void) java_calling_convention(&sig_bt, ®s, 1, true);
2942 // Return argument 0 register. In the LP64 build pointers
2943 // take 2 registers, but the VM wants only the 'main' name.
2944 return regs.first();
2945 }
2946
find_callee_arguments(Symbol * sig,bool has_receiver,bool has_appendix,int * arg_size)2947 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2948 // This method is returning a data structure allocating as a
2949 // ResourceObject, so do not put any ResourceMarks in here.
2950 char *s = sig->as_C_string();
2951 int len = (int)strlen(s);
2952 s++; len--; // Skip opening paren
2953
2954 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2955 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2956 int cnt = 0;
2957 if (has_receiver) {
2958 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2959 }
2960
2961 while (*s != ')') { // Find closing right paren
2962 switch (*s++) { // Switch on signature character
2963 case 'B': sig_bt[cnt++] = T_BYTE; break;
2964 case 'C': sig_bt[cnt++] = T_CHAR; break;
2965 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
2966 case 'F': sig_bt[cnt++] = T_FLOAT; break;
2967 case 'I': sig_bt[cnt++] = T_INT; break;
2968 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
2969 case 'S': sig_bt[cnt++] = T_SHORT; break;
2970 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2971 case 'V': sig_bt[cnt++] = T_VOID; break;
2972 case 'L': // Oop
2973 while (*s++ != ';'); // Skip signature
2974 sig_bt[cnt++] = T_OBJECT;
2975 break;
2976 case '[': { // Array
2977 do { // Skip optional size
2978 while (*s >= '0' && *s <= '9') s++;
2979 } while (*s++ == '['); // Nested arrays?
2980 // Skip element type
2981 if (s[-1] == 'L')
2982 while (*s++ != ';'); // Skip signature
2983 sig_bt[cnt++] = T_ARRAY;
2984 break;
2985 }
2986 default : ShouldNotReachHere();
2987 }
2988 }
2989
2990 if (has_appendix) {
2991 sig_bt[cnt++] = T_OBJECT;
2992 }
2993
2994 assert(cnt < 256, "grow table size");
2995
2996 int comp_args_on_stack;
2997 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2998
2999 // the calling convention doesn't count out_preserve_stack_slots so
3000 // we must add that in to get "true" stack offsets.
3001
3002 if (comp_args_on_stack) {
3003 for (int i = 0; i < cnt; i++) {
3004 VMReg reg1 = regs[i].first();
3005 if (reg1->is_stack()) {
3006 // Yuck
3007 reg1 = reg1->bias(out_preserve_stack_slots());
3008 }
3009 VMReg reg2 = regs[i].second();
3010 if (reg2->is_stack()) {
3011 // Yuck
3012 reg2 = reg2->bias(out_preserve_stack_slots());
3013 }
3014 regs[i].set_pair(reg2, reg1);
3015 }
3016 }
3017
3018 // results
3019 *arg_size = cnt;
3020 return regs;
3021 }
3022
3023 // OSR Migration Code
3024 //
3025 // This code is used convert interpreter frames into compiled frames. It is
3026 // called from very start of a compiled OSR nmethod. A temp array is
3027 // allocated to hold the interesting bits of the interpreter frame. All
3028 // active locks are inflated to allow them to move. The displaced headers and
3029 // active interpreter locals are copied into the temp buffer. Then we return
3030 // back to the compiled code. The compiled code then pops the current
3031 // interpreter frame off the stack and pushes a new compiled frame. Then it
3032 // copies the interpreter locals and displaced headers where it wants.
3033 // Finally it calls back to free the temp buffer.
3034 //
3035 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3036
3037 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3038
3039 //
3040 // This code is dependent on the memory layout of the interpreter local
3041 // array and the monitors. On all of our platforms the layout is identical
3042 // so this code is shared. If some platform lays the their arrays out
3043 // differently then this code could move to platform specific code or
3044 // the code here could be modified to copy items one at a time using
3045 // frame accessor methods and be platform independent.
3046
3047 frame fr = thread->last_frame();
3048 assert(fr.is_interpreted_frame(), "");
3049 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3050
3051 // Figure out how many monitors are active.
3052 int active_monitor_count = 0;
3053 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3054 kptr < fr.interpreter_frame_monitor_begin();
3055 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3056 if (kptr->obj() != NULL) active_monitor_count++;
3057 }
3058
3059 // QQQ we could place number of active monitors in the array so that compiled code
3060 // could double check it.
3061
3062 Method* moop = fr.interpreter_frame_method();
3063 int max_locals = moop->max_locals();
3064 // Allocate temp buffer, 1 word per local & 2 per active monitor
3065 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3066 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3067
3068 // Copy the locals. Order is preserved so that loading of longs works.
3069 // Since there's no GC I can copy the oops blindly.
3070 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3071 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3072 (HeapWord*)&buf[0],
3073 max_locals);
3074
3075 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3076 int i = max_locals;
3077 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3078 kptr2 < fr.interpreter_frame_monitor_begin();
3079 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3080 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
3081 BasicLock *lock = kptr2->lock();
3082 // Inflate so the displaced header becomes position-independent
3083 if (lock->displaced_header()->is_unlocked())
3084 ObjectSynchronizer::inflate_helper(kptr2->obj());
3085 // Now the displaced header is free to move
3086 buf[i++] = (intptr_t)lock->displaced_header();
3087 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3088 }
3089 }
3090 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3091
3092 return buf;
3093 JRT_END
3094
3095 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3096 FREE_C_HEAP_ARRAY(intptr_t, buf);
3097 JRT_END
3098
contains(const CodeBlob * b)3099 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3100 AdapterHandlerTableIterator iter(_adapters);
3101 while (iter.has_next()) {
3102 AdapterHandlerEntry* a = iter.next();
3103 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3104 }
3105 return false;
3106 }
3107
print_handler_on(outputStream * st,const CodeBlob * b)3108 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3109 AdapterHandlerTableIterator iter(_adapters);
3110 while (iter.has_next()) {
3111 AdapterHandlerEntry* a = iter.next();
3112 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3113 st->print("Adapter for signature: ");
3114 a->print_adapter_on(tty);
3115 return;
3116 }
3117 }
3118 assert(false, "Should have found handler");
3119 }
3120
print_adapter_on(outputStream * st) const3121 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3122 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3123 p2i(this), fingerprint()->as_string(),
3124 p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3125
3126 }
3127
3128 #if INCLUDE_CDS
3129
init()3130 void CDSAdapterHandlerEntry::init() {
3131 assert(DumpSharedSpaces, "used during dump time only");
3132 _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3133 _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3134 };
3135
3136 #endif // INCLUDE_CDS
3137
3138
3139 #ifndef PRODUCT
3140
print_statistics()3141 void AdapterHandlerLibrary::print_statistics() {
3142 _adapters->print_statistics();
3143 }
3144
3145 #endif /* PRODUCT */
3146
3147 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3148 assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3149 if (thread->stack_reserved_zone_disabled()) {
3150 thread->enable_stack_reserved_zone();
3151 }
3152 thread->set_reserved_stack_activation(thread->stack_base());
3153 JRT_END
3154
look_for_reserved_stack_annotated_method(JavaThread * thread,frame fr)3155 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3156 ResourceMark rm(thread);
3157 frame activation;
3158 CompiledMethod* nm = NULL;
3159 int count = 1;
3160
3161 assert(fr.is_java_frame(), "Must start on Java frame");
3162
3163 while (true) {
3164 Method* method = NULL;
3165 bool found = false;
3166 if (fr.is_interpreted_frame()) {
3167 method = fr.interpreter_frame_method();
3168 if (method != NULL && method->has_reserved_stack_access()) {
3169 found = true;
3170 }
3171 } else {
3172 CodeBlob* cb = fr.cb();
3173 if (cb != NULL && cb->is_compiled()) {
3174 nm = cb->as_compiled_method();
3175 method = nm->method();
3176 // scope_desc_near() must be used, instead of scope_desc_at() because on
3177 // SPARC, the pcDesc can be on the delay slot after the call instruction.
3178 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3179 method = sd->method();
3180 if (method != NULL && method->has_reserved_stack_access()) {
3181 found = true;
3182 }
3183 }
3184 }
3185 }
3186 if (found) {
3187 activation = fr;
3188 warning("Potentially dangerous stack overflow in "
3189 "ReservedStackAccess annotated method %s [%d]",
3190 method->name_and_sig_as_C_string(), count++);
3191 EventReservedStackActivation event;
3192 if (event.should_commit()) {
3193 event.set_method(method);
3194 event.commit();
3195 }
3196 }
3197 if (fr.is_first_java_frame()) {
3198 break;
3199 } else {
3200 fr = fr.java_sender();
3201 }
3202 }
3203 return activation;
3204 }
3205
on_slowpath_allocation_exit(JavaThread * thread)3206 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3207 // After any safepoint, just before going back to compiled code,
3208 // we inform the GC that we will be doing initializing writes to
3209 // this object in the future without emitting card-marks, so
3210 // GC may take any compensating steps.
3211
3212 oop new_obj = thread->vm_result();
3213 if (new_obj == NULL) return;
3214
3215 BarrierSet *bs = BarrierSet::barrier_set();
3216 bs->on_slowpath_allocation_exit(thread, new_obj);
3217 }
3218