1 /*
2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 import jdk.internal.misc.SharedSecrets;
29 import jdk.internal.module.IllegalAccessLogger;
30 import jdk.internal.org.objectweb.asm.ClassReader;
31 import jdk.internal.reflect.CallerSensitive;
32 import jdk.internal.reflect.Reflection;
33 import jdk.internal.vm.annotation.ForceInline;
34 import sun.invoke.util.ValueConversions;
35 import sun.invoke.util.VerifyAccess;
36 import sun.invoke.util.Wrapper;
37 import sun.reflect.misc.ReflectUtil;
38 import sun.security.util.SecurityConstants;
39 
40 import java.lang.invoke.LambdaForm.BasicType;
41 import java.lang.reflect.Constructor;
42 import java.lang.reflect.Field;
43 import java.lang.reflect.Member;
44 import java.lang.reflect.Method;
45 import java.lang.reflect.Modifier;
46 import java.lang.reflect.ReflectPermission;
47 import java.nio.ByteOrder;
48 import java.security.AccessController;
49 import java.security.PrivilegedAction;
50 import java.security.ProtectionDomain;
51 import java.util.ArrayList;
52 import java.util.Arrays;
53 import java.util.BitSet;
54 import java.util.Iterator;
55 import java.util.List;
56 import java.util.Objects;
57 import java.util.concurrent.ConcurrentHashMap;
58 import java.util.stream.Collectors;
59 import java.util.stream.Stream;
60 
61 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
62 import static java.lang.invoke.MethodHandleNatives.Constants.*;
63 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
64 import static java.lang.invoke.MethodType.methodType;
65 
66 /**
67  * This class consists exclusively of static methods that operate on or return
68  * method handles. They fall into several categories:
69  * <ul>
70  * <li>Lookup methods which help create method handles for methods and fields.
71  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
72  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
73  * </ul>
74  *
75  * @author John Rose, JSR 292 EG
76  * @since 1.7
77  */
78 public class MethodHandles {
79 
MethodHandles()80     private MethodHandles() { }  // do not instantiate
81 
82     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
83 
84     // See IMPL_LOOKUP below.
85 
86     //// Method handle creation from ordinary methods.
87 
88     /**
89      * Returns a {@link Lookup lookup object} with
90      * full capabilities to emulate all supported bytecode behaviors of the caller.
91      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
92      * Factory methods on the lookup object can create
93      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
94      * for any member that the caller has access to via bytecodes,
95      * including protected and private fields and methods.
96      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
97      * Do not store it in place where untrusted code can access it.
98      * <p>
99      * This method is caller sensitive, which means that it may return different
100      * values to different callers.
101      * @return a lookup object for the caller of this method, with private access
102      */
103     @CallerSensitive
104     @ForceInline // to ensure Reflection.getCallerClass optimization
lookup()105     public static Lookup lookup() {
106         return new Lookup(Reflection.getCallerClass());
107     }
108 
109     /**
110      * This reflected$lookup method is the alternate implementation of
111      * the lookup method when being invoked by reflection.
112      */
113     @CallerSensitive
reflected$lookup()114     private static Lookup reflected$lookup() {
115         Class<?> caller = Reflection.getCallerClass();
116         if (caller.getClassLoader() == null) {
117             throw newIllegalArgumentException("illegal lookupClass: "+caller);
118         }
119         return new Lookup(caller);
120     }
121 
122     /**
123      * Returns a {@link Lookup lookup object} which is trusted minimally.
124      * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes.
125      * It can only be used to create method handles to public members of
126      * public classes in packages that are exported unconditionally.
127      * <p>
128      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
129      * of this lookup object will be {@link java.lang.Object}.
130      *
131      * @apiNote The use of Object is conventional, and because the lookup modes are
132      * limited, there is no special access provided to the internals of Object, its package
133      * or its module. Consequently, the lookup context of this lookup object will be the
134      * bootstrap class loader, which means it cannot find user classes.
135      *
136      * <p style="font-size:smaller;">
137      * <em>Discussion:</em>
138      * The lookup class can be changed to any other class {@code C} using an expression of the form
139      * {@link Lookup#in publicLookup().in(C.class)}.
140      * but may change the lookup context by virtue of changing the class loader.
141      * A public lookup object is always subject to
142      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
143      * Also, it cannot access
144      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
145      * @return a lookup object which is trusted minimally
146      *
147      * @revised 9
148      * @spec JPMS
149      */
publicLookup()150     public static Lookup publicLookup() {
151         return Lookup.PUBLIC_LOOKUP;
152     }
153 
154     /**
155      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
156      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
157      * private access</a>, on a target class.
158      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
159      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
160      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
161      * the target class, then this check ensures that
162      * <ul>
163      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
164      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
165      *     the target class to at least {@code m1}.</li>
166      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
167      * </ul>
168      * <p>
169      * If there is a security manager, its {@code checkPermission} method is called to
170      * check {@code ReflectPermission("suppressAccessChecks")}.
171      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
172      * was created by code in the caller module (or derived from a lookup object originally
173      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
174      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
175      * access to the caller.
176      * @param targetClass the target class
177      * @param lookup the caller lookup object
178      * @return a lookup object for the target class, with private access
179      * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class
180      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
181      * @throws IllegalAccessException if the access check specified above fails
182      * @throws SecurityException if denied by the security manager
183      * @since 9
184      * @spec JPMS
185      * @see Lookup#dropLookupMode
186      */
privateLookupIn(Class<?> targetClass, Lookup lookup)187     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
188         SecurityManager sm = System.getSecurityManager();
189         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
190         if (targetClass.isPrimitive())
191             throw new IllegalArgumentException(targetClass + " is a primitive class");
192         if (targetClass.isArray())
193             throw new IllegalArgumentException(targetClass + " is an array class");
194         Module targetModule = targetClass.getModule();
195         Module callerModule = lookup.lookupClass().getModule();
196         if (!callerModule.canRead(targetModule))
197             throw new IllegalAccessException(callerModule + " does not read " + targetModule);
198         if (targetModule.isNamed()) {
199             String pn = targetClass.getPackageName();
200             assert !pn.isEmpty() : "unnamed package cannot be in named module";
201             if (!targetModule.isOpen(pn, callerModule))
202                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
203         }
204         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
205             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
206         if (!callerModule.isNamed() && targetModule.isNamed()) {
207             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
208             if (logger != null) {
209                 logger.logIfOpenedForIllegalAccess(lookup, targetClass);
210             }
211         }
212         return new Lookup(targetClass);
213     }
214 
215     /**
216      * Performs an unchecked "crack" of a
217      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
218      * The result is as if the user had obtained a lookup object capable enough
219      * to crack the target method handle, called
220      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
221      * on the target to obtain its symbolic reference, and then called
222      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
223      * to resolve the symbolic reference to a member.
224      * <p>
225      * If there is a security manager, its {@code checkPermission} method
226      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
227      * @param <T> the desired type of the result, either {@link Member} or a subtype
228      * @param target a direct method handle to crack into symbolic reference components
229      * @param expected a class object representing the desired result type {@code T}
230      * @return a reference to the method, constructor, or field object
231      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
232      * @exception NullPointerException if either argument is {@code null}
233      * @exception IllegalArgumentException if the target is not a direct method handle
234      * @exception ClassCastException if the member is not of the expected type
235      * @since 1.8
236      */
237     public static <T extends Member> T
reflectAs(Class<T> expected, MethodHandle target)238     reflectAs(Class<T> expected, MethodHandle target) {
239         SecurityManager smgr = System.getSecurityManager();
240         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
241         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
242         return lookup.revealDirect(target).reflectAs(expected, lookup);
243     }
244     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
245     private static final java.security.Permission ACCESS_PERMISSION =
246         new ReflectPermission("suppressAccessChecks");
247 
248     /**
249      * A <em>lookup object</em> is a factory for creating method handles,
250      * when the creation requires access checking.
251      * Method handles do not perform
252      * access checks when they are called, but rather when they are created.
253      * Therefore, method handle access
254      * restrictions must be enforced when a method handle is created.
255      * The caller class against which those restrictions are enforced
256      * is known as the {@linkplain #lookupClass() lookup class}.
257      * <p>
258      * A lookup class which needs to create method handles will call
259      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
260      * When the {@code Lookup} factory object is created, the identity of the lookup class is
261      * determined, and securely stored in the {@code Lookup} object.
262      * The lookup class (or its delegates) may then use factory methods
263      * on the {@code Lookup} object to create method handles for access-checked members.
264      * This includes all methods, constructors, and fields which are allowed to the lookup class,
265      * even private ones.
266      *
267      * <h1><a id="lookups"></a>Lookup Factory Methods</h1>
268      * The factory methods on a {@code Lookup} object correspond to all major
269      * use cases for methods, constructors, and fields.
270      * Each method handle created by a factory method is the functional
271      * equivalent of a particular <em>bytecode behavior</em>.
272      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
273      * Here is a summary of the correspondence between these factory methods and
274      * the behavior of the resulting method handles:
275      * <table class="striped">
276      * <caption style="display:none">lookup method behaviors</caption>
277      * <thead>
278      * <tr>
279      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
280      *     <th scope="col">member</th>
281      *     <th scope="col">bytecode behavior</th>
282      * </tr>
283      * </thead>
284      * <tbody>
285      * <tr>
286      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
287      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
288      * </tr>
289      * <tr>
290      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
291      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
292      * </tr>
293      * <tr>
294      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
295      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
296      * </tr>
297      * <tr>
298      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
299      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
300      * </tr>
301      * <tr>
302      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
303      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
304      * </tr>
305      * <tr>
306      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
307      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
308      * </tr>
309      * <tr>
310      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
311      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
312      * </tr>
313      * <tr>
314      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
315      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
316      * </tr>
317      * <tr>
318      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
319      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
320      * </tr>
321      * <tr>
322      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
323      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
324      * </tr>
325      * <tr>
326      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
327      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
328      * </tr>
329      * <tr>
330      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
331      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
332      * </tr>
333      * <tr>
334      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
335      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
336      * </tr>
337      * <tr>
338      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
339      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
340      * </tr>
341      * </tbody>
342      * </table>
343      *
344      * Here, the type {@code C} is the class or interface being searched for a member,
345      * documented as a parameter named {@code refc} in the lookup methods.
346      * The method type {@code MT} is composed from the return type {@code T}
347      * and the sequence of argument types {@code A*}.
348      * The constructor also has a sequence of argument types {@code A*} and
349      * is deemed to return the newly-created object of type {@code C}.
350      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
351      * The formal parameter {@code this} stands for the self-reference of type {@code C};
352      * if it is present, it is always the leading argument to the method handle invocation.
353      * (In the case of some {@code protected} members, {@code this} may be
354      * restricted in type to the lookup class; see below.)
355      * The name {@code arg} stands for all the other method handle arguments.
356      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
357      * stands for a null reference if the accessed method or field is static,
358      * and {@code this} otherwise.
359      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
360      * for reflective objects corresponding to the given members.
361      * <p>
362      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
363      * as if by {@code ldc CONSTANT_Class}.
364      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
365      * <p>
366      * In cases where the given member is of variable arity (i.e., a method or constructor)
367      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
368      * In all other cases, the returned method handle will be of fixed arity.
369      * <p style="font-size:smaller;">
370      * <em>Discussion:</em>
371      * The equivalence between looked-up method handles and underlying
372      * class members and bytecode behaviors
373      * can break down in a few ways:
374      * <ul style="font-size:smaller;">
375      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
376      * the lookup can still succeed, even when there is no equivalent
377      * Java expression or bytecoded constant.
378      * <li>Likewise, if {@code T} or {@code MT}
379      * is not symbolically accessible from the lookup class's loader,
380      * the lookup can still succeed.
381      * For example, lookups for {@code MethodHandle.invokeExact} and
382      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
383      * <li>If there is a security manager installed, it can forbid the lookup
384      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
385      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
386      * constant is not subject to security manager checks.
387      * <li>If the looked-up method has a
388      * <a href="MethodHandle.html#maxarity">very large arity</a>,
389      * the method handle creation may fail, due to the method handle
390      * type having too many parameters.
391      * </ul>
392      *
393      * <h1><a id="access"></a>Access checking</h1>
394      * Access checks are applied in the factory methods of {@code Lookup},
395      * when a method handle is created.
396      * This is a key difference from the Core Reflection API, since
397      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
398      * performs access checking against every caller, on every call.
399      * <p>
400      * All access checks start from a {@code Lookup} object, which
401      * compares its recorded lookup class against all requests to
402      * create method handles.
403      * A single {@code Lookup} object can be used to create any number
404      * of access-checked method handles, all checked against a single
405      * lookup class.
406      * <p>
407      * A {@code Lookup} object can be shared with other trusted code,
408      * such as a metaobject protocol.
409      * A shared {@code Lookup} object delegates the capability
410      * to create method handles on private members of the lookup class.
411      * Even if privileged code uses the {@code Lookup} object,
412      * the access checking is confined to the privileges of the
413      * original lookup class.
414      * <p>
415      * A lookup can fail, because
416      * the containing class is not accessible to the lookup class, or
417      * because the desired class member is missing, or because the
418      * desired class member is not accessible to the lookup class, or
419      * because the lookup object is not trusted enough to access the member.
420      * In any of these cases, a {@code ReflectiveOperationException} will be
421      * thrown from the attempted lookup.  The exact class will be one of
422      * the following:
423      * <ul>
424      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
425      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
426      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
427      * </ul>
428      * <p>
429      * In general, the conditions under which a method handle may be
430      * looked up for a method {@code M} are no more restrictive than the conditions
431      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
432      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
433      * a method handle lookup will generally raise a corresponding
434      * checked exception, such as {@code NoSuchMethodException}.
435      * And the effect of invoking the method handle resulting from the lookup
436      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
437      * to executing the compiled, verified, and resolved call to {@code M}.
438      * The same point is true of fields and constructors.
439      * <p style="font-size:smaller;">
440      * <em>Discussion:</em>
441      * Access checks only apply to named and reflected methods,
442      * constructors, and fields.
443      * Other method handle creation methods, such as
444      * {@link MethodHandle#asType MethodHandle.asType},
445      * do not require any access checks, and are used
446      * independently of any {@code Lookup} object.
447      * <p>
448      * If the desired member is {@code protected}, the usual JVM rules apply,
449      * including the requirement that the lookup class must be either be in the
450      * same package as the desired member, or must inherit that member.
451      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
452      * In addition, if the desired member is a non-static field or method
453      * in a different package, the resulting method handle may only be applied
454      * to objects of the lookup class or one of its subclasses.
455      * This requirement is enforced by narrowing the type of the leading
456      * {@code this} parameter from {@code C}
457      * (which will necessarily be a superclass of the lookup class)
458      * to the lookup class itself.
459      * <p>
460      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
461      * that the receiver argument must match both the resolved method <em>and</em>
462      * the current class.  Again, this requirement is enforced by narrowing the
463      * type of the leading parameter to the resulting method handle.
464      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
465      * <p>
466      * The JVM represents constructors and static initializer blocks as internal methods
467      * with special names ({@code "<init>"} and {@code "<clinit>"}).
468      * The internal syntax of invocation instructions allows them to refer to such internal
469      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
470      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
471      * <p>
472      * If the relationship between nested types is expressed directly through the
473      * {@code NestHost} and {@code NestMembers} attributes
474      * (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29),
475      * then the associated {@code Lookup} object provides direct access to
476      * the lookup class and all of its nestmates
477      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
478      * Otherwise, access between nested classes is obtained by the Java compiler creating
479      * a wrapper method to access a private method of another class in the same nest.
480      * For example, a nested class {@code C.D}
481      * can access private members within other related classes such as
482      * {@code C}, {@code C.D.E}, or {@code C.B},
483      * but the Java compiler may need to generate wrapper methods in
484      * those related classes.  In such cases, a {@code Lookup} object on
485      * {@code C.E} would be unable to access those private members.
486      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
487      * which can transform a lookup on {@code C.E} into one on any of those other
488      * classes, without special elevation of privilege.
489      * <p>
490      * The accesses permitted to a given lookup object may be limited,
491      * according to its set of {@link #lookupModes lookupModes},
492      * to a subset of members normally accessible to the lookup class.
493      * For example, the {@link MethodHandles#publicLookup publicLookup}
494      * method produces a lookup object which is only allowed to access
495      * public members in public classes of exported packages.
496      * The caller sensitive method {@link MethodHandles#lookup lookup}
497      * produces a lookup object with full capabilities relative to
498      * its caller class, to emulate all supported bytecode behaviors.
499      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
500      * with fewer access modes than the original lookup object.
501      *
502      * <p style="font-size:smaller;">
503      * <a id="privacc"></a>
504      * <em>Discussion of private access:</em>
505      * We say that a lookup has <em>private access</em>
506      * if its {@linkplain #lookupModes lookup modes}
507      * include the possibility of accessing {@code private} members
508      * (which includes the private members of nestmates).
509      * As documented in the relevant methods elsewhere,
510      * only lookups with private access possess the following capabilities:
511      * <ul style="font-size:smaller;">
512      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
513      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
514      *     such as {@code Class.forName}
515      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
516      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
517      *     for classes accessible to the lookup class
518      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
519      *     within the same package member
520      * </ul>
521      * <p style="font-size:smaller;">
522      * Each of these permissions is a consequence of the fact that a lookup object
523      * with private access can be securely traced back to an originating class,
524      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
525      * can be reliably determined and emulated by method handles.
526      *
527      * <h1><a id="secmgr"></a>Security manager interactions</h1>
528      * Although bytecode instructions can only refer to classes in
529      * a related class loader, this API can search for methods in any
530      * class, as long as a reference to its {@code Class} object is
531      * available.  Such cross-loader references are also possible with the
532      * Core Reflection API, and are impossible to bytecode instructions
533      * such as {@code invokestatic} or {@code getfield}.
534      * There is a {@linkplain java.lang.SecurityManager security manager API}
535      * to allow applications to check such cross-loader references.
536      * These checks apply to both the {@code MethodHandles.Lookup} API
537      * and the Core Reflection API
538      * (as found on {@link java.lang.Class Class}).
539      * <p>
540      * If a security manager is present, member and class lookups are subject to
541      * additional checks.
542      * From one to three calls are made to the security manager.
543      * Any of these calls can refuse access by throwing a
544      * {@link java.lang.SecurityException SecurityException}.
545      * Define {@code smgr} as the security manager,
546      * {@code lookc} as the lookup class of the current lookup object,
547      * {@code refc} as the containing class in which the member
548      * is being sought, and {@code defc} as the class in which the
549      * member is actually defined.
550      * (If a class or other type is being accessed,
551      * the {@code refc} and {@code defc} values are the class itself.)
552      * The value {@code lookc} is defined as <em>not present</em>
553      * if the current lookup object does not have
554      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
555      * The calls are made according to the following rules:
556      * <ul>
557      * <li><b>Step 1:</b>
558      *     If {@code lookc} is not present, or if its class loader is not
559      *     the same as or an ancestor of the class loader of {@code refc},
560      *     then {@link SecurityManager#checkPackageAccess
561      *     smgr.checkPackageAccess(refcPkg)} is called,
562      *     where {@code refcPkg} is the package of {@code refc}.
563      * <li><b>Step 2a:</b>
564      *     If the retrieved member is not public and
565      *     {@code lookc} is not present, then
566      *     {@link SecurityManager#checkPermission smgr.checkPermission}
567      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
568      * <li><b>Step 2b:</b>
569      *     If the retrieved class has a {@code null} class loader,
570      *     and {@code lookc} is not present, then
571      *     {@link SecurityManager#checkPermission smgr.checkPermission}
572      *     with {@code RuntimePermission("getClassLoader")} is called.
573      * <li><b>Step 3:</b>
574      *     If the retrieved member is not public,
575      *     and if {@code lookc} is not present,
576      *     and if {@code defc} and {@code refc} are different,
577      *     then {@link SecurityManager#checkPackageAccess
578      *     smgr.checkPackageAccess(defcPkg)} is called,
579      *     where {@code defcPkg} is the package of {@code defc}.
580      * </ul>
581      * Security checks are performed after other access checks have passed.
582      * Therefore, the above rules presuppose a member or class that is public,
583      * or else that is being accessed from a lookup class that has
584      * rights to access the member or class.
585      *
586      * <h1><a id="callsens"></a>Caller sensitive methods</h1>
587      * A small number of Java methods have a special property called caller sensitivity.
588      * A <em>caller-sensitive</em> method can behave differently depending on the
589      * identity of its immediate caller.
590      * <p>
591      * If a method handle for a caller-sensitive method is requested,
592      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
593      * but they take account of the lookup class in a special way.
594      * The resulting method handle behaves as if it were called
595      * from an instruction contained in the lookup class,
596      * so that the caller-sensitive method detects the lookup class.
597      * (By contrast, the invoker of the method handle is disregarded.)
598      * Thus, in the case of caller-sensitive methods,
599      * different lookup classes may give rise to
600      * differently behaving method handles.
601      * <p>
602      * In cases where the lookup object is
603      * {@link MethodHandles#publicLookup() publicLookup()},
604      * or some other lookup object without
605      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
606      * the lookup class is disregarded.
607      * In such cases, no caller-sensitive method handle can be created,
608      * access is forbidden, and the lookup fails with an
609      * {@code IllegalAccessException}.
610      * <p style="font-size:smaller;">
611      * <em>Discussion:</em>
612      * For example, the caller-sensitive method
613      * {@link java.lang.Class#forName(String) Class.forName(x)}
614      * can return varying classes or throw varying exceptions,
615      * depending on the class loader of the class that calls it.
616      * A public lookup of {@code Class.forName} will fail, because
617      * there is no reasonable way to determine its bytecode behavior.
618      * <p style="font-size:smaller;">
619      * If an application caches method handles for broad sharing,
620      * it should use {@code publicLookup()} to create them.
621      * If there is a lookup of {@code Class.forName}, it will fail,
622      * and the application must take appropriate action in that case.
623      * It may be that a later lookup, perhaps during the invocation of a
624      * bootstrap method, can incorporate the specific identity
625      * of the caller, making the method accessible.
626      * <p style="font-size:smaller;">
627      * The function {@code MethodHandles.lookup} is caller sensitive
628      * so that there can be a secure foundation for lookups.
629      * Nearly all other methods in the JSR 292 API rely on lookup
630      * objects to check access requests.
631      *
632      * @revised 9
633      */
634     public static final
635     class Lookup {
636         /** The class on behalf of whom the lookup is being performed. */
637         private final Class<?> lookupClass;
638 
639         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
640         private final int allowedModes;
641 
642         /** A single-bit mask representing {@code public} access,
643          *  which may contribute to the result of {@link #lookupModes lookupModes}.
644          *  The value, {@code 0x01}, happens to be the same as the value of the
645          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
646          */
647         public static final int PUBLIC = Modifier.PUBLIC;
648 
649         /** A single-bit mask representing {@code private} access,
650          *  which may contribute to the result of {@link #lookupModes lookupModes}.
651          *  The value, {@code 0x02}, happens to be the same as the value of the
652          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
653          */
654         public static final int PRIVATE = Modifier.PRIVATE;
655 
656         /** A single-bit mask representing {@code protected} access,
657          *  which may contribute to the result of {@link #lookupModes lookupModes}.
658          *  The value, {@code 0x04}, happens to be the same as the value of the
659          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
660          */
661         public static final int PROTECTED = Modifier.PROTECTED;
662 
663         /** A single-bit mask representing {@code package} access (default access),
664          *  which may contribute to the result of {@link #lookupModes lookupModes}.
665          *  The value is {@code 0x08}, which does not correspond meaningfully to
666          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
667          */
668         public static final int PACKAGE = Modifier.STATIC;
669 
670         /** A single-bit mask representing {@code module} access (default access),
671          *  which may contribute to the result of {@link #lookupModes lookupModes}.
672          *  The value is {@code 0x10}, which does not correspond meaningfully to
673          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
674          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
675          *  with this lookup mode can access all public types in the module of the
676          *  lookup class and public types in packages exported by other modules
677          *  to the module of the lookup class.
678          *  @since 9
679          *  @spec JPMS
680          */
681         public static final int MODULE = PACKAGE << 1;
682 
683         /** A single-bit mask representing {@code unconditional} access
684          *  which may contribute to the result of {@link #lookupModes lookupModes}.
685          *  The value is {@code 0x20}, which does not correspond meaningfully to
686          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
687          *  A {@code Lookup} with this lookup mode assumes {@linkplain
688          *  java.lang.Module#canRead(java.lang.Module) readability}.
689          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
690          *  with this lookup mode can access all public members of public types
691          *  of all modules where the type is in a package that is {@link
692          *  java.lang.Module#isExported(String) exported unconditionally}.
693          *  @since 9
694          *  @spec JPMS
695          *  @see #publicLookup()
696          */
697         public static final int UNCONDITIONAL = PACKAGE << 2;
698 
699         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
700         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
701         private static final int TRUSTED   = -1;
702 
fixmods(int mods)703         private static int fixmods(int mods) {
704             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
705             return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL);
706         }
707 
708         /** Tells which class is performing the lookup.  It is this class against
709          *  which checks are performed for visibility and access permissions.
710          *  <p>
711          *  The class implies a maximum level of access permission,
712          *  but the permissions may be additionally limited by the bitmask
713          *  {@link #lookupModes lookupModes}, which controls whether non-public members
714          *  can be accessed.
715          *  @return the lookup class, on behalf of which this lookup object finds members
716          */
lookupClass()717         public Class<?> lookupClass() {
718             return lookupClass;
719         }
720 
721         // This is just for calling out to MethodHandleImpl.
lookupClassOrNull()722         private Class<?> lookupClassOrNull() {
723             return (allowedModes == TRUSTED) ? null : lookupClass;
724         }
725 
726         /** Tells which access-protection classes of members this lookup object can produce.
727          *  The result is a bit-mask of the bits
728          *  {@linkplain #PUBLIC PUBLIC (0x01)},
729          *  {@linkplain #PRIVATE PRIVATE (0x02)},
730          *  {@linkplain #PROTECTED PROTECTED (0x04)},
731          *  {@linkplain #PACKAGE PACKAGE (0x08)},
732          *  {@linkplain #MODULE MODULE (0x10)},
733          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
734          *  <p>
735          *  A freshly-created lookup object
736          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
737          *  all possible bits set, except {@code UNCONDITIONAL}.
738          *  A lookup object on a new lookup class
739          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
740          *  may have some mode bits set to zero.
741          *  Mode bits can also be
742          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
743          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
744          *  The purpose of this is to restrict access via the new lookup object,
745          *  so that it can access only names which can be reached by the original
746          *  lookup object, and also by the new lookup class.
747          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
748          *  @see #in
749          *  @see #dropLookupMode
750          *
751          *  @revised 9
752          *  @spec JPMS
753          */
lookupModes()754         public int lookupModes() {
755             return allowedModes & ALL_MODES;
756         }
757 
758         /** Embody the current class (the lookupClass) as a lookup class
759          * for method handle creation.
760          * Must be called by from a method in this package,
761          * which in turn is called by a method not in this package.
762          */
Lookup(Class<?> lookupClass)763         Lookup(Class<?> lookupClass) {
764             this(lookupClass, FULL_POWER_MODES);
765             // make sure we haven't accidentally picked up a privileged class:
766             checkUnprivilegedlookupClass(lookupClass);
767         }
768 
Lookup(Class<?> lookupClass, int allowedModes)769         private Lookup(Class<?> lookupClass, int allowedModes) {
770             this.lookupClass = lookupClass;
771             this.allowedModes = allowedModes;
772         }
773 
774         /**
775          * Creates a lookup on the specified new lookup class.
776          * The resulting object will report the specified
777          * class as its own {@link #lookupClass() lookupClass}.
778          * <p>
779          * However, the resulting {@code Lookup} object is guaranteed
780          * to have no more access capabilities than the original.
781          * In particular, access capabilities can be lost as follows:<ul>
782          * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and
783          * the new lookup class is in a different module {@code M}, then no members, not
784          * even public members in {@code M}'s exported packages, will be accessible.
785          * The exception to this is when this lookup is {@link #publicLookup()
786          * publicLookup}, in which case {@code PUBLIC} access is not lost.
787          * <li>If the old lookup class is in an unnamed module, and the new lookup class
788          * is a different module then {@link #MODULE MODULE} access is lost.
789          * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost.
790          * <li>If the new lookup class is in a different package
791          * than the old one, protected and default (package) members will not be accessible.
792          * <li>If the new lookup class is not within the same package member
793          * as the old one, private members will not be accessible, and protected members
794          * will not be accessible by virtue of inheritance.
795          * (Protected members may continue to be accessible because of package sharing.)
796          * <li>If the new lookup class is not accessible to the old lookup class,
797          * then no members, not even public members, will be accessible.
798          * (In all other cases, public members will continue to be accessible.)
799          * </ul>
800          * <p>
801          * The resulting lookup's capabilities for loading classes
802          * (used during {@link #findClass} invocations)
803          * are determined by the lookup class' loader,
804          * which may change due to this operation.
805          *
806          * @param requestedLookupClass the desired lookup class for the new lookup object
807          * @return a lookup object which reports the desired lookup class, or the same object
808          * if there is no change
809          * @throws NullPointerException if the argument is null
810          *
811          * @revised 9
812          * @spec JPMS
813          */
in(Class<?> requestedLookupClass)814         public Lookup in(Class<?> requestedLookupClass) {
815             Objects.requireNonNull(requestedLookupClass);
816             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
817                 return new Lookup(requestedLookupClass, FULL_POWER_MODES);
818             if (requestedLookupClass == this.lookupClass)
819                 return this;  // keep same capabilities
820             int newModes = (allowedModes & FULL_POWER_MODES);
821             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
822                 // Need to drop all access when teleporting from a named module to another
823                 // module. The exception is publicLookup where PUBLIC is not lost.
824                 if (this.lookupClass.getModule().isNamed()
825                     && (this.allowedModes & UNCONDITIONAL) == 0)
826                     newModes = 0;
827                 else
828                     newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
829             }
830             if ((newModes & PACKAGE) != 0
831                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
832                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
833             }
834             // Allow nestmate lookups to be created without special privilege:
835             if ((newModes & PRIVATE) != 0
836                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
837                 newModes &= ~(PRIVATE|PROTECTED);
838             }
839             if ((newModes & PUBLIC) != 0
840                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
841                 // The requested class it not accessible from the lookup class.
842                 // No permissions.
843                 newModes = 0;
844             }
845 
846             checkUnprivilegedlookupClass(requestedLookupClass);
847             return new Lookup(requestedLookupClass, newModes);
848         }
849 
850 
851         /**
852          * Creates a lookup on the same lookup class which this lookup object
853          * finds members, but with a lookup mode that has lost the given lookup mode.
854          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
855          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
856          * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always
857          * dropped and so the resulting lookup mode will never have these access capabilities.
858          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
859          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
860          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
861          * is dropped then the resulting lookup has no access.
862          * @param modeToDrop the lookup mode to drop
863          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
864          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
865          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
866          * @see MethodHandles#privateLookupIn
867          * @since 9
868          */
dropLookupMode(int modeToDrop)869         public Lookup dropLookupMode(int modeToDrop) {
870             int oldModes = lookupModes();
871             int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL);
872             switch (modeToDrop) {
873                 case PUBLIC: newModes &= ~(ALL_MODES); break;
874                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
875                 case PACKAGE: newModes &= ~(PRIVATE); break;
876                 case PROTECTED:
877                 case PRIVATE:
878                 case UNCONDITIONAL: break;
879                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
880             }
881             if (newModes == oldModes) return this;  // return self if no change
882             return new Lookup(lookupClass(), newModes);
883         }
884 
885         /**
886          * Defines a class to the same class loader and in the same runtime package and
887          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
888          * {@linkplain #lookupClass() lookup class}.
889          *
890          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
891          * {@link #PACKAGE PACKAGE} access as default (package) members will be
892          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
893          * that the lookup object was created by a caller in the runtime package (or derived
894          * from a lookup originally created by suitably privileged code to a target class in
895          * the runtime package). </p>
896          *
897          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
898          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
899          * same package as the lookup class. </p>
900          *
901          * <p> This method does not run the class initializer. The class initializer may
902          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
903          * Specification</em>. </p>
904          *
905          * <p> If there is a security manager, its {@code checkPermission} method is first called
906          * to check {@code RuntimePermission("defineClass")}. </p>
907          *
908          * @param bytes the class bytes
909          * @return the {@code Class} object for the class
910          * @throws IllegalArgumentException the bytes are for a class in a different package
911          * to the lookup class
912          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
913          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
914          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
915          * @throws SecurityException if denied by the security manager
916          * @throws NullPointerException if {@code bytes} is {@code null}
917          * @since 9
918          * @spec JPMS
919          * @see Lookup#privateLookupIn
920          * @see Lookup#dropLookupMode
921          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
922          */
defineClass(byte[] bytes)923         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
924             SecurityManager sm = System.getSecurityManager();
925             if (sm != null)
926                 sm.checkPermission(new RuntimePermission("defineClass"));
927             if ((lookupModes() & PACKAGE) == 0)
928                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
929             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
930 
931             // parse class bytes to get class name (in internal form)
932             bytes = bytes.clone();
933             String name;
934             try {
935                 ClassReader reader = new ClassReader(bytes);
936                 name = reader.getClassName();
937             } catch (RuntimeException e) {
938                 // ASM exceptions are poorly specified
939                 ClassFormatError cfe = new ClassFormatError();
940                 cfe.initCause(e);
941                 throw cfe;
942             }
943 
944             // get package and class name in binary form
945             String cn, pn;
946             int index = name.lastIndexOf('/');
947             if (index == -1) {
948                 cn = name;
949                 pn = "";
950             } else {
951                 cn = name.replace('/', '.');
952                 pn = cn.substring(0, index);
953             }
954             if (!pn.equals(lookupClass.getPackageName())) {
955                 throw new IllegalArgumentException("Class not in same package as lookup class");
956             }
957 
958             // invoke the class loader's defineClass method
959             ClassLoader loader = lookupClass.getClassLoader();
960             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
961             String source = "__Lookup_defineClass__";
962             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
963             assert clazz.getClassLoader() == lookupClass.getClassLoader()
964                     && clazz.getPackageName().equals(lookupClass.getPackageName())
965                     && protectionDomain(clazz) == lookupClassProtectionDomain();
966             return clazz;
967         }
968 
lookupClassProtectionDomain()969         private ProtectionDomain lookupClassProtectionDomain() {
970             ProtectionDomain pd = cachedProtectionDomain;
971             if (pd == null) {
972                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
973             }
974             return pd;
975         }
976 
protectionDomain(Class<?> clazz)977         private ProtectionDomain protectionDomain(Class<?> clazz) {
978             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
979             return AccessController.doPrivileged(pa);
980         }
981 
982         // cached protection domain
983         private volatile ProtectionDomain cachedProtectionDomain;
984 
985 
986         // Make sure outer class is initialized first.
IMPL_NAMES.getClass()987         static { IMPL_NAMES.getClass(); }
988 
989         /** Package-private version of lookup which is trusted. */
990         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
991 
992         /** Version of lookup which is trusted minimally.
993          *  It can only be used to create method handles to publicly accessible
994          *  members in packages that are exported unconditionally.
995          */
996         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL));
997 
checkUnprivilegedlookupClass(Class<?> lookupClass)998         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
999             String name = lookupClass.getName();
1000             if (name.startsWith("java.lang.invoke."))
1001                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1002         }
1003 
1004         /**
1005          * Displays the name of the class from which lookups are to be made.
1006          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1007          * If there are restrictions on the access permitted to this lookup,
1008          * this is indicated by adding a suffix to the class name, consisting
1009          * of a slash and a keyword.  The keyword represents the strongest
1010          * allowed access, and is chosen as follows:
1011          * <ul>
1012          * <li>If no access is allowed, the suffix is "/noaccess".
1013          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1014          * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup".
1015          * <li>If only public and module access are allowed, the suffix is "/module".
1016          * <li>If only public, module and package access are allowed, the suffix is "/package".
1017          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
1018          * </ul>
1019          * If none of the above cases apply, it is the case that full
1020          * access (public, module, package, private, and protected) is allowed.
1021          * In this case, no suffix is added.
1022          * This is true only of an object obtained originally from
1023          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1024          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1025          * always have restricted access, and will display a suffix.
1026          * <p>
1027          * (It may seem strange that protected access should be
1028          * stronger than private access.  Viewed independently from
1029          * package access, protected access is the first to be lost,
1030          * because it requires a direct subclass relationship between
1031          * caller and callee.)
1032          * @see #in
1033          *
1034          * @revised 9
1035          * @spec JPMS
1036          */
1037         @Override
toString()1038         public String toString() {
1039             String cname = lookupClass.getName();
1040             switch (allowedModes) {
1041             case 0:  // no privileges
1042                 return cname + "/noaccess";
1043             case PUBLIC:
1044                 return cname + "/public";
1045             case PUBLIC|UNCONDITIONAL:
1046                 return cname  + "/publicLookup";
1047             case PUBLIC|MODULE:
1048                 return cname + "/module";
1049             case PUBLIC|MODULE|PACKAGE:
1050                 return cname + "/package";
1051             case FULL_POWER_MODES & ~PROTECTED:
1052                 return cname + "/private";
1053             case FULL_POWER_MODES:
1054                 return cname;
1055             case TRUSTED:
1056                 return "/trusted";  // internal only; not exported
1057             default:  // Should not happen, but it's a bitfield...
1058                 cname = cname + "/" + Integer.toHexString(allowedModes);
1059                 assert(false) : cname;
1060                 return cname;
1061             }
1062         }
1063 
1064         /**
1065          * Produces a method handle for a static method.
1066          * The type of the method handle will be that of the method.
1067          * (Since static methods do not take receivers, there is no
1068          * additional receiver argument inserted into the method handle type,
1069          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1070          * The method and all its argument types must be accessible to the lookup object.
1071          * <p>
1072          * The returned method handle will have
1073          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1074          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1075          * <p>
1076          * If the returned method handle is invoked, the method's class will
1077          * be initialized, if it has not already been initialized.
1078          * <p><b>Example:</b>
1079          * <blockquote><pre>{@code
1080 import static java.lang.invoke.MethodHandles.*;
1081 import static java.lang.invoke.MethodType.*;
1082 ...
1083 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1084   "asList", methodType(List.class, Object[].class));
1085 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1086          * }</pre></blockquote>
1087          * @param refc the class from which the method is accessed
1088          * @param name the name of the method
1089          * @param type the type of the method
1090          * @return the desired method handle
1091          * @throws NoSuchMethodException if the method does not exist
1092          * @throws IllegalAccessException if access checking fails,
1093          *                                or if the method is not {@code static},
1094          *                                or if the method's variable arity modifier bit
1095          *                                is set and {@code asVarargsCollector} fails
1096          * @exception SecurityException if a security manager is present and it
1097          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1098          * @throws NullPointerException if any argument is null
1099          */
1100         public
findStatic(Class<?> refc, String name, MethodType type)1101         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1102             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1103             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method));
1104         }
1105 
1106         /**
1107          * Produces a method handle for a virtual method.
1108          * The type of the method handle will be that of the method,
1109          * with the receiver type (usually {@code refc}) prepended.
1110          * The method and all its argument types must be accessible to the lookup object.
1111          * <p>
1112          * When called, the handle will treat the first argument as a receiver
1113          * and, for non-private methods, dispatch on the receiver's type to determine which method
1114          * implementation to enter.
1115          * For private methods the named method in {@code refc} will be invoked on the receiver.
1116          * (The dispatching action is identical with that performed by an
1117          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1118          * <p>
1119          * The first argument will be of type {@code refc} if the lookup
1120          * class has full privileges to access the member.  Otherwise
1121          * the member must be {@code protected} and the first argument
1122          * will be restricted in type to the lookup class.
1123          * <p>
1124          * The returned method handle will have
1125          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1126          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1127          * <p>
1128          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1129          * instructions and method handles produced by {@code findVirtual},
1130          * if the class is {@code MethodHandle} and the name string is
1131          * {@code invokeExact} or {@code invoke}, the resulting
1132          * method handle is equivalent to one produced by
1133          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1134          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1135          * with the same {@code type} argument.
1136          * <p>
1137          * If the class is {@code VarHandle} and the name string corresponds to
1138          * the name of a signature-polymorphic access mode method, the resulting
1139          * method handle is equivalent to one produced by
1140          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1141          * the access mode corresponding to the name string and with the same
1142          * {@code type} arguments.
1143          * <p>
1144          * <b>Example:</b>
1145          * <blockquote><pre>{@code
1146 import static java.lang.invoke.MethodHandles.*;
1147 import static java.lang.invoke.MethodType.*;
1148 ...
1149 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1150   "concat", methodType(String.class, String.class));
1151 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1152   "hashCode", methodType(int.class));
1153 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1154   "hashCode", methodType(int.class));
1155 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1156 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1157 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1158 // interface method:
1159 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1160   "subSequence", methodType(CharSequence.class, int.class, int.class));
1161 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1162 // constructor "internal method" must be accessed differently:
1163 MethodType MT_newString = methodType(void.class); //()V for new String()
1164 try { assertEquals("impossible", lookup()
1165         .findVirtual(String.class, "<init>", MT_newString));
1166  } catch (NoSuchMethodException ex) { } // OK
1167 MethodHandle MH_newString = publicLookup()
1168   .findConstructor(String.class, MT_newString);
1169 assertEquals("", (String) MH_newString.invokeExact());
1170          * }</pre></blockquote>
1171          *
1172          * @param refc the class or interface from which the method is accessed
1173          * @param name the name of the method
1174          * @param type the type of the method, with the receiver argument omitted
1175          * @return the desired method handle
1176          * @throws NoSuchMethodException if the method does not exist
1177          * @throws IllegalAccessException if access checking fails,
1178          *                                or if the method is {@code static},
1179          *                                or if the method's variable arity modifier bit
1180          *                                is set and {@code asVarargsCollector} fails
1181          * @exception SecurityException if a security manager is present and it
1182          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1183          * @throws NullPointerException if any argument is null
1184          */
findVirtual(Class<?> refc, String name, MethodType type)1185         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1186             if (refc == MethodHandle.class) {
1187                 MethodHandle mh = findVirtualForMH(name, type);
1188                 if (mh != null)  return mh;
1189             } else if (refc == VarHandle.class) {
1190                 MethodHandle mh = findVirtualForVH(name, type);
1191                 if (mh != null)  return mh;
1192             }
1193             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1194             MemberName method = resolveOrFail(refKind, refc, name, type);
1195             return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method));
1196         }
findVirtualForMH(String name, MethodType type)1197         private MethodHandle findVirtualForMH(String name, MethodType type) {
1198             // these names require special lookups because of the implicit MethodType argument
1199             if ("invoke".equals(name))
1200                 return invoker(type);
1201             if ("invokeExact".equals(name))
1202                 return exactInvoker(type);
1203             assert(!MemberName.isMethodHandleInvokeName(name));
1204             return null;
1205         }
findVirtualForVH(String name, MethodType type)1206         private MethodHandle findVirtualForVH(String name, MethodType type) {
1207             try {
1208                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1209             } catch (IllegalArgumentException e) {
1210                 return null;
1211             }
1212         }
1213 
1214         /**
1215          * Produces a method handle which creates an object and initializes it, using
1216          * the constructor of the specified type.
1217          * The parameter types of the method handle will be those of the constructor,
1218          * while the return type will be a reference to the constructor's class.
1219          * The constructor and all its argument types must be accessible to the lookup object.
1220          * <p>
1221          * The requested type must have a return type of {@code void}.
1222          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1223          * <p>
1224          * The returned method handle will have
1225          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1226          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1227          * <p>
1228          * If the returned method handle is invoked, the constructor's class will
1229          * be initialized, if it has not already been initialized.
1230          * <p><b>Example:</b>
1231          * <blockquote><pre>{@code
1232 import static java.lang.invoke.MethodHandles.*;
1233 import static java.lang.invoke.MethodType.*;
1234 ...
1235 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1236   ArrayList.class, methodType(void.class, Collection.class));
1237 Collection orig = Arrays.asList("x", "y");
1238 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1239 assert(orig != copy);
1240 assertEquals(orig, copy);
1241 // a variable-arity constructor:
1242 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1243   ProcessBuilder.class, methodType(void.class, String[].class));
1244 ProcessBuilder pb = (ProcessBuilder)
1245   MH_newProcessBuilder.invoke("x", "y", "z");
1246 assertEquals("[x, y, z]", pb.command().toString());
1247          * }</pre></blockquote>
1248          * @param refc the class or interface from which the method is accessed
1249          * @param type the type of the method, with the receiver argument omitted, and a void return type
1250          * @return the desired method handle
1251          * @throws NoSuchMethodException if the constructor does not exist
1252          * @throws IllegalAccessException if access checking fails
1253          *                                or if the method's variable arity modifier bit
1254          *                                is set and {@code asVarargsCollector} fails
1255          * @exception SecurityException if a security manager is present and it
1256          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1257          * @throws NullPointerException if any argument is null
1258          */
findConstructor(Class<?> refc, MethodType type)1259         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1260             if (refc.isArray()) {
1261                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1262             }
1263             String name = "<init>";
1264             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1265             return getDirectConstructor(refc, ctor);
1266         }
1267 
1268         /**
1269          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1270          * initializer of the class is not run.
1271          * <p>
1272          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1273          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1274          * load the requested class, and then determines whether the class is accessible to this lookup object.
1275          *
1276          * @param targetName the fully qualified name of the class to be looked up.
1277          * @return the requested class.
1278          * @exception SecurityException if a security manager is present and it
1279          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1280          * @throws LinkageError if the linkage fails
1281          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1282          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1283          * modes.
1284          * @exception SecurityException if a security manager is present and it
1285          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1286          * @since 9
1287          */
findClass(String targetName)1288         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1289             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1290             return accessClass(targetClass);
1291         }
1292 
1293         /**
1294          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1295          * static initializer of the class is not run.
1296          * <p>
1297          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1298          * {@linkplain #lookupModes() lookup modes}.
1299          *
1300          * @param targetClass the class to be access-checked
1301          *
1302          * @return the class that has been access-checked
1303          *
1304          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1305          * modes.
1306          * @exception SecurityException if a security manager is present and it
1307          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1308          * @since 9
1309          */
accessClass(Class<?> targetClass)1310         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1311             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1312                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1313             }
1314             checkSecurityManager(targetClass, null);
1315             return targetClass;
1316         }
1317 
1318         /**
1319          * Produces an early-bound method handle for a virtual method.
1320          * It will bypass checks for overriding methods on the receiver,
1321          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1322          * instruction from within the explicitly specified {@code specialCaller}.
1323          * The type of the method handle will be that of the method,
1324          * with a suitably restricted receiver type prepended.
1325          * (The receiver type will be {@code specialCaller} or a subtype.)
1326          * The method and all its argument types must be accessible
1327          * to the lookup object.
1328          * <p>
1329          * Before method resolution,
1330          * if the explicitly specified caller class is not identical with the
1331          * lookup class, or if this lookup object does not have
1332          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1333          * privileges, the access fails.
1334          * <p>
1335          * The returned method handle will have
1336          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1337          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1338          * <p style="font-size:smaller;">
1339          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1340          * even though the {@code invokespecial} instruction can refer to them
1341          * in special circumstances.  Use {@link #findConstructor findConstructor}
1342          * to access instance initialization methods in a safe manner.)</em>
1343          * <p><b>Example:</b>
1344          * <blockquote><pre>{@code
1345 import static java.lang.invoke.MethodHandles.*;
1346 import static java.lang.invoke.MethodType.*;
1347 ...
1348 static class Listie extends ArrayList {
1349   public String toString() { return "[wee Listie]"; }
1350   static Lookup lookup() { return MethodHandles.lookup(); }
1351 }
1352 ...
1353 // no access to constructor via invokeSpecial:
1354 MethodHandle MH_newListie = Listie.lookup()
1355   .findConstructor(Listie.class, methodType(void.class));
1356 Listie l = (Listie) MH_newListie.invokeExact();
1357 try { assertEquals("impossible", Listie.lookup().findSpecial(
1358         Listie.class, "<init>", methodType(void.class), Listie.class));
1359  } catch (NoSuchMethodException ex) { } // OK
1360 // access to super and self methods via invokeSpecial:
1361 MethodHandle MH_super = Listie.lookup().findSpecial(
1362   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1363 MethodHandle MH_this = Listie.lookup().findSpecial(
1364   Listie.class, "toString" , methodType(String.class), Listie.class);
1365 MethodHandle MH_duper = Listie.lookup().findSpecial(
1366   Object.class, "toString" , methodType(String.class), Listie.class);
1367 assertEquals("[]", (String) MH_super.invokeExact(l));
1368 assertEquals(""+l, (String) MH_this.invokeExact(l));
1369 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1370 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1371         String.class, "toString", methodType(String.class), Listie.class));
1372  } catch (IllegalAccessException ex) { } // OK
1373 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1374 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1375          * }</pre></blockquote>
1376          *
1377          * @param refc the class or interface from which the method is accessed
1378          * @param name the name of the method (which must not be "&lt;init&gt;")
1379          * @param type the type of the method, with the receiver argument omitted
1380          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1381          * @return the desired method handle
1382          * @throws NoSuchMethodException if the method does not exist
1383          * @throws IllegalAccessException if access checking fails,
1384          *                                or if the method is {@code static},
1385          *                                or if the method's variable arity modifier bit
1386          *                                is set and {@code asVarargsCollector} fails
1387          * @exception SecurityException if a security manager is present and it
1388          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1389          * @throws NullPointerException if any argument is null
1390          */
findSpecial(Class<?> refc, String name, MethodType type, Class<?> specialCaller)1391         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1392                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1393             checkSpecialCaller(specialCaller, refc);
1394             Lookup specialLookup = this.in(specialCaller);
1395             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1396             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method));
1397         }
1398 
1399         /**
1400          * Produces a method handle giving read access to a non-static field.
1401          * The type of the method handle will have a return type of the field's
1402          * value type.
1403          * The method handle's single argument will be the instance containing
1404          * the field.
1405          * Access checking is performed immediately on behalf of the lookup class.
1406          * @param refc the class or interface from which the method is accessed
1407          * @param name the field's name
1408          * @param type the field's type
1409          * @return a method handle which can load values from the field
1410          * @throws NoSuchFieldException if the field does not exist
1411          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1412          * @exception SecurityException if a security manager is present and it
1413          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1414          * @throws NullPointerException if any argument is null
1415          * @see #findVarHandle(Class, String, Class)
1416          */
findGetter(Class<?> refc, String name, Class<?> type)1417         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1418             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1419             return getDirectField(REF_getField, refc, field);
1420         }
1421 
1422         /**
1423          * Produces a method handle giving write access to a non-static field.
1424          * The type of the method handle will have a void return type.
1425          * The method handle will take two arguments, the instance containing
1426          * the field, and the value to be stored.
1427          * The second argument will be of the field's value type.
1428          * Access checking is performed immediately on behalf of the lookup class.
1429          * @param refc the class or interface from which the method is accessed
1430          * @param name the field's name
1431          * @param type the field's type
1432          * @return a method handle which can store values into the field
1433          * @throws NoSuchFieldException if the field does not exist
1434          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1435          * @exception SecurityException if a security manager is present and it
1436          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1437          * @throws NullPointerException if any argument is null
1438          * @see #findVarHandle(Class, String, Class)
1439          */
findSetter(Class<?> refc, String name, Class<?> type)1440         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1441             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1442             return getDirectField(REF_putField, refc, field);
1443         }
1444 
1445         /**
1446          * Produces a VarHandle giving access to a non-static field {@code name}
1447          * of type {@code type} declared in a class of type {@code recv}.
1448          * The VarHandle's variable type is {@code type} and it has one
1449          * coordinate type, {@code recv}.
1450          * <p>
1451          * Access checking is performed immediately on behalf of the lookup
1452          * class.
1453          * <p>
1454          * Certain access modes of the returned VarHandle are unsupported under
1455          * the following conditions:
1456          * <ul>
1457          * <li>if the field is declared {@code final}, then the write, atomic
1458          *     update, numeric atomic update, and bitwise atomic update access
1459          *     modes are unsupported.
1460          * <li>if the field type is anything other than {@code byte},
1461          *     {@code short}, {@code char}, {@code int}, {@code long},
1462          *     {@code float}, or {@code double} then numeric atomic update
1463          *     access modes are unsupported.
1464          * <li>if the field type is anything other than {@code boolean},
1465          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1466          *     {@code long} then bitwise atomic update access modes are
1467          *     unsupported.
1468          * </ul>
1469          * <p>
1470          * If the field is declared {@code volatile} then the returned VarHandle
1471          * will override access to the field (effectively ignore the
1472          * {@code volatile} declaration) in accordance to its specified
1473          * access modes.
1474          * <p>
1475          * If the field type is {@code float} or {@code double} then numeric
1476          * and atomic update access modes compare values using their bitwise
1477          * representation (see {@link Float#floatToRawIntBits} and
1478          * {@link Double#doubleToRawLongBits}, respectively).
1479          * @apiNote
1480          * Bitwise comparison of {@code float} values or {@code double} values,
1481          * as performed by the numeric and atomic update access modes, differ
1482          * from the primitive {@code ==} operator and the {@link Float#equals}
1483          * and {@link Double#equals} methods, specifically with respect to
1484          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1485          * Care should be taken when performing a compare and set or a compare
1486          * and exchange operation with such values since the operation may
1487          * unexpectedly fail.
1488          * There are many possible NaN values that are considered to be
1489          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1490          * provided by Java can distinguish between them.  Operation failure can
1491          * occur if the expected or witness value is a NaN value and it is
1492          * transformed (perhaps in a platform specific manner) into another NaN
1493          * value, and thus has a different bitwise representation (see
1494          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1495          * details).
1496          * The values {@code -0.0} and {@code +0.0} have different bitwise
1497          * representations but are considered equal when using the primitive
1498          * {@code ==} operator.  Operation failure can occur if, for example, a
1499          * numeric algorithm computes an expected value to be say {@code -0.0}
1500          * and previously computed the witness value to be say {@code +0.0}.
1501          * @param recv the receiver class, of type {@code R}, that declares the
1502          * non-static field
1503          * @param name the field's name
1504          * @param type the field's type, of type {@code T}
1505          * @return a VarHandle giving access to non-static fields.
1506          * @throws NoSuchFieldException if the field does not exist
1507          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1508          * @exception SecurityException if a security manager is present and it
1509          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1510          * @throws NullPointerException if any argument is null
1511          * @since 9
1512          */
findVarHandle(Class<?> recv, String name, Class<?> type)1513         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1514             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1515             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1516             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1517         }
1518 
1519         /**
1520          * Produces a method handle giving read access to a static field.
1521          * The type of the method handle will have a return type of the field's
1522          * value type.
1523          * The method handle will take no arguments.
1524          * Access checking is performed immediately on behalf of the lookup class.
1525          * <p>
1526          * If the returned method handle is invoked, the field's class will
1527          * be initialized, if it has not already been initialized.
1528          * @param refc the class or interface from which the method is accessed
1529          * @param name the field's name
1530          * @param type the field's type
1531          * @return a method handle which can load values from the field
1532          * @throws NoSuchFieldException if the field does not exist
1533          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1534          * @exception SecurityException if a security manager is present and it
1535          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1536          * @throws NullPointerException if any argument is null
1537          */
findStaticGetter(Class<?> refc, String name, Class<?> type)1538         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1539             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1540             return getDirectField(REF_getStatic, refc, field);
1541         }
1542 
1543         /**
1544          * Produces a method handle giving write access to a static field.
1545          * The type of the method handle will have a void return type.
1546          * The method handle will take a single
1547          * argument, of the field's value type, the value to be stored.
1548          * Access checking is performed immediately on behalf of the lookup class.
1549          * <p>
1550          * If the returned method handle is invoked, the field's class will
1551          * be initialized, if it has not already been initialized.
1552          * @param refc the class or interface from which the method is accessed
1553          * @param name the field's name
1554          * @param type the field's type
1555          * @return a method handle which can store values into the field
1556          * @throws NoSuchFieldException if the field does not exist
1557          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1558          * @exception SecurityException if a security manager is present and it
1559          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1560          * @throws NullPointerException if any argument is null
1561          */
findStaticSetter(Class<?> refc, String name, Class<?> type)1562         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1563             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1564             return getDirectField(REF_putStatic, refc, field);
1565         }
1566 
1567         /**
1568          * Produces a VarHandle giving access to a static field {@code name} of
1569          * type {@code type} declared in a class of type {@code decl}.
1570          * The VarHandle's variable type is {@code type} and it has no
1571          * coordinate types.
1572          * <p>
1573          * Access checking is performed immediately on behalf of the lookup
1574          * class.
1575          * <p>
1576          * If the returned VarHandle is operated on, the declaring class will be
1577          * initialized, if it has not already been initialized.
1578          * <p>
1579          * Certain access modes of the returned VarHandle are unsupported under
1580          * the following conditions:
1581          * <ul>
1582          * <li>if the field is declared {@code final}, then the write, atomic
1583          *     update, numeric atomic update, and bitwise atomic update access
1584          *     modes are unsupported.
1585          * <li>if the field type is anything other than {@code byte},
1586          *     {@code short}, {@code char}, {@code int}, {@code long},
1587          *     {@code float}, or {@code double}, then numeric atomic update
1588          *     access modes are unsupported.
1589          * <li>if the field type is anything other than {@code boolean},
1590          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1591          *     {@code long} then bitwise atomic update access modes are
1592          *     unsupported.
1593          * </ul>
1594          * <p>
1595          * If the field is declared {@code volatile} then the returned VarHandle
1596          * will override access to the field (effectively ignore the
1597          * {@code volatile} declaration) in accordance to its specified
1598          * access modes.
1599          * <p>
1600          * If the field type is {@code float} or {@code double} then numeric
1601          * and atomic update access modes compare values using their bitwise
1602          * representation (see {@link Float#floatToRawIntBits} and
1603          * {@link Double#doubleToRawLongBits}, respectively).
1604          * @apiNote
1605          * Bitwise comparison of {@code float} values or {@code double} values,
1606          * as performed by the numeric and atomic update access modes, differ
1607          * from the primitive {@code ==} operator and the {@link Float#equals}
1608          * and {@link Double#equals} methods, specifically with respect to
1609          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1610          * Care should be taken when performing a compare and set or a compare
1611          * and exchange operation with such values since the operation may
1612          * unexpectedly fail.
1613          * There are many possible NaN values that are considered to be
1614          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1615          * provided by Java can distinguish between them.  Operation failure can
1616          * occur if the expected or witness value is a NaN value and it is
1617          * transformed (perhaps in a platform specific manner) into another NaN
1618          * value, and thus has a different bitwise representation (see
1619          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1620          * details).
1621          * The values {@code -0.0} and {@code +0.0} have different bitwise
1622          * representations but are considered equal when using the primitive
1623          * {@code ==} operator.  Operation failure can occur if, for example, a
1624          * numeric algorithm computes an expected value to be say {@code -0.0}
1625          * and previously computed the witness value to be say {@code +0.0}.
1626          * @param decl the class that declares the static field
1627          * @param name the field's name
1628          * @param type the field's type, of type {@code T}
1629          * @return a VarHandle giving access to a static field
1630          * @throws NoSuchFieldException if the field does not exist
1631          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1632          * @exception SecurityException if a security manager is present and it
1633          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1634          * @throws NullPointerException if any argument is null
1635          * @since 9
1636          */
findStaticVarHandle(Class<?> decl, String name, Class<?> type)1637         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1638             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1639             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1640             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1641         }
1642 
1643         /**
1644          * Produces an early-bound method handle for a non-static method.
1645          * The receiver must have a supertype {@code defc} in which a method
1646          * of the given name and type is accessible to the lookup class.
1647          * The method and all its argument types must be accessible to the lookup object.
1648          * The type of the method handle will be that of the method,
1649          * without any insertion of an additional receiver parameter.
1650          * The given receiver will be bound into the method handle,
1651          * so that every call to the method handle will invoke the
1652          * requested method on the given receiver.
1653          * <p>
1654          * The returned method handle will have
1655          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1656          * the method's variable arity modifier bit ({@code 0x0080}) is set
1657          * <em>and</em> the trailing array argument is not the only argument.
1658          * (If the trailing array argument is the only argument,
1659          * the given receiver value will be bound to it.)
1660          * <p>
1661          * This is almost equivalent to the following code, with some differences noted below:
1662          * <blockquote><pre>{@code
1663 import static java.lang.invoke.MethodHandles.*;
1664 import static java.lang.invoke.MethodType.*;
1665 ...
1666 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1667 MethodHandle mh1 = mh0.bindTo(receiver);
1668 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1669 return mh1;
1670          * }</pre></blockquote>
1671          * where {@code defc} is either {@code receiver.getClass()} or a super
1672          * type of that class, in which the requested method is accessible
1673          * to the lookup class.
1674          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
1675          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
1676          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
1677          * the receiver is restricted by {@code findVirtual} to the lookup class.)
1678          * @param receiver the object from which the method is accessed
1679          * @param name the name of the method
1680          * @param type the type of the method, with the receiver argument omitted
1681          * @return the desired method handle
1682          * @throws NoSuchMethodException if the method does not exist
1683          * @throws IllegalAccessException if access checking fails
1684          *                                or if the method's variable arity modifier bit
1685          *                                is set and {@code asVarargsCollector} fails
1686          * @exception SecurityException if a security manager is present and it
1687          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1688          * @throws NullPointerException if any argument is null
1689          * @see MethodHandle#bindTo
1690          * @see #findVirtual
1691          */
bind(Object receiver, String name, MethodType type)1692         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1693             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1694             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1695             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method));
1696             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
1697                 throw new IllegalAccessException("The restricted defining class " +
1698                                                  mh.type().leadingReferenceParameter().getName() +
1699                                                  " is not assignable from receiver class " +
1700                                                  receiver.getClass().getName());
1701             }
1702             return mh.bindArgumentL(0, receiver).setVarargs(method);
1703         }
1704 
1705         /**
1706          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1707          * to <i>m</i>, if the lookup class has permission.
1708          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1709          * If <i>m</i> is virtual, overriding is respected on every call.
1710          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1711          * The type of the method handle will be that of the method,
1712          * with the receiver type prepended (but only if it is non-static).
1713          * If the method's {@code accessible} flag is not set,
1714          * access checking is performed immediately on behalf of the lookup class.
1715          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1716          * <p>
1717          * The returned method handle will have
1718          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1719          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1720          * <p>
1721          * If <i>m</i> is static, and
1722          * if the returned method handle is invoked, the method's class will
1723          * be initialized, if it has not already been initialized.
1724          * @param m the reflected method
1725          * @return a method handle which can invoke the reflected method
1726          * @throws IllegalAccessException if access checking fails
1727          *                                or if the method's variable arity modifier bit
1728          *                                is set and {@code asVarargsCollector} fails
1729          * @throws NullPointerException if the argument is null
1730          */
unreflect(Method m)1731         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1732             if (m.getDeclaringClass() == MethodHandle.class) {
1733                 MethodHandle mh = unreflectForMH(m);
1734                 if (mh != null)  return mh;
1735             }
1736             if (m.getDeclaringClass() == VarHandle.class) {
1737                 MethodHandle mh = unreflectForVH(m);
1738                 if (mh != null)  return mh;
1739             }
1740             MemberName method = new MemberName(m);
1741             byte refKind = method.getReferenceKind();
1742             if (refKind == REF_invokeSpecial)
1743                 refKind = REF_invokeVirtual;
1744             assert(method.isMethod());
1745             @SuppressWarnings("deprecation")
1746             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1747             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method));
1748         }
unreflectForMH(Method m)1749         private MethodHandle unreflectForMH(Method m) {
1750             // these names require special lookups because they throw UnsupportedOperationException
1751             if (MemberName.isMethodHandleInvokeName(m.getName()))
1752                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1753             return null;
1754         }
unreflectForVH(Method m)1755         private MethodHandle unreflectForVH(Method m) {
1756             // these names require special lookups because they throw UnsupportedOperationException
1757             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1758                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1759             return null;
1760         }
1761 
1762         /**
1763          * Produces a method handle for a reflected method.
1764          * It will bypass checks for overriding methods on the receiver,
1765          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1766          * instruction from within the explicitly specified {@code specialCaller}.
1767          * The type of the method handle will be that of the method,
1768          * with a suitably restricted receiver type prepended.
1769          * (The receiver type will be {@code specialCaller} or a subtype.)
1770          * If the method's {@code accessible} flag is not set,
1771          * access checking is performed immediately on behalf of the lookup class,
1772          * as if {@code invokespecial} instruction were being linked.
1773          * <p>
1774          * Before method resolution,
1775          * if the explicitly specified caller class is not identical with the
1776          * lookup class, or if this lookup object does not have
1777          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1778          * privileges, the access fails.
1779          * <p>
1780          * The returned method handle will have
1781          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1782          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1783          * @param m the reflected method
1784          * @param specialCaller the class nominally calling the method
1785          * @return a method handle which can invoke the reflected method
1786          * @throws IllegalAccessException if access checking fails,
1787          *                                or if the method is {@code static},
1788          *                                or if the method's variable arity modifier bit
1789          *                                is set and {@code asVarargsCollector} fails
1790          * @throws NullPointerException if any argument is null
1791          */
unreflectSpecial(Method m, Class<?> specialCaller)1792         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1793             checkSpecialCaller(specialCaller, null);
1794             Lookup specialLookup = this.in(specialCaller);
1795             MemberName method = new MemberName(m, true);
1796             assert(method.isMethod());
1797             // ignore m.isAccessible:  this is a new kind of access
1798             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method));
1799         }
1800 
1801         /**
1802          * Produces a method handle for a reflected constructor.
1803          * The type of the method handle will be that of the constructor,
1804          * with the return type changed to the declaring class.
1805          * The method handle will perform a {@code newInstance} operation,
1806          * creating a new instance of the constructor's class on the
1807          * arguments passed to the method handle.
1808          * <p>
1809          * If the constructor's {@code accessible} flag is not set,
1810          * access checking is performed immediately on behalf of the lookup class.
1811          * <p>
1812          * The returned method handle will have
1813          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1814          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1815          * <p>
1816          * If the returned method handle is invoked, the constructor's class will
1817          * be initialized, if it has not already been initialized.
1818          * @param c the reflected constructor
1819          * @return a method handle which can invoke the reflected constructor
1820          * @throws IllegalAccessException if access checking fails
1821          *                                or if the method's variable arity modifier bit
1822          *                                is set and {@code asVarargsCollector} fails
1823          * @throws NullPointerException if the argument is null
1824          */
unreflectConstructor(Constructor<?> c)1825         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1826             MemberName ctor = new MemberName(c);
1827             assert(ctor.isConstructor());
1828             @SuppressWarnings("deprecation")
1829             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1830             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1831         }
1832 
1833         /**
1834          * Produces a method handle giving read access to a reflected field.
1835          * The type of the method handle will have a return type of the field's
1836          * value type.
1837          * If the field is static, the method handle will take no arguments.
1838          * Otherwise, its single argument will be the instance containing
1839          * the field.
1840          * If the field's {@code accessible} flag is not set,
1841          * access checking is performed immediately on behalf of the lookup class.
1842          * <p>
1843          * If the field is static, and
1844          * if the returned method handle is invoked, the field's class will
1845          * be initialized, if it has not already been initialized.
1846          * @param f the reflected field
1847          * @return a method handle which can load values from the reflected field
1848          * @throws IllegalAccessException if access checking fails
1849          * @throws NullPointerException if the argument is null
1850          */
unreflectGetter(Field f)1851         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1852             return unreflectField(f, false);
1853         }
unreflectField(Field f, boolean isSetter)1854         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1855             MemberName field = new MemberName(f, isSetter);
1856             assert(isSetter
1857                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1858                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1859             @SuppressWarnings("deprecation")
1860             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1861             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1862         }
1863 
1864         /**
1865          * Produces a method handle giving write access to a reflected field.
1866          * The type of the method handle will have a void return type.
1867          * If the field is static, the method handle will take a single
1868          * argument, of the field's value type, the value to be stored.
1869          * Otherwise, the two arguments will be the instance containing
1870          * the field, and the value to be stored.
1871          * If the field's {@code accessible} flag is not set,
1872          * access checking is performed immediately on behalf of the lookup class.
1873          * <p>
1874          * If the field is static, and
1875          * if the returned method handle is invoked, the field's class will
1876          * be initialized, if it has not already been initialized.
1877          * @param f the reflected field
1878          * @return a method handle which can store values into the reflected field
1879          * @throws IllegalAccessException if access checking fails
1880          * @throws NullPointerException if the argument is null
1881          */
unreflectSetter(Field f)1882         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1883             return unreflectField(f, true);
1884         }
1885 
1886         /**
1887          * Produces a VarHandle giving access to a reflected field {@code f}
1888          * of type {@code T} declared in a class of type {@code R}.
1889          * The VarHandle's variable type is {@code T}.
1890          * If the field is non-static the VarHandle has one coordinate type,
1891          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
1892          * coordinate types.
1893          * <p>
1894          * Access checking is performed immediately on behalf of the lookup
1895          * class, regardless of the value of the field's {@code accessible}
1896          * flag.
1897          * <p>
1898          * If the field is static, and if the returned VarHandle is operated
1899          * on, the field's declaring class will be initialized, if it has not
1900          * already been initialized.
1901          * <p>
1902          * Certain access modes of the returned VarHandle are unsupported under
1903          * the following conditions:
1904          * <ul>
1905          * <li>if the field is declared {@code final}, then the write, atomic
1906          *     update, numeric atomic update, and bitwise atomic update access
1907          *     modes are unsupported.
1908          * <li>if the field type is anything other than {@code byte},
1909          *     {@code short}, {@code char}, {@code int}, {@code long},
1910          *     {@code float}, or {@code double} then numeric atomic update
1911          *     access modes are unsupported.
1912          * <li>if the field type is anything other than {@code boolean},
1913          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1914          *     {@code long} then bitwise atomic update access modes are
1915          *     unsupported.
1916          * </ul>
1917          * <p>
1918          * If the field is declared {@code volatile} then the returned VarHandle
1919          * will override access to the field (effectively ignore the
1920          * {@code volatile} declaration) in accordance to its specified
1921          * access modes.
1922          * <p>
1923          * If the field type is {@code float} or {@code double} then numeric
1924          * and atomic update access modes compare values using their bitwise
1925          * representation (see {@link Float#floatToRawIntBits} and
1926          * {@link Double#doubleToRawLongBits}, respectively).
1927          * @apiNote
1928          * Bitwise comparison of {@code float} values or {@code double} values,
1929          * as performed by the numeric and atomic update access modes, differ
1930          * from the primitive {@code ==} operator and the {@link Float#equals}
1931          * and {@link Double#equals} methods, specifically with respect to
1932          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1933          * Care should be taken when performing a compare and set or a compare
1934          * and exchange operation with such values since the operation may
1935          * unexpectedly fail.
1936          * There are many possible NaN values that are considered to be
1937          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1938          * provided by Java can distinguish between them.  Operation failure can
1939          * occur if the expected or witness value is a NaN value and it is
1940          * transformed (perhaps in a platform specific manner) into another NaN
1941          * value, and thus has a different bitwise representation (see
1942          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1943          * details).
1944          * The values {@code -0.0} and {@code +0.0} have different bitwise
1945          * representations but are considered equal when using the primitive
1946          * {@code ==} operator.  Operation failure can occur if, for example, a
1947          * numeric algorithm computes an expected value to be say {@code -0.0}
1948          * and previously computed the witness value to be say {@code +0.0}.
1949          * @param f the reflected field, with a field of type {@code T}, and
1950          * a declaring class of type {@code R}
1951          * @return a VarHandle giving access to non-static fields or a static
1952          * field
1953          * @throws IllegalAccessException if access checking fails
1954          * @throws NullPointerException if the argument is null
1955          * @since 9
1956          */
unreflectVarHandle(Field f)1957         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1958             MemberName getField = new MemberName(f, false);
1959             MemberName putField = new MemberName(f, true);
1960             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1961                                                       f.getDeclaringClass(), getField, putField);
1962         }
1963 
1964         /**
1965          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1966          * created by this lookup object or a similar one.
1967          * Security and access checks are performed to ensure that this lookup object
1968          * is capable of reproducing the target method handle.
1969          * This means that the cracking may fail if target is a direct method handle
1970          * but was created by an unrelated lookup object.
1971          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1972          * and was created by a lookup object for a different class.
1973          * @param target a direct method handle to crack into symbolic reference components
1974          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1975          * @exception SecurityException if a security manager is present and it
1976          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1977          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1978          * @exception NullPointerException if the target is {@code null}
1979          * @see MethodHandleInfo
1980          * @since 1.8
1981          */
revealDirect(MethodHandle target)1982         public MethodHandleInfo revealDirect(MethodHandle target) {
1983             MemberName member = target.internalMemberName();
1984             if (member == null || (!member.isResolved() &&
1985                                    !member.isMethodHandleInvoke() &&
1986                                    !member.isVarHandleMethodInvoke()))
1987                 throw newIllegalArgumentException("not a direct method handle");
1988             Class<?> defc = member.getDeclaringClass();
1989             byte refKind = member.getReferenceKind();
1990             assert(MethodHandleNatives.refKindIsValid(refKind));
1991             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1992                 // Devirtualized method invocation is usually formally virtual.
1993                 // To avoid creating extra MemberName objects for this common case,
1994                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1995                 refKind = REF_invokeVirtual;
1996             if (refKind == REF_invokeVirtual && defc.isInterface())
1997                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1998                 refKind = REF_invokeInterface;
1999             // Check SM permissions and member access before cracking.
2000             try {
2001                 checkAccess(refKind, defc, member);
2002                 checkSecurityManager(defc, member);
2003             } catch (IllegalAccessException ex) {
2004                 throw new IllegalArgumentException(ex);
2005             }
2006             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2007                 Class<?> callerClass = target.internalCallerClass();
2008                 if (!hasPrivateAccess() || callerClass != lookupClass())
2009                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2010             }
2011             // Produce the handle to the results.
2012             return new InfoFromMemberName(this, member, refKind);
2013         }
2014 
2015         /// Helper methods, all package-private.
2016 
resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type)2017         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2018             checkSymbolicClass(refc);  // do this before attempting to resolve
2019             Objects.requireNonNull(name);
2020             Objects.requireNonNull(type);
2021             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2022                                             NoSuchFieldException.class);
2023         }
2024 
resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type)2025         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2026             checkSymbolicClass(refc);  // do this before attempting to resolve
2027             Objects.requireNonNull(name);
2028             Objects.requireNonNull(type);
2029             checkMethodName(refKind, name);  // NPE check on name
2030             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2031                                             NoSuchMethodException.class);
2032         }
2033 
resolveOrFail(byte refKind, MemberName member)2034         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2035             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2036             Objects.requireNonNull(member.getName());
2037             Objects.requireNonNull(member.getType());
2038             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2039                                             ReflectiveOperationException.class);
2040         }
2041 
resolveOrNull(byte refKind, MemberName member)2042         MemberName resolveOrNull(byte refKind, MemberName member) {
2043             // do this before attempting to resolve
2044             if (!isClassAccessible(member.getDeclaringClass())) {
2045                 return null;
2046             }
2047             Objects.requireNonNull(member.getName());
2048             Objects.requireNonNull(member.getType());
2049             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2050         }
2051 
checkSymbolicClass(Class<?> refc)2052         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2053             if (!isClassAccessible(refc)) {
2054                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2055             }
2056         }
2057 
isClassAccessible(Class<?> refc)2058         boolean isClassAccessible(Class<?> refc) {
2059             Objects.requireNonNull(refc);
2060             Class<?> caller = lookupClassOrNull();
2061             return caller == null || VerifyAccess.isClassAccessible(refc, caller, allowedModes);
2062         }
2063 
2064         /** Check name for an illegal leading "&lt;" character. */
checkMethodName(byte refKind, String name)2065         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2066             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2067                 throw new NoSuchMethodException("illegal method name: "+name);
2068         }
2069 
2070 
2071         /**
2072          * Find my trustable caller class if m is a caller sensitive method.
2073          * If this lookup object has private access, then the caller class is the lookupClass.
2074          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2075          */
findBoundCallerLookup(MemberName m)2076         Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException {
2077             if (MethodHandleNatives.isCallerSensitive(m) && !hasPrivateAccess()) {
2078                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2079                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2080             }
2081             return this;
2082         }
2083 
2084         /**
2085          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2086          * @return {@code true} if this lookup has {@code PRIVATE} access.
2087          * @since 9
2088          */
hasPrivateAccess()2089         public boolean hasPrivateAccess() {
2090             return (allowedModes & PRIVATE) != 0;
2091         }
2092 
2093         /**
2094          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2095          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2096          * If this lookup object has private access, then the caller class is the lookupClass.
2097          */
checkSecurityManager(Class<?> refc, MemberName m)2098         void checkSecurityManager(Class<?> refc, MemberName m) {
2099             SecurityManager smgr = System.getSecurityManager();
2100             if (smgr == null)  return;
2101             if (allowedModes == TRUSTED)  return;
2102 
2103             // Step 1:
2104             boolean fullPowerLookup = hasPrivateAccess();
2105             if (!fullPowerLookup ||
2106                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2107                 ReflectUtil.checkPackageAccess(refc);
2108             }
2109 
2110             if (m == null) {  // findClass or accessClass
2111                 // Step 2b:
2112                 if (!fullPowerLookup) {
2113                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2114                 }
2115                 return;
2116             }
2117 
2118             // Step 2a:
2119             if (m.isPublic()) return;
2120             if (!fullPowerLookup) {
2121                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2122             }
2123 
2124             // Step 3:
2125             Class<?> defc = m.getDeclaringClass();
2126             if (!fullPowerLookup && defc != refc) {
2127                 ReflectUtil.checkPackageAccess(defc);
2128             }
2129         }
2130 
checkMethod(byte refKind, Class<?> refc, MemberName m)2131         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2132             boolean wantStatic = (refKind == REF_invokeStatic);
2133             String message;
2134             if (m.isConstructor())
2135                 message = "expected a method, not a constructor";
2136             else if (!m.isMethod())
2137                 message = "expected a method";
2138             else if (wantStatic != m.isStatic())
2139                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2140             else
2141                 { checkAccess(refKind, refc, m); return; }
2142             throw m.makeAccessException(message, this);
2143         }
2144 
checkField(byte refKind, Class<?> refc, MemberName m)2145         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2146             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2147             String message;
2148             if (wantStatic != m.isStatic())
2149                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2150             else
2151                 { checkAccess(refKind, refc, m); return; }
2152             throw m.makeAccessException(message, this);
2153         }
2154 
2155         /** Check public/protected/private bits on the symbolic reference class and its member. */
checkAccess(byte refKind, Class<?> refc, MemberName m)2156         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2157             assert(m.referenceKindIsConsistentWith(refKind) &&
2158                    MethodHandleNatives.refKindIsValid(refKind) &&
2159                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2160             int allowedModes = this.allowedModes;
2161             if (allowedModes == TRUSTED)  return;
2162             int mods = m.getModifiers();
2163             if (Modifier.isProtected(mods) &&
2164                     refKind == REF_invokeVirtual &&
2165                     m.getDeclaringClass() == Object.class &&
2166                     m.getName().equals("clone") &&
2167                     refc.isArray()) {
2168                 // The JVM does this hack also.
2169                 // (See ClassVerifier::verify_invoke_instructions
2170                 // and LinkResolver::check_method_accessability.)
2171                 // Because the JVM does not allow separate methods on array types,
2172                 // there is no separate method for int[].clone.
2173                 // All arrays simply inherit Object.clone.
2174                 // But for access checking logic, we make Object.clone
2175                 // (normally protected) appear to be public.
2176                 // Later on, when the DirectMethodHandle is created,
2177                 // its leading argument will be restricted to the
2178                 // requested array type.
2179                 // N.B. The return type is not adjusted, because
2180                 // that is *not* the bytecode behavior.
2181                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2182             }
2183             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2184                 // cannot "new" a protected ctor in a different package
2185                 mods ^= Modifier.PROTECTED;
2186             }
2187             if (Modifier.isFinal(mods) &&
2188                     MethodHandleNatives.refKindIsSetter(refKind))
2189                 throw m.makeAccessException("unexpected set of a final field", this);
2190             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2191             if ((requestedModes & allowedModes) != 0) {
2192                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2193                                                     mods, lookupClass(), allowedModes))
2194                     return;
2195             } else {
2196                 // Protected members can also be checked as if they were package-private.
2197                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2198                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2199                     return;
2200             }
2201             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2202         }
2203 
accessFailedMessage(Class<?> refc, MemberName m)2204         String accessFailedMessage(Class<?> refc, MemberName m) {
2205             Class<?> defc = m.getDeclaringClass();
2206             int mods = m.getModifiers();
2207             // check the class first:
2208             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2209                                (defc == refc ||
2210                                 Modifier.isPublic(refc.getModifiers())));
2211             if (!classOK && (allowedModes & PACKAGE) != 0) {
2212                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) &&
2213                            (defc == refc ||
2214                             VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES)));
2215             }
2216             if (!classOK)
2217                 return "class is not public";
2218             if (Modifier.isPublic(mods))
2219                 return "access to public member failed";  // (how?, module not readable?)
2220             if (Modifier.isPrivate(mods))
2221                 return "member is private";
2222             if (Modifier.isProtected(mods))
2223                 return "member is protected";
2224             return "member is private to package";
2225         }
2226 
checkSpecialCaller(Class<?> specialCaller, Class<?> refc)2227         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2228             int allowedModes = this.allowedModes;
2229             if (allowedModes == TRUSTED)  return;
2230             if (!hasPrivateAccess()
2231                 || (specialCaller != lookupClass()
2232                        // ensure non-abstract methods in superinterfaces can be special-invoked
2233                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
2234                 throw new MemberName(specialCaller).
2235                     makeAccessException("no private access for invokespecial", this);
2236         }
2237 
restrictProtectedReceiver(MemberName method)2238         private boolean restrictProtectedReceiver(MemberName method) {
2239             // The accessing class only has the right to use a protected member
2240             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2241             if (!method.isProtected() || method.isStatic()
2242                 || allowedModes == TRUSTED
2243                 || method.getDeclaringClass() == lookupClass()
2244                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
2245                 return false;
2246             return true;
2247         }
restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller)2248         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2249             assert(!method.isStatic());
2250             // receiver type of mh is too wide; narrow to caller
2251             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2252                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2253             }
2254             MethodType rawType = mh.type();
2255             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2256             MethodType narrowType = rawType.changeParameterType(0, caller);
2257             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2258             assert(mh.viewAsTypeChecks(narrowType, true));
2259             return mh.copyWith(narrowType, mh.form);
2260         }
2261 
2262         /** Check access and get the requested method. */
getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup)2263         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
2264             final boolean doRestrict    = true;
2265             final boolean checkSecurity = true;
2266             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
2267         }
2268         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup)2269         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
2270             final boolean doRestrict    = false;
2271             final boolean checkSecurity = true;
2272             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerLookup);
2273         }
2274         /** Check access and get the requested method, eliding security manager checks. */
getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup)2275         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
2276             final boolean doRestrict    = true;
2277             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2278             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
2279         }
2280         /** Common code for all methods; do not call directly except from immediately above. */
getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method, boolean checkSecurity, boolean doRestrict, Lookup boundCaller)2281         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2282                                                    boolean checkSecurity,
2283                                                    boolean doRestrict,
2284                                                    Lookup boundCaller) throws IllegalAccessException {
2285             checkMethod(refKind, refc, method);
2286             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2287             if (checkSecurity)
2288                 checkSecurityManager(refc, method);
2289             assert(!method.isMethodHandleInvoke());
2290 
2291             if (refKind == REF_invokeSpecial &&
2292                 refc != lookupClass() &&
2293                 !refc.isInterface() &&
2294                 refc != lookupClass().getSuperclass() &&
2295                 refc.isAssignableFrom(lookupClass())) {
2296                 assert(!method.getName().equals("<init>"));  // not this code path
2297 
2298                 // Per JVMS 6.5, desc. of invokespecial instruction:
2299                 // If the method is in a superclass of the LC,
2300                 // and if our original search was above LC.super,
2301                 // repeat the search (symbolic lookup) from LC.super
2302                 // and continue with the direct superclass of that class,
2303                 // and so forth, until a match is found or no further superclasses exist.
2304                 // FIXME: MemberName.resolve should handle this instead.
2305                 Class<?> refcAsSuper = lookupClass();
2306                 MemberName m2;
2307                 do {
2308                     refcAsSuper = refcAsSuper.getSuperclass();
2309                     m2 = new MemberName(refcAsSuper,
2310                                         method.getName(),
2311                                         method.getMethodType(),
2312                                         REF_invokeSpecial);
2313                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2314                 } while (m2 == null &&         // no method is found yet
2315                          refc != refcAsSuper); // search up to refc
2316                 if (m2 == null)  throw new InternalError(method.toString());
2317                 method = m2;
2318                 refc = refcAsSuper;
2319                 // redo basic checks
2320                 checkMethod(refKind, refc, method);
2321             }
2322             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
2323             MethodHandle mh = dmh;
2324             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
2325             if ((doRestrict && refKind == REF_invokeSpecial) ||
2326                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
2327                 mh = restrictReceiver(method, dmh, lookupClass());
2328             }
2329             mh = maybeBindCaller(method, mh, boundCaller);
2330             mh = mh.setVarargs(method);
2331             return mh;
2332         }
maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)2333         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)
2334                                              throws IllegalAccessException {
2335             if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2336                 return mh;
2337 
2338             // boundCaller must have private access.
2339             // It should have been checked by findBoundCallerLookup. Safe to check this again.
2340             if (!boundCaller.hasPrivateAccess())
2341                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2342 
2343             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass);
2344             // Note: caller will apply varargs after this step happens.
2345             return cbmh;
2346         }
2347 
2348         /** Check access and get the requested field. */
getDirectField(byte refKind, Class<?> refc, MemberName field)2349         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2350             final boolean checkSecurity = true;
2351             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2352         }
2353         /** Check access and get the requested field, eliding security manager checks. */
getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field)2354         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2355             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2356             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2357         }
2358         /** Common code for all fields; do not call directly except from immediately above. */
getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field, boolean checkSecurity)2359         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2360                                                   boolean checkSecurity) throws IllegalAccessException {
2361             checkField(refKind, refc, field);
2362             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2363             if (checkSecurity)
2364                 checkSecurityManager(refc, field);
2365             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2366             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2367                                     restrictProtectedReceiver(field));
2368             if (doRestrict)
2369                 return restrictReceiver(field, dmh, lookupClass());
2370             return dmh;
2371         }
getFieldVarHandle(byte getRefKind, byte putRefKind, Class<?> refc, MemberName getField, MemberName putField)2372         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2373                                             Class<?> refc, MemberName getField, MemberName putField)
2374                 throws IllegalAccessException {
2375             final boolean checkSecurity = true;
2376             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2377         }
getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind, Class<?> refc, MemberName getField, MemberName putField)2378         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2379                                                              Class<?> refc, MemberName getField, MemberName putField)
2380                 throws IllegalAccessException {
2381             final boolean checkSecurity = false;
2382             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2383         }
getFieldVarHandleCommon(byte getRefKind, byte putRefKind, Class<?> refc, MemberName getField, MemberName putField, boolean checkSecurity)2384         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2385                                                   Class<?> refc, MemberName getField, MemberName putField,
2386                                                   boolean checkSecurity) throws IllegalAccessException {
2387             assert getField.isStatic() == putField.isStatic();
2388             assert getField.isGetter() && putField.isSetter();
2389             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2390             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2391 
2392             checkField(getRefKind, refc, getField);
2393             if (checkSecurity)
2394                 checkSecurityManager(refc, getField);
2395 
2396             if (!putField.isFinal()) {
2397                 // A VarHandle does not support updates to final fields, any
2398                 // such VarHandle to a final field will be read-only and
2399                 // therefore the following write-based accessibility checks are
2400                 // only required for non-final fields
2401                 checkField(putRefKind, refc, putField);
2402                 if (checkSecurity)
2403                     checkSecurityManager(refc, putField);
2404             }
2405 
2406             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2407                                   restrictProtectedReceiver(getField));
2408             if (doRestrict) {
2409                 assert !getField.isStatic();
2410                 // receiver type of VarHandle is too wide; narrow to caller
2411                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2412                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2413                 }
2414                 refc = lookupClass();
2415             }
2416             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2417         }
2418         /** Check access and get the requested constructor. */
getDirectConstructor(Class<?> refc, MemberName ctor)2419         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2420             final boolean checkSecurity = true;
2421             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2422         }
2423         /** Check access and get the requested constructor, eliding security manager checks. */
getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor)2424         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2425             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2426             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2427         }
2428         /** Common code for all constructors; do not call directly except from immediately above. */
getDirectConstructorCommon(Class<?> refc, MemberName ctor, boolean checkSecurity)2429         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2430                                                   boolean checkSecurity) throws IllegalAccessException {
2431             assert(ctor.isConstructor());
2432             checkAccess(REF_newInvokeSpecial, refc, ctor);
2433             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2434             if (checkSecurity)
2435                 checkSecurityManager(refc, ctor);
2436             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2437             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2438         }
2439 
2440         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2441          */
2442         /*non-public*/
linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)2443         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2444             if (!(type instanceof Class || type instanceof MethodType))
2445                 throw new InternalError("unresolved MemberName");
2446             MemberName member = new MemberName(refKind, defc, name, type);
2447             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2448             if (mh != null) {
2449                 checkSymbolicClass(defc);
2450                 return mh;
2451             }
2452             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2453                 // Treat MethodHandle.invoke and invokeExact specially.
2454                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2455                 if (mh != null) {
2456                     return mh;
2457                 }
2458             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
2459                 // Treat signature-polymorphic methods on VarHandle specially.
2460                 mh = findVirtualForVH(member.getName(), member.getMethodType());
2461                 if (mh != null) {
2462                     return mh;
2463                 }
2464             }
2465             MemberName resolved = resolveOrFail(refKind, member);
2466             mh = getDirectMethodForConstant(refKind, defc, resolved);
2467             if (mh instanceof DirectMethodHandle
2468                     && canBeCached(refKind, defc, resolved)) {
2469                 MemberName key = mh.internalMemberName();
2470                 if (key != null) {
2471                     key = key.asNormalOriginal();
2472                 }
2473                 if (member.equals(key)) {  // better safe than sorry
2474                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2475                 }
2476             }
2477             return mh;
2478         }
2479         private
canBeCached(byte refKind, Class<?> defc, MemberName member)2480         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2481             if (refKind == REF_invokeSpecial) {
2482                 return false;
2483             }
2484             if (!Modifier.isPublic(defc.getModifiers()) ||
2485                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2486                     !member.isPublic() ||
2487                     member.isCallerSensitive()) {
2488                 return false;
2489             }
2490             ClassLoader loader = defc.getClassLoader();
2491             if (loader != null) {
2492                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2493                 boolean found = false;
2494                 while (sysl != null) {
2495                     if (loader == sysl) { found = true; break; }
2496                     sysl = sysl.getParent();
2497                 }
2498                 if (!found) {
2499                     return false;
2500                 }
2501             }
2502             try {
2503                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
2504                     new MemberName(refKind, defc, member.getName(), member.getType()));
2505                 if (resolved2 == null) {
2506                     return false;
2507                 }
2508                 checkSecurityManager(defc, resolved2);
2509             } catch (SecurityException ex) {
2510                 return false;
2511             }
2512             return true;
2513         }
2514         private
getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)2515         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2516                 throws ReflectiveOperationException {
2517             if (MethodHandleNatives.refKindIsField(refKind)) {
2518                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2519             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2520                 return getDirectMethodNoSecurityManager(refKind, defc, member, findBoundCallerLookup(member));
2521             } else if (refKind == REF_newInvokeSpecial) {
2522                 return getDirectConstructorNoSecurityManager(defc, member);
2523             }
2524             // oops
2525             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2526         }
2527 
2528         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2529     }
2530 
2531     /**
2532      * Produces a method handle constructing arrays of a desired type,
2533      * as if by the {@code anewarray} bytecode.
2534      * The return type of the method handle will be the array type.
2535      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2536      *
2537      * <p> If the returned method handle is invoked with a negative
2538      * array size, a {@code NegativeArraySizeException} will be thrown.
2539      *
2540      * @param arrayClass an array type
2541      * @return a method handle which can create arrays of the given type
2542      * @throws NullPointerException if the argument is {@code null}
2543      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2544      * @see java.lang.reflect.Array#newInstance(Class, int)
2545      * @jvms 6.5 {@code anewarray} Instruction
2546      * @since 9
2547      */
2548     public static
arrayConstructor(Class<?> arrayClass)2549     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2550         if (!arrayClass.isArray()) {
2551             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2552         }
2553         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2554                 bindTo(arrayClass.getComponentType());
2555         return ani.asType(ani.type().changeReturnType(arrayClass));
2556     }
2557 
2558     /**
2559      * Produces a method handle returning the length of an array,
2560      * as if by the {@code arraylength} bytecode.
2561      * The type of the method handle will have {@code int} as return type,
2562      * and its sole argument will be the array type.
2563      *
2564      * <p> If the returned method handle is invoked with a {@code null}
2565      * array reference, a {@code NullPointerException} will be thrown.
2566      *
2567      * @param arrayClass an array type
2568      * @return a method handle which can retrieve the length of an array of the given array type
2569      * @throws NullPointerException if the argument is {@code null}
2570      * @throws IllegalArgumentException if arrayClass is not an array type
2571      * @jvms 6.5 {@code arraylength} Instruction
2572      * @since 9
2573      */
2574     public static
arrayLength(Class<?> arrayClass)2575     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2576         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2577     }
2578 
2579     /**
2580      * Produces a method handle giving read access to elements of an array,
2581      * as if by the {@code aaload} bytecode.
2582      * The type of the method handle will have a return type of the array's
2583      * element type.  Its first argument will be the array type,
2584      * and the second will be {@code int}.
2585      *
2586      * <p> When the returned method handle is invoked,
2587      * the array reference and array index are checked.
2588      * A {@code NullPointerException} will be thrown if the array reference
2589      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2590      * thrown if the index is negative or if it is greater than or equal to
2591      * the length of the array.
2592      *
2593      * @param arrayClass an array type
2594      * @return a method handle which can load values from the given array type
2595      * @throws NullPointerException if the argument is null
2596      * @throws  IllegalArgumentException if arrayClass is not an array type
2597      * @jvms 6.5 {@code aaload} Instruction
2598      */
2599     public static
arrayElementGetter(Class<?> arrayClass)2600     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2601         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2602     }
2603 
2604     /**
2605      * Produces a method handle giving write access to elements of an array,
2606      * as if by the {@code astore} bytecode.
2607      * The type of the method handle will have a void return type.
2608      * Its last argument will be the array's element type.
2609      * The first and second arguments will be the array type and int.
2610      *
2611      * <p> When the returned method handle is invoked,
2612      * the array reference and array index are checked.
2613      * A {@code NullPointerException} will be thrown if the array reference
2614      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2615      * thrown if the index is negative or if it is greater than or equal to
2616      * the length of the array.
2617      *
2618      * @param arrayClass the class of an array
2619      * @return a method handle which can store values into the array type
2620      * @throws NullPointerException if the argument is null
2621      * @throws IllegalArgumentException if arrayClass is not an array type
2622      * @jvms 6.5 {@code aastore} Instruction
2623      */
2624     public static
arrayElementSetter(Class<?> arrayClass)2625     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2626         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2627     }
2628 
2629     /**
2630      * Produces a VarHandle giving access to elements of an array of type
2631      * {@code arrayClass}.  The VarHandle's variable type is the component type
2632      * of {@code arrayClass} and the list of coordinate types is
2633      * {@code (arrayClass, int)}, where the {@code int} coordinate type
2634      * corresponds to an argument that is an index into an array.
2635      * <p>
2636      * Certain access modes of the returned VarHandle are unsupported under
2637      * the following conditions:
2638      * <ul>
2639      * <li>if the component type is anything other than {@code byte},
2640      *     {@code short}, {@code char}, {@code int}, {@code long},
2641      *     {@code float}, or {@code double} then numeric atomic update access
2642      *     modes are unsupported.
2643      * <li>if the field type is anything other than {@code boolean},
2644      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2645      *     {@code long} then bitwise atomic update access modes are
2646      *     unsupported.
2647      * </ul>
2648      * <p>
2649      * If the component type is {@code float} or {@code double} then numeric
2650      * and atomic update access modes compare values using their bitwise
2651      * representation (see {@link Float#floatToRawIntBits} and
2652      * {@link Double#doubleToRawLongBits}, respectively).
2653      *
2654      * <p> When the returned {@code VarHandle} is invoked,
2655      * the array reference and array index are checked.
2656      * A {@code NullPointerException} will be thrown if the array reference
2657      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2658      * thrown if the index is negative or if it is greater than or equal to
2659      * the length of the array.
2660      *
2661      * @apiNote
2662      * Bitwise comparison of {@code float} values or {@code double} values,
2663      * as performed by the numeric and atomic update access modes, differ
2664      * from the primitive {@code ==} operator and the {@link Float#equals}
2665      * and {@link Double#equals} methods, specifically with respect to
2666      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2667      * Care should be taken when performing a compare and set or a compare
2668      * and exchange operation with such values since the operation may
2669      * unexpectedly fail.
2670      * There are many possible NaN values that are considered to be
2671      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2672      * provided by Java can distinguish between them.  Operation failure can
2673      * occur if the expected or witness value is a NaN value and it is
2674      * transformed (perhaps in a platform specific manner) into another NaN
2675      * value, and thus has a different bitwise representation (see
2676      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2677      * details).
2678      * The values {@code -0.0} and {@code +0.0} have different bitwise
2679      * representations but are considered equal when using the primitive
2680      * {@code ==} operator.  Operation failure can occur if, for example, a
2681      * numeric algorithm computes an expected value to be say {@code -0.0}
2682      * and previously computed the witness value to be say {@code +0.0}.
2683      * @param arrayClass the class of an array, of type {@code T[]}
2684      * @return a VarHandle giving access to elements of an array
2685      * @throws NullPointerException if the arrayClass is null
2686      * @throws IllegalArgumentException if arrayClass is not an array type
2687      * @since 9
2688      */
2689     public static
arrayElementVarHandle(Class<?> arrayClass)2690     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2691         return VarHandles.makeArrayElementHandle(arrayClass);
2692     }
2693 
2694     /**
2695      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2696      * viewed as if it were a different primitive array type, such as
2697      * {@code int[]} or {@code long[]}.
2698      * The VarHandle's variable type is the component type of
2699      * {@code viewArrayClass} and the list of coordinate types is
2700      * {@code (byte[], int)}, where the {@code int} coordinate type
2701      * corresponds to an argument that is an index into a {@code byte[]} array.
2702      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
2703      * array, composing bytes to or from a value of the component type of
2704      * {@code viewArrayClass} according to the given endianness.
2705      * <p>
2706      * The supported component types (variables types) are {@code short},
2707      * {@code char}, {@code int}, {@code long}, {@code float} and
2708      * {@code double}.
2709      * <p>
2710      * Access of bytes at a given index will result in an
2711      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2712      * or greater than the {@code byte[]} array length minus the size (in bytes)
2713      * of {@code T}.
2714      * <p>
2715      * Access of bytes at an index may be aligned or misaligned for {@code T},
2716      * with respect to the underlying memory address, {@code A} say, associated
2717      * with the array and index.
2718      * If access is misaligned then access for anything other than the
2719      * {@code get} and {@code set} access modes will result in an
2720      * {@code IllegalStateException}.  In such cases atomic access is only
2721      * guaranteed with respect to the largest power of two that divides the GCD
2722      * of {@code A} and the size (in bytes) of {@code T}.
2723      * If access is aligned then following access modes are supported and are
2724      * guaranteed to support atomic access:
2725      * <ul>
2726      * <li>read write access modes for all {@code T}, with the exception of
2727      *     access modes {@code get} and {@code set} for {@code long} and
2728      *     {@code double} on 32-bit platforms.
2729      * <li>atomic update access modes for {@code int}, {@code long},
2730      *     {@code float} or {@code double}.
2731      *     (Future major platform releases of the JDK may support additional
2732      *     types for certain currently unsupported access modes.)
2733      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2734      *     (Future major platform releases of the JDK may support additional
2735      *     numeric types for certain currently unsupported access modes.)
2736      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2737      *     (Future major platform releases of the JDK may support additional
2738      *     numeric types for certain currently unsupported access modes.)
2739      * </ul>
2740      * <p>
2741      * Misaligned access, and therefore atomicity guarantees, may be determined
2742      * for {@code byte[]} arrays without operating on a specific array.  Given
2743      * an {@code index}, {@code T} and it's corresponding boxed type,
2744      * {@code T_BOX}, misalignment may be determined as follows:
2745      * <pre>{@code
2746      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2747      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2748      *     alignmentOffset(0, sizeOfT);
2749      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2750      * boolean isMisaligned = misalignedAtIndex != 0;
2751      * }</pre>
2752      * <p>
2753      * If the variable type is {@code float} or {@code double} then atomic
2754      * update access modes compare values using their bitwise representation
2755      * (see {@link Float#floatToRawIntBits} and
2756      * {@link Double#doubleToRawLongBits}, respectively).
2757      * @param viewArrayClass the view array class, with a component type of
2758      * type {@code T}
2759      * @param byteOrder the endianness of the view array elements, as
2760      * stored in the underlying {@code byte} array
2761      * @return a VarHandle giving access to elements of a {@code byte[]} array
2762      * viewed as if elements corresponding to the components type of the view
2763      * array class
2764      * @throws NullPointerException if viewArrayClass or byteOrder is null
2765      * @throws IllegalArgumentException if viewArrayClass is not an array type
2766      * @throws UnsupportedOperationException if the component type of
2767      * viewArrayClass is not supported as a variable type
2768      * @since 9
2769      */
2770     public static
byteArrayViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)2771     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2772                                      ByteOrder byteOrder) throws IllegalArgumentException {
2773         Objects.requireNonNull(byteOrder);
2774         return VarHandles.byteArrayViewHandle(viewArrayClass,
2775                                               byteOrder == ByteOrder.BIG_ENDIAN);
2776     }
2777 
2778     /**
2779      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2780      * viewed as if it were an array of elements of a different primitive
2781      * component type to that of {@code byte}, such as {@code int[]} or
2782      * {@code long[]}.
2783      * The VarHandle's variable type is the component type of
2784      * {@code viewArrayClass} and the list of coordinate types is
2785      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
2786      * corresponds to an argument that is an index into a {@code byte[]} array.
2787      * The returned VarHandle accesses bytes at an index in a
2788      * {@code ByteBuffer}, composing bytes to or from a value of the component
2789      * type of {@code viewArrayClass} according to the given endianness.
2790      * <p>
2791      * The supported component types (variables types) are {@code short},
2792      * {@code char}, {@code int}, {@code long}, {@code float} and
2793      * {@code double}.
2794      * <p>
2795      * Access will result in a {@code ReadOnlyBufferException} for anything
2796      * other than the read access modes if the {@code ByteBuffer} is read-only.
2797      * <p>
2798      * Access of bytes at a given index will result in an
2799      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2800      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2801      * {@code T}.
2802      * <p>
2803      * Access of bytes at an index may be aligned or misaligned for {@code T},
2804      * with respect to the underlying memory address, {@code A} say, associated
2805      * with the {@code ByteBuffer} and index.
2806      * If access is misaligned then access for anything other than the
2807      * {@code get} and {@code set} access modes will result in an
2808      * {@code IllegalStateException}.  In such cases atomic access is only
2809      * guaranteed with respect to the largest power of two that divides the GCD
2810      * of {@code A} and the size (in bytes) of {@code T}.
2811      * If access is aligned then following access modes are supported and are
2812      * guaranteed to support atomic access:
2813      * <ul>
2814      * <li>read write access modes for all {@code T}, with the exception of
2815      *     access modes {@code get} and {@code set} for {@code long} and
2816      *     {@code double} on 32-bit platforms.
2817      * <li>atomic update access modes for {@code int}, {@code long},
2818      *     {@code float} or {@code double}.
2819      *     (Future major platform releases of the JDK may support additional
2820      *     types for certain currently unsupported access modes.)
2821      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2822      *     (Future major platform releases of the JDK may support additional
2823      *     numeric types for certain currently unsupported access modes.)
2824      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2825      *     (Future major platform releases of the JDK may support additional
2826      *     numeric types for certain currently unsupported access modes.)
2827      * </ul>
2828      * <p>
2829      * Misaligned access, and therefore atomicity guarantees, may be determined
2830      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2831      * {@code index}, {@code T} and it's corresponding boxed type,
2832      * {@code T_BOX}, as follows:
2833      * <pre>{@code
2834      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2835      * ByteBuffer bb = ...
2836      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2837      * boolean isMisaligned = misalignedAtIndex != 0;
2838      * }</pre>
2839      * <p>
2840      * If the variable type is {@code float} or {@code double} then atomic
2841      * update access modes compare values using their bitwise representation
2842      * (see {@link Float#floatToRawIntBits} and
2843      * {@link Double#doubleToRawLongBits}, respectively).
2844      * @param viewArrayClass the view array class, with a component type of
2845      * type {@code T}
2846      * @param byteOrder the endianness of the view array elements, as
2847      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2848      * endianness of a {@code ByteBuffer})
2849      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2850      * viewed as if elements corresponding to the components type of the view
2851      * array class
2852      * @throws NullPointerException if viewArrayClass or byteOrder is null
2853      * @throws IllegalArgumentException if viewArrayClass is not an array type
2854      * @throws UnsupportedOperationException if the component type of
2855      * viewArrayClass is not supported as a variable type
2856      * @since 9
2857      */
2858     public static
byteBufferViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)2859     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2860                                       ByteOrder byteOrder) throws IllegalArgumentException {
2861         Objects.requireNonNull(byteOrder);
2862         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
2863                                                    byteOrder == ByteOrder.BIG_ENDIAN);
2864     }
2865 
2866 
2867     /// method handle invocation (reflective style)
2868 
2869     /**
2870      * Produces a method handle which will invoke any method handle of the
2871      * given {@code type}, with a given number of trailing arguments replaced by
2872      * a single trailing {@code Object[]} array.
2873      * The resulting invoker will be a method handle with the following
2874      * arguments:
2875      * <ul>
2876      * <li>a single {@code MethodHandle} target
2877      * <li>zero or more leading values (counted by {@code leadingArgCount})
2878      * <li>an {@code Object[]} array containing trailing arguments
2879      * </ul>
2880      * <p>
2881      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2882      * the indicated {@code type}.
2883      * That is, if the target is exactly of the given {@code type}, it will behave
2884      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2885      * is used to convert the target to the required {@code type}.
2886      * <p>
2887      * The type of the returned invoker will not be the given {@code type}, but rather
2888      * will have all parameters except the first {@code leadingArgCount}
2889      * replaced by a single array of type {@code Object[]}, which will be
2890      * the final parameter.
2891      * <p>
2892      * Before invoking its target, the invoker will spread the final array, apply
2893      * reference casts as necessary, and unbox and widen primitive arguments.
2894      * If, when the invoker is called, the supplied array argument does
2895      * not have the correct number of elements, the invoker will throw
2896      * an {@link IllegalArgumentException} instead of invoking the target.
2897      * <p>
2898      * This method is equivalent to the following code (though it may be more efficient):
2899      * <blockquote><pre>{@code
2900 MethodHandle invoker = MethodHandles.invoker(type);
2901 int spreadArgCount = type.parameterCount() - leadingArgCount;
2902 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2903 return invoker;
2904      * }</pre></blockquote>
2905      * This method throws no reflective or security exceptions.
2906      * @param type the desired target type
2907      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2908      * @return a method handle suitable for invoking any method handle of the given type
2909      * @throws NullPointerException if {@code type} is null
2910      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2911      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2912      *                  or if the resulting method handle's type would have
2913      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2914      */
2915     public static
spreadInvoker(MethodType type, int leadingArgCount)2916     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2917         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2918             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2919         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2920         return type.invokers().spreadInvoker(leadingArgCount);
2921     }
2922 
2923     /**
2924      * Produces a special <em>invoker method handle</em> which can be used to
2925      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2926      * The resulting invoker will have a type which is
2927      * exactly equal to the desired type, except that it will accept
2928      * an additional leading argument of type {@code MethodHandle}.
2929      * <p>
2930      * This method is equivalent to the following code (though it may be more efficient):
2931      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2932      *
2933      * <p style="font-size:smaller;">
2934      * <em>Discussion:</em>
2935      * Invoker method handles can be useful when working with variable method handles
2936      * of unknown types.
2937      * For example, to emulate an {@code invokeExact} call to a variable method
2938      * handle {@code M}, extract its type {@code T},
2939      * look up the invoker method {@code X} for {@code T},
2940      * and call the invoker method, as {@code X.invoke(T, A...)}.
2941      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2942      * is unknown.)
2943      * If spreading, collecting, or other argument transformations are required,
2944      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2945      * method handle values, as long as they are compatible with the type of {@code X}.
2946      * <p style="font-size:smaller;">
2947      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2948      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2949      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2950      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2951      * <p>
2952      * This method throws no reflective or security exceptions.
2953      * @param type the desired target type
2954      * @return a method handle suitable for invoking any method handle of the given type
2955      * @throws IllegalArgumentException if the resulting method handle's type would have
2956      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2957      */
2958     public static
exactInvoker(MethodType type)2959     MethodHandle exactInvoker(MethodType type) {
2960         return type.invokers().exactInvoker();
2961     }
2962 
2963     /**
2964      * Produces a special <em>invoker method handle</em> which can be used to
2965      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2966      * The resulting invoker will have a type which is
2967      * exactly equal to the desired type, except that it will accept
2968      * an additional leading argument of type {@code MethodHandle}.
2969      * <p>
2970      * Before invoking its target, if the target differs from the expected type,
2971      * the invoker will apply reference casts as
2972      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2973      * Similarly, the return value will be converted as necessary.
2974      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2975      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2976      * <p>
2977      * This method is equivalent to the following code (though it may be more efficient):
2978      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2979      * <p style="font-size:smaller;">
2980      * <em>Discussion:</em>
2981      * A {@linkplain MethodType#genericMethodType general method type} is one which
2982      * mentions only {@code Object} arguments and return values.
2983      * An invoker for such a type is capable of calling any method handle
2984      * of the same arity as the general type.
2985      * <p style="font-size:smaller;">
2986      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2987      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2988      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2989      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2990      * <p>
2991      * This method throws no reflective or security exceptions.
2992      * @param type the desired target type
2993      * @return a method handle suitable for invoking any method handle convertible to the given type
2994      * @throws IllegalArgumentException if the resulting method handle's type would have
2995      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2996      */
2997     public static
invoker(MethodType type)2998     MethodHandle invoker(MethodType type) {
2999         return type.invokers().genericInvoker();
3000     }
3001 
3002     /**
3003      * Produces a special <em>invoker method handle</em> which can be used to
3004      * invoke a signature-polymorphic access mode method on any VarHandle whose
3005      * associated access mode type is compatible with the given type.
3006      * The resulting invoker will have a type which is exactly equal to the
3007      * desired given type, except that it will accept an additional leading
3008      * argument of type {@code VarHandle}.
3009      *
3010      * @param accessMode the VarHandle access mode
3011      * @param type the desired target type
3012      * @return a method handle suitable for invoking an access mode method of
3013      *         any VarHandle whose access mode type is of the given type.
3014      * @since 9
3015      */
3016     static public
varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type)3017     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3018         return type.invokers().varHandleMethodExactInvoker(accessMode);
3019     }
3020 
3021     /**
3022      * Produces a special <em>invoker method handle</em> which can be used to
3023      * invoke a signature-polymorphic access mode method on any VarHandle whose
3024      * associated access mode type is compatible with the given type.
3025      * The resulting invoker will have a type which is exactly equal to the
3026      * desired given type, except that it will accept an additional leading
3027      * argument of type {@code VarHandle}.
3028      * <p>
3029      * Before invoking its target, if the access mode type differs from the
3030      * desired given type, the invoker will apply reference casts as necessary
3031      * and box, unbox, or widen primitive values, as if by
3032      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3033      * converted as necessary.
3034      * <p>
3035      * This method is equivalent to the following code (though it may be more
3036      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3037      *
3038      * @param accessMode the VarHandle access mode
3039      * @param type the desired target type
3040      * @return a method handle suitable for invoking an access mode method of
3041      *         any VarHandle whose access mode type is convertible to the given
3042      *         type.
3043      * @since 9
3044      */
3045     static public
varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type)3046     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3047         return type.invokers().varHandleMethodInvoker(accessMode);
3048     }
3049 
3050     static /*non-public*/
basicInvoker(MethodType type)3051     MethodHandle basicInvoker(MethodType type) {
3052         return type.invokers().basicInvoker();
3053     }
3054 
3055      /// method handle modification (creation from other method handles)
3056 
3057     /**
3058      * Produces a method handle which adapts the type of the
3059      * given method handle to a new type by pairwise argument and return type conversion.
3060      * The original type and new type must have the same number of arguments.
3061      * The resulting method handle is guaranteed to report a type
3062      * which is equal to the desired new type.
3063      * <p>
3064      * If the original type and new type are equal, returns target.
3065      * <p>
3066      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3067      * and some additional conversions are also applied if those conversions fail.
3068      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3069      * if possible, before or instead of any conversions done by {@code asType}:
3070      * <ul>
3071      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3072      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3073      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3074      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3075      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3076      *     (This treatment follows the usage of the bytecode verifier.)
3077      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3078      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3079      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3080      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3081      *     then a Java casting conversion (JLS 5.5) is applied.
3082      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3083      *     widening and/or narrowing.)
3084      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3085      *     conversion will be applied at runtime, possibly followed
3086      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3087      *     possibly followed by a conversion from byte to boolean by testing
3088      *     the low-order bit.
3089      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3090      *     and if the reference is null at runtime, a zero value is introduced.
3091      * </ul>
3092      * @param target the method handle to invoke after arguments are retyped
3093      * @param newType the expected type of the new method handle
3094      * @return a method handle which delegates to the target after performing
3095      *           any necessary argument conversions, and arranges for any
3096      *           necessary return value conversions
3097      * @throws NullPointerException if either argument is null
3098      * @throws WrongMethodTypeException if the conversion cannot be made
3099      * @see MethodHandle#asType
3100      */
3101     public static
explicitCastArguments(MethodHandle target, MethodType newType)3102     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3103         explicitCastArgumentsChecks(target, newType);
3104         // use the asTypeCache when possible:
3105         MethodType oldType = target.type();
3106         if (oldType == newType)  return target;
3107         if (oldType.explicitCastEquivalentToAsType(newType)) {
3108             return target.asFixedArity().asType(newType);
3109         }
3110         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3111     }
3112 
explicitCastArgumentsChecks(MethodHandle target, MethodType newType)3113     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3114         if (target.type().parameterCount() != newType.parameterCount()) {
3115             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3116         }
3117     }
3118 
3119     /**
3120      * Produces a method handle which adapts the calling sequence of the
3121      * given method handle to a new type, by reordering the arguments.
3122      * The resulting method handle is guaranteed to report a type
3123      * which is equal to the desired new type.
3124      * <p>
3125      * The given array controls the reordering.
3126      * Call {@code #I} the number of incoming parameters (the value
3127      * {@code newType.parameterCount()}, and call {@code #O} the number
3128      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3129      * Then the length of the reordering array must be {@code #O},
3130      * and each element must be a non-negative number less than {@code #I}.
3131      * For every {@code N} less than {@code #O}, the {@code N}-th
3132      * outgoing argument will be taken from the {@code I}-th incoming
3133      * argument, where {@code I} is {@code reorder[N]}.
3134      * <p>
3135      * No argument or return value conversions are applied.
3136      * The type of each incoming argument, as determined by {@code newType},
3137      * must be identical to the type of the corresponding outgoing parameter
3138      * or parameters in the target method handle.
3139      * The return type of {@code newType} must be identical to the return
3140      * type of the original target.
3141      * <p>
3142      * The reordering array need not specify an actual permutation.
3143      * An incoming argument will be duplicated if its index appears
3144      * more than once in the array, and an incoming argument will be dropped
3145      * if its index does not appear in the array.
3146      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3147      * incoming arguments which are not mentioned in the reordering array
3148      * may be of any type, as determined only by {@code newType}.
3149      * <blockquote><pre>{@code
3150 import static java.lang.invoke.MethodHandles.*;
3151 import static java.lang.invoke.MethodType.*;
3152 ...
3153 MethodType intfn1 = methodType(int.class, int.class);
3154 MethodType intfn2 = methodType(int.class, int.class, int.class);
3155 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3156 assert(sub.type().equals(intfn2));
3157 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3158 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3159 assert((int)rsub.invokeExact(1, 100) == 99);
3160 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3161 assert(add.type().equals(intfn2));
3162 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3163 assert(twice.type().equals(intfn1));
3164 assert((int)twice.invokeExact(21) == 42);
3165      * }</pre></blockquote>
3166      * <p>
3167      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3168      * variable-arity method handle}, even if the original target method handle was.
3169      * @param target the method handle to invoke after arguments are reordered
3170      * @param newType the expected type of the new method handle
3171      * @param reorder an index array which controls the reordering
3172      * @return a method handle which delegates to the target after it
3173      *           drops unused arguments and moves and/or duplicates the other arguments
3174      * @throws NullPointerException if any argument is null
3175      * @throws IllegalArgumentException if the index array length is not equal to
3176      *                  the arity of the target, or if any index array element
3177      *                  not a valid index for a parameter of {@code newType},
3178      *                  or if two corresponding parameter types in
3179      *                  {@code target.type()} and {@code newType} are not identical,
3180      */
3181     public static
permuteArguments(MethodHandle target, MethodType newType, int... reorder)3182     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3183         reorder = reorder.clone();  // get a private copy
3184         MethodType oldType = target.type();
3185         permuteArgumentChecks(reorder, newType, oldType);
3186         // first detect dropped arguments and handle them separately
3187         int[] originalReorder = reorder;
3188         BoundMethodHandle result = target.rebind();
3189         LambdaForm form = result.form;
3190         int newArity = newType.parameterCount();
3191         // Normalize the reordering into a real permutation,
3192         // by removing duplicates and adding dropped elements.
3193         // This somewhat improves lambda form caching, as well
3194         // as simplifying the transform by breaking it up into steps.
3195         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3196             if (ddIdx > 0) {
3197                 // We found a duplicated entry at reorder[ddIdx].
3198                 // Example:  (x,y,z)->asList(x,y,z)
3199                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3200                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3201                 // The starred element corresponds to the argument
3202                 // deleted by the dupArgumentForm transform.
3203                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3204                 boolean killFirst = false;
3205                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3206                     // Set killFirst if the dup is larger than an intervening position.
3207                     // This will remove at least one inversion from the permutation.
3208                     if (dupVal > val) killFirst = true;
3209                 }
3210                 if (!killFirst) {
3211                     srcPos = dstPos;
3212                     dstPos = ddIdx;
3213                 }
3214                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3215                 assert (reorder[srcPos] == reorder[dstPos]);
3216                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3217                 // contract the reordering by removing the element at dstPos
3218                 int tailPos = dstPos + 1;
3219                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3220                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3221             } else {
3222                 int dropVal = ~ddIdx, insPos = 0;
3223                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3224                     // Find first element of reorder larger than dropVal.
3225                     // This is where we will insert the dropVal.
3226                     insPos += 1;
3227                 }
3228                 Class<?> ptype = newType.parameterType(dropVal);
3229                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3230                 oldType = oldType.insertParameterTypes(insPos, ptype);
3231                 // expand the reordering by inserting an element at insPos
3232                 int tailPos = insPos + 1;
3233                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3234                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3235                 reorder[insPos] = dropVal;
3236             }
3237             assert (permuteArgumentChecks(reorder, newType, oldType));
3238         }
3239         assert (reorder.length == newArity);  // a perfect permutation
3240         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3241         form = form.editor().permuteArgumentsForm(1, reorder);
3242         if (newType == result.type() && form == result.internalForm())
3243             return result;
3244         return result.copyWith(newType, form);
3245     }
3246 
3247     /**
3248      * Return an indication of any duplicate or omission in reorder.
3249      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3250      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3251      * Otherwise, return zero.
3252      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3253      */
findFirstDupOrDrop(int[] reorder, int newArity)3254     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3255         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3256         if (newArity < BIT_LIMIT) {
3257             long mask = 0;
3258             for (int i = 0; i < reorder.length; i++) {
3259                 int arg = reorder[i];
3260                 if (arg >= newArity) {
3261                     return reorder.length;
3262                 }
3263                 long bit = 1L << arg;
3264                 if ((mask & bit) != 0) {
3265                     return i;  // >0 indicates a dup
3266                 }
3267                 mask |= bit;
3268             }
3269             if (mask == (1L << newArity) - 1) {
3270                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3271                 return 0;
3272             }
3273             // find first zero
3274             long zeroBit = Long.lowestOneBit(~mask);
3275             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3276             assert(zeroPos <= newArity);
3277             if (zeroPos == newArity) {
3278                 return 0;
3279             }
3280             return ~zeroPos;
3281         } else {
3282             // same algorithm, different bit set
3283             BitSet mask = new BitSet(newArity);
3284             for (int i = 0; i < reorder.length; i++) {
3285                 int arg = reorder[i];
3286                 if (arg >= newArity) {
3287                     return reorder.length;
3288                 }
3289                 if (mask.get(arg)) {
3290                     return i;  // >0 indicates a dup
3291                 }
3292                 mask.set(arg);
3293             }
3294             int zeroPos = mask.nextClearBit(0);
3295             assert(zeroPos <= newArity);
3296             if (zeroPos == newArity) {
3297                 return 0;
3298             }
3299             return ~zeroPos;
3300         }
3301     }
3302 
permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType)3303     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3304         if (newType.returnType() != oldType.returnType())
3305             throw newIllegalArgumentException("return types do not match",
3306                     oldType, newType);
3307         if (reorder.length == oldType.parameterCount()) {
3308             int limit = newType.parameterCount();
3309             boolean bad = false;
3310             for (int j = 0; j < reorder.length; j++) {
3311                 int i = reorder[j];
3312                 if (i < 0 || i >= limit) {
3313                     bad = true; break;
3314                 }
3315                 Class<?> src = newType.parameterType(i);
3316                 Class<?> dst = oldType.parameterType(j);
3317                 if (src != dst)
3318                     throw newIllegalArgumentException("parameter types do not match after reorder",
3319                             oldType, newType);
3320             }
3321             if (!bad)  return true;
3322         }
3323         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3324     }
3325 
3326     /**
3327      * Produces a method handle of the requested return type which returns the given
3328      * constant value every time it is invoked.
3329      * <p>
3330      * Before the method handle is returned, the passed-in value is converted to the requested type.
3331      * If the requested type is primitive, widening primitive conversions are attempted,
3332      * else reference conversions are attempted.
3333      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3334      * @param type the return type of the desired method handle
3335      * @param value the value to return
3336      * @return a method handle of the given return type and no arguments, which always returns the given value
3337      * @throws NullPointerException if the {@code type} argument is null
3338      * @throws ClassCastException if the value cannot be converted to the required return type
3339      * @throws IllegalArgumentException if the given type is {@code void.class}
3340      */
3341     public static
constant(Class<?> type, Object value)3342     MethodHandle constant(Class<?> type, Object value) {
3343         if (type.isPrimitive()) {
3344             if (type == void.class)
3345                 throw newIllegalArgumentException("void type");
3346             Wrapper w = Wrapper.forPrimitiveType(type);
3347             value = w.convert(value, type);
3348             if (w.zero().equals(value))
3349                 return zero(w, type);
3350             return insertArguments(identity(type), 0, value);
3351         } else {
3352             if (value == null)
3353                 return zero(Wrapper.OBJECT, type);
3354             return identity(type).bindTo(value);
3355         }
3356     }
3357 
3358     /**
3359      * Produces a method handle which returns its sole argument when invoked.
3360      * @param type the type of the sole parameter and return value of the desired method handle
3361      * @return a unary method handle which accepts and returns the given type
3362      * @throws NullPointerException if the argument is null
3363      * @throws IllegalArgumentException if the given type is {@code void.class}
3364      */
3365     public static
identity(Class<?> type)3366     MethodHandle identity(Class<?> type) {
3367         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3368         int pos = btw.ordinal();
3369         MethodHandle ident = IDENTITY_MHS[pos];
3370         if (ident == null) {
3371             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3372         }
3373         if (ident.type().returnType() == type)
3374             return ident;
3375         // something like identity(Foo.class); do not bother to intern these
3376         assert (btw == Wrapper.OBJECT);
3377         return makeIdentity(type);
3378     }
3379 
3380     /**
3381      * Produces a constant method handle of the requested return type which
3382      * returns the default value for that type every time it is invoked.
3383      * The resulting constant method handle will have no side effects.
3384      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3385      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3386      * since {@code explicitCastArguments} converts {@code null} to default values.
3387      * @param type the expected return type of the desired method handle
3388      * @return a constant method handle that takes no arguments
3389      *         and returns the default value of the given type (or void, if the type is void)
3390      * @throws NullPointerException if the argument is null
3391      * @see MethodHandles#constant
3392      * @see MethodHandles#empty
3393      * @see MethodHandles#explicitCastArguments
3394      * @since 9
3395      */
zero(Class<?> type)3396     public static MethodHandle zero(Class<?> type) {
3397         Objects.requireNonNull(type);
3398         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
3399     }
3400 
identityOrVoid(Class<?> type)3401     private static MethodHandle identityOrVoid(Class<?> type) {
3402         return type == void.class ? zero(type) : identity(type);
3403     }
3404 
3405     /**
3406      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3407      * and returns a suitable default depending on the return type.
3408      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3409      * <p>The returned method handle is equivalent to
3410      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3411      *
3412      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3413      * {@code guardWithTest(pred, target, empty(target.type())}.
3414      * @param type the type of the desired method handle
3415      * @return a constant method handle of the given type, which returns a default value of the given return type
3416      * @throws NullPointerException if the argument is null
3417      * @see MethodHandles#zero
3418      * @see MethodHandles#constant
3419      * @since 9
3420      */
empty(MethodType type)3421     public static  MethodHandle empty(MethodType type) {
3422         Objects.requireNonNull(type);
3423         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3424     }
3425 
3426     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
makeIdentity(Class<?> ptype)3427     private static MethodHandle makeIdentity(Class<?> ptype) {
3428         MethodType mtype = methodType(ptype, ptype);
3429         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3430         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3431     }
3432 
zero(Wrapper btw, Class<?> rtype)3433     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3434         int pos = btw.ordinal();
3435         MethodHandle zero = ZERO_MHS[pos];
3436         if (zero == null) {
3437             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3438         }
3439         if (zero.type().returnType() == rtype)
3440             return zero;
3441         assert(btw == Wrapper.OBJECT);
3442         return makeZero(rtype);
3443     }
3444     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
makeZero(Class<?> rtype)3445     private static MethodHandle makeZero(Class<?> rtype) {
3446         MethodType mtype = methodType(rtype);
3447         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3448         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3449     }
3450 
setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value)3451     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3452         // Simulate a CAS, to avoid racy duplication of results.
3453         MethodHandle prev = cache[pos];
3454         if (prev != null) return prev;
3455         return cache[pos] = value;
3456     }
3457 
3458     /**
3459      * Provides a target method handle with one or more <em>bound arguments</em>
3460      * in advance of the method handle's invocation.
3461      * The formal parameters to the target corresponding to the bound
3462      * arguments are called <em>bound parameters</em>.
3463      * Returns a new method handle which saves away the bound arguments.
3464      * When it is invoked, it receives arguments for any non-bound parameters,
3465      * binds the saved arguments to their corresponding parameters,
3466      * and calls the original target.
3467      * <p>
3468      * The type of the new method handle will drop the types for the bound
3469      * parameters from the original target type, since the new method handle
3470      * will no longer require those arguments to be supplied by its callers.
3471      * <p>
3472      * Each given argument object must match the corresponding bound parameter type.
3473      * If a bound parameter type is a primitive, the argument object
3474      * must be a wrapper, and will be unboxed to produce the primitive value.
3475      * <p>
3476      * The {@code pos} argument selects which parameters are to be bound.
3477      * It may range between zero and <i>N-L</i> (inclusively),
3478      * where <i>N</i> is the arity of the target method handle
3479      * and <i>L</i> is the length of the values array.
3480      * <p>
3481      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3482      * variable-arity method handle}, even if the original target method handle was.
3483      * @param target the method handle to invoke after the argument is inserted
3484      * @param pos where to insert the argument (zero for the first)
3485      * @param values the series of arguments to insert
3486      * @return a method handle which inserts an additional argument,
3487      *         before calling the original method handle
3488      * @throws NullPointerException if the target or the {@code values} array is null
3489      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
3490      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
3491      *         is the length of the values array.
3492      * @throws ClassCastException if an argument does not match the corresponding bound parameter
3493      *         type.
3494      * @see MethodHandle#bindTo
3495      */
3496     public static
insertArguments(MethodHandle target, int pos, Object... values)3497     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3498         int insCount = values.length;
3499         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3500         if (insCount == 0)  return target;
3501         BoundMethodHandle result = target.rebind();
3502         for (int i = 0; i < insCount; i++) {
3503             Object value = values[i];
3504             Class<?> ptype = ptypes[pos+i];
3505             if (ptype.isPrimitive()) {
3506                 result = insertArgumentPrimitive(result, pos, ptype, value);
3507             } else {
3508                 value = ptype.cast(value);  // throw CCE if needed
3509                 result = result.bindArgumentL(pos, value);
3510             }
3511         }
3512         return result;
3513     }
3514 
insertArgumentPrimitive(BoundMethodHandle result, int pos, Class<?> ptype, Object value)3515     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3516                                                              Class<?> ptype, Object value) {
3517         Wrapper w = Wrapper.forPrimitiveType(ptype);
3518         // perform unboxing and/or primitive conversion
3519         value = w.convert(value, ptype);
3520         switch (w) {
3521         case INT:     return result.bindArgumentI(pos, (int)value);
3522         case LONG:    return result.bindArgumentJ(pos, (long)value);
3523         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3524         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3525         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3526         }
3527     }
3528 
insertArgumentsChecks(MethodHandle target, int insCount, int pos)3529     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3530         MethodType oldType = target.type();
3531         int outargs = oldType.parameterCount();
3532         int inargs  = outargs - insCount;
3533         if (inargs < 0)
3534             throw newIllegalArgumentException("too many values to insert");
3535         if (pos < 0 || pos > inargs)
3536             throw newIllegalArgumentException("no argument type to append");
3537         return oldType.ptypes();
3538     }
3539 
3540     /**
3541      * Produces a method handle which will discard some dummy arguments
3542      * before calling some other specified <i>target</i> method handle.
3543      * The type of the new method handle will be the same as the target's type,
3544      * except it will also include the dummy argument types,
3545      * at some given position.
3546      * <p>
3547      * The {@code pos} argument may range between zero and <i>N</i>,
3548      * where <i>N</i> is the arity of the target.
3549      * If {@code pos} is zero, the dummy arguments will precede
3550      * the target's real arguments; if {@code pos} is <i>N</i>
3551      * they will come after.
3552      * <p>
3553      * <b>Example:</b>
3554      * <blockquote><pre>{@code
3555 import static java.lang.invoke.MethodHandles.*;
3556 import static java.lang.invoke.MethodType.*;
3557 ...
3558 MethodHandle cat = lookup().findVirtual(String.class,
3559   "concat", methodType(String.class, String.class));
3560 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3561 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3562 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3563 assertEquals(bigType, d0.type());
3564 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3565      * }</pre></blockquote>
3566      * <p>
3567      * This method is also equivalent to the following code:
3568      * <blockquote><pre>
3569      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3570      * </pre></blockquote>
3571      * @param target the method handle to invoke after the arguments are dropped
3572      * @param valueTypes the type(s) of the argument(s) to drop
3573      * @param pos position of first argument to drop (zero for the leftmost)
3574      * @return a method handle which drops arguments of the given types,
3575      *         before calling the original method handle
3576      * @throws NullPointerException if the target is null,
3577      *                              or if the {@code valueTypes} list or any of its elements is null
3578      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3579      *                  or if {@code pos} is negative or greater than the arity of the target,
3580      *                  or if the new method handle's type would have too many parameters
3581      */
3582     public static
dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes)3583     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3584         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3585     }
3586 
copyTypes(Object[] array)3587     private static List<Class<?>> copyTypes(Object[] array) {
3588         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3589     }
3590 
3591     private static
dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes)3592     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3593         MethodType oldType = target.type();  // get NPE
3594         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3595         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3596         if (dropped == 0)  return target;
3597         BoundMethodHandle result = target.rebind();
3598         LambdaForm lform = result.form;
3599         int insertFormArg = 1 + pos;
3600         for (Class<?> ptype : valueTypes) {
3601             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3602         }
3603         result = result.copyWith(newType, lform);
3604         return result;
3605     }
3606 
dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes)3607     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3608         int dropped = valueTypes.size();
3609         MethodType.checkSlotCount(dropped);
3610         int outargs = oldType.parameterCount();
3611         int inargs  = outargs + dropped;
3612         if (pos < 0 || pos > outargs)
3613             throw newIllegalArgumentException("no argument type to remove"
3614                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3615                     );
3616         return dropped;
3617     }
3618 
3619     /**
3620      * Produces a method handle which will discard some dummy arguments
3621      * before calling some other specified <i>target</i> method handle.
3622      * The type of the new method handle will be the same as the target's type,
3623      * except it will also include the dummy argument types,
3624      * at some given position.
3625      * <p>
3626      * The {@code pos} argument may range between zero and <i>N</i>,
3627      * where <i>N</i> is the arity of the target.
3628      * If {@code pos} is zero, the dummy arguments will precede
3629      * the target's real arguments; if {@code pos} is <i>N</i>
3630      * they will come after.
3631      * @apiNote
3632      * <blockquote><pre>{@code
3633 import static java.lang.invoke.MethodHandles.*;
3634 import static java.lang.invoke.MethodType.*;
3635 ...
3636 MethodHandle cat = lookup().findVirtual(String.class,
3637   "concat", methodType(String.class, String.class));
3638 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3639 MethodHandle d0 = dropArguments(cat, 0, String.class);
3640 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3641 MethodHandle d1 = dropArguments(cat, 1, String.class);
3642 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3643 MethodHandle d2 = dropArguments(cat, 2, String.class);
3644 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3645 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3646 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3647      * }</pre></blockquote>
3648      * <p>
3649      * This method is also equivalent to the following code:
3650      * <blockquote><pre>
3651      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3652      * </pre></blockquote>
3653      * @param target the method handle to invoke after the arguments are dropped
3654      * @param valueTypes the type(s) of the argument(s) to drop
3655      * @param pos position of first argument to drop (zero for the leftmost)
3656      * @return a method handle which drops arguments of the given types,
3657      *         before calling the original method handle
3658      * @throws NullPointerException if the target is null,
3659      *                              or if the {@code valueTypes} array or any of its elements is null
3660      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3661      *                  or if {@code pos} is negative or greater than the arity of the target,
3662      *                  or if the new method handle's type would have
3663      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3664      */
3665     public static
dropArguments(MethodHandle target, int pos, Class<?>... valueTypes)3666     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3667         return dropArguments0(target, pos, copyTypes(valueTypes));
3668     }
3669 
3670     // private version which allows caller some freedom with error handling
dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, boolean nullOnFailure)3671     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3672                                       boolean nullOnFailure) {
3673         newTypes = copyTypes(newTypes.toArray());
3674         List<Class<?>> oldTypes = target.type().parameterList();
3675         int match = oldTypes.size();
3676         if (skip != 0) {
3677             if (skip < 0 || skip > match) {
3678                 throw newIllegalArgumentException("illegal skip", skip, target);
3679             }
3680             oldTypes = oldTypes.subList(skip, match);
3681             match -= skip;
3682         }
3683         List<Class<?>> addTypes = newTypes;
3684         int add = addTypes.size();
3685         if (pos != 0) {
3686             if (pos < 0 || pos > add) {
3687                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3688             }
3689             addTypes = addTypes.subList(pos, add);
3690             add -= pos;
3691             assert(addTypes.size() == add);
3692         }
3693         // Do not add types which already match the existing arguments.
3694         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3695             if (nullOnFailure) {
3696                 return null;
3697             }
3698             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3699         }
3700         addTypes = addTypes.subList(match, add);
3701         add -= match;
3702         assert(addTypes.size() == add);
3703         // newTypes:     (   P*[pos], M*[match], A*[add] )
3704         // target: ( S*[skip],        M*[match]  )
3705         MethodHandle adapter = target;
3706         if (add > 0) {
3707             adapter = dropArguments0(adapter, skip+ match, addTypes);
3708         }
3709         // adapter: (S*[skip],        M*[match], A*[add] )
3710         if (pos > 0) {
3711             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3712         }
3713         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3714         return adapter;
3715     }
3716 
3717     /**
3718      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
3719      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3720      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3721      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3722      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3723      * {@link #dropArguments(MethodHandle, int, Class[])}.
3724      * <p>
3725      * The resulting handle will have the same return type as the target handle.
3726      * <p>
3727      * In more formal terms, assume these two type lists:<ul>
3728      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3729      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3730      * {@code newTypes}.
3731      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3732      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3733      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3734      * sub-list.
3735      * </ul>
3736      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3737      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3738      * {@link #dropArguments(MethodHandle, int, Class[])}.
3739      *
3740      * @apiNote
3741      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3742      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3743      * <blockquote><pre>{@code
3744 import static java.lang.invoke.MethodHandles.*;
3745 import static java.lang.invoke.MethodType.*;
3746 ...
3747 ...
3748 MethodHandle h0 = constant(boolean.class, true);
3749 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3750 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3751 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3752 if (h1.type().parameterCount() < h2.type().parameterCount())
3753     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3754 else
3755     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3756 MethodHandle h3 = guardWithTest(h0, h1, h2);
3757 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3758      * }</pre></blockquote>
3759      * @param target the method handle to adapt
3760      * @param skip number of targets parameters to disregard (they will be unchanged)
3761      * @param newTypes the list of types to match {@code target}'s parameter type list to
3762      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3763      * @return a possibly adapted method handle
3764      * @throws NullPointerException if either argument is null
3765      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3766      *         or if {@code skip} is negative or greater than the arity of the target,
3767      *         or if {@code pos} is negative or greater than the newTypes list size,
3768      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3769      *         {@code pos}.
3770      * @since 9
3771      */
3772     public static
dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos)3773     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3774         Objects.requireNonNull(target);
3775         Objects.requireNonNull(newTypes);
3776         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3777     }
3778 
3779     /**
3780      * Adapts a target method handle by pre-processing
3781      * one or more of its arguments, each with its own unary filter function,
3782      * and then calling the target with each pre-processed argument
3783      * replaced by the result of its corresponding filter function.
3784      * <p>
3785      * The pre-processing is performed by one or more method handles,
3786      * specified in the elements of the {@code filters} array.
3787      * The first element of the filter array corresponds to the {@code pos}
3788      * argument of the target, and so on in sequence.
3789      * The filter functions are invoked in left to right order.
3790      * <p>
3791      * Null arguments in the array are treated as identity functions,
3792      * and the corresponding arguments left unchanged.
3793      * (If there are no non-null elements in the array, the original target is returned.)
3794      * Each filter is applied to the corresponding argument of the adapter.
3795      * <p>
3796      * If a filter {@code F} applies to the {@code N}th argument of
3797      * the target, then {@code F} must be a method handle which
3798      * takes exactly one argument.  The type of {@code F}'s sole argument
3799      * replaces the corresponding argument type of the target
3800      * in the resulting adapted method handle.
3801      * The return type of {@code F} must be identical to the corresponding
3802      * parameter type of the target.
3803      * <p>
3804      * It is an error if there are elements of {@code filters}
3805      * (null or not)
3806      * which do not correspond to argument positions in the target.
3807      * <p><b>Example:</b>
3808      * <blockquote><pre>{@code
3809 import static java.lang.invoke.MethodHandles.*;
3810 import static java.lang.invoke.MethodType.*;
3811 ...
3812 MethodHandle cat = lookup().findVirtual(String.class,
3813   "concat", methodType(String.class, String.class));
3814 MethodHandle upcase = lookup().findVirtual(String.class,
3815   "toUpperCase", methodType(String.class));
3816 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3817 MethodHandle f0 = filterArguments(cat, 0, upcase);
3818 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3819 MethodHandle f1 = filterArguments(cat, 1, upcase);
3820 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3821 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3822 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3823      * }</pre></blockquote>
3824      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3825      * denotes the return type of both the {@code target} and resulting adapter.
3826      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3827      * of the parameters and arguments that precede and follow the filter position
3828      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3829      * values of the filtered parameters and arguments; they also represent the
3830      * return types of the {@code filter[i]} handles. The latter accept arguments
3831      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3832      * the resulting adapter.
3833      * <blockquote><pre>{@code
3834      * T target(P... p, A[i]... a[i], B... b);
3835      * A[i] filter[i](V[i]);
3836      * T adapter(P... p, V[i]... v[i], B... b) {
3837      *   return target(p..., filter[i](v[i])..., b...);
3838      * }
3839      * }</pre></blockquote>
3840      * <p>
3841      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3842      * variable-arity method handle}, even if the original target method handle was.
3843      *
3844      * @param target the method handle to invoke after arguments are filtered
3845      * @param pos the position of the first argument to filter
3846      * @param filters method handles to call initially on filtered arguments
3847      * @return method handle which incorporates the specified argument filtering logic
3848      * @throws NullPointerException if the target is null
3849      *                              or if the {@code filters} array is null
3850      * @throws IllegalArgumentException if a non-null element of {@code filters}
3851      *          does not match a corresponding argument type of target as described above,
3852      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3853      *          or if the resulting method handle's type would have
3854      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3855      */
3856     public static
filterArguments(MethodHandle target, int pos, MethodHandle... filters)3857     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3858         filterArgumentsCheckArity(target, pos, filters);
3859         MethodHandle adapter = target;
3860         // process filters in reverse order so that the invocation of
3861         // the resulting adapter will invoke the filters in left-to-right order
3862         for (int i = filters.length - 1; i >= 0; --i) {
3863             MethodHandle filter = filters[i];
3864             if (filter == null)  continue;  // ignore null elements of filters
3865             adapter = filterArgument(adapter, pos + i, filter);
3866         }
3867         return adapter;
3868     }
3869 
3870     /*non-public*/ static
filterArgument(MethodHandle target, int pos, MethodHandle filter)3871     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3872         filterArgumentChecks(target, pos, filter);
3873         MethodType targetType = target.type();
3874         MethodType filterType = filter.type();
3875         BoundMethodHandle result = target.rebind();
3876         Class<?> newParamType = filterType.parameterType(0);
3877         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3878         MethodType newType = targetType.changeParameterType(pos, newParamType);
3879         result = result.copyWithExtendL(newType, lform, filter);
3880         return result;
3881     }
3882 
filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters)3883     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3884         MethodType targetType = target.type();
3885         int maxPos = targetType.parameterCount();
3886         if (pos + filters.length > maxPos)
3887             throw newIllegalArgumentException("too many filters");
3888     }
3889 
filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter)3890     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3891         MethodType targetType = target.type();
3892         MethodType filterType = filter.type();
3893         if (filterType.parameterCount() != 1
3894             || filterType.returnType() != targetType.parameterType(pos))
3895             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3896     }
3897 
3898     /**
3899      * Adapts a target method handle by pre-processing
3900      * a sub-sequence of its arguments with a filter (another method handle).
3901      * The pre-processed arguments are replaced by the result (if any) of the
3902      * filter function.
3903      * The target is then called on the modified (usually shortened) argument list.
3904      * <p>
3905      * If the filter returns a value, the target must accept that value as
3906      * its argument in position {@code pos}, preceded and/or followed by
3907      * any arguments not passed to the filter.
3908      * If the filter returns void, the target must accept all arguments
3909      * not passed to the filter.
3910      * No arguments are reordered, and a result returned from the filter
3911      * replaces (in order) the whole subsequence of arguments originally
3912      * passed to the adapter.
3913      * <p>
3914      * The argument types (if any) of the filter
3915      * replace zero or one argument types of the target, at position {@code pos},
3916      * in the resulting adapted method handle.
3917      * The return type of the filter (if any) must be identical to the
3918      * argument type of the target at position {@code pos}, and that target argument
3919      * is supplied by the return value of the filter.
3920      * <p>
3921      * In all cases, {@code pos} must be greater than or equal to zero, and
3922      * {@code pos} must also be less than or equal to the target's arity.
3923      * <p><b>Example:</b>
3924      * <blockquote><pre>{@code
3925 import static java.lang.invoke.MethodHandles.*;
3926 import static java.lang.invoke.MethodType.*;
3927 ...
3928 MethodHandle deepToString = publicLookup()
3929   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3930 
3931 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3932 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3933 
3934 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3935 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3936 
3937 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3938 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3939 assertEquals("[top, [up, down], strange]",
3940              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3941 
3942 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3943 assertEquals("[top, [up, down], [strange]]",
3944              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3945 
3946 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3947 assertEquals("[top, [[up, down, strange], charm], bottom]",
3948              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3949      * }</pre></blockquote>
3950      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3951      * represents the return type of the {@code target} and resulting adapter.
3952      * {@code V}/{@code v} stand for the return type and value of the
3953      * {@code filter}, which are also found in the signature and arguments of
3954      * the {@code target}, respectively, unless {@code V} is {@code void}.
3955      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3956      * and values preceding and following the collection position, {@code pos},
3957      * in the {@code target}'s signature. They also turn up in the resulting
3958      * adapter's signature and arguments, where they surround
3959      * {@code B}/{@code b}, which represent the parameter types and arguments
3960      * to the {@code filter} (if any).
3961      * <blockquote><pre>{@code
3962      * T target(A...,V,C...);
3963      * V filter(B...);
3964      * T adapter(A... a,B... b,C... c) {
3965      *   V v = filter(b...);
3966      *   return target(a...,v,c...);
3967      * }
3968      * // and if the filter has no arguments:
3969      * T target2(A...,V,C...);
3970      * V filter2();
3971      * T adapter2(A... a,C... c) {
3972      *   V v = filter2();
3973      *   return target2(a...,v,c...);
3974      * }
3975      * // and if the filter has a void return:
3976      * T target3(A...,C...);
3977      * void filter3(B...);
3978      * T adapter3(A... a,B... b,C... c) {
3979      *   filter3(b...);
3980      *   return target3(a...,c...);
3981      * }
3982      * }</pre></blockquote>
3983      * <p>
3984      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3985      * one which first "folds" the affected arguments, and then drops them, in separate
3986      * steps as follows:
3987      * <blockquote><pre>{@code
3988      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3989      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3990      * }</pre></blockquote>
3991      * If the target method handle consumes no arguments besides than the result
3992      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3993      * is equivalent to {@code filterReturnValue(coll, mh)}.
3994      * If the filter method handle {@code coll} consumes one argument and produces
3995      * a non-void result, then {@code collectArguments(mh, N, coll)}
3996      * is equivalent to {@code filterArguments(mh, N, coll)}.
3997      * Other equivalences are possible but would require argument permutation.
3998      * <p>
3999      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4000      * variable-arity method handle}, even if the original target method handle was.
4001      *
4002      * @param target the method handle to invoke after filtering the subsequence of arguments
4003      * @param pos the position of the first adapter argument to pass to the filter,
4004      *            and/or the target argument which receives the result of the filter
4005      * @param filter method handle to call on the subsequence of arguments
4006      * @return method handle which incorporates the specified argument subsequence filtering logic
4007      * @throws NullPointerException if either argument is null
4008      * @throws IllegalArgumentException if the return type of {@code filter}
4009      *          is non-void and is not the same as the {@code pos} argument of the target,
4010      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4011      *          or if the resulting method handle's type would have
4012      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4013      * @see MethodHandles#foldArguments
4014      * @see MethodHandles#filterArguments
4015      * @see MethodHandles#filterReturnValue
4016      */
4017     public static
collectArguments(MethodHandle target, int pos, MethodHandle filter)4018     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4019         MethodType newType = collectArgumentsChecks(target, pos, filter);
4020         MethodType collectorType = filter.type();
4021         BoundMethodHandle result = target.rebind();
4022         LambdaForm lform;
4023         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4024             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4025             if (lform != null) {
4026                 return result.copyWith(newType, lform);
4027             }
4028         }
4029         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4030         return result.copyWithExtendL(newType, lform, filter);
4031     }
4032 
collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter)4033     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4034         MethodType targetType = target.type();
4035         MethodType filterType = filter.type();
4036         Class<?> rtype = filterType.returnType();
4037         List<Class<?>> filterArgs = filterType.parameterList();
4038         if (rtype == void.class) {
4039             return targetType.insertParameterTypes(pos, filterArgs);
4040         }
4041         if (rtype != targetType.parameterType(pos)) {
4042             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4043         }
4044         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4045     }
4046 
4047     /**
4048      * Adapts a target method handle by post-processing
4049      * its return value (if any) with a filter (another method handle).
4050      * The result of the filter is returned from the adapter.
4051      * <p>
4052      * If the target returns a value, the filter must accept that value as
4053      * its only argument.
4054      * If the target returns void, the filter must accept no arguments.
4055      * <p>
4056      * The return type of the filter
4057      * replaces the return type of the target
4058      * in the resulting adapted method handle.
4059      * The argument type of the filter (if any) must be identical to the
4060      * return type of the target.
4061      * <p><b>Example:</b>
4062      * <blockquote><pre>{@code
4063 import static java.lang.invoke.MethodHandles.*;
4064 import static java.lang.invoke.MethodType.*;
4065 ...
4066 MethodHandle cat = lookup().findVirtual(String.class,
4067   "concat", methodType(String.class, String.class));
4068 MethodHandle length = lookup().findVirtual(String.class,
4069   "length", methodType(int.class));
4070 System.out.println((String) cat.invokeExact("x", "y")); // xy
4071 MethodHandle f0 = filterReturnValue(cat, length);
4072 System.out.println((int) f0.invokeExact("x", "y")); // 2
4073      * }</pre></blockquote>
4074      * <p>Here is pseudocode for the resulting adapter. In the code,
4075      * {@code T}/{@code t} represent the result type and value of the
4076      * {@code target}; {@code V}, the result type of the {@code filter}; and
4077      * {@code A}/{@code a}, the types and values of the parameters and arguments
4078      * of the {@code target} as well as the resulting adapter.
4079      * <blockquote><pre>{@code
4080      * T target(A...);
4081      * V filter(T);
4082      * V adapter(A... a) {
4083      *   T t = target(a...);
4084      *   return filter(t);
4085      * }
4086      * // and if the target has a void return:
4087      * void target2(A...);
4088      * V filter2();
4089      * V adapter2(A... a) {
4090      *   target2(a...);
4091      *   return filter2();
4092      * }
4093      * // and if the filter has a void return:
4094      * T target3(A...);
4095      * void filter3(V);
4096      * void adapter3(A... a) {
4097      *   T t = target3(a...);
4098      *   filter3(t);
4099      * }
4100      * }</pre></blockquote>
4101      * <p>
4102      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4103      * variable-arity method handle}, even if the original target method handle was.
4104      * @param target the method handle to invoke before filtering the return value
4105      * @param filter method handle to call on the return value
4106      * @return method handle which incorporates the specified return value filtering logic
4107      * @throws NullPointerException if either argument is null
4108      * @throws IllegalArgumentException if the argument list of {@code filter}
4109      *          does not match the return type of target as described above
4110      */
4111     public static
filterReturnValue(MethodHandle target, MethodHandle filter)4112     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4113         MethodType targetType = target.type();
4114         MethodType filterType = filter.type();
4115         filterReturnValueChecks(targetType, filterType);
4116         BoundMethodHandle result = target.rebind();
4117         BasicType rtype = BasicType.basicType(filterType.returnType());
4118         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4119         MethodType newType = targetType.changeReturnType(filterType.returnType());
4120         result = result.copyWithExtendL(newType, lform, filter);
4121         return result;
4122     }
4123 
filterReturnValueChecks(MethodType targetType, MethodType filterType)4124     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4125         Class<?> rtype = targetType.returnType();
4126         int filterValues = filterType.parameterCount();
4127         if (filterValues == 0
4128                 ? (rtype != void.class)
4129                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4130             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4131     }
4132 
4133     /**
4134      * Adapts a target method handle by pre-processing
4135      * some of its arguments, and then calling the target with
4136      * the result of the pre-processing, inserted into the original
4137      * sequence of arguments.
4138      * <p>
4139      * The pre-processing is performed by {@code combiner}, a second method handle.
4140      * Of the arguments passed to the adapter, the first {@code N} arguments
4141      * are copied to the combiner, which is then called.
4142      * (Here, {@code N} is defined as the parameter count of the combiner.)
4143      * After this, control passes to the target, with any result
4144      * from the combiner inserted before the original {@code N} incoming
4145      * arguments.
4146      * <p>
4147      * If the combiner returns a value, the first parameter type of the target
4148      * must be identical with the return type of the combiner, and the next
4149      * {@code N} parameter types of the target must exactly match the parameters
4150      * of the combiner.
4151      * <p>
4152      * If the combiner has a void return, no result will be inserted,
4153      * and the first {@code N} parameter types of the target
4154      * must exactly match the parameters of the combiner.
4155      * <p>
4156      * The resulting adapter is the same type as the target, except that the
4157      * first parameter type is dropped,
4158      * if it corresponds to the result of the combiner.
4159      * <p>
4160      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4161      * that either the combiner or the target does not wish to receive.
4162      * If some of the incoming arguments are destined only for the combiner,
4163      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4164      * arguments will not need to be live on the stack on entry to the
4165      * target.)
4166      * <p><b>Example:</b>
4167      * <blockquote><pre>{@code
4168 import static java.lang.invoke.MethodHandles.*;
4169 import static java.lang.invoke.MethodType.*;
4170 ...
4171 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4172   "println", methodType(void.class, String.class))
4173     .bindTo(System.out);
4174 MethodHandle cat = lookup().findVirtual(String.class,
4175   "concat", methodType(String.class, String.class));
4176 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4177 MethodHandle catTrace = foldArguments(cat, trace);
4178 // also prints "boo":
4179 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4180      * }</pre></blockquote>
4181      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4182      * represents the result type of the {@code target} and resulting adapter.
4183      * {@code V}/{@code v} represent the type and value of the parameter and argument
4184      * of {@code target} that precedes the folding position; {@code V} also is
4185      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4186      * types and values of the {@code N} parameters and arguments at the folding
4187      * position. {@code B}/{@code b} represent the types and values of the
4188      * {@code target} parameters and arguments that follow the folded parameters
4189      * and arguments.
4190      * <blockquote><pre>{@code
4191      * // there are N arguments in A...
4192      * T target(V, A[N]..., B...);
4193      * V combiner(A...);
4194      * T adapter(A... a, B... b) {
4195      *   V v = combiner(a...);
4196      *   return target(v, a..., b...);
4197      * }
4198      * // and if the combiner has a void return:
4199      * T target2(A[N]..., B...);
4200      * void combiner2(A...);
4201      * T adapter2(A... a, B... b) {
4202      *   combiner2(a...);
4203      *   return target2(a..., b...);
4204      * }
4205      * }</pre></blockquote>
4206      * <p>
4207      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4208      * variable-arity method handle}, even if the original target method handle was.
4209      * @param target the method handle to invoke after arguments are combined
4210      * @param combiner method handle to call initially on the incoming arguments
4211      * @return method handle which incorporates the specified argument folding logic
4212      * @throws NullPointerException if either argument is null
4213      * @throws IllegalArgumentException if {@code combiner}'s return type
4214      *          is non-void and not the same as the first argument type of
4215      *          the target, or if the initial {@code N} argument types
4216      *          of the target
4217      *          (skipping one matching the {@code combiner}'s return type)
4218      *          are not identical with the argument types of {@code combiner}
4219      */
4220     public static
foldArguments(MethodHandle target, MethodHandle combiner)4221     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4222         return foldArguments(target, 0, combiner);
4223     }
4224 
4225     /**
4226      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4227      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4228      * before the folded arguments.
4229      * <p>
4230      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4231      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4232      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4233      * 0.
4234      *
4235      * @apiNote Example:
4236      * <blockquote><pre>{@code
4237     import static java.lang.invoke.MethodHandles.*;
4238     import static java.lang.invoke.MethodType.*;
4239     ...
4240     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4241     "println", methodType(void.class, String.class))
4242     .bindTo(System.out);
4243     MethodHandle cat = lookup().findVirtual(String.class,
4244     "concat", methodType(String.class, String.class));
4245     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4246     MethodHandle catTrace = foldArguments(cat, 1, trace);
4247     // also prints "jum":
4248     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4249      * }</pre></blockquote>
4250      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4251      * represents the result type of the {@code target} and resulting adapter.
4252      * {@code V}/{@code v} represent the type and value of the parameter and argument
4253      * of {@code target} that precedes the folding position; {@code V} also is
4254      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4255      * types and values of the {@code N} parameters and arguments at the folding
4256      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4257      * and values of the {@code target} parameters and arguments that precede and
4258      * follow the folded parameters and arguments starting at {@code pos},
4259      * respectively.
4260      * <blockquote><pre>{@code
4261      * // there are N arguments in A...
4262      * T target(Z..., V, A[N]..., B...);
4263      * V combiner(A...);
4264      * T adapter(Z... z, A... a, B... b) {
4265      *   V v = combiner(a...);
4266      *   return target(z..., v, a..., b...);
4267      * }
4268      * // and if the combiner has a void return:
4269      * T target2(Z..., A[N]..., B...);
4270      * void combiner2(A...);
4271      * T adapter2(Z... z, A... a, B... b) {
4272      *   combiner2(a...);
4273      *   return target2(z..., a..., b...);
4274      * }
4275      * }</pre></blockquote>
4276      * <p>
4277      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4278      * variable-arity method handle}, even if the original target method handle was.
4279      *
4280      * @param target the method handle to invoke after arguments are combined
4281      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4282      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4283      * @param combiner method handle to call initially on the incoming arguments
4284      * @return method handle which incorporates the specified argument folding logic
4285      * @throws NullPointerException if either argument is null
4286      * @throws IllegalArgumentException if either of the following two conditions holds:
4287      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4288      *              {@code pos} of the target signature;
4289      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4290      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4291      *
4292      * @see #foldArguments(MethodHandle, MethodHandle)
4293      * @since 9
4294      */
foldArguments(MethodHandle target, int pos, MethodHandle combiner)4295     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4296         MethodType targetType = target.type();
4297         MethodType combinerType = combiner.type();
4298         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4299         BoundMethodHandle result = target.rebind();
4300         boolean dropResult = rtype == void.class;
4301         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4302         MethodType newType = targetType;
4303         if (!dropResult) {
4304             newType = newType.dropParameterTypes(pos, pos + 1);
4305         }
4306         result = result.copyWithExtendL(newType, lform, combiner);
4307         return result;
4308     }
4309 
4310     /**
4311      * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the
4312      * added capability of selecting the arguments from the targets parameters
4313      * to call the combiner with. This allows us to avoid some simple cases of
4314      * permutations and padding the combiner with dropArguments to select the
4315      * right argument, which may ultimately produce fewer intermediaries.
4316      */
foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions)4317     static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) {
4318         MethodType targetType = target.type();
4319         MethodType combinerType = combiner.type();
4320         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions);
4321         BoundMethodHandle result = target.rebind();
4322         boolean dropResult = rtype == void.class;
4323         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions);
4324         MethodType newType = targetType;
4325         if (!dropResult) {
4326             newType = newType.dropParameterTypes(pos, pos + 1);
4327         }
4328         result = result.copyWithExtendL(newType, lform, combiner);
4329         return result;
4330     }
4331 
foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType)4332     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4333         int foldArgs   = combinerType.parameterCount();
4334         Class<?> rtype = combinerType.returnType();
4335         int foldVals = rtype == void.class ? 0 : 1;
4336         int afterInsertPos = foldPos + foldVals;
4337         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4338         if (ok) {
4339             for (int i = 0; i < foldArgs; i++) {
4340                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4341                     ok = false;
4342                     break;
4343                 }
4344             }
4345         }
4346         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4347             ok = false;
4348         if (!ok)
4349             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4350         return rtype;
4351     }
4352 
foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos)4353     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) {
4354         int foldArgs = combinerType.parameterCount();
4355         if (argPos.length != foldArgs) {
4356             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4357         }
4358         Class<?> rtype = combinerType.returnType();
4359         int foldVals = rtype == void.class ? 0 : 1;
4360         boolean ok = true;
4361         for (int i = 0; i < foldArgs; i++) {
4362             int arg = argPos[i];
4363             if (arg < 0 || arg > targetType.parameterCount()) {
4364                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4365             }
4366             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4367                 throw newIllegalArgumentException("target argument type at position " + arg
4368                         + " must match combiner argument type at index " + i + ": " + targetType
4369                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4370             }
4371         }
4372         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) {
4373             ok = false;
4374         }
4375         if (!ok)
4376             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4377         return rtype;
4378     }
4379 
4380     /**
4381      * Makes a method handle which adapts a target method handle,
4382      * by guarding it with a test, a boolean-valued method handle.
4383      * If the guard fails, a fallback handle is called instead.
4384      * All three method handles must have the same corresponding
4385      * argument and return types, except that the return type
4386      * of the test must be boolean, and the test is allowed
4387      * to have fewer arguments than the other two method handles.
4388      * <p>
4389      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4390      * represents the uniform result type of the three involved handles;
4391      * {@code A}/{@code a}, the types and values of the {@code target}
4392      * parameters and arguments that are consumed by the {@code test}; and
4393      * {@code B}/{@code b}, those types and values of the {@code target}
4394      * parameters and arguments that are not consumed by the {@code test}.
4395      * <blockquote><pre>{@code
4396      * boolean test(A...);
4397      * T target(A...,B...);
4398      * T fallback(A...,B...);
4399      * T adapter(A... a,B... b) {
4400      *   if (test(a...))
4401      *     return target(a..., b...);
4402      *   else
4403      *     return fallback(a..., b...);
4404      * }
4405      * }</pre></blockquote>
4406      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4407      * be modified by execution of the test, and so are passed unchanged
4408      * from the caller to the target or fallback as appropriate.
4409      * @param test method handle used for test, must return boolean
4410      * @param target method handle to call if test passes
4411      * @param fallback method handle to call if test fails
4412      * @return method handle which incorporates the specified if/then/else logic
4413      * @throws NullPointerException if any argument is null
4414      * @throws IllegalArgumentException if {@code test} does not return boolean,
4415      *          or if all three method types do not match (with the return
4416      *          type of {@code test} changed to match that of the target).
4417      */
4418     public static
guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback)4419     MethodHandle guardWithTest(MethodHandle test,
4420                                MethodHandle target,
4421                                MethodHandle fallback) {
4422         MethodType gtype = test.type();
4423         MethodType ttype = target.type();
4424         MethodType ftype = fallback.type();
4425         if (!ttype.equals(ftype))
4426             throw misMatchedTypes("target and fallback types", ttype, ftype);
4427         if (gtype.returnType() != boolean.class)
4428             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4429         List<Class<?>> targs = ttype.parameterList();
4430         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4431         if (test == null) {
4432             throw misMatchedTypes("target and test types", ttype, gtype);
4433         }
4434         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4435     }
4436 
misMatchedTypes(String what, T t1, T t2)4437     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4438         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4439     }
4440 
4441     /**
4442      * Makes a method handle which adapts a target method handle,
4443      * by running it inside an exception handler.
4444      * If the target returns normally, the adapter returns that value.
4445      * If an exception matching the specified type is thrown, the fallback
4446      * handle is called instead on the exception, plus the original arguments.
4447      * <p>
4448      * The target and handler must have the same corresponding
4449      * argument and return types, except that handler may omit trailing arguments
4450      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4451      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4452      * <p>
4453      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4454      * represents the return type of the {@code target} and {@code handler},
4455      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4456      * the types and values of arguments to the resulting handle consumed by
4457      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4458      * resulting handle discarded by {@code handler}.
4459      * <blockquote><pre>{@code
4460      * T target(A..., B...);
4461      * T handler(ExType, A...);
4462      * T adapter(A... a, B... b) {
4463      *   try {
4464      *     return target(a..., b...);
4465      *   } catch (ExType ex) {
4466      *     return handler(ex, a...);
4467      *   }
4468      * }
4469      * }</pre></blockquote>
4470      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4471      * be modified by execution of the target, and so are passed unchanged
4472      * from the caller to the handler, if the handler is invoked.
4473      * <p>
4474      * The target and handler must return the same type, even if the handler
4475      * always throws.  (This might happen, for instance, because the handler
4476      * is simulating a {@code finally} clause).
4477      * To create such a throwing handler, compose the handler creation logic
4478      * with {@link #throwException throwException},
4479      * in order to create a method handle of the correct return type.
4480      * @param target method handle to call
4481      * @param exType the type of exception which the handler will catch
4482      * @param handler method handle to call if a matching exception is thrown
4483      * @return method handle which incorporates the specified try/catch logic
4484      * @throws NullPointerException if any argument is null
4485      * @throws IllegalArgumentException if {@code handler} does not accept
4486      *          the given exception type, or if the method handle types do
4487      *          not match in their return types and their
4488      *          corresponding parameters
4489      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4490      */
4491     public static
catchException(MethodHandle target, Class<? extends Throwable> exType, MethodHandle handler)4492     MethodHandle catchException(MethodHandle target,
4493                                 Class<? extends Throwable> exType,
4494                                 MethodHandle handler) {
4495         MethodType ttype = target.type();
4496         MethodType htype = handler.type();
4497         if (!Throwable.class.isAssignableFrom(exType))
4498             throw new ClassCastException(exType.getName());
4499         if (htype.parameterCount() < 1 ||
4500             !htype.parameterType(0).isAssignableFrom(exType))
4501             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4502         if (htype.returnType() != ttype.returnType())
4503             throw misMatchedTypes("target and handler return types", ttype, htype);
4504         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4505         if (handler == null) {
4506             throw misMatchedTypes("target and handler types", ttype, htype);
4507         }
4508         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4509     }
4510 
4511     /**
4512      * Produces a method handle which will throw exceptions of the given {@code exType}.
4513      * The method handle will accept a single argument of {@code exType},
4514      * and immediately throw it as an exception.
4515      * The method type will nominally specify a return of {@code returnType}.
4516      * The return type may be anything convenient:  It doesn't matter to the
4517      * method handle's behavior, since it will never return normally.
4518      * @param returnType the return type of the desired method handle
4519      * @param exType the parameter type of the desired method handle
4520      * @return method handle which can throw the given exceptions
4521      * @throws NullPointerException if either argument is null
4522      */
4523     public static
throwException(Class<?> returnType, Class<? extends Throwable> exType)4524     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4525         if (!Throwable.class.isAssignableFrom(exType))
4526             throw new ClassCastException(exType.getName());
4527         return MethodHandleImpl.throwException(methodType(returnType, exType));
4528     }
4529 
4530     /**
4531      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4532      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4533      * delivers the loop's result, which is the return value of the resulting handle.
4534      * <p>
4535      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4536      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4537      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4538      * terms of method handles, each clause will specify up to four independent actions:<ul>
4539      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4540      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4541      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4542      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4543      * </ul>
4544      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4545      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4546      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4547      * <p>
4548      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4549      * this case. See below for a detailed description.
4550      * <p>
4551      * <em>Parameters optional everywhere:</em>
4552      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4553      * As an exception, the init functions cannot take any {@code v} parameters,
4554      * because those values are not yet computed when the init functions are executed.
4555      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4556      * In fact, any clause function may take no arguments at all.
4557      * <p>
4558      * <em>Loop parameters:</em>
4559      * A clause function may take all the iteration variable values it is entitled to, in which case
4560      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4561      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4562      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4563      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4564      * init function is automatically a loop parameter {@code a}.)
4565      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4566      * These loop parameters act as loop-invariant values visible across the whole loop.
4567      * <p>
4568      * <em>Parameters visible everywhere:</em>
4569      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4570      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4571      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4572      * Most clause functions will not need all of this information, but they will be formally connected to it
4573      * as if by {@link #dropArguments}.
4574      * <a id="astar"></a>
4575      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4576      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4577      * In that notation, the general form of an init function parameter list
4578      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4579      * <p>
4580      * <em>Checking clause structure:</em>
4581      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4582      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4583      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4584      * met by the inputs to the loop combinator.
4585      * <p>
4586      * <em>Effectively identical sequences:</em>
4587      * <a id="effid"></a>
4588      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4589      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4590      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4591      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4592      * that longest list.
4593      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4594      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4595      * <p>
4596      * <em>Step 0: Determine clause structure.</em><ol type="a">
4597      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4598      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4599      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4600      * four. Padding takes place by appending elements to the array.
4601      * <li>Clauses with all {@code null}s are disregarded.
4602      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4603      * </ol>
4604      * <p>
4605      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4606      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4607      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4608      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4609      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4610      * iteration variable type.
4611      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4612      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4613      * </ol>
4614      * <p>
4615      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4616      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4617      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4618      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4619      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4620      * (These types will be checked in step 2, along with all the clause function types.)
4621      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4622      * <li>All of the collected parameter lists must be effectively identical.
4623      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4624      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4625      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4626      * the "internal parameter list".
4627      * </ul>
4628      * <p>
4629      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4630      * <li>Examine fini function return types, disregarding omitted fini functions.
4631      * <li>If there are no fini functions, the loop return type is {@code void}.
4632      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4633      * type.
4634      * </ol>
4635      * <p>
4636      * <em>Step 1D: Check other types.</em><ol type="a">
4637      * <li>There must be at least one non-omitted pred function.
4638      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4639      * </ol>
4640      * <p>
4641      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4642      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4643      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4644      * (Note that their parameter lists are already effectively identical to this list.)
4645      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4646      * effectively identical to the internal parameter list {@code (V... A...)}.
4647      * </ol>
4648      * <p>
4649      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4650      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4651      * type.
4652      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4653      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4654      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4655      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4656      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4657      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4658      * loop return type.
4659      * </ol>
4660      * <p>
4661      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4662      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4663      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4664      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4665      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4666      * pad out the end of the list.
4667      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
4668      * </ol>
4669      * <p>
4670      * <em>Final observations.</em><ol type="a">
4671      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4672      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4673      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4674      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4675      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4676      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4677      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4678      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4679      * </ol>
4680      * <p>
4681      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4682      * <ul>
4683      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4684      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4685      * (Only one {@code Pn} has to be non-{@code null}.)
4686      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4687      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4688      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4689      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4690      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4691      * the resulting loop handle's parameter types {@code (A...)}.
4692      * </ul>
4693      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4694      * which is natural if most of the loop computation happens in the steps.  For some loops,
4695      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4696      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4697      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4698      * where the init functions will need the extra parameters.  For such reasons, the rules for
4699      * determining these parameters are as symmetric as possible, across all clause parts.
4700      * In general, the loop parameters function as common invariant values across the whole
4701      * loop, while the iteration variables function as common variant values, or (if there is
4702      * no step function) as internal loop invariant temporaries.
4703      * <p>
4704      * <em>Loop execution.</em><ol type="a">
4705      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4706      * every clause function. These locals are loop invariant.
4707      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4708      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4709      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4710      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4711      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4712      * (in argument order).
4713      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4714      * returns {@code false}.
4715      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4716      * sequence {@code (v...)} of loop variables.
4717      * The updated value is immediately visible to all subsequent function calls.
4718      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4719      * (of type {@code R}) is returned from the loop as a whole.
4720      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4721      * except by throwing an exception.
4722      * </ol>
4723      * <p>
4724      * <em>Usage tips.</em>
4725      * <ul>
4726      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4727      * sometimes a step function only needs to observe the current value of its own variable.
4728      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4729      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4730      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4731      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4732      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4733      * <li>If some of the clause functions are virtual methods on an instance, the instance
4734      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4735      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4736      * will be the first iteration variable value, and it will be easy to use virtual
4737      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4738      * </ul>
4739      * <p>
4740      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4741      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4742      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4743      * <blockquote><pre>{@code
4744      * V... init...(A...);
4745      * boolean pred...(V..., A...);
4746      * V... step...(V..., A...);
4747      * R fini...(V..., A...);
4748      * R loop(A... a) {
4749      *   V... v... = init...(a...);
4750      *   for (;;) {
4751      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4752      *       v = s(v..., a...);
4753      *       if (!p(v..., a...)) {
4754      *         return f(v..., a...);
4755      *       }
4756      *     }
4757      *   }
4758      * }
4759      * }</pre></blockquote>
4760      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4761      * to their full length, even though individual clause functions may neglect to take them all.
4762      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
4763      *
4764      * @apiNote Example:
4765      * <blockquote><pre>{@code
4766      * // iterative implementation of the factorial function as a loop handle
4767      * static int one(int k) { return 1; }
4768      * static int inc(int i, int acc, int k) { return i + 1; }
4769      * static int mult(int i, int acc, int k) { return i * acc; }
4770      * static boolean pred(int i, int acc, int k) { return i < k; }
4771      * static int fin(int i, int acc, int k) { return acc; }
4772      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4773      * // null initializer for counter, should initialize to 0
4774      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4775      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4776      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4777      * assertEquals(120, loop.invoke(5));
4778      * }</pre></blockquote>
4779      * The same example, dropping arguments and using combinators:
4780      * <blockquote><pre>{@code
4781      * // simplified implementation of the factorial function as a loop handle
4782      * static int inc(int i) { return i + 1; } // drop acc, k
4783      * static int mult(int i, int acc) { return i * acc; } //drop k
4784      * static boolean cmp(int i, int k) { return i < k; }
4785      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4786      * // null initializer for counter, should initialize to 0
4787      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4788      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4789      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4790      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4791      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4792      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4793      * assertEquals(720, loop.invoke(6));
4794      * }</pre></blockquote>
4795      * A similar example, using a helper object to hold a loop parameter:
4796      * <blockquote><pre>{@code
4797      * // instance-based implementation of the factorial function as a loop handle
4798      * static class FacLoop {
4799      *   final int k;
4800      *   FacLoop(int k) { this.k = k; }
4801      *   int inc(int i) { return i + 1; }
4802      *   int mult(int i, int acc) { return i * acc; }
4803      *   boolean pred(int i) { return i < k; }
4804      *   int fin(int i, int acc) { return acc; }
4805      * }
4806      * // assume MH_FacLoop is a handle to the constructor
4807      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4808      * // null initializer for counter, should initialize to 0
4809      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4810      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4811      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4812      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4813      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4814      * assertEquals(5040, loop.invoke(7));
4815      * }</pre></blockquote>
4816      *
4817      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4818      *
4819      * @return a method handle embodying the looping behavior as defined by the arguments.
4820      *
4821      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4822      *
4823      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4824      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4825      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4826      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4827      * @since 9
4828      */
loop(MethodHandle[].... clauses)4829     public static MethodHandle loop(MethodHandle[]... clauses) {
4830         // Step 0: determine clause structure.
4831         loopChecks0(clauses);
4832 
4833         List<MethodHandle> init = new ArrayList<>();
4834         List<MethodHandle> step = new ArrayList<>();
4835         List<MethodHandle> pred = new ArrayList<>();
4836         List<MethodHandle> fini = new ArrayList<>();
4837 
4838         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4839             init.add(clause[0]); // all clauses have at least length 1
4840             step.add(clause.length <= 1 ? null : clause[1]);
4841             pred.add(clause.length <= 2 ? null : clause[2]);
4842             fini.add(clause.length <= 3 ? null : clause[3]);
4843         });
4844 
4845         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4846         final int nclauses = init.size();
4847 
4848         // Step 1A: determine iteration variables (V...).
4849         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4850         for (int i = 0; i < nclauses; ++i) {
4851             MethodHandle in = init.get(i);
4852             MethodHandle st = step.get(i);
4853             if (in == null && st == null) {
4854                 iterationVariableTypes.add(void.class);
4855             } else if (in != null && st != null) {
4856                 loopChecks1a(i, in, st);
4857                 iterationVariableTypes.add(in.type().returnType());
4858             } else {
4859                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4860             }
4861         }
4862         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4863                 collect(Collectors.toList());
4864 
4865         // Step 1B: determine loop parameters (A...).
4866         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4867         loopChecks1b(init, commonSuffix);
4868 
4869         // Step 1C: determine loop return type.
4870         // Step 1D: check other types.
4871         // local variable required here; see JDK-8223553
4872         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
4873                 .map(MethodType::returnType);
4874         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
4875         loopChecks1cd(pred, fini, loopReturnType);
4876 
4877         // Step 2: determine parameter lists.
4878         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4879         commonParameterSequence.addAll(commonSuffix);
4880         loopChecks2(step, pred, fini, commonParameterSequence);
4881 
4882         // Step 3: fill in omitted functions.
4883         for (int i = 0; i < nclauses; ++i) {
4884             Class<?> t = iterationVariableTypes.get(i);
4885             if (init.get(i) == null) {
4886                 init.set(i, empty(methodType(t, commonSuffix)));
4887             }
4888             if (step.get(i) == null) {
4889                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4890             }
4891             if (pred.get(i) == null) {
4892                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4893             }
4894             if (fini.get(i) == null) {
4895                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4896             }
4897         }
4898 
4899         // Step 4: fill in missing parameter types.
4900         // Also convert all handles to fixed-arity handles.
4901         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4902         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4903         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4904         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4905 
4906         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4907                 allMatch(pl -> pl.equals(commonSuffix));
4908         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4909                 allMatch(pl -> pl.equals(commonParameterSequence));
4910 
4911         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4912     }
4913 
loopChecks0(MethodHandle[][] clauses)4914     private static void loopChecks0(MethodHandle[][] clauses) {
4915         if (clauses == null || clauses.length == 0) {
4916             throw newIllegalArgumentException("null or no clauses passed");
4917         }
4918         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4919             throw newIllegalArgumentException("null clauses are not allowed");
4920         }
4921         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4922             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4923         }
4924     }
4925 
loopChecks1a(int i, MethodHandle in, MethodHandle st)4926     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4927         if (in.type().returnType() != st.type().returnType()) {
4928             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4929                     st.type().returnType());
4930         }
4931     }
4932 
longestParameterList(Stream<MethodHandle> mhs, int skipSize)4933     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4934         final List<Class<?>> empty = List.of();
4935         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4936                 // take only those that can contribute to a common suffix because they are longer than the prefix
4937                         map(MethodHandle::type).
4938                         filter(t -> t.parameterCount() > skipSize).
4939                         map(MethodType::parameterList).
4940                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4941         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4942     }
4943 
longestParameterList(List<List<Class<?>>> lists)4944     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4945         final List<Class<?>> empty = List.of();
4946         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4947     }
4948 
buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize)4949     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4950         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4951         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4952         return longestParameterList(Arrays.asList(longest1, longest2));
4953     }
4954 
loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix)4955     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4956         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4957                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4958             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4959                     " (common suffix: " + commonSuffix + ")");
4960         }
4961     }
4962 
loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType)4963     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4964         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4965                 anyMatch(t -> t != loopReturnType)) {
4966             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4967                     loopReturnType + ")");
4968         }
4969 
4970         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4971             throw newIllegalArgumentException("no predicate found", pred);
4972         }
4973         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4974                 anyMatch(t -> t != boolean.class)) {
4975             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4976         }
4977     }
4978 
loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence)4979     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4980         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4981                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4982             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4983                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4984         }
4985     }
4986 
fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams)4987     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4988         return hs.stream().map(h -> {
4989             int pc = h.type().parameterCount();
4990             int tpsize = targetParams.size();
4991             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4992         }).collect(Collectors.toList());
4993     }
4994 
fixArities(List<MethodHandle> hs)4995     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
4996         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
4997     }
4998 
4999     /**
5000      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
5001      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5002      * <p>
5003      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5004      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
5005      * evaluates to {@code true}).
5006      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
5007      * <p>
5008      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5009      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5010      * and updated with the value returned from its invocation. The result of loop execution will be
5011      * the final value of the additional loop-local variable (if present).
5012      * <p>
5013      * The following rules hold for these argument handles:<ul>
5014      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5015      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5016      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5017      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5018      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5019      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5020      * It will constrain the parameter lists of the other loop parts.
5021      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5022      * list {@code (A...)} is called the <em>external parameter list</em>.
5023      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5024      * additional state variable of the loop.
5025      * The body must both accept and return a value of this type {@code V}.
5026      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5027      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5028      * <a href="MethodHandles.html#effid">effectively identical</a>
5029      * to the external parameter list {@code (A...)}.
5030      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5031      * {@linkplain #empty default value}.
5032      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5033      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5034      * effectively identical to the internal parameter list.
5035      * </ul>
5036      * <p>
5037      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5038      * <li>The loop handle's result type is the result type {@code V} of the body.
5039      * <li>The loop handle's parameter types are the types {@code (A...)},
5040      * from the external parameter list.
5041      * </ul>
5042      * <p>
5043      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5044      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5045      * passed to the loop.
5046      * <blockquote><pre>{@code
5047      * V init(A...);
5048      * boolean pred(V, A...);
5049      * V body(V, A...);
5050      * V whileLoop(A... a...) {
5051      *   V v = init(a...);
5052      *   while (pred(v, a...)) {
5053      *     v = body(v, a...);
5054      *   }
5055      *   return v;
5056      * }
5057      * }</pre></blockquote>
5058      *
5059      * @apiNote Example:
5060      * <blockquote><pre>{@code
5061      * // implement the zip function for lists as a loop handle
5062      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5063      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5064      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5065      *   zip.add(a.next());
5066      *   zip.add(b.next());
5067      *   return zip;
5068      * }
5069      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5070      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5071      * List<String> a = Arrays.asList("a", "b", "c", "d");
5072      * List<String> b = Arrays.asList("e", "f", "g", "h");
5073      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5074      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5075      * }</pre></blockquote>
5076      *
5077      *
5078      * @apiNote The implementation of this method can be expressed as follows:
5079      * <blockquote><pre>{@code
5080      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5081      *     MethodHandle fini = (body.type().returnType() == void.class
5082      *                         ? null : identity(body.type().returnType()));
5083      *     MethodHandle[]
5084      *         checkExit = { null, null, pred, fini },
5085      *         varBody   = { init, body };
5086      *     return loop(checkExit, varBody);
5087      * }
5088      * }</pre></blockquote>
5089      *
5090      * @param init optional initializer, providing the initial value of the loop variable.
5091      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5092      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5093      *             above for other constraints.
5094      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5095      *             See above for other constraints.
5096      *
5097      * @return a method handle implementing the {@code while} loop as described by the arguments.
5098      * @throws IllegalArgumentException if the rules for the arguments are violated.
5099      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5100      *
5101      * @see #loop(MethodHandle[][])
5102      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5103      * @since 9
5104      */
whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body)5105     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5106         whileLoopChecks(init, pred, body);
5107         MethodHandle fini = identityOrVoid(body.type().returnType());
5108         MethodHandle[] checkExit = { null, null, pred, fini };
5109         MethodHandle[] varBody = { init, body };
5110         return loop(checkExit, varBody);
5111     }
5112 
5113     /**
5114      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5115      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5116      * <p>
5117      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5118      * method will, in each iteration, first execute its body and then evaluate the predicate.
5119      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5120      * <p>
5121      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5122      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5123      * and updated with the value returned from its invocation. The result of loop execution will be
5124      * the final value of the additional loop-local variable (if present).
5125      * <p>
5126      * The following rules hold for these argument handles:<ul>
5127      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5128      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5129      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5130      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5131      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5132      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5133      * It will constrain the parameter lists of the other loop parts.
5134      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5135      * list {@code (A...)} is called the <em>external parameter list</em>.
5136      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5137      * additional state variable of the loop.
5138      * The body must both accept and return a value of this type {@code V}.
5139      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5140      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5141      * <a href="MethodHandles.html#effid">effectively identical</a>
5142      * to the external parameter list {@code (A...)}.
5143      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5144      * {@linkplain #empty default value}.
5145      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5146      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5147      * effectively identical to the internal parameter list.
5148      * </ul>
5149      * <p>
5150      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5151      * <li>The loop handle's result type is the result type {@code V} of the body.
5152      * <li>The loop handle's parameter types are the types {@code (A...)},
5153      * from the external parameter list.
5154      * </ul>
5155      * <p>
5156      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5157      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5158      * passed to the loop.
5159      * <blockquote><pre>{@code
5160      * V init(A...);
5161      * boolean pred(V, A...);
5162      * V body(V, A...);
5163      * V doWhileLoop(A... a...) {
5164      *   V v = init(a...);
5165      *   do {
5166      *     v = body(v, a...);
5167      *   } while (pred(v, a...));
5168      *   return v;
5169      * }
5170      * }</pre></blockquote>
5171      *
5172      * @apiNote Example:
5173      * <blockquote><pre>{@code
5174      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5175      * static int zero(int limit) { return 0; }
5176      * static int step(int i, int limit) { return i + 1; }
5177      * static boolean pred(int i, int limit) { return i < limit; }
5178      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
5179      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
5180      * assertEquals(23, loop.invoke(23));
5181      * }</pre></blockquote>
5182      *
5183      *
5184      * @apiNote The implementation of this method can be expressed as follows:
5185      * <blockquote><pre>{@code
5186      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5187      *     MethodHandle fini = (body.type().returnType() == void.class
5188      *                         ? null : identity(body.type().returnType()));
5189      *     MethodHandle[] clause = { init, body, pred, fini };
5190      *     return loop(clause);
5191      * }
5192      * }</pre></blockquote>
5193      *
5194      * @param init optional initializer, providing the initial value of the loop variable.
5195      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5196      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5197      *             See above for other constraints.
5198      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5199      *             above for other constraints.
5200      *
5201      * @return a method handle implementing the {@code while} loop as described by the arguments.
5202      * @throws IllegalArgumentException if the rules for the arguments are violated.
5203      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5204      *
5205      * @see #loop(MethodHandle[][])
5206      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5207      * @since 9
5208      */
doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred)5209     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5210         whileLoopChecks(init, pred, body);
5211         MethodHandle fini = identityOrVoid(body.type().returnType());
5212         MethodHandle[] clause = {init, body, pred, fini };
5213         return loop(clause);
5214     }
5215 
whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body)5216     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5217         Objects.requireNonNull(pred);
5218         Objects.requireNonNull(body);
5219         MethodType bodyType = body.type();
5220         Class<?> returnType = bodyType.returnType();
5221         List<Class<?>> innerList = bodyType.parameterList();
5222         List<Class<?>> outerList = innerList;
5223         if (returnType == void.class) {
5224             // OK
5225         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5226             // leading V argument missing => error
5227             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5228             throw misMatchedTypes("body function", bodyType, expected);
5229         } else {
5230             outerList = innerList.subList(1, innerList.size());
5231         }
5232         MethodType predType = pred.type();
5233         if (predType.returnType() != boolean.class ||
5234                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5235             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5236         }
5237         if (init != null) {
5238             MethodType initType = init.type();
5239             if (initType.returnType() != returnType ||
5240                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5241                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5242             }
5243         }
5244     }
5245 
5246     /**
5247      * Constructs a loop that runs a given number of iterations.
5248      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5249      * <p>
5250      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5251      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5252      * It will be initialized to 0 and incremented by 1 in each iteration.
5253      * <p>
5254      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5255      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5256      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5257      * <p>
5258      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5259      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5260      * iteration variable.
5261      * The result of the loop handle execution will be the final {@code V} value of that variable
5262      * (or {@code void} if there is no {@code V} variable).
5263      * <p>
5264      * The following rules hold for the argument handles:<ul>
5265      * <li>The {@code iterations} handle must not be {@code null}, and must return
5266      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5267      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5268      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5269      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5270      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5271      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5272      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5273      * of types called the <em>internal parameter list</em>.
5274      * It will constrain the parameter lists of the other loop parts.
5275      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5276      * with no additional {@code A} types, then the internal parameter list is extended by
5277      * the argument types {@code A...} of the {@code iterations} handle.
5278      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5279      * list {@code (A...)} is called the <em>external parameter list</em>.
5280      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5281      * additional state variable of the loop.
5282      * The body must both accept a leading parameter and return a value of this type {@code V}.
5283      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5284      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5285      * <a href="MethodHandles.html#effid">effectively identical</a>
5286      * to the external parameter list {@code (A...)}.
5287      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5288      * {@linkplain #empty default value}.
5289      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5290      * effectively identical to the external parameter list {@code (A...)}.
5291      * </ul>
5292      * <p>
5293      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5294      * <li>The loop handle's result type is the result type {@code V} of the body.
5295      * <li>The loop handle's parameter types are the types {@code (A...)},
5296      * from the external parameter list.
5297      * </ul>
5298      * <p>
5299      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5300      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5301      * arguments passed to the loop.
5302      * <blockquote><pre>{@code
5303      * int iterations(A...);
5304      * V init(A...);
5305      * V body(V, int, A...);
5306      * V countedLoop(A... a...) {
5307      *   int end = iterations(a...);
5308      *   V v = init(a...);
5309      *   for (int i = 0; i < end; ++i) {
5310      *     v = body(v, i, a...);
5311      *   }
5312      *   return v;
5313      * }
5314      * }</pre></blockquote>
5315      *
5316      * @apiNote Example with a fully conformant body method:
5317      * <blockquote><pre>{@code
5318      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5319      * // => a variation on a well known theme
5320      * static String step(String v, int counter, String init) { return "na " + v; }
5321      * // assume MH_step is a handle to the method above
5322      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5323      * MethodHandle start = MethodHandles.identity(String.class);
5324      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5325      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5326      * }</pre></blockquote>
5327      *
5328      * @apiNote Example with the simplest possible body method type,
5329      * and passing the number of iterations to the loop invocation:
5330      * <blockquote><pre>{@code
5331      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5332      * // => a variation on a well known theme
5333      * static String step(String v, int counter ) { return "na " + v; }
5334      * // assume MH_step is a handle to the method above
5335      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5336      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5337      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5338      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5339      * }</pre></blockquote>
5340      *
5341      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5342      * as loop parameters:
5343      * <blockquote><pre>{@code
5344      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5345      * // => a variation on a well known theme
5346      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5347      * // assume MH_step is a handle to the method above
5348      * MethodHandle count = MethodHandles.identity(int.class);
5349      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5350      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5351      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5352      * }</pre></blockquote>
5353      *
5354      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5355      * to enforce a loop type:
5356      * <blockquote><pre>{@code
5357      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5358      * // => a variation on a well known theme
5359      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5360      * // assume MH_step is a handle to the method above
5361      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5362      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5363      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5364      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5365      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5366      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5367      * }</pre></blockquote>
5368      *
5369      * @apiNote The implementation of this method can be expressed as follows:
5370      * <blockquote><pre>{@code
5371      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5372      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5373      * }
5374      * }</pre></blockquote>
5375      *
5376      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5377      *                   result type must be {@code int}. See above for other constraints.
5378      * @param init optional initializer, providing the initial value of the loop variable.
5379      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5380      * @param body body of the loop, which may not be {@code null}.
5381      *             It controls the loop parameters and result type in the standard case (see above for details).
5382      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5383      *             and may accept any number of additional types.
5384      *             See above for other constraints.
5385      *
5386      * @return a method handle representing the loop.
5387      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5388      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5389      *
5390      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5391      * @since 9
5392      */
countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body)5393     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5394         return countedLoop(empty(iterations.type()), iterations, init, body);
5395     }
5396 
5397     /**
5398      * Constructs a loop that counts over a range of numbers.
5399      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5400      * <p>
5401      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5402      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5403      * values of the loop counter.
5404      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5405      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5406      * <p>
5407      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5408      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5409      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5410      * <p>
5411      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5412      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5413      * iteration variable.
5414      * The result of the loop handle execution will be the final {@code V} value of that variable
5415      * (or {@code void} if there is no {@code V} variable).
5416      * <p>
5417      * The following rules hold for the argument handles:<ul>
5418      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5419      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5420      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5421      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5422      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5423      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5424      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5425      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5426      * of types called the <em>internal parameter list</em>.
5427      * It will constrain the parameter lists of the other loop parts.
5428      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5429      * with no additional {@code A} types, then the internal parameter list is extended by
5430      * the argument types {@code A...} of the {@code end} handle.
5431      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5432      * list {@code (A...)} is called the <em>external parameter list</em>.
5433      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5434      * additional state variable of the loop.
5435      * The body must both accept a leading parameter and return a value of this type {@code V}.
5436      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5437      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5438      * <a href="MethodHandles.html#effid">effectively identical</a>
5439      * to the external parameter list {@code (A...)}.
5440      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5441      * {@linkplain #empty default value}.
5442      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5443      * effectively identical to the external parameter list {@code (A...)}.
5444      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5445      * to the external parameter list.
5446      * </ul>
5447      * <p>
5448      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5449      * <li>The loop handle's result type is the result type {@code V} of the body.
5450      * <li>The loop handle's parameter types are the types {@code (A...)},
5451      * from the external parameter list.
5452      * </ul>
5453      * <p>
5454      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5455      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5456      * arguments passed to the loop.
5457      * <blockquote><pre>{@code
5458      * int start(A...);
5459      * int end(A...);
5460      * V init(A...);
5461      * V body(V, int, A...);
5462      * V countedLoop(A... a...) {
5463      *   int e = end(a...);
5464      *   int s = start(a...);
5465      *   V v = init(a...);
5466      *   for (int i = s; i < e; ++i) {
5467      *     v = body(v, i, a...);
5468      *   }
5469      *   return v;
5470      * }
5471      * }</pre></blockquote>
5472      *
5473      * @apiNote The implementation of this method can be expressed as follows:
5474      * <blockquote><pre>{@code
5475      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5476      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5477      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5478      *     // the following semantics:
5479      *     // MH_increment: (int limit, int counter) -> counter + 1
5480      *     // MH_predicate: (int limit, int counter) -> counter < limit
5481      *     Class<?> counterType = start.type().returnType();  // int
5482      *     Class<?> returnType = body.type().returnType();
5483      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5484      *     if (returnType != void.class) {  // ignore the V variable
5485      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5486      *         pred = dropArguments(pred, 1, returnType);  // ditto
5487      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5488      *     }
5489      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5490      *     MethodHandle[]
5491      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5492      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5493      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5494      *     return loop(loopLimit, bodyClause, indexVar);
5495      * }
5496      * }</pre></blockquote>
5497      *
5498      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5499      *              See above for other constraints.
5500      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5501      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5502      * @param init optional initializer, providing the initial value of the loop variable.
5503      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5504      * @param body body of the loop, which may not be {@code null}.
5505      *             It controls the loop parameters and result type in the standard case (see above for details).
5506      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5507      *             and may accept any number of additional types.
5508      *             See above for other constraints.
5509      *
5510      * @return a method handle representing the loop.
5511      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5512      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5513      *
5514      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5515      * @since 9
5516      */
countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)5517     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5518         countedLoopChecks(start, end, init, body);
5519         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5520         Class<?> limitType   = end.type().returnType();    // yes, int again
5521         Class<?> returnType  = body.type().returnType();
5522         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5523         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5524         MethodHandle retv = null;
5525         if (returnType != void.class) {
5526             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5527             pred = dropArguments(pred, 1, returnType);  // ditto
5528             retv = dropArguments(identity(returnType), 0, counterType);
5529         }
5530         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5531         MethodHandle[]
5532             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5533             bodyClause = { init, body },            // v = init(); v = body(v, i)
5534             indexVar   = { start, incr };           // i = start(); i = i + 1
5535         return loop(loopLimit, bodyClause, indexVar);
5536     }
5537 
countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)5538     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5539         Objects.requireNonNull(start);
5540         Objects.requireNonNull(end);
5541         Objects.requireNonNull(body);
5542         Class<?> counterType = start.type().returnType();
5543         if (counterType != int.class) {
5544             MethodType expected = start.type().changeReturnType(int.class);
5545             throw misMatchedTypes("start function", start.type(), expected);
5546         } else if (end.type().returnType() != counterType) {
5547             MethodType expected = end.type().changeReturnType(counterType);
5548             throw misMatchedTypes("end function", end.type(), expected);
5549         }
5550         MethodType bodyType = body.type();
5551         Class<?> returnType = bodyType.returnType();
5552         List<Class<?>> innerList = bodyType.parameterList();
5553         // strip leading V value if present
5554         int vsize = (returnType == void.class ? 0 : 1);
5555         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5556             // argument list has no "V" => error
5557             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5558             throw misMatchedTypes("body function", bodyType, expected);
5559         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5560             // missing I type => error
5561             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5562             throw misMatchedTypes("body function", bodyType, expected);
5563         }
5564         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5565         if (outerList.isEmpty()) {
5566             // special case; take lists from end handle
5567             outerList = end.type().parameterList();
5568             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5569         }
5570         MethodType expected = methodType(counterType, outerList);
5571         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5572             throw misMatchedTypes("start parameter types", start.type(), expected);
5573         }
5574         if (end.type() != start.type() &&
5575             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5576             throw misMatchedTypes("end parameter types", end.type(), expected);
5577         }
5578         if (init != null) {
5579             MethodType initType = init.type();
5580             if (initType.returnType() != returnType ||
5581                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5582                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5583             }
5584         }
5585     }
5586 
5587     /**
5588      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5589      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5590      * <p>
5591      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5592      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5593      * <p>
5594      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5595      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5596      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5597      * <p>
5598      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5599      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5600      * iteration variable.
5601      * The result of the loop handle execution will be the final {@code V} value of that variable
5602      * (or {@code void} if there is no {@code V} variable).
5603      * <p>
5604      * The following rules hold for the argument handles:<ul>
5605      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5606      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5607      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5608      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5609      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5610      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5611      * of types called the <em>internal parameter list</em>.
5612      * It will constrain the parameter lists of the other loop parts.
5613      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5614      * with no additional {@code A} types, then the internal parameter list is extended by
5615      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5616      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5617      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5618      * list {@code (A...)} is called the <em>external parameter list</em>.
5619      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5620      * additional state variable of the loop.
5621      * The body must both accept a leading parameter and return a value of this type {@code V}.
5622      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5623      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5624      * <a href="MethodHandles.html#effid">effectively identical</a>
5625      * to the external parameter list {@code (A...)}.
5626      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5627      * {@linkplain #empty default value}.
5628      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5629      * type {@code java.util.Iterator} or a subtype thereof.
5630      * The iterator it produces when the loop is executed will be assumed
5631      * to yield values which can be converted to type {@code T}.
5632      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5633      * effectively identical to the external parameter list {@code (A...)}.
5634      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5635      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5636      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5637      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5638      * the {@link MethodHandle#asType asType} conversion method.
5639      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5640      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5641      * </ul>
5642      * <p>
5643      * The type {@code T} may be either a primitive or reference.
5644      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5645      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5646      * as if by the {@link MethodHandle#asType asType} conversion method.
5647      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5648      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5649      * <p>
5650      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5651      * <li>The loop handle's result type is the result type {@code V} of the body.
5652      * <li>The loop handle's parameter types are the types {@code (A...)},
5653      * from the external parameter list.
5654      * </ul>
5655      * <p>
5656      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5657      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5658      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5659      * <blockquote><pre>{@code
5660      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5661      * V init(A...);
5662      * V body(V,T,A...);
5663      * V iteratedLoop(A... a...) {
5664      *   Iterator<T> it = iterator(a...);
5665      *   V v = init(a...);
5666      *   while (it.hasNext()) {
5667      *     T t = it.next();
5668      *     v = body(v, t, a...);
5669      *   }
5670      *   return v;
5671      * }
5672      * }</pre></blockquote>
5673      *
5674      * @apiNote Example:
5675      * <blockquote><pre>{@code
5676      * // get an iterator from a list
5677      * static List<String> reverseStep(List<String> r, String e) {
5678      *   r.add(0, e);
5679      *   return r;
5680      * }
5681      * static List<String> newArrayList() { return new ArrayList<>(); }
5682      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5683      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5684      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5685      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5686      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5687      * }</pre></blockquote>
5688      *
5689      * @apiNote The implementation of this method can be expressed approximately as follows:
5690      * <blockquote><pre>{@code
5691      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5692      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5693      *     Class<?> returnType = body.type().returnType();
5694      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5695      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5696      *     MethodHandle retv = null, step = body, startIter = iterator;
5697      *     if (returnType != void.class) {
5698      *         // the simple thing first:  in (I V A...), drop the I to get V
5699      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5700      *         // body type signature (V T A...), internal loop types (I V A...)
5701      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5702      *     }
5703      *     if (startIter == null)  startIter = MH_getIter;
5704      *     MethodHandle[]
5705      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5706      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5707      *     return loop(iterVar, bodyClause);
5708      * }
5709      * }</pre></blockquote>
5710      *
5711      * @param iterator an optional handle to return the iterator to start the loop.
5712      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5713      *                 See above for other constraints.
5714      * @param init optional initializer, providing the initial value of the loop variable.
5715      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5716      * @param body body of the loop, which may not be {@code null}.
5717      *             It controls the loop parameters and result type in the standard case (see above for details).
5718      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5719      *             and may accept any number of additional types.
5720      *             See above for other constraints.
5721      *
5722      * @return a method handle embodying the iteration loop functionality.
5723      * @throws NullPointerException if the {@code body} handle is {@code null}.
5724      * @throws IllegalArgumentException if any argument violates the above requirements.
5725      *
5726      * @since 9
5727      */
iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body)5728     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5729         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5730         Class<?> returnType = body.type().returnType();
5731         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5732         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5733         MethodHandle startIter;
5734         MethodHandle nextVal;
5735         {
5736             MethodType iteratorType;
5737             if (iterator == null) {
5738                 // derive argument type from body, if available, else use Iterable
5739                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5740                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5741             } else {
5742                 // force return type to the internal iterator class
5743                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5744                 startIter = iterator;
5745             }
5746             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5747             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5748 
5749             // perform the asType transforms under an exception transformer, as per spec.:
5750             try {
5751                 startIter = startIter.asType(iteratorType);
5752                 nextVal = nextRaw.asType(nextValType);
5753             } catch (WrongMethodTypeException ex) {
5754                 throw new IllegalArgumentException(ex);
5755             }
5756         }
5757 
5758         MethodHandle retv = null, step = body;
5759         if (returnType != void.class) {
5760             // the simple thing first:  in (I V A...), drop the I to get V
5761             retv = dropArguments(identity(returnType), 0, Iterator.class);
5762             // body type signature (V T A...), internal loop types (I V A...)
5763             step = swapArguments(body, 0, 1);  // swap V <-> T
5764         }
5765 
5766         MethodHandle[]
5767             iterVar    = { startIter, null, hasNext, retv },
5768             bodyClause = { init, filterArgument(step, 0, nextVal) };
5769         return loop(iterVar, bodyClause);
5770     }
5771 
iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body)5772     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5773         Objects.requireNonNull(body);
5774         MethodType bodyType = body.type();
5775         Class<?> returnType = bodyType.returnType();
5776         List<Class<?>> internalParamList = bodyType.parameterList();
5777         // strip leading V value if present
5778         int vsize = (returnType == void.class ? 0 : 1);
5779         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5780             // argument list has no "V" => error
5781             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5782             throw misMatchedTypes("body function", bodyType, expected);
5783         } else if (internalParamList.size() <= vsize) {
5784             // missing T type => error
5785             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5786             throw misMatchedTypes("body function", bodyType, expected);
5787         }
5788         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5789         Class<?> iterableType = null;
5790         if (iterator != null) {
5791             // special case; if the body handle only declares V and T then
5792             // the external parameter list is obtained from iterator handle
5793             if (externalParamList.isEmpty()) {
5794                 externalParamList = iterator.type().parameterList();
5795             }
5796             MethodType itype = iterator.type();
5797             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5798                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5799             }
5800             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5801                 MethodType expected = methodType(itype.returnType(), externalParamList);
5802                 throw misMatchedTypes("iterator parameters", itype, expected);
5803             }
5804         } else {
5805             if (externalParamList.isEmpty()) {
5806                 // special case; if the iterator handle is null and the body handle
5807                 // only declares V and T then the external parameter list consists
5808                 // of Iterable
5809                 externalParamList = Arrays.asList(Iterable.class);
5810                 iterableType = Iterable.class;
5811             } else {
5812                 // special case; if the iterator handle is null and the external
5813                 // parameter list is not empty then the first parameter must be
5814                 // assignable to Iterable
5815                 iterableType = externalParamList.get(0);
5816                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5817                     throw newIllegalArgumentException(
5818                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5819                 }
5820             }
5821         }
5822         if (init != null) {
5823             MethodType initType = init.type();
5824             if (initType.returnType() != returnType ||
5825                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5826                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5827             }
5828         }
5829         return iterableType;  // help the caller a bit
5830     }
5831 
swapArguments(MethodHandle mh, int i, int j)5832     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5833         // there should be a better way to uncross my wires
5834         int arity = mh.type().parameterCount();
5835         int[] order = new int[arity];
5836         for (int k = 0; k < arity; k++)  order[k] = k;
5837         order[i] = j; order[j] = i;
5838         Class<?>[] types = mh.type().parameterArray();
5839         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5840         MethodType swapType = methodType(mh.type().returnType(), types);
5841         return permuteArguments(mh, swapType, order);
5842     }
5843 
5844     /**
5845      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5846      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5847      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5848      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5849      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5850      * {@code try-finally} handle.
5851      * <p>
5852      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5853      * The first is the exception thrown during the
5854      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5855      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5856      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5857      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5858      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5859      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5860      * <p>
5861      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5862      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5863      * two extra leading parameters:<ul>
5864      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5865      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5866      * the result from the execution of the {@code target} handle.
5867      * This parameter is not present if the {@code target} returns {@code void}.
5868      * </ul>
5869      * <p>
5870      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5871      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5872      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5873      * the cleanup.
5874      * <blockquote><pre>{@code
5875      * V target(A..., B...);
5876      * V cleanup(Throwable, V, A...);
5877      * V adapter(A... a, B... b) {
5878      *   V result = (zero value for V);
5879      *   Throwable throwable = null;
5880      *   try {
5881      *     result = target(a..., b...);
5882      *   } catch (Throwable t) {
5883      *     throwable = t;
5884      *     throw t;
5885      *   } finally {
5886      *     result = cleanup(throwable, result, a...);
5887      *   }
5888      *   return result;
5889      * }
5890      * }</pre></blockquote>
5891      * <p>
5892      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5893      * be modified by execution of the target, and so are passed unchanged
5894      * from the caller to the cleanup, if it is invoked.
5895      * <p>
5896      * The target and cleanup must return the same type, even if the cleanup
5897      * always throws.
5898      * To create such a throwing cleanup, compose the cleanup logic
5899      * with {@link #throwException throwException},
5900      * in order to create a method handle of the correct return type.
5901      * <p>
5902      * Note that {@code tryFinally} never converts exceptions into normal returns.
5903      * In rare cases where exceptions must be converted in that way, first wrap
5904      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5905      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5906      * <p>
5907      * It is recommended that the first parameter type of {@code cleanup} be
5908      * declared {@code Throwable} rather than a narrower subtype.  This ensures
5909      * {@code cleanup} will always be invoked with whatever exception that
5910      * {@code target} throws.  Declaring a narrower type may result in a
5911      * {@code ClassCastException} being thrown by the {@code try-finally}
5912      * handle if the type of the exception thrown by {@code target} is not
5913      * assignable to the first parameter type of {@code cleanup}.  Note that
5914      * various exception types of {@code VirtualMachineError},
5915      * {@code LinkageError}, and {@code RuntimeException} can in principle be
5916      * thrown by almost any kind of Java code, and a finally clause that
5917      * catches (say) only {@code IOException} would mask any of the others
5918      * behind a {@code ClassCastException}.
5919      *
5920      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5921      * @param cleanup the handle that is invoked in the finally block.
5922      *
5923      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5924      * @throws NullPointerException if any argument is null
5925      * @throws IllegalArgumentException if {@code cleanup} does not accept
5926      *          the required leading arguments, or if the method handle types do
5927      *          not match in their return types and their
5928      *          corresponding trailing parameters
5929      *
5930      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5931      * @since 9
5932      */
tryFinally(MethodHandle target, MethodHandle cleanup)5933     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5934         List<Class<?>> targetParamTypes = target.type().parameterList();
5935         Class<?> rtype = target.type().returnType();
5936 
5937         tryFinallyChecks(target, cleanup);
5938 
5939         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5940         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5941         // target parameter list.
5942         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5943 
5944         // Ensure that the intrinsic type checks the instance thrown by the
5945         // target against the first parameter of cleanup
5946         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
5947 
5948         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5949         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5950     }
5951 
tryFinallyChecks(MethodHandle target, MethodHandle cleanup)5952     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5953         Class<?> rtype = target.type().returnType();
5954         if (rtype != cleanup.type().returnType()) {
5955             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5956         }
5957         MethodType cleanupType = cleanup.type();
5958         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5959             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5960         }
5961         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5962             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5963         }
5964         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5965         // target parameter list.
5966         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5967         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5968             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5969                     cleanup.type(), target.type());
5970         }
5971     }
5972 
5973 }
5974