1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
27 
28 #include "asm/register.hpp"
29 #include "vm_version_x86.hpp"
30 
31 class BiasedLockingCounters;
32 
33 // Contains all the definitions needed for x86 assembly code generation.
34 
35 // Calling convention
36 class Argument {
37  public:
38   enum {
39 #ifdef _LP64
40 #ifdef _WIN64
41     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
42     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
43 #else
44     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
45     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
46 #endif // _WIN64
47     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
48     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
49 #else
50     n_register_parameters = 0   // 0 registers used to pass arguments
51 #endif // _LP64
52   };
53 };
54 
55 
56 #ifdef _LP64
57 // Symbolically name the register arguments used by the c calling convention.
58 // Windows is different from linux/solaris. So much for standards...
59 
60 #ifdef _WIN64
61 
62 REGISTER_DECLARATION(Register, c_rarg0, rcx);
63 REGISTER_DECLARATION(Register, c_rarg1, rdx);
64 REGISTER_DECLARATION(Register, c_rarg2, r8);
65 REGISTER_DECLARATION(Register, c_rarg3, r9);
66 
67 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
68 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
69 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
70 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
71 
72 #else
73 
74 REGISTER_DECLARATION(Register, c_rarg0, rdi);
75 REGISTER_DECLARATION(Register, c_rarg1, rsi);
76 REGISTER_DECLARATION(Register, c_rarg2, rdx);
77 REGISTER_DECLARATION(Register, c_rarg3, rcx);
78 REGISTER_DECLARATION(Register, c_rarg4, r8);
79 REGISTER_DECLARATION(Register, c_rarg5, r9);
80 
81 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
82 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
83 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
84 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
85 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
86 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
87 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
88 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
89 
90 #endif // _WIN64
91 
92 // Symbolically name the register arguments used by the Java calling convention.
93 // We have control over the convention for java so we can do what we please.
94 // What pleases us is to offset the java calling convention so that when
95 // we call a suitable jni method the arguments are lined up and we don't
96 // have to do little shuffling. A suitable jni method is non-static and a
97 // small number of arguments (two fewer args on windows)
98 //
99 //        |-------------------------------------------------------|
100 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
101 //        |-------------------------------------------------------|
102 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
103 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
104 //        |-------------------------------------------------------|
105 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
106 //        |-------------------------------------------------------|
107 
108 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
109 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
110 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
111 // Windows runs out of register args here
112 #ifdef _WIN64
113 REGISTER_DECLARATION(Register, j_rarg3, rdi);
114 REGISTER_DECLARATION(Register, j_rarg4, rsi);
115 #else
116 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
117 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
118 #endif /* _WIN64 */
119 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
120 
121 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
122 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
123 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
124 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
125 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
126 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
127 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
128 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
129 
130 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
131 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
132 
133 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
134 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
135 
136 #else
137 // rscratch1 will apear in 32bit code that is dead but of course must compile
138 // Using noreg ensures if the dead code is incorrectly live and executed it
139 // will cause an assertion failure
140 #define rscratch1 noreg
141 #define rscratch2 noreg
142 
143 #endif // _LP64
144 
145 // JSR 292
146 // On x86, the SP does not have to be saved when invoking method handle intrinsics
147 // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
148 REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
149 
150 // Address is an abstraction used to represent a memory location
151 // using any of the amd64 addressing modes with one object.
152 //
153 // Note: A register location is represented via a Register, not
154 //       via an address for efficiency & simplicity reasons.
155 
156 class ArrayAddress;
157 
158 class Address {
159  public:
160   enum ScaleFactor {
161     no_scale = -1,
162     times_1  =  0,
163     times_2  =  1,
164     times_4  =  2,
165     times_8  =  3,
166     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
167   };
times(int size)168   static ScaleFactor times(int size) {
169     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
170     if (size == 8)  return times_8;
171     if (size == 4)  return times_4;
172     if (size == 2)  return times_2;
173     return times_1;
174   }
scale_size(ScaleFactor scale)175   static int scale_size(ScaleFactor scale) {
176     assert(scale != no_scale, "");
177     assert(((1 << (int)times_1) == 1 &&
178             (1 << (int)times_2) == 2 &&
179             (1 << (int)times_4) == 4 &&
180             (1 << (int)times_8) == 8), "");
181     return (1 << (int)scale);
182   }
183 
184  private:
185   Register         _base;
186   Register         _index;
187   XMMRegister      _xmmindex;
188   ScaleFactor      _scale;
189   int              _disp;
190   bool             _isxmmindex;
191   RelocationHolder _rspec;
192 
193   // Easily misused constructors make them private
194   // %%% can we make these go away?
195   NOT_LP64(Address(address loc, RelocationHolder spec);)
196   Address(int disp, address loc, relocInfo::relocType rtype);
197   Address(int disp, address loc, RelocationHolder spec);
198 
199  public:
200 
disp()201  int disp() { return _disp; }
202   // creation
Address()203   Address()
204     : _base(noreg),
205       _index(noreg),
206       _xmmindex(xnoreg),
207       _scale(no_scale),
208       _disp(0),
209       _isxmmindex(false){
210   }
211 
212   // No default displacement otherwise Register can be implicitly
213   // converted to 0(Register) which is quite a different animal.
214 
Address(Register base,int disp)215   Address(Register base, int disp)
216     : _base(base),
217       _index(noreg),
218       _xmmindex(xnoreg),
219       _scale(no_scale),
220       _disp(disp),
221       _isxmmindex(false){
222   }
223 
Address(Register base,Register index,ScaleFactor scale,int disp=0)224   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
225     : _base (base),
226       _index(index),
227       _xmmindex(xnoreg),
228       _scale(scale),
229       _disp (disp),
230       _isxmmindex(false) {
231     assert(!index->is_valid() == (scale == Address::no_scale),
232            "inconsistent address");
233   }
234 
Address(Register base,RegisterOrConstant index,ScaleFactor scale=times_1,int disp=0)235   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
236     : _base (base),
237       _index(index.register_or_noreg()),
238       _xmmindex(xnoreg),
239       _scale(scale),
240       _disp (disp + (index.constant_or_zero() * scale_size(scale))),
241       _isxmmindex(false){
242     if (!index.is_register())  scale = Address::no_scale;
243     assert(!_index->is_valid() == (scale == Address::no_scale),
244            "inconsistent address");
245   }
246 
Address(Register base,XMMRegister index,ScaleFactor scale,int disp=0)247   Address(Register base, XMMRegister index, ScaleFactor scale, int disp = 0)
248     : _base (base),
249       _index(noreg),
250       _xmmindex(index),
251       _scale(scale),
252       _disp(disp),
253       _isxmmindex(true) {
254       assert(!index->is_valid() == (scale == Address::no_scale),
255              "inconsistent address");
256   }
257 
plus_disp(int disp) const258   Address plus_disp(int disp) const {
259     Address a = (*this);
260     a._disp += disp;
261     return a;
262   }
plus_disp(RegisterOrConstant disp,ScaleFactor scale=times_1) const263   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
264     Address a = (*this);
265     a._disp += disp.constant_or_zero() * scale_size(scale);
266     if (disp.is_register()) {
267       assert(!a.index()->is_valid(), "competing indexes");
268       a._index = disp.as_register();
269       a._scale = scale;
270     }
271     return a;
272   }
is_same_address(Address a) const273   bool is_same_address(Address a) const {
274     // disregard _rspec
275     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
276   }
277 
278   // The following two overloads are used in connection with the
279   // ByteSize type (see sizes.hpp).  They simplify the use of
280   // ByteSize'd arguments in assembly code. Note that their equivalent
281   // for the optimized build are the member functions with int disp
282   // argument since ByteSize is mapped to an int type in that case.
283   //
284   // Note: DO NOT introduce similar overloaded functions for WordSize
285   // arguments as in the optimized mode, both ByteSize and WordSize
286   // are mapped to the same type and thus the compiler cannot make a
287   // distinction anymore (=> compiler errors).
288 
289 #ifdef ASSERT
Address(Register base,ByteSize disp)290   Address(Register base, ByteSize disp)
291     : _base(base),
292       _index(noreg),
293       _xmmindex(xnoreg),
294       _scale(no_scale),
295       _disp(in_bytes(disp)),
296       _isxmmindex(false){
297   }
298 
Address(Register base,Register index,ScaleFactor scale,ByteSize disp)299   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
300     : _base(base),
301       _index(index),
302       _xmmindex(xnoreg),
303       _scale(scale),
304       _disp(in_bytes(disp)),
305       _isxmmindex(false){
306     assert(!index->is_valid() == (scale == Address::no_scale),
307            "inconsistent address");
308   }
Address(Register base,RegisterOrConstant index,ScaleFactor scale,ByteSize disp)309   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
310     : _base (base),
311       _index(index.register_or_noreg()),
312       _xmmindex(xnoreg),
313       _scale(scale),
314       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))),
315       _isxmmindex(false) {
316     if (!index.is_register())  scale = Address::no_scale;
317     assert(!_index->is_valid() == (scale == Address::no_scale),
318            "inconsistent address");
319   }
320 
321 #endif // ASSERT
322 
323   // accessors
uses(Register reg) const324   bool        uses(Register reg) const { return _base == reg || _index == reg; }
base() const325   Register    base()             const { return _base;  }
index() const326   Register    index()            const { return _index; }
xmmindex() const327   XMMRegister xmmindex()         const { return _xmmindex; }
scale() const328   ScaleFactor scale()            const { return _scale; }
disp() const329   int         disp()             const { return _disp;  }
isxmmindex() const330   bool        isxmmindex()       const { return _isxmmindex; }
331 
332   // Convert the raw encoding form into the form expected by the constructor for
333   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
334   // that to noreg for the Address constructor.
335   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
336 
337   static Address make_array(ArrayAddress);
338 
339  private:
base_needs_rex() const340   bool base_needs_rex() const {
341     return _base != noreg && _base->encoding() >= 8;
342   }
343 
index_needs_rex() const344   bool index_needs_rex() const {
345     return _index != noreg &&_index->encoding() >= 8;
346   }
347 
xmmindex_needs_rex() const348   bool xmmindex_needs_rex() const {
349     return _xmmindex != xnoreg && _xmmindex->encoding() >= 8;
350   }
351 
reloc() const352   relocInfo::relocType reloc() const { return _rspec.type(); }
353 
354   friend class Assembler;
355   friend class MacroAssembler;
356   friend class LIR_Assembler; // base/index/scale/disp
357 };
358 
359 //
360 // AddressLiteral has been split out from Address because operands of this type
361 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
362 // the few instructions that need to deal with address literals are unique and the
363 // MacroAssembler does not have to implement every instruction in the Assembler
364 // in order to search for address literals that may need special handling depending
365 // on the instruction and the platform. As small step on the way to merging i486/amd64
366 // directories.
367 //
368 class AddressLiteral {
369   friend class ArrayAddress;
370   RelocationHolder _rspec;
371   // Typically we use AddressLiterals we want to use their rval
372   // However in some situations we want the lval (effect address) of the item.
373   // We provide a special factory for making those lvals.
374   bool _is_lval;
375 
376   // If the target is far we'll need to load the ea of this to
377   // a register to reach it. Otherwise if near we can do rip
378   // relative addressing.
379 
380   address          _target;
381 
382  protected:
383   // creation
AddressLiteral()384   AddressLiteral()
385     : _is_lval(false),
386       _target(NULL)
387   {}
388 
389   public:
390 
391 
392   AddressLiteral(address target, relocInfo::relocType rtype);
393 
AddressLiteral(address target,RelocationHolder const & rspec)394   AddressLiteral(address target, RelocationHolder const& rspec)
395     : _rspec(rspec),
396       _is_lval(false),
397       _target(target)
398   {}
399 
addr()400   AddressLiteral addr() {
401     AddressLiteral ret = *this;
402     ret._is_lval = true;
403     return ret;
404   }
405 
406 
407  private:
408 
target()409   address target() { return _target; }
is_lval()410   bool is_lval() { return _is_lval; }
411 
reloc() const412   relocInfo::relocType reloc() const { return _rspec.type(); }
rspec() const413   const RelocationHolder& rspec() const { return _rspec; }
414 
415   friend class Assembler;
416   friend class MacroAssembler;
417   friend class Address;
418   friend class LIR_Assembler;
419 };
420 
421 // Convience classes
422 class RuntimeAddress: public AddressLiteral {
423 
424   public:
425 
RuntimeAddress(address target)426   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
427 
428 };
429 
430 class ExternalAddress: public AddressLiteral {
431  private:
reloc_for_target(address target)432   static relocInfo::relocType reloc_for_target(address target) {
433     // Sometimes ExternalAddress is used for values which aren't
434     // exactly addresses, like the card table base.
435     // external_word_type can't be used for values in the first page
436     // so just skip the reloc in that case.
437     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
438   }
439 
440  public:
441 
ExternalAddress(address target)442   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
443 
444 };
445 
446 class InternalAddress: public AddressLiteral {
447 
448   public:
449 
InternalAddress(address target)450   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
451 
452 };
453 
454 // x86 can do array addressing as a single operation since disp can be an absolute
455 // address amd64 can't. We create a class that expresses the concept but does extra
456 // magic on amd64 to get the final result
457 
458 class ArrayAddress {
459   private:
460 
461   AddressLiteral _base;
462   Address        _index;
463 
464   public:
465 
ArrayAddress()466   ArrayAddress() {};
ArrayAddress(AddressLiteral base,Address index)467   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
base()468   AddressLiteral base() { return _base; }
index()469   Address index() { return _index; }
470 
471 };
472 
473 class InstructionAttr;
474 
475 // 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes
476 // See fxsave and xsave(EVEX enabled) documentation for layout
477 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize);
478 
479 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
480 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
481 // is what you get. The Assembler is generating code into a CodeBuffer.
482 
483 class Assembler : public AbstractAssembler  {
484   friend class AbstractAssembler; // for the non-virtual hack
485   friend class LIR_Assembler; // as_Address()
486   friend class StubGenerator;
487 
488  public:
489   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
490     zero          = 0x4,
491     notZero       = 0x5,
492     equal         = 0x4,
493     notEqual      = 0x5,
494     less          = 0xc,
495     lessEqual     = 0xe,
496     greater       = 0xf,
497     greaterEqual  = 0xd,
498     below         = 0x2,
499     belowEqual    = 0x6,
500     above         = 0x7,
501     aboveEqual    = 0x3,
502     overflow      = 0x0,
503     noOverflow    = 0x1,
504     carrySet      = 0x2,
505     carryClear    = 0x3,
506     negative      = 0x8,
507     positive      = 0x9,
508     parity        = 0xa,
509     noParity      = 0xb
510   };
511 
512   enum Prefix {
513     // segment overrides
514     CS_segment = 0x2e,
515     SS_segment = 0x36,
516     DS_segment = 0x3e,
517     ES_segment = 0x26,
518     FS_segment = 0x64,
519     GS_segment = 0x65,
520 
521     REX        = 0x40,
522 
523     REX_B      = 0x41,
524     REX_X      = 0x42,
525     REX_XB     = 0x43,
526     REX_R      = 0x44,
527     REX_RB     = 0x45,
528     REX_RX     = 0x46,
529     REX_RXB    = 0x47,
530 
531     REX_W      = 0x48,
532 
533     REX_WB     = 0x49,
534     REX_WX     = 0x4A,
535     REX_WXB    = 0x4B,
536     REX_WR     = 0x4C,
537     REX_WRB    = 0x4D,
538     REX_WRX    = 0x4E,
539     REX_WRXB   = 0x4F,
540 
541     VEX_3bytes = 0xC4,
542     VEX_2bytes = 0xC5,
543     EVEX_4bytes = 0x62,
544     Prefix_EMPTY = 0x0
545   };
546 
547   enum VexPrefix {
548     VEX_B = 0x20,
549     VEX_X = 0x40,
550     VEX_R = 0x80,
551     VEX_W = 0x80
552   };
553 
554   enum ExexPrefix {
555     EVEX_F  = 0x04,
556     EVEX_V  = 0x08,
557     EVEX_Rb = 0x10,
558     EVEX_X  = 0x40,
559     EVEX_Z  = 0x80
560   };
561 
562   enum VexSimdPrefix {
563     VEX_SIMD_NONE = 0x0,
564     VEX_SIMD_66   = 0x1,
565     VEX_SIMD_F3   = 0x2,
566     VEX_SIMD_F2   = 0x3
567   };
568 
569   enum VexOpcode {
570     VEX_OPCODE_NONE  = 0x0,
571     VEX_OPCODE_0F    = 0x1,
572     VEX_OPCODE_0F_38 = 0x2,
573     VEX_OPCODE_0F_3A = 0x3,
574     VEX_OPCODE_MASK  = 0x1F
575   };
576 
577   enum AvxVectorLen {
578     AVX_128bit = 0x0,
579     AVX_256bit = 0x1,
580     AVX_512bit = 0x2,
581     AVX_NoVec  = 0x4
582   };
583 
584   enum EvexTupleType {
585     EVEX_FV   = 0,
586     EVEX_HV   = 4,
587     EVEX_FVM  = 6,
588     EVEX_T1S  = 7,
589     EVEX_T1F  = 11,
590     EVEX_T2   = 13,
591     EVEX_T4   = 15,
592     EVEX_T8   = 17,
593     EVEX_HVM  = 18,
594     EVEX_QVM  = 19,
595     EVEX_OVM  = 20,
596     EVEX_M128 = 21,
597     EVEX_DUP  = 22,
598     EVEX_ETUP = 23
599   };
600 
601   enum EvexInputSizeInBits {
602     EVEX_8bit  = 0,
603     EVEX_16bit = 1,
604     EVEX_32bit = 2,
605     EVEX_64bit = 3,
606     EVEX_NObit = 4
607   };
608 
609   enum WhichOperand {
610     // input to locate_operand, and format code for relocations
611     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
612     disp32_operand = 1,          // embedded 32-bit displacement or address
613     call32_operand = 2,          // embedded 32-bit self-relative displacement
614 #ifndef _LP64
615     _WhichOperand_limit = 3
616 #else
617      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
618     _WhichOperand_limit = 4
619 #endif
620   };
621 
622   enum ComparisonPredicate {
623     eq = 0,
624     lt = 1,
625     le = 2,
626     _false = 3,
627     neq = 4,
628     nlt = 5,
629     nle = 6,
630     _true = 7
631   };
632 
633 
634   // NOTE: The general philopsophy of the declarations here is that 64bit versions
635   // of instructions are freely declared without the need for wrapping them an ifdef.
636   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
637   // In the .cpp file the implementations are wrapped so that they are dropped out
638   // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
639   // to the size it was prior to merging up the 32bit and 64bit assemblers.
640   //
641   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
642   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
643 
644 private:
645 
646   bool _legacy_mode_bw;
647   bool _legacy_mode_dq;
648   bool _legacy_mode_vl;
649   bool _legacy_mode_vlbw;
650   bool _is_managed;
651   bool _vector_masking;    // For stub code use only
652 
653   class InstructionAttr *_attributes;
654 
655   // 64bit prefixes
656   int prefix_and_encode(int reg_enc, bool byteinst = false);
657   int prefixq_and_encode(int reg_enc);
658 
prefix_and_encode(int dst_enc,int src_enc)659   int prefix_and_encode(int dst_enc, int src_enc) {
660     return prefix_and_encode(dst_enc, false, src_enc, false);
661   }
662   int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte);
663   int prefixq_and_encode(int dst_enc, int src_enc);
664 
665   void prefix(Register reg);
666   void prefix(Register dst, Register src, Prefix p);
667   void prefix(Register dst, Address adr, Prefix p);
668   void prefix(Address adr);
669   void prefixq(Address adr);
670 
671   void prefix(Address adr, Register reg,  bool byteinst = false);
672   void prefix(Address adr, XMMRegister reg);
673   void prefixq(Address adr, Register reg);
674   void prefixq(Address adr, XMMRegister reg);
675 
676   void prefetch_prefix(Address src);
677 
678   void rex_prefix(Address adr, XMMRegister xreg,
679                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
680   int  rex_prefix_and_encode(int dst_enc, int src_enc,
681                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
682 
683   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc);
684 
685   void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v,
686                    int nds_enc, VexSimdPrefix pre, VexOpcode opc);
687 
688   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
689                   VexSimdPrefix pre, VexOpcode opc,
690                   InstructionAttr *attributes);
691 
692   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
693                              VexSimdPrefix pre, VexOpcode opc,
694                              InstructionAttr *attributes);
695 
696   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
697                    VexOpcode opc, InstructionAttr *attributes);
698 
699   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
700                              VexOpcode opc, InstructionAttr *attributes);
701 
702   // Helper functions for groups of instructions
703   void emit_arith_b(int op1, int op2, Register dst, int imm8);
704 
705   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
706   // Force generation of a 4 byte immediate value even if it fits into 8bit
707   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
708   void emit_arith(int op1, int op2, Register dst, Register src);
709 
710   bool emit_compressed_disp_byte(int &disp);
711 
712   void emit_operand(Register reg,
713                     Register base, Register index, Address::ScaleFactor scale,
714                     int disp,
715                     RelocationHolder const& rspec,
716                     int rip_relative_correction = 0);
717 
718   void emit_operand(XMMRegister reg, Register base, XMMRegister index,
719                     Address::ScaleFactor scale,
720                     int disp, RelocationHolder const& rspec);
721 
722   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
723 
724   // operands that only take the original 32bit registers
725   void emit_operand32(Register reg, Address adr);
726 
727   void emit_operand(XMMRegister reg,
728                     Register base, Register index, Address::ScaleFactor scale,
729                     int disp,
730                     RelocationHolder const& rspec);
731 
732   void emit_operand(XMMRegister reg, Address adr);
733 
734   void emit_operand(MMXRegister reg, Address adr);
735 
736   // workaround gcc (3.2.1-7) bug
737   void emit_operand(Address adr, MMXRegister reg);
738 
739 
740   // Immediate-to-memory forms
741   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
742 
743   void emit_farith(int b1, int b2, int i);
744 
745 
746  protected:
747   #ifdef ASSERT
748   void check_relocation(RelocationHolder const& rspec, int format);
749   #endif
750 
751   void emit_data(jint data, relocInfo::relocType    rtype, int format);
752   void emit_data(jint data, RelocationHolder const& rspec, int format);
753   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
754   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
755 
756   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
757 
758   // These are all easily abused and hence protected
759 
760   // 32BIT ONLY SECTION
761 #ifndef _LP64
762   // Make these disappear in 64bit mode since they would never be correct
763   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
764   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
765 
766   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
767   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
768 
769   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
770 #else
771   // 64BIT ONLY SECTION
772   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
773 
774   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
775   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
776 
777   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
778   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
779 #endif // _LP64
780 
781   // These are unique in that we are ensured by the caller that the 32bit
782   // relative in these instructions will always be able to reach the potentially
783   // 64bit address described by entry. Since they can take a 64bit address they
784   // don't have the 32 suffix like the other instructions in this class.
785 
786   void call_literal(address entry, RelocationHolder const& rspec);
787   void jmp_literal(address entry, RelocationHolder const& rspec);
788 
789   // Avoid using directly section
790   // Instructions in this section are actually usable by anyone without danger
791   // of failure but have performance issues that are addressed my enhanced
792   // instructions which will do the proper thing base on the particular cpu.
793   // We protect them because we don't trust you...
794 
795   // Don't use next inc() and dec() methods directly. INC & DEC instructions
796   // could cause a partial flag stall since they don't set CF flag.
797   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
798   // which call inc() & dec() or add() & sub() in accordance with
799   // the product flag UseIncDec value.
800 
801   void decl(Register dst);
802   void decl(Address dst);
803   void decq(Register dst);
804   void decq(Address dst);
805 
806   void incl(Register dst);
807   void incl(Address dst);
808   void incq(Register dst);
809   void incq(Address dst);
810 
811   // New cpus require use of movsd and movss to avoid partial register stall
812   // when loading from memory. But for old Opteron use movlpd instead of movsd.
813   // The selection is done in MacroAssembler::movdbl() and movflt().
814 
815   // Move Scalar Single-Precision Floating-Point Values
816   void movss(XMMRegister dst, Address src);
817   void movss(XMMRegister dst, XMMRegister src);
818   void movss(Address dst, XMMRegister src);
819 
820   // Move Scalar Double-Precision Floating-Point Values
821   void movsd(XMMRegister dst, Address src);
822   void movsd(XMMRegister dst, XMMRegister src);
823   void movsd(Address dst, XMMRegister src);
824   void movlpd(XMMRegister dst, Address src);
825 
826   // New cpus require use of movaps and movapd to avoid partial register stall
827   // when moving between registers.
828   void movaps(XMMRegister dst, XMMRegister src);
829   void movapd(XMMRegister dst, XMMRegister src);
830 
831   // End avoid using directly
832 
833 
834   // Instruction prefixes
835   void prefix(Prefix p);
836 
837   public:
838 
839   // Creation
Assembler(CodeBuffer * code)840   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
841     init_attributes();
842   }
843 
844   // Decoding
845   static address locate_operand(address inst, WhichOperand which);
846   static address locate_next_instruction(address inst);
847 
848   // Utilities
849   static bool is_polling_page_far() NOT_LP64({ return false;});
850   static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
851                                          int cur_tuple_type, int in_size_in_bits, int cur_encoding);
852 
853   // Generic instructions
854   // Does 32bit or 64bit as needed for the platform. In some sense these
855   // belong in macro assembler but there is no need for both varieties to exist
856 
init_attributes(void)857   void init_attributes(void) {
858     _legacy_mode_bw = (VM_Version::supports_avx512bw() == false);
859     _legacy_mode_dq = (VM_Version::supports_avx512dq() == false);
860     _legacy_mode_vl = (VM_Version::supports_avx512vl() == false);
861     _legacy_mode_vlbw = (VM_Version::supports_avx512vlbw() == false);
862     _is_managed = false;
863     _vector_masking = false;
864     _attributes = NULL;
865   }
866 
set_attributes(InstructionAttr * attributes)867   void set_attributes(InstructionAttr *attributes) { _attributes = attributes; }
clear_attributes(void)868   void clear_attributes(void) { _attributes = NULL; }
869 
set_managed(void)870   void set_managed(void) { _is_managed = true; }
clear_managed(void)871   void clear_managed(void) { _is_managed = false; }
is_managed(void)872   bool is_managed(void) { return _is_managed; }
873 
874   void lea(Register dst, Address src);
875 
876   void mov(Register dst, Register src);
877 
878   void pusha();
879   void popa();
880 
881   void pushf();
882   void popf();
883 
884   void push(int32_t imm32);
885 
886   void push(Register src);
887 
888   void pop(Register dst);
889 
890   // These are dummies to prevent surprise implicit conversions to Register
891   void push(void* v);
892   void pop(void* v);
893 
894   // These do register sized moves/scans
895   void rep_mov();
896   void rep_stos();
897   void rep_stosb();
898   void repne_scan();
899 #ifdef _LP64
900   void repne_scanl();
901 #endif
902 
903   // Vanilla instructions in lexical order
904 
905   void adcl(Address dst, int32_t imm32);
906   void adcl(Address dst, Register src);
907   void adcl(Register dst, int32_t imm32);
908   void adcl(Register dst, Address src);
909   void adcl(Register dst, Register src);
910 
911   void adcq(Register dst, int32_t imm32);
912   void adcq(Register dst, Address src);
913   void adcq(Register dst, Register src);
914 
915   void addb(Address dst, int imm8);
916   void addw(Address dst, int imm16);
917 
918   void addl(Address dst, int32_t imm32);
919   void addl(Address dst, Register src);
920   void addl(Register dst, int32_t imm32);
921   void addl(Register dst, Address src);
922   void addl(Register dst, Register src);
923 
924   void addq(Address dst, int32_t imm32);
925   void addq(Address dst, Register src);
926   void addq(Register dst, int32_t imm32);
927   void addq(Register dst, Address src);
928   void addq(Register dst, Register src);
929 
930 #ifdef _LP64
931  //Add Unsigned Integers with Carry Flag
932   void adcxq(Register dst, Register src);
933 
934  //Add Unsigned Integers with Overflow Flag
935   void adoxq(Register dst, Register src);
936 #endif
937 
938   void addr_nop_4();
939   void addr_nop_5();
940   void addr_nop_7();
941   void addr_nop_8();
942 
943   // Add Scalar Double-Precision Floating-Point Values
944   void addsd(XMMRegister dst, Address src);
945   void addsd(XMMRegister dst, XMMRegister src);
946 
947   // Add Scalar Single-Precision Floating-Point Values
948   void addss(XMMRegister dst, Address src);
949   void addss(XMMRegister dst, XMMRegister src);
950 
951   // AES instructions
952   void aesdec(XMMRegister dst, Address src);
953   void aesdec(XMMRegister dst, XMMRegister src);
954   void aesdeclast(XMMRegister dst, Address src);
955   void aesdeclast(XMMRegister dst, XMMRegister src);
956   void aesenc(XMMRegister dst, Address src);
957   void aesenc(XMMRegister dst, XMMRegister src);
958   void aesenclast(XMMRegister dst, Address src);
959   void aesenclast(XMMRegister dst, XMMRegister src);
960   void vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
961   void vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
962 
963   void andl(Address  dst, int32_t imm32);
964   void andl(Register dst, int32_t imm32);
965   void andl(Register dst, Address src);
966   void andl(Register dst, Register src);
967 
968   void andq(Address  dst, int32_t imm32);
969   void andq(Register dst, int32_t imm32);
970   void andq(Register dst, Address src);
971   void andq(Register dst, Register src);
972 
973   // BMI instructions
974   void andnl(Register dst, Register src1, Register src2);
975   void andnl(Register dst, Register src1, Address src2);
976   void andnq(Register dst, Register src1, Register src2);
977   void andnq(Register dst, Register src1, Address src2);
978 
979   void blsil(Register dst, Register src);
980   void blsil(Register dst, Address src);
981   void blsiq(Register dst, Register src);
982   void blsiq(Register dst, Address src);
983 
984   void blsmskl(Register dst, Register src);
985   void blsmskl(Register dst, Address src);
986   void blsmskq(Register dst, Register src);
987   void blsmskq(Register dst, Address src);
988 
989   void blsrl(Register dst, Register src);
990   void blsrl(Register dst, Address src);
991   void blsrq(Register dst, Register src);
992   void blsrq(Register dst, Address src);
993 
994   void bsfl(Register dst, Register src);
995   void bsrl(Register dst, Register src);
996 
997 #ifdef _LP64
998   void bsfq(Register dst, Register src);
999   void bsrq(Register dst, Register src);
1000 #endif
1001 
1002   void bswapl(Register reg);
1003 
1004   void bswapq(Register reg);
1005 
1006   void call(Label& L, relocInfo::relocType rtype);
1007   void call(Register reg);  // push pc; pc <- reg
1008   void call(Address adr);   // push pc; pc <- adr
1009 
1010   void cdql();
1011 
1012   void cdqq();
1013 
1014   void cld();
1015 
1016   void clflush(Address adr);
1017 
1018   void cmovl(Condition cc, Register dst, Register src);
1019   void cmovl(Condition cc, Register dst, Address src);
1020 
1021   void cmovq(Condition cc, Register dst, Register src);
1022   void cmovq(Condition cc, Register dst, Address src);
1023 
1024 
1025   void cmpb(Address dst, int imm8);
1026 
1027   void cmpl(Address dst, int32_t imm32);
1028 
1029   void cmpl(Register dst, int32_t imm32);
1030   void cmpl(Register dst, Register src);
1031   void cmpl(Register dst, Address src);
1032 
1033   void cmpq(Address dst, int32_t imm32);
1034   void cmpq(Address dst, Register src);
1035 
1036   void cmpq(Register dst, int32_t imm32);
1037   void cmpq(Register dst, Register src);
1038   void cmpq(Register dst, Address src);
1039 
1040   // these are dummies used to catch attempting to convert NULL to Register
1041   void cmpl(Register dst, void* junk); // dummy
1042   void cmpq(Register dst, void* junk); // dummy
1043 
1044   void cmpw(Address dst, int imm16);
1045 
1046   void cmpxchg8 (Address adr);
1047 
1048   void cmpxchgb(Register reg, Address adr);
1049   void cmpxchgl(Register reg, Address adr);
1050 
1051   void cmpxchgq(Register reg, Address adr);
1052 
1053   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1054   void comisd(XMMRegister dst, Address src);
1055   void comisd(XMMRegister dst, XMMRegister src);
1056 
1057   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1058   void comiss(XMMRegister dst, Address src);
1059   void comiss(XMMRegister dst, XMMRegister src);
1060 
1061   // Identify processor type and features
1062   void cpuid();
1063 
1064   // CRC32C
1065   void crc32(Register crc, Register v, int8_t sizeInBytes);
1066   void crc32(Register crc, Address adr, int8_t sizeInBytes);
1067 
1068   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
1069   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1070   void cvtsd2ss(XMMRegister dst, Address src);
1071 
1072   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
1073   void cvtsi2sdl(XMMRegister dst, Register src);
1074   void cvtsi2sdl(XMMRegister dst, Address src);
1075   void cvtsi2sdq(XMMRegister dst, Register src);
1076   void cvtsi2sdq(XMMRegister dst, Address src);
1077 
1078   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
1079   void cvtsi2ssl(XMMRegister dst, Register src);
1080   void cvtsi2ssl(XMMRegister dst, Address src);
1081   void cvtsi2ssq(XMMRegister dst, Register src);
1082   void cvtsi2ssq(XMMRegister dst, Address src);
1083 
1084   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
1085   void cvtdq2pd(XMMRegister dst, XMMRegister src);
1086 
1087   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
1088   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1089 
1090   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
1091   void cvtss2sd(XMMRegister dst, XMMRegister src);
1092   void cvtss2sd(XMMRegister dst, Address src);
1093 
1094   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
1095   void cvttsd2sil(Register dst, Address src);
1096   void cvttsd2sil(Register dst, XMMRegister src);
1097   void cvttsd2siq(Register dst, XMMRegister src);
1098 
1099   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1100   void cvttss2sil(Register dst, XMMRegister src);
1101   void cvttss2siq(Register dst, XMMRegister src);
1102 
1103   void cvttpd2dq(XMMRegister dst, XMMRegister src);
1104 
1105   // Divide Scalar Double-Precision Floating-Point Values
1106   void divsd(XMMRegister dst, Address src);
1107   void divsd(XMMRegister dst, XMMRegister src);
1108 
1109   // Divide Scalar Single-Precision Floating-Point Values
1110   void divss(XMMRegister dst, Address src);
1111   void divss(XMMRegister dst, XMMRegister src);
1112 
1113   void emms();
1114 
1115   void fabs();
1116 
1117   void fadd(int i);
1118 
1119   void fadd_d(Address src);
1120   void fadd_s(Address src);
1121 
1122   // "Alternate" versions of x87 instructions place result down in FPU
1123   // stack instead of on TOS
1124 
1125   void fadda(int i); // "alternate" fadd
1126   void faddp(int i = 1);
1127 
1128   void fchs();
1129 
1130   void fcom(int i);
1131 
1132   void fcomp(int i = 1);
1133   void fcomp_d(Address src);
1134   void fcomp_s(Address src);
1135 
1136   void fcompp();
1137 
1138   void fcos();
1139 
1140   void fdecstp();
1141 
1142   void fdiv(int i);
1143   void fdiv_d(Address src);
1144   void fdivr_s(Address src);
1145   void fdiva(int i);  // "alternate" fdiv
1146   void fdivp(int i = 1);
1147 
1148   void fdivr(int i);
1149   void fdivr_d(Address src);
1150   void fdiv_s(Address src);
1151 
1152   void fdivra(int i); // "alternate" reversed fdiv
1153 
1154   void fdivrp(int i = 1);
1155 
1156   void ffree(int i = 0);
1157 
1158   void fild_d(Address adr);
1159   void fild_s(Address adr);
1160 
1161   void fincstp();
1162 
1163   void finit();
1164 
1165   void fist_s (Address adr);
1166   void fistp_d(Address adr);
1167   void fistp_s(Address adr);
1168 
1169   void fld1();
1170 
1171   void fld_d(Address adr);
1172   void fld_s(Address adr);
1173   void fld_s(int index);
1174   void fld_x(Address adr);  // extended-precision (80-bit) format
1175 
1176   void fldcw(Address src);
1177 
1178   void fldenv(Address src);
1179 
1180   void fldlg2();
1181 
1182   void fldln2();
1183 
1184   void fldz();
1185 
1186   void flog();
1187   void flog10();
1188 
1189   void fmul(int i);
1190 
1191   void fmul_d(Address src);
1192   void fmul_s(Address src);
1193 
1194   void fmula(int i);  // "alternate" fmul
1195 
1196   void fmulp(int i = 1);
1197 
1198   void fnsave(Address dst);
1199 
1200   void fnstcw(Address src);
1201 
1202   void fnstsw_ax();
1203 
1204   void fprem();
1205   void fprem1();
1206 
1207   void frstor(Address src);
1208 
1209   void fsin();
1210 
1211   void fsqrt();
1212 
1213   void fst_d(Address adr);
1214   void fst_s(Address adr);
1215 
1216   void fstp_d(Address adr);
1217   void fstp_d(int index);
1218   void fstp_s(Address adr);
1219   void fstp_x(Address adr); // extended-precision (80-bit) format
1220 
1221   void fsub(int i);
1222   void fsub_d(Address src);
1223   void fsub_s(Address src);
1224 
1225   void fsuba(int i);  // "alternate" fsub
1226 
1227   void fsubp(int i = 1);
1228 
1229   void fsubr(int i);
1230   void fsubr_d(Address src);
1231   void fsubr_s(Address src);
1232 
1233   void fsubra(int i); // "alternate" reversed fsub
1234 
1235   void fsubrp(int i = 1);
1236 
1237   void ftan();
1238 
1239   void ftst();
1240 
1241   void fucomi(int i = 1);
1242   void fucomip(int i = 1);
1243 
1244   void fwait();
1245 
1246   void fxch(int i = 1);
1247 
1248   void fxrstor(Address src);
1249   void xrstor(Address src);
1250 
1251   void fxsave(Address dst);
1252   void xsave(Address dst);
1253 
1254   void fyl2x();
1255   void frndint();
1256   void f2xm1();
1257   void fldl2e();
1258 
1259   void hlt();
1260 
1261   void idivl(Register src);
1262   void divl(Register src); // Unsigned division
1263 
1264 #ifdef _LP64
1265   void idivq(Register src);
1266 #endif
1267 
1268   void imull(Register src);
1269   void imull(Register dst, Register src);
1270   void imull(Register dst, Register src, int value);
1271   void imull(Register dst, Address src);
1272 
1273 #ifdef _LP64
1274   void imulq(Register dst, Register src);
1275   void imulq(Register dst, Register src, int value);
1276   void imulq(Register dst, Address src);
1277 #endif
1278 
1279   // jcc is the generic conditional branch generator to run-
1280   // time routines, jcc is used for branches to labels. jcc
1281   // takes a branch opcode (cc) and a label (L) and generates
1282   // either a backward branch or a forward branch and links it
1283   // to the label fixup chain. Usage:
1284   //
1285   // Label L;      // unbound label
1286   // jcc(cc, L);   // forward branch to unbound label
1287   // bind(L);      // bind label to the current pc
1288   // jcc(cc, L);   // backward branch to bound label
1289   // bind(L);      // illegal: a label may be bound only once
1290   //
1291   // Note: The same Label can be used for forward and backward branches
1292   // but it may be bound only once.
1293 
1294   void jcc(Condition cc, Label& L, bool maybe_short = true);
1295 
1296   // Conditional jump to a 8-bit offset to L.
1297   // WARNING: be very careful using this for forward jumps.  If the label is
1298   // not bound within an 8-bit offset of this instruction, a run-time error
1299   // will occur.
1300 
1301   // Use macro to record file and line number.
1302   #define jccb(cc, L) jccb_0(cc, L, __FILE__, __LINE__)
1303 
1304   void jccb_0(Condition cc, Label& L, const char* file, int line);
1305 
1306   void jmp(Address entry);    // pc <- entry
1307 
1308   // Label operations & relative jumps (PPUM Appendix D)
1309   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1310 
1311   void jmp(Register entry); // pc <- entry
1312 
1313   // Unconditional 8-bit offset jump to L.
1314   // WARNING: be very careful using this for forward jumps.  If the label is
1315   // not bound within an 8-bit offset of this instruction, a run-time error
1316   // will occur.
1317 
1318   // Use macro to record file and line number.
1319   #define jmpb(L) jmpb_0(L, __FILE__, __LINE__)
1320 
1321   void jmpb_0(Label& L, const char* file, int line);
1322 
1323   void ldmxcsr( Address src );
1324 
1325   void leal(Register dst, Address src);
1326 
1327   void leaq(Register dst, Address src);
1328 
1329   void lfence();
1330 
1331   void lock();
1332 
1333   void lzcntl(Register dst, Register src);
1334 
1335 #ifdef _LP64
1336   void lzcntq(Register dst, Register src);
1337 #endif
1338 
1339   enum Membar_mask_bits {
1340     StoreStore = 1 << 3,
1341     LoadStore  = 1 << 2,
1342     StoreLoad  = 1 << 1,
1343     LoadLoad   = 1 << 0
1344   };
1345 
1346   // Serializes memory and blows flags
membar(Membar_mask_bits order_constraint)1347   void membar(Membar_mask_bits order_constraint) {
1348     // We only have to handle StoreLoad
1349     if (order_constraint & StoreLoad) {
1350       // All usable chips support "locked" instructions which suffice
1351       // as barriers, and are much faster than the alternative of
1352       // using cpuid instruction. We use here a locked add [esp-C],0.
1353       // This is conveniently otherwise a no-op except for blowing
1354       // flags, and introducing a false dependency on target memory
1355       // location. We can't do anything with flags, but we can avoid
1356       // memory dependencies in the current method by locked-adding
1357       // somewhere else on the stack. Doing [esp+C] will collide with
1358       // something on stack in current method, hence we go for [esp-C].
1359       // It is convenient since it is almost always in data cache, for
1360       // any small C.  We need to step back from SP to avoid data
1361       // dependencies with other things on below SP (callee-saves, for
1362       // example). Without a clear way to figure out the minimal safe
1363       // distance from SP, it makes sense to step back the complete
1364       // cache line, as this will also avoid possible second-order effects
1365       // with locked ops against the cache line. Our choice of offset
1366       // is bounded by x86 operand encoding, which should stay within
1367       // [-128; +127] to have the 8-byte displacement encoding.
1368       //
1369       // Any change to this code may need to revisit other places in
1370       // the code where this idiom is used, in particular the
1371       // orderAccess code.
1372 
1373       int offset = -VM_Version::L1_line_size();
1374       if (offset < -128) {
1375         offset = -128;
1376       }
1377 
1378       lock();
1379       addl(Address(rsp, offset), 0);// Assert the lock# signal here
1380     }
1381   }
1382 
1383   void mfence();
1384 
1385   // Moves
1386 
1387   void mov64(Register dst, int64_t imm64);
1388 
1389   void movb(Address dst, Register src);
1390   void movb(Address dst, int imm8);
1391   void movb(Register dst, Address src);
1392 
1393   void movddup(XMMRegister dst, XMMRegister src);
1394 
1395   void kmovbl(KRegister dst, Register src);
1396   void kmovbl(Register dst, KRegister src);
1397   void kmovwl(KRegister dst, Register src);
1398   void kmovwl(KRegister dst, Address src);
1399   void kmovwl(Register dst, KRegister src);
1400   void kmovdl(KRegister dst, Register src);
1401   void kmovdl(Register dst, KRegister src);
1402   void kmovql(KRegister dst, KRegister src);
1403   void kmovql(Address dst, KRegister src);
1404   void kmovql(KRegister dst, Address src);
1405   void kmovql(KRegister dst, Register src);
1406   void kmovql(Register dst, KRegister src);
1407 
1408   void knotwl(KRegister dst, KRegister src);
1409 
1410   void kortestbl(KRegister dst, KRegister src);
1411   void kortestwl(KRegister dst, KRegister src);
1412   void kortestdl(KRegister dst, KRegister src);
1413   void kortestql(KRegister dst, KRegister src);
1414 
1415   void ktestq(KRegister src1, KRegister src2);
1416   void ktestd(KRegister src1, KRegister src2);
1417 
1418   void ktestql(KRegister dst, KRegister src);
1419 
1420   void movdl(XMMRegister dst, Register src);
1421   void movdl(Register dst, XMMRegister src);
1422   void movdl(XMMRegister dst, Address src);
1423   void movdl(Address dst, XMMRegister src);
1424 
1425   // Move Double Quadword
1426   void movdq(XMMRegister dst, Register src);
1427   void movdq(Register dst, XMMRegister src);
1428 
1429   // Move Aligned Double Quadword
1430   void movdqa(XMMRegister dst, XMMRegister src);
1431   void movdqa(XMMRegister dst, Address src);
1432 
1433   // Move Unaligned Double Quadword
1434   void movdqu(Address     dst, XMMRegister src);
1435   void movdqu(XMMRegister dst, Address src);
1436   void movdqu(XMMRegister dst, XMMRegister src);
1437 
1438   // Move Unaligned 256bit Vector
1439   void vmovdqu(Address dst, XMMRegister src);
1440   void vmovdqu(XMMRegister dst, Address src);
1441   void vmovdqu(XMMRegister dst, XMMRegister src);
1442 
1443    // Move Unaligned 512bit Vector
1444   void evmovdqub(Address dst, XMMRegister src, int vector_len);
1445   void evmovdqub(XMMRegister dst, Address src, int vector_len);
1446   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len);
1447   void evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len);
1448   void evmovdquw(Address dst, XMMRegister src, int vector_len);
1449   void evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len);
1450   void evmovdquw(XMMRegister dst, Address src, int vector_len);
1451   void evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len);
1452   void evmovdqul(Address dst, XMMRegister src, int vector_len);
1453   void evmovdqul(XMMRegister dst, Address src, int vector_len);
1454   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len);
1455   void evmovdquq(Address dst, XMMRegister src, int vector_len);
1456   void evmovdquq(XMMRegister dst, Address src, int vector_len);
1457   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len);
1458 
1459   // Move lower 64bit to high 64bit in 128bit register
1460   void movlhps(XMMRegister dst, XMMRegister src);
1461 
1462   void movl(Register dst, int32_t imm32);
1463   void movl(Address dst, int32_t imm32);
1464   void movl(Register dst, Register src);
1465   void movl(Register dst, Address src);
1466   void movl(Address dst, Register src);
1467 
1468   // These dummies prevent using movl from converting a zero (like NULL) into Register
1469   // by giving the compiler two choices it can't resolve
1470 
1471   void movl(Address  dst, void* junk);
1472   void movl(Register dst, void* junk);
1473 
1474 #ifdef _LP64
1475   void movq(Register dst, Register src);
1476   void movq(Register dst, Address src);
1477   void movq(Address  dst, Register src);
1478 #endif
1479 
1480   void movq(Address     dst, MMXRegister src );
1481   void movq(MMXRegister dst, Address src );
1482 
1483 #ifdef _LP64
1484   // These dummies prevent using movq from converting a zero (like NULL) into Register
1485   // by giving the compiler two choices it can't resolve
1486 
1487   void movq(Address  dst, void* dummy);
1488   void movq(Register dst, void* dummy);
1489 #endif
1490 
1491   // Move Quadword
1492   void movq(Address     dst, XMMRegister src);
1493   void movq(XMMRegister dst, Address src);
1494 
1495   void movsbl(Register dst, Address src);
1496   void movsbl(Register dst, Register src);
1497 
1498 #ifdef _LP64
1499   void movsbq(Register dst, Address src);
1500   void movsbq(Register dst, Register src);
1501 
1502   // Move signed 32bit immediate to 64bit extending sign
1503   void movslq(Address  dst, int32_t imm64);
1504   void movslq(Register dst, int32_t imm64);
1505 
1506   void movslq(Register dst, Address src);
1507   void movslq(Register dst, Register src);
1508   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1509 #endif
1510 
1511   void movswl(Register dst, Address src);
1512   void movswl(Register dst, Register src);
1513 
1514 #ifdef _LP64
1515   void movswq(Register dst, Address src);
1516   void movswq(Register dst, Register src);
1517 #endif
1518 
1519   void movw(Address dst, int imm16);
1520   void movw(Register dst, Address src);
1521   void movw(Address dst, Register src);
1522 
1523   void movzbl(Register dst, Address src);
1524   void movzbl(Register dst, Register src);
1525 
1526 #ifdef _LP64
1527   void movzbq(Register dst, Address src);
1528   void movzbq(Register dst, Register src);
1529 #endif
1530 
1531   void movzwl(Register dst, Address src);
1532   void movzwl(Register dst, Register src);
1533 
1534 #ifdef _LP64
1535   void movzwq(Register dst, Address src);
1536   void movzwq(Register dst, Register src);
1537 #endif
1538 
1539   // Unsigned multiply with RAX destination register
1540   void mull(Address src);
1541   void mull(Register src);
1542 
1543 #ifdef _LP64
1544   void mulq(Address src);
1545   void mulq(Register src);
1546   void mulxq(Register dst1, Register dst2, Register src);
1547 #endif
1548 
1549   // Multiply Scalar Double-Precision Floating-Point Values
1550   void mulsd(XMMRegister dst, Address src);
1551   void mulsd(XMMRegister dst, XMMRegister src);
1552 
1553   // Multiply Scalar Single-Precision Floating-Point Values
1554   void mulss(XMMRegister dst, Address src);
1555   void mulss(XMMRegister dst, XMMRegister src);
1556 
1557   void negl(Register dst);
1558 
1559 #ifdef _LP64
1560   void negq(Register dst);
1561 #endif
1562 
1563   void nop(int i = 1);
1564 
1565   void notl(Register dst);
1566 
1567 #ifdef _LP64
1568   void notq(Register dst);
1569 #endif
1570 
1571   void orl(Address dst, int32_t imm32);
1572   void orl(Register dst, int32_t imm32);
1573   void orl(Register dst, Address src);
1574   void orl(Register dst, Register src);
1575   void orl(Address dst, Register src);
1576 
1577   void orb(Address dst, int imm8);
1578 
1579   void orq(Address dst, int32_t imm32);
1580   void orq(Register dst, int32_t imm32);
1581   void orq(Register dst, Address src);
1582   void orq(Register dst, Register src);
1583 
1584   // Pack with unsigned saturation
1585   void packuswb(XMMRegister dst, XMMRegister src);
1586   void packuswb(XMMRegister dst, Address src);
1587   void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1588 
1589   // Pemutation of 64bit words
1590   void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len);
1591   void vpermq(XMMRegister dst, XMMRegister src, int imm8);
1592   void vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8);
1593   void vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8);
1594   void evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1595 
1596   void pause();
1597 
1598   // Undefined Instruction
1599   void ud2();
1600 
1601   // SSE4.2 string instructions
1602   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1603   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1604 
1605   void pcmpeqb(XMMRegister dst, XMMRegister src);
1606   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1607   void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1608   void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1609   void evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len);
1610 
1611   void evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1612   void evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len);
1613 
1614   void evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len);
1615   void evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate of, int vector_len);
1616   void evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len);
1617 
1618   void pcmpeqw(XMMRegister dst, XMMRegister src);
1619   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1620   void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1621   void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1622 
1623   void pcmpeqd(XMMRegister dst, XMMRegister src);
1624   void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1625   void evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1626   void evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1627 
1628   void pcmpeqq(XMMRegister dst, XMMRegister src);
1629   void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1630   void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
1631   void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len);
1632 
1633   void pmovmskb(Register dst, XMMRegister src);
1634   void vpmovmskb(Register dst, XMMRegister src);
1635 
1636   // SSE 4.1 extract
1637   void pextrd(Register dst, XMMRegister src, int imm8);
1638   void pextrq(Register dst, XMMRegister src, int imm8);
1639   void pextrd(Address dst, XMMRegister src, int imm8);
1640   void pextrq(Address dst, XMMRegister src, int imm8);
1641   void pextrb(Address dst, XMMRegister src, int imm8);
1642   // SSE 2 extract
1643   void pextrw(Register dst, XMMRegister src, int imm8);
1644   void pextrw(Address dst, XMMRegister src, int imm8);
1645 
1646   // SSE 4.1 insert
1647   void pinsrd(XMMRegister dst, Register src, int imm8);
1648   void pinsrq(XMMRegister dst, Register src, int imm8);
1649   void pinsrd(XMMRegister dst, Address src, int imm8);
1650   void pinsrq(XMMRegister dst, Address src, int imm8);
1651   void pinsrb(XMMRegister dst, Address src, int imm8);
1652   // SSE 2 insert
1653   void pinsrw(XMMRegister dst, Register src, int imm8);
1654   void pinsrw(XMMRegister dst, Address src, int imm8);
1655 
1656   // SSE4.1 packed move
1657   void pmovzxbw(XMMRegister dst, XMMRegister src);
1658   void pmovzxbw(XMMRegister dst, Address src);
1659 
1660   void vpmovzxbw( XMMRegister dst, Address src, int vector_len);
1661   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len);
1662   void evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len);
1663 
1664   void evpmovwb(Address dst, XMMRegister src, int vector_len);
1665   void evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len);
1666 
1667   void vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len);
1668 
1669   void evpmovdb(Address dst, XMMRegister src, int vector_len);
1670 
1671   // Multiply add
1672   void pmaddwd(XMMRegister dst, XMMRegister src);
1673   void vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1674   // Multiply add accumulate
1675   void evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1676 
1677 #ifndef _LP64 // no 32bit push/pop on amd64
1678   void popl(Address dst);
1679 #endif
1680 
1681 #ifdef _LP64
1682   void popq(Address dst);
1683 #endif
1684 
1685   void popcntl(Register dst, Address src);
1686   void popcntl(Register dst, Register src);
1687 
1688   void vpopcntd(XMMRegister dst, XMMRegister src, int vector_len);
1689 
1690 #ifdef _LP64
1691   void popcntq(Register dst, Address src);
1692   void popcntq(Register dst, Register src);
1693 #endif
1694 
1695   // Prefetches (SSE, SSE2, 3DNOW only)
1696 
1697   void prefetchnta(Address src);
1698   void prefetchr(Address src);
1699   void prefetcht0(Address src);
1700   void prefetcht1(Address src);
1701   void prefetcht2(Address src);
1702   void prefetchw(Address src);
1703 
1704   // Shuffle Bytes
1705   void pshufb(XMMRegister dst, XMMRegister src);
1706   void pshufb(XMMRegister dst, Address src);
1707   void vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1708 
1709   // Shuffle Packed Doublewords
1710   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1711   void pshufd(XMMRegister dst, Address src,     int mode);
1712   void vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len);
1713 
1714   // Shuffle Packed Low Words
1715   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1716   void pshuflw(XMMRegister dst, Address src,     int mode);
1717 
1718   // Shuffle packed values at 128 bit granularity
1719   void evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len);
1720 
1721   // Shift Right by bytes Logical DoubleQuadword Immediate
1722   void psrldq(XMMRegister dst, int shift);
1723   // Shift Left by bytes Logical DoubleQuadword Immediate
1724   void pslldq(XMMRegister dst, int shift);
1725 
1726   // Logical Compare 128bit
1727   void ptest(XMMRegister dst, XMMRegister src);
1728   void ptest(XMMRegister dst, Address src);
1729   // Logical Compare 256bit
1730   void vptest(XMMRegister dst, XMMRegister src);
1731   void vptest(XMMRegister dst, Address src);
1732 
1733   // Interleave Low Bytes
1734   void punpcklbw(XMMRegister dst, XMMRegister src);
1735   void punpcklbw(XMMRegister dst, Address src);
1736 
1737   // Interleave Low Doublewords
1738   void punpckldq(XMMRegister dst, XMMRegister src);
1739   void punpckldq(XMMRegister dst, Address src);
1740 
1741   // Interleave Low Quadwords
1742   void punpcklqdq(XMMRegister dst, XMMRegister src);
1743 
1744 #ifndef _LP64 // no 32bit push/pop on amd64
1745   void pushl(Address src);
1746 #endif
1747 
1748   void pushq(Address src);
1749 
1750   void rcll(Register dst, int imm8);
1751 
1752   void rclq(Register dst, int imm8);
1753 
1754   void rcrq(Register dst, int imm8);
1755 
1756   void rcpps(XMMRegister dst, XMMRegister src);
1757 
1758   void rcpss(XMMRegister dst, XMMRegister src);
1759 
1760   void rdtsc();
1761 
1762   void ret(int imm16);
1763 
1764 #ifdef _LP64
1765   void rorq(Register dst, int imm8);
1766   void rorxq(Register dst, Register src, int imm8);
1767   void rorxd(Register dst, Register src, int imm8);
1768 #endif
1769 
1770   void sahf();
1771 
1772   void sarl(Register dst, int imm8);
1773   void sarl(Register dst);
1774 
1775   void sarq(Register dst, int imm8);
1776   void sarq(Register dst);
1777 
1778   void sbbl(Address dst, int32_t imm32);
1779   void sbbl(Register dst, int32_t imm32);
1780   void sbbl(Register dst, Address src);
1781   void sbbl(Register dst, Register src);
1782 
1783   void sbbq(Address dst, int32_t imm32);
1784   void sbbq(Register dst, int32_t imm32);
1785   void sbbq(Register dst, Address src);
1786   void sbbq(Register dst, Register src);
1787 
1788   void setb(Condition cc, Register dst);
1789 
1790   void palignr(XMMRegister dst, XMMRegister src, int imm8);
1791   void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len);
1792   void evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
1793 
1794   void pblendw(XMMRegister dst, XMMRegister src, int imm8);
1795 
1796   void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8);
1797   void sha1nexte(XMMRegister dst, XMMRegister src);
1798   void sha1msg1(XMMRegister dst, XMMRegister src);
1799   void sha1msg2(XMMRegister dst, XMMRegister src);
1800   // xmm0 is implicit additional source to the following instruction.
1801   void sha256rnds2(XMMRegister dst, XMMRegister src);
1802   void sha256msg1(XMMRegister dst, XMMRegister src);
1803   void sha256msg2(XMMRegister dst, XMMRegister src);
1804 
1805   void shldl(Register dst, Register src);
1806   void shldl(Register dst, Register src, int8_t imm8);
1807 
1808   void shll(Register dst, int imm8);
1809   void shll(Register dst);
1810 
1811   void shlq(Register dst, int imm8);
1812   void shlq(Register dst);
1813 
1814   void shrdl(Register dst, Register src);
1815 
1816   void shrl(Register dst, int imm8);
1817   void shrl(Register dst);
1818 
1819   void shrq(Register dst, int imm8);
1820   void shrq(Register dst);
1821 
1822   void smovl(); // QQQ generic?
1823 
1824   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1825   void sqrtsd(XMMRegister dst, Address src);
1826   void sqrtsd(XMMRegister dst, XMMRegister src);
1827 
1828   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1829   void sqrtss(XMMRegister dst, Address src);
1830   void sqrtss(XMMRegister dst, XMMRegister src);
1831 
1832   void std();
1833 
1834   void stmxcsr( Address dst );
1835 
1836   void subl(Address dst, int32_t imm32);
1837   void subl(Address dst, Register src);
1838   void subl(Register dst, int32_t imm32);
1839   void subl(Register dst, Address src);
1840   void subl(Register dst, Register src);
1841 
1842   void subq(Address dst, int32_t imm32);
1843   void subq(Address dst, Register src);
1844   void subq(Register dst, int32_t imm32);
1845   void subq(Register dst, Address src);
1846   void subq(Register dst, Register src);
1847 
1848   // Force generation of a 4 byte immediate value even if it fits into 8bit
1849   void subl_imm32(Register dst, int32_t imm32);
1850   void subq_imm32(Register dst, int32_t imm32);
1851 
1852   // Subtract Scalar Double-Precision Floating-Point Values
1853   void subsd(XMMRegister dst, Address src);
1854   void subsd(XMMRegister dst, XMMRegister src);
1855 
1856   // Subtract Scalar Single-Precision Floating-Point Values
1857   void subss(XMMRegister dst, Address src);
1858   void subss(XMMRegister dst, XMMRegister src);
1859 
1860   void testb(Register dst, int imm8);
1861   void testb(Address dst, int imm8);
1862 
1863   void testl(Register dst, int32_t imm32);
1864   void testl(Register dst, Register src);
1865   void testl(Register dst, Address src);
1866 
1867   void testq(Register dst, int32_t imm32);
1868   void testq(Register dst, Register src);
1869   void testq(Register dst, Address src);
1870 
1871   // BMI - count trailing zeros
1872   void tzcntl(Register dst, Register src);
1873   void tzcntq(Register dst, Register src);
1874 
1875   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1876   void ucomisd(XMMRegister dst, Address src);
1877   void ucomisd(XMMRegister dst, XMMRegister src);
1878 
1879   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1880   void ucomiss(XMMRegister dst, Address src);
1881   void ucomiss(XMMRegister dst, XMMRegister src);
1882 
1883   void xabort(int8_t imm8);
1884 
1885   void xaddb(Address dst, Register src);
1886   void xaddw(Address dst, Register src);
1887   void xaddl(Address dst, Register src);
1888   void xaddq(Address dst, Register src);
1889 
1890   void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1891 
1892   void xchgb(Register reg, Address adr);
1893   void xchgw(Register reg, Address adr);
1894   void xchgl(Register reg, Address adr);
1895   void xchgl(Register dst, Register src);
1896 
1897   void xchgq(Register reg, Address adr);
1898   void xchgq(Register dst, Register src);
1899 
1900   void xend();
1901 
1902   // Get Value of Extended Control Register
1903   void xgetbv();
1904 
1905   void xorl(Register dst, int32_t imm32);
1906   void xorl(Register dst, Address src);
1907   void xorl(Register dst, Register src);
1908 
1909   void xorb(Register dst, Address src);
1910 
1911   void xorq(Register dst, Address src);
1912   void xorq(Register dst, Register src);
1913 
1914   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1915 
1916   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1917 
1918   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1919   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1920   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1921   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1922   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1923   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1924   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1925   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1926   void vfmadd231sd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1927   void vfmadd231ss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1928   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1929   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1930   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1931   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1932   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1933   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1934   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1935   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1936 
1937   void shlxl(Register dst, Register src1, Register src2);
1938   void shlxq(Register dst, Register src1, Register src2);
1939 
1940   //====================VECTOR ARITHMETIC=====================================
1941 
1942   // Add Packed Floating-Point Values
1943   void addpd(XMMRegister dst, XMMRegister src);
1944   void addpd(XMMRegister dst, Address src);
1945   void addps(XMMRegister dst, XMMRegister src);
1946   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1947   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1948   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1949   void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1950 
1951   // Subtract Packed Floating-Point Values
1952   void subpd(XMMRegister dst, XMMRegister src);
1953   void subps(XMMRegister dst, XMMRegister src);
1954   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1955   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1956   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1957   void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1958 
1959   // Multiply Packed Floating-Point Values
1960   void mulpd(XMMRegister dst, XMMRegister src);
1961   void mulpd(XMMRegister dst, Address src);
1962   void mulps(XMMRegister dst, XMMRegister src);
1963   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1964   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1965   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1966   void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1967 
1968   void vfmadd231pd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1969   void vfmadd231ps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1970   void vfmadd231pd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1971   void vfmadd231ps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1972 
1973   // Divide Packed Floating-Point Values
1974   void divpd(XMMRegister dst, XMMRegister src);
1975   void divps(XMMRegister dst, XMMRegister src);
1976   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1977   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1978   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1979   void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1980 
1981   // Sqrt Packed Floating-Point Values
1982   void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len);
1983   void vsqrtpd(XMMRegister dst, Address src, int vector_len);
1984   void vsqrtps(XMMRegister dst, XMMRegister src, int vector_len);
1985   void vsqrtps(XMMRegister dst, Address src, int vector_len);
1986 
1987   // Bitwise Logical AND of Packed Floating-Point Values
1988   void andpd(XMMRegister dst, XMMRegister src);
1989   void andps(XMMRegister dst, XMMRegister src);
1990   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1991   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1992   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1993   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1994 
1995   void unpckhpd(XMMRegister dst, XMMRegister src);
1996   void unpcklpd(XMMRegister dst, XMMRegister src);
1997 
1998   // Bitwise Logical XOR of Packed Floating-Point Values
1999   void xorpd(XMMRegister dst, XMMRegister src);
2000   void xorps(XMMRegister dst, XMMRegister src);
2001   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2002   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2003   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2004   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2005 
2006   // Add horizontal packed integers
2007   void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2008   void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2009   void phaddw(XMMRegister dst, XMMRegister src);
2010   void phaddd(XMMRegister dst, XMMRegister src);
2011 
2012   // Add packed integers
2013   void paddb(XMMRegister dst, XMMRegister src);
2014   void paddw(XMMRegister dst, XMMRegister src);
2015   void paddd(XMMRegister dst, XMMRegister src);
2016   void paddd(XMMRegister dst, Address src);
2017   void paddq(XMMRegister dst, XMMRegister src);
2018   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2019   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2020   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2021   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2022   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2023   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2024   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2025   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2026 
2027   // Sub packed integers
2028   void psubb(XMMRegister dst, XMMRegister src);
2029   void psubw(XMMRegister dst, XMMRegister src);
2030   void psubd(XMMRegister dst, XMMRegister src);
2031   void psubq(XMMRegister dst, XMMRegister src);
2032   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2033   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2034   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2035   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2036   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2037   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2038   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2039   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2040 
2041   // Multiply packed integers (only shorts and ints)
2042   void pmullw(XMMRegister dst, XMMRegister src);
2043   void pmulld(XMMRegister dst, XMMRegister src);
2044   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2045   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2046   void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2047   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2048   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2049   void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2050 
2051   // Shift left packed integers
2052   void psllw(XMMRegister dst, int shift);
2053   void pslld(XMMRegister dst, int shift);
2054   void psllq(XMMRegister dst, int shift);
2055   void psllw(XMMRegister dst, XMMRegister shift);
2056   void pslld(XMMRegister dst, XMMRegister shift);
2057   void psllq(XMMRegister dst, XMMRegister shift);
2058   void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2059   void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2060   void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2061   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2062   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2063   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2064   void vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2065 
2066   // Logical shift right packed integers
2067   void psrlw(XMMRegister dst, int shift);
2068   void psrld(XMMRegister dst, int shift);
2069   void psrlq(XMMRegister dst, int shift);
2070   void psrlw(XMMRegister dst, XMMRegister shift);
2071   void psrld(XMMRegister dst, XMMRegister shift);
2072   void psrlq(XMMRegister dst, XMMRegister shift);
2073   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2074   void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2075   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2076   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2077   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2078   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2079   void vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2080   void evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2081   void evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2082 
2083   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
2084   void psraw(XMMRegister dst, int shift);
2085   void psrad(XMMRegister dst, int shift);
2086   void psraw(XMMRegister dst, XMMRegister shift);
2087   void psrad(XMMRegister dst, XMMRegister shift);
2088   void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2089   void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2090   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2091   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2092 
2093   // And packed integers
2094   void pand(XMMRegister dst, XMMRegister src);
2095   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2096   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2097   void vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2098 
2099   // Andn packed integers
2100   void pandn(XMMRegister dst, XMMRegister src);
2101   void vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2102 
2103   // Or packed integers
2104   void por(XMMRegister dst, XMMRegister src);
2105   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2106   void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2107   void vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2108 
2109   // Xor packed integers
2110   void pxor(XMMRegister dst, XMMRegister src);
2111   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2112   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2113   void evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2114   void evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2115 
2116 
2117   // vinserti forms
2118   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2119   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2120   void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2121   void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2122   void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2123 
2124   // vinsertf forms
2125   void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2126   void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2127   void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2128   void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2129   void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
2130   void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
2131 
2132   // vextracti forms
2133   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8);
2134   void vextracti128(Address dst, XMMRegister src, uint8_t imm8);
2135   void vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2136   void vextracti32x4(Address dst, XMMRegister src, uint8_t imm8);
2137   void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
2138   void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2139   void vextracti64x4(Address dst, XMMRegister src, uint8_t imm8);
2140 
2141   // vextractf forms
2142   void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8);
2143   void vextractf128(Address dst, XMMRegister src, uint8_t imm8);
2144   void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2145   void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8);
2146   void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
2147   void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
2148   void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8);
2149 
2150   // xmm/mem sourced byte/word/dword/qword replicate
2151   void vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len);
2152   void vpbroadcastb(XMMRegister dst, Address src, int vector_len);
2153   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
2154   void vpbroadcastw(XMMRegister dst, Address src, int vector_len);
2155   void vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len);
2156   void vpbroadcastd(XMMRegister dst, Address src, int vector_len);
2157   void vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len);
2158   void vpbroadcastq(XMMRegister dst, Address src, int vector_len);
2159 
2160   void evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len);
2161   void evbroadcasti64x2(XMMRegister dst, Address src, int vector_len);
2162 
2163   // scalar single/double precision replicate
2164   void vpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len);
2165   void vpbroadcastss(XMMRegister dst, Address src, int vector_len);
2166   void vpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len);
2167   void vpbroadcastsd(XMMRegister dst, Address src, int vector_len);
2168 
2169   // gpr sourced byte/word/dword/qword replicate
2170   void evpbroadcastb(XMMRegister dst, Register src, int vector_len);
2171   void evpbroadcastw(XMMRegister dst, Register src, int vector_len);
2172   void evpbroadcastd(XMMRegister dst, Register src, int vector_len);
2173   void evpbroadcastq(XMMRegister dst, Register src, int vector_len);
2174 
2175   void evpgatherdd(XMMRegister dst, KRegister k1, Address src, int vector_len);
2176 
2177   // Carry-Less Multiplication Quadword
2178   void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
2179   void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
2180   void evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len);
2181   // AVX instruction which is used to clear upper 128 bits of YMM registers and
2182   // to avoid transaction penalty between AVX and SSE states. There is no
2183   // penalty if legacy SSE instructions are encoded using VEX prefix because
2184   // they always clear upper 128 bits. It should be used before calling
2185   // runtime code and native libraries.
2186   void vzeroupper();
2187 
2188   // AVX support for vectorized conditional move (float/double). The following two instructions used only coupled.
2189   void cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len);
2190   void blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len);
2191   void cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len);
2192   void blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len);
2193   void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len);
2194 
2195  protected:
2196   // Next instructions require address alignment 16 bytes SSE mode.
2197   // They should be called only from corresponding MacroAssembler instructions.
2198   void andpd(XMMRegister dst, Address src);
2199   void andps(XMMRegister dst, Address src);
2200   void xorpd(XMMRegister dst, Address src);
2201   void xorps(XMMRegister dst, Address src);
2202 
2203 };
2204 
2205 // The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions.
2206 // Specific set functions are for specialized use, else defaults or whatever was supplied to object construction
2207 // are applied.
2208 class InstructionAttr {
2209 public:
InstructionAttr(int vector_len,bool rex_vex_w,bool legacy_mode,bool no_reg_mask,bool uses_vl)2210   InstructionAttr(
2211     int vector_len,     // The length of vector to be applied in encoding - for both AVX and EVEX
2212     bool rex_vex_w,     // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true
2213     bool legacy_mode,   // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX
2214     bool no_reg_mask,   // when true, k0 is used when EVEX encoding is chosen, else embedded_opmask_register_specifier is used
2215     bool uses_vl)       // This instruction may have legacy constraints based on vector length for EVEX
2216     :
2217       _avx_vector_len(vector_len),
2218       _rex_vex_w(rex_vex_w),
2219       _rex_vex_w_reverted(false),
2220       _legacy_mode(legacy_mode),
2221       _no_reg_mask(no_reg_mask),
2222       _uses_vl(uses_vl),
2223       _tuple_type(Assembler::EVEX_ETUP),
2224       _input_size_in_bits(Assembler::EVEX_NObit),
2225       _is_evex_instruction(false),
2226       _evex_encoding(0),
2227       _is_clear_context(true),
2228       _is_extended_context(false),
2229       _embedded_opmask_register_specifier(0), // hard code k0
2230       _current_assembler(NULL) {
2231     if (UseAVX < 3) _legacy_mode = true;
2232   }
2233 
~InstructionAttr()2234   ~InstructionAttr() {
2235     if (_current_assembler != NULL) {
2236       _current_assembler->clear_attributes();
2237     }
2238     _current_assembler = NULL;
2239   }
2240 
2241 private:
2242   int  _avx_vector_len;
2243   bool _rex_vex_w;
2244   bool _rex_vex_w_reverted;
2245   bool _legacy_mode;
2246   bool _no_reg_mask;
2247   bool _uses_vl;
2248   int  _tuple_type;
2249   int  _input_size_in_bits;
2250   bool _is_evex_instruction;
2251   int  _evex_encoding;
2252   bool _is_clear_context;
2253   bool _is_extended_context;
2254   int _embedded_opmask_register_specifier;
2255 
2256   Assembler *_current_assembler;
2257 
2258 public:
2259   // query functions for field accessors
get_vector_len(void) const2260   int  get_vector_len(void) const { return _avx_vector_len; }
is_rex_vex_w(void) const2261   bool is_rex_vex_w(void) const { return _rex_vex_w; }
is_rex_vex_w_reverted(void)2262   bool is_rex_vex_w_reverted(void) { return _rex_vex_w_reverted; }
is_legacy_mode(void) const2263   bool is_legacy_mode(void) const { return _legacy_mode; }
is_no_reg_mask(void) const2264   bool is_no_reg_mask(void) const { return _no_reg_mask; }
uses_vl(void) const2265   bool uses_vl(void) const { return _uses_vl; }
get_tuple_type(void) const2266   int  get_tuple_type(void) const { return _tuple_type; }
get_input_size(void) const2267   int  get_input_size(void) const { return _input_size_in_bits; }
is_evex_instruction(void) const2268   int  is_evex_instruction(void) const { return _is_evex_instruction; }
get_evex_encoding(void) const2269   int  get_evex_encoding(void) const { return _evex_encoding; }
is_clear_context(void) const2270   bool is_clear_context(void) const { return _is_clear_context; }
is_extended_context(void) const2271   bool is_extended_context(void) const { return _is_extended_context; }
get_embedded_opmask_register_specifier(void) const2272   int get_embedded_opmask_register_specifier(void) const { return _embedded_opmask_register_specifier; }
2273 
2274   // Set the vector len manually
set_vector_len(int vector_len)2275   void set_vector_len(int vector_len) { _avx_vector_len = vector_len; }
2276 
2277   // Set revert rex_vex_w for avx encoding
set_rex_vex_w_reverted(void)2278   void set_rex_vex_w_reverted(void) { _rex_vex_w_reverted = true; }
2279 
2280   // Set rex_vex_w based on state
set_rex_vex_w(bool state)2281   void set_rex_vex_w(bool state) { _rex_vex_w = state; }
2282 
2283   // Set the instruction to be encoded in AVX mode
set_is_legacy_mode(void)2284   void set_is_legacy_mode(void) { _legacy_mode = true; }
2285 
2286   // Set the current instuction to be encoded as an EVEX instuction
set_is_evex_instruction(void)2287   void set_is_evex_instruction(void) { _is_evex_instruction = true; }
2288 
2289   // Internal encoding data used in compressed immediate offset programming
set_evex_encoding(int value)2290   void set_evex_encoding(int value) { _evex_encoding = value; }
2291 
2292   // Set the Evex.Z field to be used to clear all non directed XMM/YMM/ZMM components
reset_is_clear_context(void)2293   void reset_is_clear_context(void) { _is_clear_context = false; }
2294 
2295   // Map back to current asembler so that we can manage object level assocation
set_current_assembler(Assembler * current_assembler)2296   void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; }
2297 
2298   // Address modifiers used for compressed displacement calculation
set_address_attributes(int tuple_type,int input_size_in_bits)2299   void set_address_attributes(int tuple_type, int input_size_in_bits) {
2300     if (VM_Version::supports_evex()) {
2301       _tuple_type = tuple_type;
2302       _input_size_in_bits = input_size_in_bits;
2303     }
2304   }
2305 
2306   // Set embedded opmask register specifier.
set_embedded_opmask_register_specifier(KRegister mask)2307   void set_embedded_opmask_register_specifier(KRegister mask) {
2308     _embedded_opmask_register_specifier = (*mask).encoding() & 0x7;
2309   }
2310 
2311 };
2312 
2313 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP
2314