1 /*
2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "c1/c1_Compilation.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_Runtime1.hpp"
32 #include "c1/c1_ValueStack.hpp"
33 #include "ci/ciArray.hpp"
34 #include "ci/ciObjArrayKlass.hpp"
35 #include "ci/ciTypeArrayKlass.hpp"
36 #include "gc/shared/c1/barrierSetC1.hpp"
37 #include "runtime/sharedRuntime.hpp"
38 #include "runtime/stubRoutines.hpp"
39 #include "vmreg_x86.inline.hpp"
40 
41 #ifdef ASSERT
42 #define __ gen()->lir(__FILE__, __LINE__)->
43 #else
44 #define __ gen()->lir()->
45 #endif
46 
47 // Item will be loaded into a byte register; Intel only
load_byte_item()48 void LIRItem::load_byte_item() {
49   load_item();
50   LIR_Opr res = result();
51 
52   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
53     // make sure that it is a byte register
54     assert(!value()->type()->is_float() && !value()->type()->is_double(),
55            "can't load floats in byte register");
56     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
57     __ move(res, reg);
58 
59     _result = reg;
60   }
61 }
62 
63 
load_nonconstant()64 void LIRItem::load_nonconstant() {
65   LIR_Opr r = value()->operand();
66   if (r->is_constant()) {
67     _result = r;
68   } else {
69     load_item();
70   }
71 }
72 
73 //--------------------------------------------------------------
74 //               LIRGenerator
75 //--------------------------------------------------------------
76 
77 
exceptionOopOpr()78 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
exceptionPcOpr()79 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
divInOpr()80 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
divOutOpr()81 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
remOutOpr()82 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
shiftCountOpr()83 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
syncLockOpr()84 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
syncTempOpr()85 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
getThreadTemp()86 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
87 
88 
result_register_for(ValueType * type,bool callee)89 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
90   LIR_Opr opr;
91   switch (type->tag()) {
92     case intTag:     opr = FrameMap::rax_opr;          break;
93     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
94     case longTag:    opr = FrameMap::long0_opr;        break;
95     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
96     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
97 
98     case addressTag:
99     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
100   }
101 
102   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
103   return opr;
104 }
105 
106 
rlock_byte(BasicType type)107 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
108   LIR_Opr reg = new_register(T_INT);
109   set_vreg_flag(reg, LIRGenerator::byte_reg);
110   return reg;
111 }
112 
113 
114 //--------- loading items into registers --------------------------------
115 
116 
117 // i486 instructions can inline constants
can_store_as_constant(Value v,BasicType type) const118 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
119   if (type == T_SHORT || type == T_CHAR) {
120     // there is no immediate move of word values in asembler_i486.?pp
121     return false;
122   }
123   Constant* c = v->as_Constant();
124   if (c && c->state_before() == NULL) {
125     // constants of any type can be stored directly, except for
126     // unloaded object constants.
127     return true;
128   }
129   return false;
130 }
131 
132 
can_inline_as_constant(Value v) const133 bool LIRGenerator::can_inline_as_constant(Value v) const {
134   if (v->type()->tag() == longTag) return false;
135   return v->type()->tag() != objectTag ||
136     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
137 }
138 
139 
can_inline_as_constant(LIR_Const * c) const140 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
141   if (c->type() == T_LONG) return false;
142   return c->type() != T_OBJECT || c->as_jobject() == NULL;
143 }
144 
145 
safepoint_poll_register()146 LIR_Opr LIRGenerator::safepoint_poll_register() {
147   NOT_LP64( if (SafepointMechanism::uses_thread_local_poll()) { return new_register(T_ADDRESS); } )
148   return LIR_OprFact::illegalOpr;
149 }
150 
151 
generate_address(LIR_Opr base,LIR_Opr index,int shift,int disp,BasicType type)152 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
153                                             int shift, int disp, BasicType type) {
154   assert(base->is_register(), "must be");
155   if (index->is_constant()) {
156     LIR_Const *constant = index->as_constant_ptr();
157 #ifdef _LP64
158     jlong c;
159     if (constant->type() == T_INT) {
160       c = (jlong(index->as_jint()) << shift) + disp;
161     } else {
162       assert(constant->type() == T_LONG, "should be");
163       c = (index->as_jlong() << shift) + disp;
164     }
165     if ((jlong)((jint)c) == c) {
166       return new LIR_Address(base, (jint)c, type);
167     } else {
168       LIR_Opr tmp = new_register(T_LONG);
169       __ move(index, tmp);
170       return new LIR_Address(base, tmp, type);
171     }
172 #else
173     return new LIR_Address(base,
174                            ((intx)(constant->as_jint()) << shift) + disp,
175                            type);
176 #endif
177   } else {
178     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
179   }
180 }
181 
182 
emit_array_address(LIR_Opr array_opr,LIR_Opr index_opr,BasicType type)183 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
184                                               BasicType type) {
185   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
186 
187   LIR_Address* addr;
188   if (index_opr->is_constant()) {
189     int elem_size = type2aelembytes(type);
190     addr = new LIR_Address(array_opr,
191                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
192   } else {
193 #ifdef _LP64
194     if (index_opr->type() == T_INT) {
195       LIR_Opr tmp = new_register(T_LONG);
196       __ convert(Bytecodes::_i2l, index_opr, tmp);
197       index_opr = tmp;
198     }
199 #endif // _LP64
200     addr =  new LIR_Address(array_opr,
201                             index_opr,
202                             LIR_Address::scale(type),
203                             offset_in_bytes, type);
204   }
205   return addr;
206 }
207 
208 
load_immediate(int x,BasicType type)209 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
210   LIR_Opr r = NULL;
211   if (type == T_LONG) {
212     r = LIR_OprFact::longConst(x);
213   } else if (type == T_INT) {
214     r = LIR_OprFact::intConst(x);
215   } else {
216     ShouldNotReachHere();
217   }
218   return r;
219 }
220 
increment_counter(address counter,BasicType type,int step)221 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
222   LIR_Opr pointer = new_pointer_register();
223   __ move(LIR_OprFact::intptrConst(counter), pointer);
224   LIR_Address* addr = new LIR_Address(pointer, type);
225   increment_counter(addr, step);
226 }
227 
228 
increment_counter(LIR_Address * addr,int step)229 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
230   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
231 }
232 
cmp_mem_int(LIR_Condition condition,LIR_Opr base,int disp,int c,CodeEmitInfo * info)233 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
234   __ cmp_mem_int(condition, base, disp, c, info);
235 }
236 
237 
cmp_reg_mem(LIR_Condition condition,LIR_Opr reg,LIR_Opr base,int disp,BasicType type,CodeEmitInfo * info)238 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
239   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
240 }
241 
242 
strength_reduce_multiply(LIR_Opr left,jint c,LIR_Opr result,LIR_Opr tmp)243 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
244   if (tmp->is_valid() && c > 0 && c < max_jint) {
245     if (is_power_of_2(c + 1)) {
246       __ move(left, tmp);
247       __ shift_left(left, log2_jint(c + 1), left);
248       __ sub(left, tmp, result);
249       return true;
250     } else if (is_power_of_2(c - 1)) {
251       __ move(left, tmp);
252       __ shift_left(left, log2_jint(c - 1), left);
253       __ add(left, tmp, result);
254       return true;
255     }
256   }
257   return false;
258 }
259 
260 
store_stack_parameter(LIR_Opr item,ByteSize offset_from_sp)261 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
262   BasicType type = item->type();
263   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
264 }
265 
array_store_check(LIR_Opr value,LIR_Opr array,CodeEmitInfo * store_check_info,ciMethod * profiled_method,int profiled_bci)266 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
267   LIR_Opr tmp1 = new_register(objectType);
268   LIR_Opr tmp2 = new_register(objectType);
269   LIR_Opr tmp3 = new_register(objectType);
270   __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
271 }
272 
273 //----------------------------------------------------------------------
274 //             visitor functions
275 //----------------------------------------------------------------------
276 
do_MonitorEnter(MonitorEnter * x)277 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
278   assert(x->is_pinned(),"");
279   LIRItem obj(x->obj(), this);
280   obj.load_item();
281 
282   set_no_result(x);
283 
284   // "lock" stores the address of the monitor stack slot, so this is not an oop
285   LIR_Opr lock = new_register(T_INT);
286   // Need a scratch register for biased locking on x86
287   LIR_Opr scratch = LIR_OprFact::illegalOpr;
288   if (UseBiasedLocking) {
289     scratch = new_register(T_INT);
290   }
291 
292   CodeEmitInfo* info_for_exception = NULL;
293   if (x->needs_null_check()) {
294     info_for_exception = state_for(x);
295   }
296   // this CodeEmitInfo must not have the xhandlers because here the
297   // object is already locked (xhandlers expect object to be unlocked)
298   CodeEmitInfo* info = state_for(x, x->state(), true);
299   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
300                         x->monitor_no(), info_for_exception, info);
301 }
302 
303 
do_MonitorExit(MonitorExit * x)304 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
305   assert(x->is_pinned(),"");
306 
307   LIRItem obj(x->obj(), this);
308   obj.dont_load_item();
309 
310   LIR_Opr lock = new_register(T_INT);
311   LIR_Opr obj_temp = new_register(T_INT);
312   set_no_result(x);
313   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
314 }
315 
316 
317 // _ineg, _lneg, _fneg, _dneg
do_NegateOp(NegateOp * x)318 void LIRGenerator::do_NegateOp(NegateOp* x) {
319   LIRItem value(x->x(), this);
320   value.set_destroys_register();
321   value.load_item();
322   LIR_Opr reg = rlock(x);
323 
324   LIR_Opr tmp = LIR_OprFact::illegalOpr;
325 #ifdef _LP64
326   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
327     if (x->type()->tag() == doubleTag) {
328       tmp = new_register(T_DOUBLE);
329       __ move(LIR_OprFact::doubleConst(-0.0), tmp);
330     }
331     else if (x->type()->tag() == floatTag) {
332       tmp = new_register(T_FLOAT);
333       __ move(LIR_OprFact::floatConst(-0.0), tmp);
334     }
335   }
336 #endif
337   __ negate(value.result(), reg, tmp);
338 
339   set_result(x, round_item(reg));
340 }
341 
342 
343 // for  _fadd, _fmul, _fsub, _fdiv, _frem
344 //      _dadd, _dmul, _dsub, _ddiv, _drem
do_ArithmeticOp_FPU(ArithmeticOp * x)345 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
346   LIRItem left(x->x(),  this);
347   LIRItem right(x->y(), this);
348   LIRItem* left_arg  = &left;
349   LIRItem* right_arg = &right;
350   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
351   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
352   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
353     left.load_item();
354   } else {
355     left.dont_load_item();
356   }
357 
358   // do not load right operand if it is a constant.  only 0 and 1 are
359   // loaded because there are special instructions for loading them
360   // without memory access (not needed for SSE2 instructions)
361   bool must_load_right = false;
362   if (right.is_constant()) {
363     LIR_Const* c = right.result()->as_constant_ptr();
364     assert(c != NULL, "invalid constant");
365     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
366 
367     if (c->type() == T_FLOAT) {
368       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
369     } else {
370       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
371     }
372   }
373 
374   if (must_load_both) {
375     // frem and drem destroy also right operand, so move it to a new register
376     right.set_destroys_register();
377     right.load_item();
378   } else if (right.is_register() || must_load_right) {
379     right.load_item();
380   } else {
381     right.dont_load_item();
382   }
383   LIR_Opr reg = rlock(x);
384   LIR_Opr tmp = LIR_OprFact::illegalOpr;
385   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
386     tmp = new_register(T_DOUBLE);
387   }
388 
389   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
390     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
391     LIR_Opr fpu0, fpu1;
392     if (x->op() == Bytecodes::_frem) {
393       fpu0 = LIR_OprFact::single_fpu(0);
394       fpu1 = LIR_OprFact::single_fpu(1);
395     } else {
396       fpu0 = LIR_OprFact::double_fpu(0);
397       fpu1 = LIR_OprFact::double_fpu(1);
398     }
399     __ move(right.result(), fpu1); // order of left and right operand is important!
400     __ move(left.result(), fpu0);
401     __ rem (fpu0, fpu1, fpu0);
402     __ move(fpu0, reg);
403 
404   } else {
405     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
406   }
407 
408   set_result(x, round_item(reg));
409 }
410 
411 
412 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
do_ArithmeticOp_Long(ArithmeticOp * x)413 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
414   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
415     // long division is implemented as a direct call into the runtime
416     LIRItem left(x->x(), this);
417     LIRItem right(x->y(), this);
418 
419     // the check for division by zero destroys the right operand
420     right.set_destroys_register();
421 
422     BasicTypeList signature(2);
423     signature.append(T_LONG);
424     signature.append(T_LONG);
425     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
426 
427     // check for division by zero (destroys registers of right operand!)
428     CodeEmitInfo* info = state_for(x);
429 
430     const LIR_Opr result_reg = result_register_for(x->type());
431     left.load_item_force(cc->at(1));
432     right.load_item();
433 
434     __ move(right.result(), cc->at(0));
435 
436     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
437     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
438 
439     address entry = NULL;
440     switch (x->op()) {
441     case Bytecodes::_lrem:
442       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
443       break; // check if dividend is 0 is done elsewhere
444     case Bytecodes::_ldiv:
445       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
446       break; // check if dividend is 0 is done elsewhere
447     case Bytecodes::_lmul:
448       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
449       break;
450     default:
451       ShouldNotReachHere();
452     }
453 
454     LIR_Opr result = rlock_result(x);
455     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
456     __ move(result_reg, result);
457   } else if (x->op() == Bytecodes::_lmul) {
458     // missing test if instr is commutative and if we should swap
459     LIRItem left(x->x(), this);
460     LIRItem right(x->y(), this);
461 
462     // right register is destroyed by the long mul, so it must be
463     // copied to a new register.
464     right.set_destroys_register();
465 
466     left.load_item();
467     right.load_item();
468 
469     LIR_Opr reg = FrameMap::long0_opr;
470     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
471     LIR_Opr result = rlock_result(x);
472     __ move(reg, result);
473   } else {
474     // missing test if instr is commutative and if we should swap
475     LIRItem left(x->x(), this);
476     LIRItem right(x->y(), this);
477 
478     left.load_item();
479     // don't load constants to save register
480     right.load_nonconstant();
481     rlock_result(x);
482     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
483   }
484 }
485 
486 
487 
488 // for: _iadd, _imul, _isub, _idiv, _irem
do_ArithmeticOp_Int(ArithmeticOp * x)489 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
490   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
491     // The requirements for division and modulo
492     // input : rax,: dividend                         min_int
493     //         reg: divisor   (may not be rax,/rdx)   -1
494     //
495     // output: rax,: quotient  (= rax, idiv reg)       min_int
496     //         rdx: remainder (= rax, irem reg)       0
497 
498     // rax, and rdx will be destroyed
499 
500     // Note: does this invalidate the spec ???
501     LIRItem right(x->y(), this);
502     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
503 
504     // call state_for before load_item_force because state_for may
505     // force the evaluation of other instructions that are needed for
506     // correct debug info.  Otherwise the live range of the fix
507     // register might be too long.
508     CodeEmitInfo* info = state_for(x);
509 
510     left.load_item_force(divInOpr());
511 
512     right.load_item();
513 
514     LIR_Opr result = rlock_result(x);
515     LIR_Opr result_reg;
516     if (x->op() == Bytecodes::_idiv) {
517       result_reg = divOutOpr();
518     } else {
519       result_reg = remOutOpr();
520     }
521 
522     if (!ImplicitDiv0Checks) {
523       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
524       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
525       // Idiv/irem cannot trap (passing info would generate an assertion).
526       info = NULL;
527     }
528     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
529     if (x->op() == Bytecodes::_irem) {
530       __ irem(left.result(), right.result(), result_reg, tmp, info);
531     } else if (x->op() == Bytecodes::_idiv) {
532       __ idiv(left.result(), right.result(), result_reg, tmp, info);
533     } else {
534       ShouldNotReachHere();
535     }
536 
537     __ move(result_reg, result);
538   } else {
539     // missing test if instr is commutative and if we should swap
540     LIRItem left(x->x(),  this);
541     LIRItem right(x->y(), this);
542     LIRItem* left_arg = &left;
543     LIRItem* right_arg = &right;
544     if (x->is_commutative() && left.is_stack() && right.is_register()) {
545       // swap them if left is real stack (or cached) and right is real register(not cached)
546       left_arg = &right;
547       right_arg = &left;
548     }
549 
550     left_arg->load_item();
551 
552     // do not need to load right, as we can handle stack and constants
553     if (x->op() == Bytecodes::_imul ) {
554       // check if we can use shift instead
555       bool use_constant = false;
556       bool use_tmp = false;
557       if (right_arg->is_constant()) {
558         jint iconst = right_arg->get_jint_constant();
559         if (iconst > 0 && iconst < max_jint) {
560           if (is_power_of_2(iconst)) {
561             use_constant = true;
562           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
563             use_constant = true;
564             use_tmp = true;
565           }
566         }
567       }
568       if (use_constant) {
569         right_arg->dont_load_item();
570       } else {
571         right_arg->load_item();
572       }
573       LIR_Opr tmp = LIR_OprFact::illegalOpr;
574       if (use_tmp) {
575         tmp = new_register(T_INT);
576       }
577       rlock_result(x);
578 
579       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
580     } else {
581       right_arg->dont_load_item();
582       rlock_result(x);
583       LIR_Opr tmp = LIR_OprFact::illegalOpr;
584       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
585     }
586   }
587 }
588 
589 
do_ArithmeticOp(ArithmeticOp * x)590 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
591   // when an operand with use count 1 is the left operand, then it is
592   // likely that no move for 2-operand-LIR-form is necessary
593   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
594     x->swap_operands();
595   }
596 
597   ValueTag tag = x->type()->tag();
598   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
599   switch (tag) {
600     case floatTag:
601     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
602     case longTag:    do_ArithmeticOp_Long(x); return;
603     case intTag:     do_ArithmeticOp_Int(x);  return;
604     default:         ShouldNotReachHere();    return;
605   }
606 }
607 
608 
609 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
do_ShiftOp(ShiftOp * x)610 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
611   // count must always be in rcx
612   LIRItem value(x->x(), this);
613   LIRItem count(x->y(), this);
614 
615   ValueTag elemType = x->type()->tag();
616   bool must_load_count = !count.is_constant() || elemType == longTag;
617   if (must_load_count) {
618     // count for long must be in register
619     count.load_item_force(shiftCountOpr());
620   } else {
621     count.dont_load_item();
622   }
623   value.load_item();
624   LIR_Opr reg = rlock_result(x);
625 
626   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
627 }
628 
629 
630 // _iand, _land, _ior, _lor, _ixor, _lxor
do_LogicOp(LogicOp * x)631 void LIRGenerator::do_LogicOp(LogicOp* x) {
632   // when an operand with use count 1 is the left operand, then it is
633   // likely that no move for 2-operand-LIR-form is necessary
634   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
635     x->swap_operands();
636   }
637 
638   LIRItem left(x->x(), this);
639   LIRItem right(x->y(), this);
640 
641   left.load_item();
642   right.load_nonconstant();
643   LIR_Opr reg = rlock_result(x);
644 
645   logic_op(x->op(), reg, left.result(), right.result());
646 }
647 
648 
649 
650 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
do_CompareOp(CompareOp * x)651 void LIRGenerator::do_CompareOp(CompareOp* x) {
652   LIRItem left(x->x(), this);
653   LIRItem right(x->y(), this);
654   ValueTag tag = x->x()->type()->tag();
655   if (tag == longTag) {
656     left.set_destroys_register();
657   }
658   left.load_item();
659   right.load_item();
660   LIR_Opr reg = rlock_result(x);
661 
662   if (x->x()->type()->is_float_kind()) {
663     Bytecodes::Code code = x->op();
664     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
665   } else if (x->x()->type()->tag() == longTag) {
666     __ lcmp2int(left.result(), right.result(), reg);
667   } else {
668     Unimplemented();
669   }
670 }
671 
atomic_cmpxchg(BasicType type,LIR_Opr addr,LIRItem & cmp_value,LIRItem & new_value)672 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
673   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
674   if (type == T_OBJECT || type == T_ARRAY) {
675     cmp_value.load_item_force(FrameMap::rax_oop_opr);
676     new_value.load_item();
677     __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
678   } else if (type == T_INT) {
679     cmp_value.load_item_force(FrameMap::rax_opr);
680     new_value.load_item();
681     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
682   } else if (type == T_LONG) {
683     cmp_value.load_item_force(FrameMap::long0_opr);
684     new_value.load_item_force(FrameMap::long1_opr);
685     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
686   } else {
687     Unimplemented();
688   }
689   LIR_Opr result = new_register(T_INT);
690   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
691            result, T_INT);
692   return result;
693 }
694 
atomic_xchg(BasicType type,LIR_Opr addr,LIRItem & value)695 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
696   bool is_oop = type == T_OBJECT || type == T_ARRAY;
697   LIR_Opr result = new_register(type);
698   value.load_item();
699   // Because we want a 2-arg form of xchg and xadd
700   __ move(value.result(), result);
701   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
702   __ xchg(addr, result, result, LIR_OprFact::illegalOpr);
703   return result;
704 }
705 
atomic_add(BasicType type,LIR_Opr addr,LIRItem & value)706 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
707   LIR_Opr result = new_register(type);
708   value.load_item();
709   // Because we want a 2-arg form of xchg and xadd
710   __ move(value.result(), result);
711   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
712   __ xadd(addr, result, result, LIR_OprFact::illegalOpr);
713   return result;
714 }
715 
do_FmaIntrinsic(Intrinsic * x)716 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
717   assert(x->number_of_arguments() == 3, "wrong type");
718   assert(UseFMA, "Needs FMA instructions support.");
719   LIRItem value(x->argument_at(0), this);
720   LIRItem value1(x->argument_at(1), this);
721   LIRItem value2(x->argument_at(2), this);
722 
723   value2.set_destroys_register();
724 
725   value.load_item();
726   value1.load_item();
727   value2.load_item();
728 
729   LIR_Opr calc_input = value.result();
730   LIR_Opr calc_input1 = value1.result();
731   LIR_Opr calc_input2 = value2.result();
732   LIR_Opr calc_result = rlock_result(x);
733 
734   switch (x->id()) {
735   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
736   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
737   default:                    ShouldNotReachHere();
738   }
739 
740 }
741 
742 
do_MathIntrinsic(Intrinsic * x)743 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
744   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
745 
746   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
747       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
748       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
749       x->id() == vmIntrinsics::_dlog10) {
750     do_LibmIntrinsic(x);
751     return;
752   }
753 
754   LIRItem value(x->argument_at(0), this);
755 
756   bool use_fpu = false;
757   if (UseSSE < 2) {
758     value.set_destroys_register();
759   }
760   value.load_item();
761 
762   LIR_Opr calc_input = value.result();
763   LIR_Opr calc_result = rlock_result(x);
764 
765   LIR_Opr tmp = LIR_OprFact::illegalOpr;
766 #ifdef _LP64
767   if (UseAVX > 2 && (!VM_Version::supports_avx512vl()) &&
768       (x->id() == vmIntrinsics::_dabs)) {
769     tmp = new_register(T_DOUBLE);
770     __ move(LIR_OprFact::doubleConst(-0.0), tmp);
771   }
772 #endif
773 
774   switch(x->id()) {
775     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, tmp); break;
776     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
777     default:                    ShouldNotReachHere();
778   }
779 
780   if (use_fpu) {
781     __ move(calc_result, x->operand());
782   }
783 }
784 
do_LibmIntrinsic(Intrinsic * x)785 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
786   LIRItem value(x->argument_at(0), this);
787   value.set_destroys_register();
788 
789   LIR_Opr calc_result = rlock_result(x);
790   LIR_Opr result_reg = result_register_for(x->type());
791 
792   CallingConvention* cc = NULL;
793 
794   if (x->id() == vmIntrinsics::_dpow) {
795     LIRItem value1(x->argument_at(1), this);
796 
797     value1.set_destroys_register();
798 
799     BasicTypeList signature(2);
800     signature.append(T_DOUBLE);
801     signature.append(T_DOUBLE);
802     cc = frame_map()->c_calling_convention(&signature);
803     value.load_item_force(cc->at(0));
804     value1.load_item_force(cc->at(1));
805   } else {
806     BasicTypeList signature(1);
807     signature.append(T_DOUBLE);
808     cc = frame_map()->c_calling_convention(&signature);
809     value.load_item_force(cc->at(0));
810   }
811 
812 #ifndef _LP64
813   LIR_Opr tmp = FrameMap::fpu0_double_opr;
814   result_reg = tmp;
815   switch(x->id()) {
816     case vmIntrinsics::_dexp:
817       if (StubRoutines::dexp() != NULL) {
818         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
819       } else {
820         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
821       }
822       break;
823     case vmIntrinsics::_dlog:
824       if (StubRoutines::dlog() != NULL) {
825         __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
826       } else {
827         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
828       }
829       break;
830     case vmIntrinsics::_dlog10:
831       if (StubRoutines::dlog10() != NULL) {
832        __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
833       } else {
834         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
835       }
836       break;
837     case vmIntrinsics::_dpow:
838       if (StubRoutines::dpow() != NULL) {
839         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
840       } else {
841         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
842       }
843       break;
844     case vmIntrinsics::_dsin:
845       if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) {
846         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
847       } else {
848         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
849       }
850       break;
851     case vmIntrinsics::_dcos:
852       if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) {
853         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
854       } else {
855         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
856       }
857       break;
858     case vmIntrinsics::_dtan:
859       if (StubRoutines::dtan() != NULL) {
860         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
861       } else {
862         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
863       }
864       break;
865     default:  ShouldNotReachHere();
866   }
867 #else
868   switch (x->id()) {
869     case vmIntrinsics::_dexp:
870       if (StubRoutines::dexp() != NULL) {
871         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
872       } else {
873         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
874       }
875       break;
876     case vmIntrinsics::_dlog:
877       if (StubRoutines::dlog() != NULL) {
878       __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
879       } else {
880         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
881       }
882       break;
883     case vmIntrinsics::_dlog10:
884       if (StubRoutines::dlog10() != NULL) {
885       __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
886       } else {
887         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
888       }
889       break;
890     case vmIntrinsics::_dpow:
891        if (StubRoutines::dpow() != NULL) {
892       __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
893       } else {
894         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
895       }
896       break;
897     case vmIntrinsics::_dsin:
898       if (StubRoutines::dsin() != NULL) {
899         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
900       } else {
901         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
902       }
903       break;
904     case vmIntrinsics::_dcos:
905       if (StubRoutines::dcos() != NULL) {
906         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
907       } else {
908         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
909       }
910       break;
911     case vmIntrinsics::_dtan:
912        if (StubRoutines::dtan() != NULL) {
913       __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
914       } else {
915         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
916       }
917       break;
918     default:  ShouldNotReachHere();
919   }
920 #endif // _LP64
921   __ move(result_reg, calc_result);
922 }
923 
do_ArrayCopy(Intrinsic * x)924 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
925   assert(x->number_of_arguments() == 5, "wrong type");
926 
927   // Make all state_for calls early since they can emit code
928   CodeEmitInfo* info = state_for(x, x->state());
929 
930   LIRItem src(x->argument_at(0), this);
931   LIRItem src_pos(x->argument_at(1), this);
932   LIRItem dst(x->argument_at(2), this);
933   LIRItem dst_pos(x->argument_at(3), this);
934   LIRItem length(x->argument_at(4), this);
935 
936   // operands for arraycopy must use fixed registers, otherwise
937   // LinearScan will fail allocation (because arraycopy always needs a
938   // call)
939 
940 #ifndef _LP64
941   src.load_item_force     (FrameMap::rcx_oop_opr);
942   src_pos.load_item_force (FrameMap::rdx_opr);
943   dst.load_item_force     (FrameMap::rax_oop_opr);
944   dst_pos.load_item_force (FrameMap::rbx_opr);
945   length.load_item_force  (FrameMap::rdi_opr);
946   LIR_Opr tmp =           (FrameMap::rsi_opr);
947 #else
948 
949   // The java calling convention will give us enough registers
950   // so that on the stub side the args will be perfect already.
951   // On the other slow/special case side we call C and the arg
952   // positions are not similar enough to pick one as the best.
953   // Also because the java calling convention is a "shifted" version
954   // of the C convention we can process the java args trivially into C
955   // args without worry of overwriting during the xfer
956 
957   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
958   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
959   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
960   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
961   length.load_item_force  (FrameMap::as_opr(j_rarg4));
962 
963   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
964 #endif // LP64
965 
966   set_no_result(x);
967 
968   int flags;
969   ciArrayKlass* expected_type;
970   arraycopy_helper(x, &flags, &expected_type);
971 
972   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
973 }
974 
do_update_CRC32(Intrinsic * x)975 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
976   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
977   // Make all state_for calls early since they can emit code
978   LIR_Opr result = rlock_result(x);
979   int flags = 0;
980   switch (x->id()) {
981     case vmIntrinsics::_updateCRC32: {
982       LIRItem crc(x->argument_at(0), this);
983       LIRItem val(x->argument_at(1), this);
984       // val is destroyed by update_crc32
985       val.set_destroys_register();
986       crc.load_item();
987       val.load_item();
988       __ update_crc32(crc.result(), val.result(), result);
989       break;
990     }
991     case vmIntrinsics::_updateBytesCRC32:
992     case vmIntrinsics::_updateByteBufferCRC32: {
993       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
994 
995       LIRItem crc(x->argument_at(0), this);
996       LIRItem buf(x->argument_at(1), this);
997       LIRItem off(x->argument_at(2), this);
998       LIRItem len(x->argument_at(3), this);
999       buf.load_item();
1000       off.load_nonconstant();
1001 
1002       LIR_Opr index = off.result();
1003       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1004       if(off.result()->is_constant()) {
1005         index = LIR_OprFact::illegalOpr;
1006        offset += off.result()->as_jint();
1007       }
1008       LIR_Opr base_op = buf.result();
1009 
1010 #ifndef _LP64
1011       if (!is_updateBytes) { // long b raw address
1012          base_op = new_register(T_INT);
1013          __ convert(Bytecodes::_l2i, buf.result(), base_op);
1014       }
1015 #else
1016       if (index->is_valid()) {
1017         LIR_Opr tmp = new_register(T_LONG);
1018         __ convert(Bytecodes::_i2l, index, tmp);
1019         index = tmp;
1020       }
1021 #endif
1022 
1023       if (is_updateBytes) {
1024         base_op = access_resolve(IS_NOT_NULL | ACCESS_READ, base_op);
1025       }
1026 
1027       LIR_Address* a = new LIR_Address(base_op,
1028                                        index,
1029                                        offset,
1030                                        T_BYTE);
1031       BasicTypeList signature(3);
1032       signature.append(T_INT);
1033       signature.append(T_ADDRESS);
1034       signature.append(T_INT);
1035       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1036       const LIR_Opr result_reg = result_register_for(x->type());
1037 
1038       LIR_Opr addr = new_pointer_register();
1039       __ leal(LIR_OprFact::address(a), addr);
1040 
1041       crc.load_item_force(cc->at(0));
1042       __ move(addr, cc->at(1));
1043       len.load_item_force(cc->at(2));
1044 
1045       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1046       __ move(result_reg, result);
1047 
1048       break;
1049     }
1050     default: {
1051       ShouldNotReachHere();
1052     }
1053   }
1054 }
1055 
do_update_CRC32C(Intrinsic * x)1056 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1057   Unimplemented();
1058 }
1059 
do_vectorizedMismatch(Intrinsic * x)1060 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1061   assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support");
1062 
1063   // Make all state_for calls early since they can emit code
1064   LIR_Opr result = rlock_result(x);
1065 
1066   LIRItem a(x->argument_at(0), this); // Object
1067   LIRItem aOffset(x->argument_at(1), this); // long
1068   LIRItem b(x->argument_at(2), this); // Object
1069   LIRItem bOffset(x->argument_at(3), this); // long
1070   LIRItem length(x->argument_at(4), this); // int
1071   LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int
1072 
1073   a.load_item();
1074   aOffset.load_nonconstant();
1075   b.load_item();
1076   bOffset.load_nonconstant();
1077 
1078   long constant_aOffset = 0;
1079   LIR_Opr result_aOffset = aOffset.result();
1080   if (result_aOffset->is_constant()) {
1081     constant_aOffset = result_aOffset->as_jlong();
1082     result_aOffset = LIR_OprFact::illegalOpr;
1083   }
1084   LIR_Opr result_a = access_resolve(ACCESS_READ, a.result());
1085 
1086   long constant_bOffset = 0;
1087   LIR_Opr result_bOffset = bOffset.result();
1088   if (result_bOffset->is_constant()) {
1089     constant_bOffset = result_bOffset->as_jlong();
1090     result_bOffset = LIR_OprFact::illegalOpr;
1091   }
1092   LIR_Opr result_b = access_resolve(ACCESS_READ, b.result());
1093 
1094 #ifndef _LP64
1095   result_a = new_register(T_INT);
1096   __ convert(Bytecodes::_l2i, a.result(), result_a);
1097   result_b = new_register(T_INT);
1098   __ convert(Bytecodes::_l2i, b.result(), result_b);
1099 #endif
1100 
1101 
1102   LIR_Address* addr_a = new LIR_Address(result_a,
1103                                         result_aOffset,
1104                                         constant_aOffset,
1105                                         T_BYTE);
1106 
1107   LIR_Address* addr_b = new LIR_Address(result_b,
1108                                         result_bOffset,
1109                                         constant_bOffset,
1110                                         T_BYTE);
1111 
1112   BasicTypeList signature(4);
1113   signature.append(T_ADDRESS);
1114   signature.append(T_ADDRESS);
1115   signature.append(T_INT);
1116   signature.append(T_INT);
1117   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1118   const LIR_Opr result_reg = result_register_for(x->type());
1119 
1120   LIR_Opr ptr_addr_a = new_pointer_register();
1121   __ leal(LIR_OprFact::address(addr_a), ptr_addr_a);
1122 
1123   LIR_Opr ptr_addr_b = new_pointer_register();
1124   __ leal(LIR_OprFact::address(addr_b), ptr_addr_b);
1125 
1126   __ move(ptr_addr_a, cc->at(0));
1127   __ move(ptr_addr_b, cc->at(1));
1128   length.load_item_force(cc->at(2));
1129   log2ArrayIndexScale.load_item_force(cc->at(3));
1130 
1131   __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args());
1132   __ move(result_reg, result);
1133 }
1134 
1135 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1136 // _i2b, _i2c, _i2s
fixed_register_for(BasicType type)1137 LIR_Opr fixed_register_for(BasicType type) {
1138   switch (type) {
1139     case T_FLOAT:  return FrameMap::fpu0_float_opr;
1140     case T_DOUBLE: return FrameMap::fpu0_double_opr;
1141     case T_INT:    return FrameMap::rax_opr;
1142     case T_LONG:   return FrameMap::long0_opr;
1143     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
1144   }
1145 }
1146 
do_Convert(Convert * x)1147 void LIRGenerator::do_Convert(Convert* x) {
1148   // flags that vary for the different operations and different SSE-settings
1149   bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
1150 
1151   switch (x->op()) {
1152     case Bytecodes::_i2l: // fall through
1153     case Bytecodes::_l2i: // fall through
1154     case Bytecodes::_i2b: // fall through
1155     case Bytecodes::_i2c: // fall through
1156     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1157 
1158     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
1159     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1160     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
1161     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1162     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1163     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1164     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1165     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1166     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1167     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1168     default: ShouldNotReachHere();
1169   }
1170 
1171   LIRItem value(x->value(), this);
1172   value.load_item();
1173   LIR_Opr input = value.result();
1174   LIR_Opr result = rlock(x);
1175 
1176   // arguments of lir_convert
1177   LIR_Opr conv_input = input;
1178   LIR_Opr conv_result = result;
1179   ConversionStub* stub = NULL;
1180 
1181   if (fixed_input) {
1182     conv_input = fixed_register_for(input->type());
1183     __ move(input, conv_input);
1184   }
1185 
1186   assert(fixed_result == false || round_result == false, "cannot set both");
1187   if (fixed_result) {
1188     conv_result = fixed_register_for(result->type());
1189   } else if (round_result) {
1190     result = new_register(result->type());
1191     set_vreg_flag(result, must_start_in_memory);
1192   }
1193 
1194   if (needs_stub) {
1195     stub = new ConversionStub(x->op(), conv_input, conv_result);
1196   }
1197 
1198   __ convert(x->op(), conv_input, conv_result, stub);
1199 
1200   if (result != conv_result) {
1201     __ move(conv_result, result);
1202   }
1203 
1204   assert(result->is_virtual(), "result must be virtual register");
1205   set_result(x, result);
1206 }
1207 
1208 
do_NewInstance(NewInstance * x)1209 void LIRGenerator::do_NewInstance(NewInstance* x) {
1210   print_if_not_loaded(x);
1211 
1212   CodeEmitInfo* info = state_for(x, x->state());
1213   LIR_Opr reg = result_register_for(x->type());
1214   new_instance(reg, x->klass(), x->is_unresolved(),
1215                        FrameMap::rcx_oop_opr,
1216                        FrameMap::rdi_oop_opr,
1217                        FrameMap::rsi_oop_opr,
1218                        LIR_OprFact::illegalOpr,
1219                        FrameMap::rdx_metadata_opr, info);
1220   LIR_Opr result = rlock_result(x);
1221   __ move(reg, result);
1222 }
1223 
1224 
do_NewTypeArray(NewTypeArray * x)1225 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1226   CodeEmitInfo* info = state_for(x, x->state());
1227 
1228   LIRItem length(x->length(), this);
1229   length.load_item_force(FrameMap::rbx_opr);
1230 
1231   LIR_Opr reg = result_register_for(x->type());
1232   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1233   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1234   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1235   LIR_Opr tmp4 = reg;
1236   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1237   LIR_Opr len = length.result();
1238   BasicType elem_type = x->elt_type();
1239 
1240   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1241 
1242   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1243   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1244 
1245   LIR_Opr result = rlock_result(x);
1246   __ move(reg, result);
1247 }
1248 
1249 
do_NewObjectArray(NewObjectArray * x)1250 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1251   LIRItem length(x->length(), this);
1252   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1253   // and therefore provide the state before the parameters have been consumed
1254   CodeEmitInfo* patching_info = NULL;
1255   if (!x->klass()->is_loaded() || PatchALot) {
1256     patching_info =  state_for(x, x->state_before());
1257   }
1258 
1259   CodeEmitInfo* info = state_for(x, x->state());
1260 
1261   const LIR_Opr reg = result_register_for(x->type());
1262   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1263   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1264   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1265   LIR_Opr tmp4 = reg;
1266   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1267 
1268   length.load_item_force(FrameMap::rbx_opr);
1269   LIR_Opr len = length.result();
1270 
1271   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1272   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1273   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1274     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1275   }
1276   klass2reg_with_patching(klass_reg, obj, patching_info);
1277   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1278 
1279   LIR_Opr result = rlock_result(x);
1280   __ move(reg, result);
1281 }
1282 
1283 
do_NewMultiArray(NewMultiArray * x)1284 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1285   Values* dims = x->dims();
1286   int i = dims->length();
1287   LIRItemList* items = new LIRItemList(i, i, NULL);
1288   while (i-- > 0) {
1289     LIRItem* size = new LIRItem(dims->at(i), this);
1290     items->at_put(i, size);
1291   }
1292 
1293   // Evaluate state_for early since it may emit code.
1294   CodeEmitInfo* patching_info = NULL;
1295   if (!x->klass()->is_loaded() || PatchALot) {
1296     patching_info = state_for(x, x->state_before());
1297 
1298     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1299     // clone all handlers (NOTE: Usually this is handled transparently
1300     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1301     // is done explicitly here because a stub isn't being used).
1302     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1303   }
1304   CodeEmitInfo* info = state_for(x, x->state());
1305 
1306   i = dims->length();
1307   while (i-- > 0) {
1308     LIRItem* size = items->at(i);
1309     size->load_nonconstant();
1310 
1311     store_stack_parameter(size->result(), in_ByteSize(i*4));
1312   }
1313 
1314   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1315   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1316 
1317   LIR_Opr rank = FrameMap::rbx_opr;
1318   __ move(LIR_OprFact::intConst(x->rank()), rank);
1319   LIR_Opr varargs = FrameMap::rcx_opr;
1320   __ move(FrameMap::rsp_opr, varargs);
1321   LIR_OprList* args = new LIR_OprList(3);
1322   args->append(klass_reg);
1323   args->append(rank);
1324   args->append(varargs);
1325   LIR_Opr reg = result_register_for(x->type());
1326   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1327                   LIR_OprFact::illegalOpr,
1328                   reg, args, info);
1329 
1330   LIR_Opr result = rlock_result(x);
1331   __ move(reg, result);
1332 }
1333 
1334 
do_BlockBegin(BlockBegin * x)1335 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1336   // nothing to do for now
1337 }
1338 
1339 
do_CheckCast(CheckCast * x)1340 void LIRGenerator::do_CheckCast(CheckCast* x) {
1341   LIRItem obj(x->obj(), this);
1342 
1343   CodeEmitInfo* patching_info = NULL;
1344   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1345     // must do this before locking the destination register as an oop register,
1346     // and before the obj is loaded (the latter is for deoptimization)
1347     patching_info = state_for(x, x->state_before());
1348   }
1349   obj.load_item();
1350 
1351   // info for exceptions
1352   CodeEmitInfo* info_for_exception =
1353       (x->needs_exception_state() ? state_for(x) :
1354                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1355 
1356   CodeStub* stub;
1357   if (x->is_incompatible_class_change_check()) {
1358     assert(patching_info == NULL, "can't patch this");
1359     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1360   } else if (x->is_invokespecial_receiver_check()) {
1361     assert(patching_info == NULL, "can't patch this");
1362     stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none);
1363   } else {
1364     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1365   }
1366   LIR_Opr reg = rlock_result(x);
1367   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1368   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1369     tmp3 = new_register(objectType);
1370   }
1371   __ checkcast(reg, obj.result(), x->klass(),
1372                new_register(objectType), new_register(objectType), tmp3,
1373                x->direct_compare(), info_for_exception, patching_info, stub,
1374                x->profiled_method(), x->profiled_bci());
1375 }
1376 
1377 
do_InstanceOf(InstanceOf * x)1378 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1379   LIRItem obj(x->obj(), this);
1380 
1381   // result and test object may not be in same register
1382   LIR_Opr reg = rlock_result(x);
1383   CodeEmitInfo* patching_info = NULL;
1384   if ((!x->klass()->is_loaded() || PatchALot)) {
1385     // must do this before locking the destination register as an oop register
1386     patching_info = state_for(x, x->state_before());
1387   }
1388   obj.load_item();
1389   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1390   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1391     tmp3 = new_register(objectType);
1392   }
1393   __ instanceof(reg, obj.result(), x->klass(),
1394                 new_register(objectType), new_register(objectType), tmp3,
1395                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1396 }
1397 
1398 
do_If(If * x)1399 void LIRGenerator::do_If(If* x) {
1400   assert(x->number_of_sux() == 2, "inconsistency");
1401   ValueTag tag = x->x()->type()->tag();
1402   bool is_safepoint = x->is_safepoint();
1403 
1404   If::Condition cond = x->cond();
1405 
1406   LIRItem xitem(x->x(), this);
1407   LIRItem yitem(x->y(), this);
1408   LIRItem* xin = &xitem;
1409   LIRItem* yin = &yitem;
1410 
1411   if (tag == longTag) {
1412     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1413     // mirror for other conditions
1414     if (cond == If::gtr || cond == If::leq) {
1415       cond = Instruction::mirror(cond);
1416       xin = &yitem;
1417       yin = &xitem;
1418     }
1419     xin->set_destroys_register();
1420   }
1421   xin->load_item();
1422   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1423     // inline long zero
1424     yin->dont_load_item();
1425   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1426     // longs cannot handle constants at right side
1427     yin->load_item();
1428   } else {
1429     yin->dont_load_item();
1430   }
1431 
1432   LIR_Opr left = xin->result();
1433   LIR_Opr right = yin->result();
1434 
1435   set_no_result(x);
1436 
1437   // add safepoint before generating condition code so it can be recomputed
1438   if (x->is_safepoint()) {
1439     // increment backedge counter if needed
1440     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1441         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1442     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1443   }
1444 
1445   __ cmp(lir_cond(cond), left, right);
1446   // Generate branch profiling. Profiling code doesn't kill flags.
1447   profile_branch(x, cond);
1448   move_to_phi(x->state());
1449   if (x->x()->type()->is_float_kind()) {
1450     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1451   } else {
1452     __ branch(lir_cond(cond), right->type(), x->tsux());
1453   }
1454   assert(x->default_sux() == x->fsux(), "wrong destination above");
1455   __ jump(x->default_sux());
1456 }
1457 
1458 
getThreadPointer()1459 LIR_Opr LIRGenerator::getThreadPointer() {
1460 #ifdef _LP64
1461   return FrameMap::as_pointer_opr(r15_thread);
1462 #else
1463   LIR_Opr result = new_register(T_INT);
1464   __ get_thread(result);
1465   return result;
1466 #endif //
1467 }
1468 
trace_block_entry(BlockBegin * block)1469 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1470   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1471   LIR_OprList* args = new LIR_OprList();
1472   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1473   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1474 }
1475 
1476 
volatile_field_store(LIR_Opr value,LIR_Address * address,CodeEmitInfo * info)1477 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1478                                         CodeEmitInfo* info) {
1479   if (address->type() == T_LONG) {
1480     address = new LIR_Address(address->base(),
1481                               address->index(), address->scale(),
1482                               address->disp(), T_DOUBLE);
1483     // Transfer the value atomically by using FP moves.  This means
1484     // the value has to be moved between CPU and FPU registers.  It
1485     // always has to be moved through spill slot since there's no
1486     // quick way to pack the value into an SSE register.
1487     LIR_Opr temp_double = new_register(T_DOUBLE);
1488     LIR_Opr spill = new_register(T_LONG);
1489     set_vreg_flag(spill, must_start_in_memory);
1490     __ move(value, spill);
1491     __ volatile_move(spill, temp_double, T_LONG);
1492     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1493   } else {
1494     __ store(value, address, info);
1495   }
1496 }
1497 
volatile_field_load(LIR_Address * address,LIR_Opr result,CodeEmitInfo * info)1498 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1499                                        CodeEmitInfo* info) {
1500   if (address->type() == T_LONG) {
1501     address = new LIR_Address(address->base(),
1502                               address->index(), address->scale(),
1503                               address->disp(), T_DOUBLE);
1504     // Transfer the value atomically by using FP moves.  This means
1505     // the value has to be moved between CPU and FPU registers.  In
1506     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1507     // SSE2+ mode it can be moved directly.
1508     LIR_Opr temp_double = new_register(T_DOUBLE);
1509     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1510     __ volatile_move(temp_double, result, T_LONG);
1511     if (UseSSE < 2) {
1512       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1513       set_vreg_flag(result, must_start_in_memory);
1514     }
1515   } else {
1516     __ load(address, result, info);
1517   }
1518 }
1519