1 /*
2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "c1/c1_Instruction.hpp"
27 #include "c1/c1_LinearScan.hpp"
28 #include "utilities/bitMap.inline.hpp"
29 
30 
31 //----------------------------------------------------------------------
32 // Allocation of FPU stack slots (Intel x86 only)
33 //----------------------------------------------------------------------
34 
allocate_fpu_stack()35 void LinearScan::allocate_fpu_stack() {
36   // First compute which FPU registers are live at the start of each basic block
37   // (To minimize the amount of work we have to do if we have to merge FPU stacks)
38   if (ComputeExactFPURegisterUsage) {
39     Interval* intervals_in_register, *intervals_in_memory;
40     create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL);
41 
42     // ignore memory intervals by overwriting intervals_in_memory
43     // the dummy interval is needed to enforce the walker to walk until the given id:
44     // without it, the walker stops when the unhandled-list is empty -> live information
45     // beyond this point would be incorrect.
46     Interval* dummy_interval = new Interval(any_reg);
47     dummy_interval->add_range(max_jint - 2, max_jint - 1);
48     dummy_interval->set_next(Interval::end());
49     intervals_in_memory = dummy_interval;
50 
51     IntervalWalker iw(this, intervals_in_register, intervals_in_memory);
52 
53     const int num_blocks = block_count();
54     for (int i = 0; i < num_blocks; i++) {
55       BlockBegin* b = block_at(i);
56 
57       // register usage is only needed for merging stacks -> compute only
58       // when more than one predecessor.
59       // the block must not have any spill moves at the beginning (checked by assertions)
60       // spill moves would use intervals that are marked as handled and so the usage bit
61       // would been set incorrectly
62 
63       // NOTE: the check for number_of_preds > 1 is necessary. A block with only one
64       //       predecessor may have spill moves at the begin of the block.
65       //       If an interval ends at the current instruction id, it is not possible
66       //       to decide if the register is live or not at the block begin -> the
67       //       register information would be incorrect.
68       if (b->number_of_preds() > 1) {
69         int id = b->first_lir_instruction_id();
70         ResourceBitMap regs(FrameMap::nof_fpu_regs);
71 
72         iw.walk_to(id);   // walk after the first instruction (always a label) of the block
73         assert(iw.current_position() == id, "did not walk completely to id");
74 
75         // Only consider FPU values in registers
76         Interval* interval = iw.active_first(fixedKind);
77         while (interval != Interval::end()) {
78           int reg = interval->assigned_reg();
79           assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register");
80           assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)");
81           assert(interval->from() <= id && id < interval->to(), "interval out of range");
82 
83 #ifndef PRODUCT
84           if (TraceFPURegisterUsage) {
85             tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print();
86           }
87 #endif
88 
89           regs.set_bit(reg - pd_first_fpu_reg);
90           interval = interval->next();
91         }
92 
93         b->set_fpu_register_usage(regs);
94 
95 #ifndef PRODUCT
96         if (TraceFPURegisterUsage) {
97           tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->cr();
98         }
99 #endif
100       }
101     }
102   }
103 
104   FpuStackAllocator alloc(ir()->compilation(), this);
105   _fpu_stack_allocator = &alloc;
106   alloc.allocate();
107   _fpu_stack_allocator = NULL;
108 }
109 
110 
FpuStackAllocator(Compilation * compilation,LinearScan * allocator)111 FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator)
112   : _compilation(compilation)
113   , _allocator(allocator)
114   , _lir(NULL)
115   , _pos(-1)
116   , _sim(compilation)
117   , _temp_sim(compilation)
118 {}
119 
allocate()120 void FpuStackAllocator::allocate() {
121   int num_blocks = allocator()->block_count();
122   for (int i = 0; i < num_blocks; i++) {
123     // Set up to process block
124     BlockBegin* block = allocator()->block_at(i);
125     intArray* fpu_stack_state = block->fpu_stack_state();
126 
127 #ifndef PRODUCT
128     if (TraceFPUStack) {
129       tty->cr();
130       tty->print_cr("------- Begin of new Block %d -------", block->block_id());
131     }
132 #endif
133 
134     assert(fpu_stack_state != NULL ||
135            block->end()->as_Base() != NULL ||
136            block->is_set(BlockBegin::exception_entry_flag),
137            "FPU stack state must be present due to linear-scan order for FPU stack allocation");
138     // note: exception handler entries always start with an empty fpu stack
139     //       because stack merging would be too complicated
140 
141     if (fpu_stack_state != NULL) {
142       sim()->read_state(fpu_stack_state);
143     } else {
144       sim()->clear();
145     }
146 
147 #ifndef PRODUCT
148     if (TraceFPUStack) {
149       tty->print("Reading FPU state for block %d:", block->block_id());
150       sim()->print();
151       tty->cr();
152     }
153 #endif
154 
155     allocate_block(block);
156     CHECK_BAILOUT();
157   }
158 }
159 
allocate_block(BlockBegin * block)160 void FpuStackAllocator::allocate_block(BlockBegin* block) {
161   bool processed_merge = false;
162   LIR_OpList* insts = block->lir()->instructions_list();
163   set_lir(block->lir());
164   set_pos(0);
165 
166 
167   // Note: insts->length() may change during loop
168   while (pos() < insts->length()) {
169     LIR_Op* op = insts->at(pos());
170     _debug_information_computed = false;
171 
172 #ifndef PRODUCT
173     if (TraceFPUStack) {
174       op->print();
175     }
176     check_invalid_lir_op(op);
177 #endif
178 
179     LIR_OpBranch* branch = op->as_OpBranch();
180     LIR_Op1* op1 = op->as_Op1();
181     LIR_Op2* op2 = op->as_Op2();
182     LIR_OpCall* opCall = op->as_OpCall();
183 
184     if (branch != NULL && branch->block() != NULL) {
185       if (!processed_merge) {
186         // propagate stack at first branch to a successor
187         processed_merge = true;
188         bool required_merge = merge_fpu_stack_with_successors(block);
189 
190         assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches");
191       }
192 
193     } else if (op1 != NULL) {
194       handle_op1(op1);
195     } else if (op2 != NULL) {
196       handle_op2(op2);
197     } else if (opCall != NULL) {
198       handle_opCall(opCall);
199     }
200 
201     compute_debug_information(op);
202 
203     set_pos(1 + pos());
204   }
205 
206   // Propagate stack when block does not end with branch
207   if (!processed_merge) {
208     merge_fpu_stack_with_successors(block);
209   }
210 }
211 
212 
compute_debug_information(LIR_Op * op)213 void FpuStackAllocator::compute_debug_information(LIR_Op* op) {
214   if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) {
215     visitor.visit(op);
216 
217     // exception handling
218     if (allocator()->compilation()->has_exception_handlers()) {
219       XHandlers* xhandlers = visitor.all_xhandler();
220       int n = xhandlers->length();
221       for (int k = 0; k < n; k++) {
222         allocate_exception_handler(xhandlers->handler_at(k));
223       }
224     } else {
225       assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
226     }
227 
228     // compute debug information
229     int n = visitor.info_count();
230     assert(n > 0, "should not visit operation otherwise");
231 
232     for (int j = 0; j < n; j++) {
233       CodeEmitInfo* info = visitor.info_at(j);
234       // Compute debug information
235       allocator()->compute_debug_info(info, op->id());
236     }
237   }
238   _debug_information_computed = true;
239 }
240 
allocate_exception_handler(XHandler * xhandler)241 void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) {
242   if (!sim()->is_empty()) {
243     LIR_List* old_lir = lir();
244     int old_pos = pos();
245     intArray* old_state = sim()->write_state();
246 
247 #ifndef PRODUCT
248     if (TraceFPUStack) {
249       tty->cr();
250       tty->print_cr("------- begin of exception handler -------");
251     }
252 #endif
253 
254     if (xhandler->entry_code() == NULL) {
255       // need entry code to clear FPU stack
256       LIR_List* entry_code = new LIR_List(_compilation);
257       entry_code->jump(xhandler->entry_block());
258       xhandler->set_entry_code(entry_code);
259     }
260 
261     LIR_OpList* insts = xhandler->entry_code()->instructions_list();
262     set_lir(xhandler->entry_code());
263     set_pos(0);
264 
265     // Note: insts->length() may change during loop
266     while (pos() < insts->length()) {
267       LIR_Op* op = insts->at(pos());
268 
269 #ifndef PRODUCT
270       if (TraceFPUStack) {
271         op->print();
272       }
273       check_invalid_lir_op(op);
274 #endif
275 
276       switch (op->code()) {
277         case lir_move:
278           assert(op->as_Op1() != NULL, "must be LIR_Op1");
279           assert(pos() != insts->length() - 1, "must not be last operation");
280 
281           handle_op1((LIR_Op1*)op);
282           break;
283 
284         case lir_branch:
285           assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch");
286           assert(pos() == insts->length() - 1, "must be last operation");
287 
288           // remove all remaining dead registers from FPU stack
289           clear_fpu_stack(LIR_OprFact::illegalOpr);
290           break;
291 
292         default:
293           // other operations not allowed in exception entry code
294           ShouldNotReachHere();
295       }
296 
297       set_pos(pos() + 1);
298     }
299 
300 #ifndef PRODUCT
301     if (TraceFPUStack) {
302       tty->cr();
303       tty->print_cr("------- end of exception handler -------");
304     }
305 #endif
306 
307     set_lir(old_lir);
308     set_pos(old_pos);
309     sim()->read_state(old_state);
310   }
311 }
312 
313 
fpu_num(LIR_Opr opr)314 int FpuStackAllocator::fpu_num(LIR_Opr opr) {
315   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
316   return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo();
317 }
318 
tos_offset(LIR_Opr opr)319 int FpuStackAllocator::tos_offset(LIR_Opr opr) {
320   return sim()->offset_from_tos(fpu_num(opr));
321 }
322 
323 
to_fpu_stack(LIR_Opr opr)324 LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
325   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
326 
327   int stack_offset = tos_offset(opr);
328   if (opr->is_single_fpu()) {
329     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
330   } else {
331     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
332     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
333   }
334 }
335 
to_fpu_stack_top(LIR_Opr opr,bool dont_check_offset)336 LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
337   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
338   assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");
339 
340   int stack_offset = 0;
341   if (opr->is_single_fpu()) {
342     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
343   } else {
344     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
345     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
346   }
347 }
348 
349 
350 
insert_op(LIR_Op * op)351 void FpuStackAllocator::insert_op(LIR_Op* op) {
352   lir()->insert_before(pos(), op);
353   set_pos(1 + pos());
354 }
355 
356 
insert_exchange(int offset)357 void FpuStackAllocator::insert_exchange(int offset) {
358   if (offset > 0) {
359     LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
360     insert_op(fxch_op);
361     sim()->swap(offset);
362 
363 #ifndef PRODUCT
364     if (TraceFPUStack) {
365       tty->print("Exchanged register: %d         New state: ", sim()->get_slot(0)); sim()->print(); tty->cr();
366     }
367 #endif
368 
369   }
370 }
371 
insert_exchange(LIR_Opr opr)372 void FpuStackAllocator::insert_exchange(LIR_Opr opr) {
373   insert_exchange(tos_offset(opr));
374 }
375 
376 
insert_free(int offset)377 void FpuStackAllocator::insert_free(int offset) {
378   // move stack slot to the top of stack and then pop it
379   insert_exchange(offset);
380 
381   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
382   insert_op(fpop);
383   sim()->pop();
384 
385 #ifndef PRODUCT
386     if (TraceFPUStack) {
387       tty->print("Inserted pop                   New state: "); sim()->print(); tty->cr();
388     }
389 #endif
390 }
391 
392 
insert_free_if_dead(LIR_Opr opr)393 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) {
394   if (sim()->contains(fpu_num(opr))) {
395     int res_slot = tos_offset(opr);
396     insert_free(res_slot);
397   }
398 }
399 
insert_free_if_dead(LIR_Opr opr,LIR_Opr ignore)400 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) {
401   if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) {
402     int res_slot = tos_offset(opr);
403     insert_free(res_slot);
404   }
405 }
406 
insert_copy(LIR_Opr from,LIR_Opr to)407 void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) {
408   int offset = tos_offset(from);
409   LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
410   insert_op(fld);
411 
412   sim()->push(fpu_num(to));
413 
414 #ifndef PRODUCT
415   if (TraceFPUStack) {
416     tty->print("Inserted copy (%d -> %d)         New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr();
417   }
418 #endif
419 }
420 
do_rename(LIR_Opr from,LIR_Opr to)421 void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) {
422   sim()->rename(fpu_num(from), fpu_num(to));
423 }
424 
do_push(LIR_Opr opr)425 void FpuStackAllocator::do_push(LIR_Opr opr) {
426   sim()->push(fpu_num(opr));
427 }
428 
pop_if_last_use(LIR_Op * op,LIR_Opr opr)429 void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
430   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
431   assert(tos_offset(opr) == 0, "can only pop stack top");
432 
433   if (opr->is_last_use()) {
434     op->set_fpu_pop_count(1);
435     sim()->pop();
436   }
437 }
438 
pop_always(LIR_Op * op,LIR_Opr opr)439 void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) {
440   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
441   assert(tos_offset(opr) == 0, "can only pop stack top");
442 
443   op->set_fpu_pop_count(1);
444   sim()->pop();
445 }
446 
clear_fpu_stack(LIR_Opr preserve)447 void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
448   int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
449   while (sim()->stack_size() > result_stack_size) {
450     assert(!sim()->slot_is_empty(0), "not allowed");
451 
452     if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
453       insert_free(0);
454     } else {
455       // move "preserve" to bottom of stack so that all other stack slots can be popped
456       insert_exchange(sim()->stack_size() - 1);
457     }
458   }
459 }
460 
461 
handle_op1(LIR_Op1 * op1)462 void FpuStackAllocator::handle_op1(LIR_Op1* op1) {
463   LIR_Opr in  = op1->in_opr();
464   LIR_Opr res = op1->result_opr();
465 
466   LIR_Opr new_in  = in;  // new operands relative to the actual fpu stack top
467   LIR_Opr new_res = res;
468 
469   // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments,
470   //       so checks for is_float_kind() are necessary inside the cases
471   switch (op1->code()) {
472 
473     case lir_return: {
474       // FPU-Stack must only contain the (optional) fpu return value.
475       // All remaining dead values are popped from the stack
476       // If the input operand is a fpu-register, it is exchanged to the bottom of the stack
477 
478       clear_fpu_stack(in);
479       if (in->is_fpu_register() && !in->is_xmm_register()) {
480         new_in = to_fpu_stack_top(in);
481       }
482 
483       break;
484     }
485 
486     case lir_move: {
487       if (in->is_fpu_register() && !in->is_xmm_register()) {
488         if (res->is_xmm_register()) {
489           // move from fpu register to xmm register (necessary for operations that
490           // are not available in the SSE instruction set)
491           insert_exchange(in);
492           new_in = to_fpu_stack_top(in);
493           pop_always(op1, in);
494 
495         } else if (res->is_fpu_register() && !res->is_xmm_register()) {
496           // move from fpu-register to fpu-register:
497           // * input and result register equal:
498           //   nothing to do
499           // * input register is last use:
500           //   rename the input register to result register -> input register
501           //   not present on fpu-stack afterwards
502           // * input register not last use:
503           //   duplicate input register to result register to preserve input
504           //
505           // Note: The LIR-Assembler does not produce any code for fpu register moves,
506           //       so input and result stack index must be equal
507 
508           if (fpu_num(in) == fpu_num(res)) {
509             // nothing to do
510           } else if (in->is_last_use()) {
511             insert_free_if_dead(res);//, in);
512             do_rename(in, res);
513           } else {
514             insert_free_if_dead(res);
515             insert_copy(in, res);
516           }
517           new_in = to_fpu_stack(res);
518           new_res = new_in;
519 
520         } else {
521           // move from fpu-register to memory
522           // input operand must be on top of stack
523 
524           insert_exchange(in);
525 
526           // create debug information here because afterwards the register may have been popped
527           compute_debug_information(op1);
528 
529           new_in = to_fpu_stack_top(in);
530           pop_if_last_use(op1, in);
531         }
532 
533       } else if (res->is_fpu_register() && !res->is_xmm_register()) {
534         // move from memory/constant to fpu register
535         // result is pushed on the stack
536 
537         insert_free_if_dead(res);
538 
539         // create debug information before register is pushed
540         compute_debug_information(op1);
541 
542         do_push(res);
543         new_res = to_fpu_stack_top(res);
544       }
545       break;
546     }
547 
548     case lir_neg: {
549       if (in->is_fpu_register() && !in->is_xmm_register()) {
550         assert(res->is_fpu_register() && !res->is_xmm_register(), "must be");
551         assert(in->is_last_use(), "old value gets destroyed");
552 
553         insert_free_if_dead(res, in);
554         insert_exchange(in);
555         new_in = to_fpu_stack_top(in);
556 
557         do_rename(in, res);
558         new_res = to_fpu_stack_top(res);
559       }
560       break;
561     }
562 
563     case lir_convert: {
564       Bytecodes::Code bc = op1->as_OpConvert()->bytecode();
565       switch (bc) {
566         case Bytecodes::_d2f:
567         case Bytecodes::_f2d:
568           assert(res->is_fpu_register(), "must be");
569           assert(in->is_fpu_register(), "must be");
570 
571           if (!in->is_xmm_register() && !res->is_xmm_register()) {
572             // this is quite the same as a move from fpu-register to fpu-register
573             // Note: input and result operands must have different types
574             if (fpu_num(in) == fpu_num(res)) {
575               // nothing to do
576               new_in = to_fpu_stack(in);
577             } else if (in->is_last_use()) {
578               insert_free_if_dead(res);//, in);
579               new_in = to_fpu_stack(in);
580               do_rename(in, res);
581             } else {
582               insert_free_if_dead(res);
583               insert_copy(in, res);
584               new_in = to_fpu_stack_top(in, true);
585             }
586             new_res = to_fpu_stack(res);
587           }
588 
589           break;
590 
591         case Bytecodes::_i2f:
592         case Bytecodes::_l2f:
593         case Bytecodes::_i2d:
594         case Bytecodes::_l2d:
595           assert(res->is_fpu_register(), "must be");
596           if (!res->is_xmm_register()) {
597             insert_free_if_dead(res);
598             do_push(res);
599             new_res = to_fpu_stack_top(res);
600           }
601           break;
602 
603         case Bytecodes::_f2i:
604         case Bytecodes::_d2i:
605           assert(in->is_fpu_register(), "must be");
606           if (!in->is_xmm_register()) {
607             insert_exchange(in);
608             new_in = to_fpu_stack_top(in);
609 
610             // TODO: update registes of stub
611           }
612           break;
613 
614         case Bytecodes::_f2l:
615         case Bytecodes::_d2l:
616           assert(in->is_fpu_register(), "must be");
617           if (!in->is_xmm_register()) {
618             insert_exchange(in);
619             new_in = to_fpu_stack_top(in);
620             pop_always(op1, in);
621           }
622           break;
623 
624         case Bytecodes::_i2l:
625         case Bytecodes::_l2i:
626         case Bytecodes::_i2b:
627         case Bytecodes::_i2c:
628         case Bytecodes::_i2s:
629           // no fpu operands
630           break;
631 
632         default:
633           ShouldNotReachHere();
634       }
635       break;
636     }
637 
638     case lir_roundfp: {
639       assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register");
640       assert(res->is_stack(), "result must be on stack");
641 
642       insert_exchange(in);
643       new_in = to_fpu_stack_top(in);
644       pop_if_last_use(op1, in);
645       break;
646     }
647 
648     default: {
649       assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation");
650     }
651   }
652 
653   op1->set_in_opr(new_in);
654   op1->set_result_opr(new_res);
655 }
656 
handle_op2(LIR_Op2 * op2)657 void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
658   LIR_Opr left  = op2->in_opr1();
659   if (!left->is_float_kind()) {
660     return;
661   }
662   if (left->is_xmm_register()) {
663     return;
664   }
665 
666   LIR_Opr right = op2->in_opr2();
667   LIR_Opr res   = op2->result_opr();
668   LIR_Opr new_left  = left;  // new operands relative to the actual fpu stack top
669   LIR_Opr new_right = right;
670   LIR_Opr new_res   = res;
671 
672   assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers");
673 
674   switch (op2->code()) {
675     case lir_cmp:
676     case lir_cmp_fd2i:
677     case lir_ucmp_fd2i:
678     case lir_assert: {
679       assert(left->is_fpu_register(), "invalid LIR");
680       assert(right->is_fpu_register(), "invalid LIR");
681 
682       // the left-hand side must be on top of stack.
683       // the right-hand side is never popped, even if is_last_use is set
684       insert_exchange(left);
685       new_left = to_fpu_stack_top(left);
686       new_right = to_fpu_stack(right);
687       pop_if_last_use(op2, left);
688       break;
689     }
690 
691     case lir_mul_strictfp:
692     case lir_div_strictfp: {
693       assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot");
694       insert_free_if_dead(op2->tmp1_opr());
695       assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
696       // fall-through: continue with the normal handling of lir_mul and lir_div
697     }
698     case lir_add:
699     case lir_sub:
700     case lir_mul:
701     case lir_div: {
702       assert(left->is_fpu_register(), "must be");
703       assert(res->is_fpu_register(), "must be");
704       assert(left->is_equal(res), "must be");
705 
706       // either the left-hand or the right-hand side must be on top of stack
707       // (if right is not a register, left must be on top)
708       if (!right->is_fpu_register()) {
709         insert_exchange(left);
710         new_left = to_fpu_stack_top(left);
711       } else {
712         // no exchange necessary if right is alredy on top of stack
713         if (tos_offset(right) == 0) {
714           new_left = to_fpu_stack(left);
715           new_right = to_fpu_stack_top(right);
716         } else {
717           insert_exchange(left);
718           new_left = to_fpu_stack_top(left);
719           new_right = to_fpu_stack(right);
720         }
721 
722         if (right->is_last_use()) {
723           op2->set_fpu_pop_count(1);
724 
725           if (tos_offset(right) == 0) {
726             sim()->pop();
727           } else {
728             // if left is on top of stack, the result is placed in the stack
729             // slot of right, so a renaming from right to res is necessary
730             assert(tos_offset(left) == 0, "must be");
731             sim()->pop();
732             do_rename(right, res);
733           }
734         }
735       }
736       new_res = to_fpu_stack(res);
737 
738       break;
739     }
740 
741     case lir_rem: {
742       assert(left->is_fpu_register(), "must be");
743       assert(right->is_fpu_register(), "must be");
744       assert(res->is_fpu_register(), "must be");
745       assert(left->is_equal(res), "must be");
746 
747       // Must bring both operands to top of stack with following operand ordering:
748       // * fpu stack before rem: ... right left
749       // * fpu stack after rem:  ... left
750       if (tos_offset(right) != 1) {
751         insert_exchange(right);
752         insert_exchange(1);
753       }
754       insert_exchange(left);
755       assert(tos_offset(right) == 1, "check");
756       assert(tos_offset(left) == 0, "check");
757 
758       new_left = to_fpu_stack_top(left);
759       new_right = to_fpu_stack(right);
760 
761       op2->set_fpu_pop_count(1);
762       sim()->pop();
763       do_rename(right, res);
764 
765       new_res = to_fpu_stack_top(res);
766       break;
767     }
768 
769     case lir_abs:
770     case lir_sqrt: {
771       // Right argument appears to be unused
772       assert(right->is_illegal(), "must be");
773       assert(left->is_fpu_register(), "must be");
774       assert(res->is_fpu_register(), "must be");
775       assert(left->is_last_use(), "old value gets destroyed");
776 
777       insert_free_if_dead(res, left);
778       insert_exchange(left);
779       do_rename(left, res);
780 
781       new_left = to_fpu_stack_top(res);
782       new_res = new_left;
783 
784       op2->set_fpu_stack_size(sim()->stack_size());
785       break;
786     }
787 
788     default: {
789       assert(false, "missed a fpu-operation");
790     }
791   }
792 
793   op2->set_in_opr1(new_left);
794   op2->set_in_opr2(new_right);
795   op2->set_result_opr(new_res);
796 }
797 
handle_opCall(LIR_OpCall * opCall)798 void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
799   LIR_Opr res = opCall->result_opr();
800 
801   // clear fpu-stack before call
802   // it may contain dead values that could not have been remved by previous operations
803   clear_fpu_stack(LIR_OprFact::illegalOpr);
804   assert(sim()->is_empty(), "fpu stack must be empty now");
805 
806   // compute debug information before (possible) fpu result is pushed
807   compute_debug_information(opCall);
808 
809   if (res->is_fpu_register() && !res->is_xmm_register()) {
810     do_push(res);
811     opCall->set_result_opr(to_fpu_stack_top(res));
812   }
813 }
814 
815 #ifndef PRODUCT
check_invalid_lir_op(LIR_Op * op)816 void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) {
817   switch (op->code()) {
818     case lir_24bit_FPU:
819     case lir_reset_FPU:
820     case lir_ffree:
821       assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands");
822       break;
823 
824     case lir_fpop_raw:
825     case lir_fxch:
826     case lir_fld:
827       assert(false, "operations only inserted by FpuStackAllocator");
828       break;
829 
830     default:
831       break;
832   }
833 }
834 #endif
835 
836 
merge_insert_add(LIR_List * instrs,FpuStackSim * cur_sim,int reg)837 void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) {
838   LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset());
839 
840   instrs->instructions_list()->push(move);
841 
842   cur_sim->push(reg);
843   move->set_result_opr(to_fpu_stack(move->result_opr()));
844 
845   #ifndef PRODUCT
846     if (TraceFPUStack) {
847       tty->print("Added new register: %d         New state: ", reg); cur_sim->print(); tty->cr();
848     }
849   #endif
850 }
851 
merge_insert_xchg(LIR_List * instrs,FpuStackSim * cur_sim,int slot)852 void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) {
853   assert(slot > 0, "no exchange necessary");
854 
855   LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot));
856   instrs->instructions_list()->push(fxch);
857   cur_sim->swap(slot);
858 
859   #ifndef PRODUCT
860     if (TraceFPUStack) {
861       tty->print("Exchanged register: %d         New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr();
862     }
863   #endif
864 }
865 
merge_insert_pop(LIR_List * instrs,FpuStackSim * cur_sim)866 void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) {
867   int reg = cur_sim->get_slot(0);
868 
869   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
870   instrs->instructions_list()->push(fpop);
871   cur_sim->pop(reg);
872 
873   #ifndef PRODUCT
874     if (TraceFPUStack) {
875       tty->print("Removed register: %d           New state: ", reg); cur_sim->print(); tty->cr();
876     }
877   #endif
878 }
879 
merge_rename(FpuStackSim * cur_sim,FpuStackSim * sux_sim,int start_slot,int change_slot)880 bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) {
881   int reg = cur_sim->get_slot(change_slot);
882 
883   for (int slot = start_slot; slot >= 0; slot--) {
884     int new_reg = sux_sim->get_slot(slot);
885 
886     if (!cur_sim->contains(new_reg)) {
887       cur_sim->set_slot(change_slot, new_reg);
888 
889       #ifndef PRODUCT
890         if (TraceFPUStack) {
891           tty->print("Renamed register %d to %d       New state: ", reg, new_reg); cur_sim->print(); tty->cr();
892         }
893       #endif
894 
895       return true;
896     }
897   }
898   return false;
899 }
900 
901 
merge_fpu_stack(LIR_List * instrs,FpuStackSim * cur_sim,FpuStackSim * sux_sim)902 void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) {
903 #ifndef PRODUCT
904   if (TraceFPUStack) {
905     tty->cr();
906     tty->print("before merging: pred: "); cur_sim->print(); tty->cr();
907     tty->print("                 sux: "); sux_sim->print(); tty->cr();
908   }
909 
910   int slot;
911   for (slot = 0; slot < cur_sim->stack_size(); slot++) {
912     assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm");
913   }
914   for (slot = 0; slot < sux_sim->stack_size(); slot++) {
915     assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm");
916   }
917 #endif
918 
919   // size difference between cur and sux that must be resolved by adding or removing values form the stack
920   int size_diff = cur_sim->stack_size() - sux_sim->stack_size();
921 
922   if (!ComputeExactFPURegisterUsage) {
923     // add slots that are currently free, but used in successor
924     // When the exact FPU register usage is computed, the stack does
925     // not contain dead values at merging -> no values must be added
926 
927     int sux_slot = sux_sim->stack_size() - 1;
928     while (size_diff < 0) {
929       assert(sux_slot >= 0, "slot out of bounds -> error in algorithm");
930 
931       int reg = sux_sim->get_slot(sux_slot);
932       if (!cur_sim->contains(reg)) {
933         merge_insert_add(instrs, cur_sim, reg);
934         size_diff++;
935 
936         if (sux_slot + size_diff != 0) {
937           merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
938         }
939       }
940      sux_slot--;
941     }
942   }
943 
944   assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now");
945   assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be");
946 
947   // stack merge algorithm:
948   // 1) as long as the current stack top is not in the right location (that meens
949   //    it should not be on the stack top), exchange it into the right location
950   // 2) if the stack top is right, but the remaining stack is not ordered correctly,
951   //    the stack top is exchanged away to get another value on top ->
952   //    now step 1) can be continued
953   // the stack can also contain unused items -> these items are removed from stack
954 
955   int finished_slot = sux_sim->stack_size() - 1;
956   while (finished_slot >= 0 || size_diff > 0) {
957     while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) {
958       int reg = cur_sim->get_slot(0);
959       if (sux_sim->contains(reg)) {
960         int sux_slot = sux_sim->offset_from_tos(reg);
961         merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
962 
963       } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) {
964         assert(size_diff > 0, "must be");
965 
966         merge_insert_pop(instrs, cur_sim);
967         size_diff--;
968       }
969       assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed");
970     }
971 
972     while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) {
973       finished_slot--;
974     }
975 
976     if (finished_slot >= 0) {
977       int reg = cur_sim->get_slot(finished_slot);
978 
979       if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) {
980         assert(sux_sim->contains(reg) || size_diff > 0, "must be");
981         merge_insert_xchg(instrs, cur_sim, finished_slot);
982       }
983       assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed");
984     }
985   }
986 
987 #ifndef PRODUCT
988   if (TraceFPUStack) {
989     tty->print("after merging:  pred: "); cur_sim->print(); tty->cr();
990     tty->print("                 sux: "); sux_sim->print(); tty->cr();
991     tty->cr();
992   }
993 #endif
994   assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now");
995 }
996 
997 
merge_cleanup_fpu_stack(LIR_List * instrs,FpuStackSim * cur_sim,BitMap & live_fpu_regs)998 void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) {
999 #ifndef PRODUCT
1000   if (TraceFPUStack) {
1001     tty->cr();
1002     tty->print("before cleanup: state: "); cur_sim->print(); tty->cr();
1003     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
1004   }
1005 #endif
1006 
1007   int slot = 0;
1008   while (slot < cur_sim->stack_size()) {
1009     int reg = cur_sim->get_slot(slot);
1010     if (!live_fpu_regs.at(reg)) {
1011       if (slot != 0) {
1012         merge_insert_xchg(instrs, cur_sim, slot);
1013       }
1014       merge_insert_pop(instrs, cur_sim);
1015     } else {
1016       slot++;
1017     }
1018   }
1019 
1020 #ifndef PRODUCT
1021   if (TraceFPUStack) {
1022     tty->print("after cleanup:  state: "); cur_sim->print(); tty->cr();
1023     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
1024     tty->cr();
1025   }
1026 
1027   // check if fpu stack only contains live registers
1028   for (unsigned int i = 0; i < live_fpu_regs.size(); i++) {
1029     if (live_fpu_regs.at(i) != cur_sim->contains(i)) {
1030       tty->print_cr("mismatch between required and actual stack content");
1031       break;
1032     }
1033   }
1034 #endif
1035 }
1036 
1037 
merge_fpu_stack_with_successors(BlockBegin * block)1038 bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
1039 #ifndef PRODUCT
1040   if (TraceFPUStack) {
1041     tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
1042                   block->block_id(), pos());
1043     sim()->print();
1044     tty->cr();
1045   }
1046 #endif
1047 
1048   bool changed = false;
1049   int number_of_sux = block->number_of_sux();
1050 
1051   if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
1052     // The successor has at least two incoming edges, so a stack merge will be necessary
1053     // If this block is the first predecessor, cleanup the current stack and propagate it
1054     // If this block is not the first predecessor, a stack merge will be necessary
1055 
1056     BlockBegin* sux = block->sux_at(0);
1057     intArray* state = sux->fpu_stack_state();
1058     LIR_List* instrs = new LIR_List(_compilation);
1059 
1060     if (state != NULL) {
1061       // Merge with a successors that already has a FPU stack state
1062       // the block must only have one successor because critical edges must been split
1063       FpuStackSim* cur_sim = sim();
1064       FpuStackSim* sux_sim = temp_sim();
1065       sux_sim->read_state(state);
1066 
1067       merge_fpu_stack(instrs, cur_sim, sux_sim);
1068 
1069     } else {
1070       // propagate current FPU stack state to successor without state
1071       // clean up stack first so that there are no dead values on the stack
1072       if (ComputeExactFPURegisterUsage) {
1073         FpuStackSim* cur_sim = sim();
1074         ResourceBitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
1075         assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
1076 
1077         merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
1078       }
1079 
1080       intArray* state = sim()->write_state();
1081       if (TraceFPUStack) {
1082         tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
1083         sim()->print(); tty->cr();
1084       }
1085       sux->set_fpu_stack_state(state);
1086     }
1087 
1088     if (instrs->instructions_list()->length() > 0) {
1089       lir()->insert_before(pos(), instrs);
1090       set_pos(instrs->instructions_list()->length() + pos());
1091       changed = true;
1092     }
1093 
1094   } else {
1095     // Propagate unmodified Stack to successors where a stack merge is not necessary
1096     intArray* state = sim()->write_state();
1097     for (int i = 0; i < number_of_sux; i++) {
1098       BlockBegin* sux = block->sux_at(i);
1099 
1100 #ifdef ASSERT
1101       for (int j = 0; j < sux->number_of_preds(); j++) {
1102         assert(block == sux->pred_at(j), "all critical edges must be broken");
1103       }
1104 
1105       // check if new state is same
1106       if (sux->fpu_stack_state() != NULL) {
1107         intArray* sux_state = sux->fpu_stack_state();
1108         assert(state->length() == sux_state->length(), "overwriting existing stack state");
1109         for (int j = 0; j < state->length(); j++) {
1110           assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
1111         }
1112       }
1113 #endif
1114 #ifndef PRODUCT
1115       if (TraceFPUStack) {
1116         tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
1117         sim()->print(); tty->cr();
1118       }
1119 #endif
1120 
1121       sux->set_fpu_stack_state(state);
1122     }
1123   }
1124 
1125 #ifndef PRODUCT
1126   // assertions that FPU stack state conforms to all successors' states
1127   intArray* cur_state = sim()->write_state();
1128   for (int i = 0; i < number_of_sux; i++) {
1129     BlockBegin* sux = block->sux_at(i);
1130     intArray* sux_state = sux->fpu_stack_state();
1131 
1132     assert(sux_state != NULL, "no fpu state");
1133     assert(cur_state->length() == sux_state->length(), "incorrect length");
1134     for (int i = 0; i < cur_state->length(); i++) {
1135       assert(cur_state->at(i) == sux_state->at(i), "element not equal");
1136     }
1137   }
1138 #endif
1139 
1140   return changed;
1141 }
1142