1 /*
2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/assembler.hpp"
27 #include "c1/c1_Defs.hpp"
28 #include "c1/c1_MacroAssembler.hpp"
29 #include "c1/c1_Runtime1.hpp"
30 #include "ci/ciUtilities.hpp"
31 #include "gc/shared/cardTable.hpp"
32 #include "gc/shared/cardTableBarrierSet.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "nativeInst_x86.hpp"
35 #include "oops/compiledICHolder.hpp"
36 #include "oops/oop.inline.hpp"
37 #include "prims/jvmtiExport.hpp"
38 #include "register_x86.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/signature.hpp"
41 #include "runtime/vframeArray.hpp"
42 #include "utilities/macros.hpp"
43 #include "vmreg_x86.inline.hpp"
44 
45 // Implementation of StubAssembler
46 
call_RT(Register oop_result1,Register metadata_result,address entry,int args_size)47 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
48   // setup registers
49   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
50   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
51   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
52   assert(args_size >= 0, "illegal args_size");
53   bool align_stack = false;
54 #ifdef _LP64
55   // At a method handle call, the stack may not be properly aligned
56   // when returning with an exception.
57   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
58 #endif
59 
60 #ifdef _LP64
61   mov(c_rarg0, thread);
62   set_num_rt_args(0); // Nothing on stack
63 #else
64   set_num_rt_args(1 + args_size);
65 
66   // push java thread (becomes first argument of C function)
67   get_thread(thread);
68   push(thread);
69 #endif // _LP64
70 
71   int call_offset;
72   if (!align_stack) {
73     set_last_Java_frame(thread, noreg, rbp, NULL);
74   } else {
75     address the_pc = pc();
76     call_offset = offset();
77     set_last_Java_frame(thread, noreg, rbp, the_pc);
78     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
79   }
80 
81   // do the call
82   call(RuntimeAddress(entry));
83   if (!align_stack) {
84     call_offset = offset();
85   }
86   // verify callee-saved register
87 #ifdef ASSERT
88   guarantee(thread != rax, "change this code");
89   push(rax);
90   { Label L;
91     get_thread(rax);
92     cmpptr(thread, rax);
93     jcc(Assembler::equal, L);
94     int3();
95     stop("StubAssembler::call_RT: rdi not callee saved?");
96     bind(L);
97   }
98   pop(rax);
99 #endif
100   reset_last_Java_frame(thread, true);
101 
102   // discard thread and arguments
103   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
104 
105   // check for pending exceptions
106   { Label L;
107     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
108     jcc(Assembler::equal, L);
109     // exception pending => remove activation and forward to exception handler
110     movptr(rax, Address(thread, Thread::pending_exception_offset()));
111     // make sure that the vm_results are cleared
112     if (oop_result1->is_valid()) {
113       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
114     }
115     if (metadata_result->is_valid()) {
116       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
117     }
118     if (frame_size() == no_frame_size) {
119       leave();
120       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
121     } else if (_stub_id == Runtime1::forward_exception_id) {
122       should_not_reach_here();
123     } else {
124       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
125     }
126     bind(L);
127   }
128   // get oop results if there are any and reset the values in the thread
129   if (oop_result1->is_valid()) {
130     get_vm_result(oop_result1, thread);
131   }
132   if (metadata_result->is_valid()) {
133     get_vm_result_2(metadata_result, thread);
134   }
135   return call_offset;
136 }
137 
138 
call_RT(Register oop_result1,Register metadata_result,address entry,Register arg1)139 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
140 #ifdef _LP64
141   mov(c_rarg1, arg1);
142 #else
143   push(arg1);
144 #endif // _LP64
145   return call_RT(oop_result1, metadata_result, entry, 1);
146 }
147 
148 
call_RT(Register oop_result1,Register metadata_result,address entry,Register arg1,Register arg2)149 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
150 #ifdef _LP64
151   if (c_rarg1 == arg2) {
152     if (c_rarg2 == arg1) {
153       xchgq(arg1, arg2);
154     } else {
155       mov(c_rarg2, arg2);
156       mov(c_rarg1, arg1);
157     }
158   } else {
159     mov(c_rarg1, arg1);
160     mov(c_rarg2, arg2);
161   }
162 #else
163   push(arg2);
164   push(arg1);
165 #endif // _LP64
166   return call_RT(oop_result1, metadata_result, entry, 2);
167 }
168 
169 
call_RT(Register oop_result1,Register metadata_result,address entry,Register arg1,Register arg2,Register arg3)170 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
171 #ifdef _LP64
172   // if there is any conflict use the stack
173   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
174       arg2 == c_rarg1 || arg1 == c_rarg3 ||
175       arg3 == c_rarg1 || arg1 == c_rarg2) {
176     push(arg3);
177     push(arg2);
178     push(arg1);
179     pop(c_rarg1);
180     pop(c_rarg2);
181     pop(c_rarg3);
182   } else {
183     mov(c_rarg1, arg1);
184     mov(c_rarg2, arg2);
185     mov(c_rarg3, arg3);
186   }
187 #else
188   push(arg3);
189   push(arg2);
190   push(arg1);
191 #endif // _LP64
192   return call_RT(oop_result1, metadata_result, entry, 3);
193 }
194 
195 
196 // Implementation of StubFrame
197 
198 class StubFrame: public StackObj {
199  private:
200   StubAssembler* _sasm;
201 
202  public:
203   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
204   void load_argument(int offset_in_words, Register reg);
205 
206   ~StubFrame();
207 };
208 
prologue(const char * name,bool must_gc_arguments)209 void StubAssembler::prologue(const char* name, bool must_gc_arguments) {
210   set_info(name, must_gc_arguments);
211   enter();
212 }
213 
epilogue()214 void StubAssembler::epilogue() {
215   leave();
216   ret(0);
217 }
218 
219 #define __ _sasm->
220 
StubFrame(StubAssembler * sasm,const char * name,bool must_gc_arguments)221 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
222   _sasm = sasm;
223   __ prologue(name, must_gc_arguments);
224 }
225 
226 // load parameters that were stored with LIR_Assembler::store_parameter
227 // Note: offsets for store_parameter and load_argument must match
load_argument(int offset_in_words,Register reg)228 void StubFrame::load_argument(int offset_in_words, Register reg) {
229   __ load_parameter(offset_in_words, reg);
230 }
231 
232 
~StubFrame()233 StubFrame::~StubFrame() {
234   __ epilogue();
235 }
236 
237 #undef __
238 
239 
240 // Implementation of Runtime1
241 
242 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
243 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
244 
245 // Stack layout for saving/restoring  all the registers needed during a runtime
246 // call (this includes deoptimization)
247 // Note: note that users of this frame may well have arguments to some runtime
248 // while these values are on the stack. These positions neglect those arguments
249 // but the code in save_live_registers will take the argument count into
250 // account.
251 //
252 #ifdef _LP64
253   #define SLOT2(x) x,
254   #define SLOT_PER_WORD 2
255 #else
256   #define SLOT2(x)
257   #define SLOT_PER_WORD 1
258 #endif // _LP64
259 
260 enum reg_save_layout {
261   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
262   // happen and will assert if the stack size we create is misaligned
263 #ifdef _LP64
264   align_dummy_0, align_dummy_1,
265 #endif // _LP64
266 #ifdef _WIN64
267   // Windows always allocates space for it's argument registers (see
268   // frame::arg_reg_save_area_bytes).
269   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
270   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
271   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
272   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
273 #endif // _WIN64
274   xmm_regs_as_doubles_off,                                                                  // 32
275   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
276   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
277   // fpu_state_end_off is exclusive
278   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
279   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
280   extra_space_offset,                                                                       // 360
281 #ifdef _LP64
282   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
283   r14_off, r14H_off,                                                                        // 368, 372
284   r13_off, r13H_off,                                                                        // 376, 380
285   r12_off, r12H_off,                                                                        // 384, 388
286   r11_off, r11H_off,                                                                        // 392, 396
287   r10_off, r10H_off,                                                                        // 400, 404
288   r9_off, r9H_off,                                                                          // 408, 412
289   r8_off, r8H_off,                                                                          // 416, 420
290   rdi_off, rdiH_off,                                                                        // 424, 428
291 #else
292   rdi_off = extra_space_offset,
293 #endif // _LP64
294   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
295   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
296   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
297   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
298   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
299   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
300   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
301   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
302   return_off, SLOT2(returnH_off)                                                            // 496, 500
303   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
304 };
305 
306 // Save off registers which might be killed by calls into the runtime.
307 // Tries to smart of about FP registers.  In particular we separate
308 // saving and describing the FPU registers for deoptimization since we
309 // have to save the FPU registers twice if we describe them and on P4
310 // saving FPU registers which don't contain anything appears
311 // expensive.  The deopt blob is the only thing which needs to
312 // describe FPU registers.  In all other cases it should be sufficient
313 // to simply save their current value.
314 
generate_oop_map(StubAssembler * sasm,int num_rt_args,bool save_fpu_registers=true)315 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
316                                 bool save_fpu_registers = true) {
317 
318   // In 64bit all the args are in regs so there are no additional stack slots
319   LP64_ONLY(num_rt_args = 0);
320   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
321   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
322   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
323 
324   // record saved value locations in an OopMap
325   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
326   OopMap* map = new OopMap(frame_size_in_slots, 0);
327   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
328   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
329   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
330   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
331   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
332   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
333 #ifdef _LP64
334   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
335   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
336   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
337   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
338   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
339   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
340   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
341   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
342 
343   // This is stupid but needed.
344   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
345   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
346   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
347   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
348   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
349   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
350 
351   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
352   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
353   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
354   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
355   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
356   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
357   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
358   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
359 #endif // _LP64
360 
361   int xmm_bypass_limit = FrameMap::nof_xmm_regs;
362 #ifdef _LP64
363   if (UseAVX < 3) {
364     xmm_bypass_limit = xmm_bypass_limit / 2;
365   }
366 #endif
367 
368   if (save_fpu_registers) {
369     if (UseSSE < 2) {
370       int fpu_off = float_regs_as_doubles_off;
371       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
372         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
373         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
374         // %%% This is really a waste but we'll keep things as they were for now
375         if (true) {
376           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
377         }
378         fpu_off += 2;
379       }
380       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
381     }
382 
383     if (UseSSE >= 2) {
384       int xmm_off = xmm_regs_as_doubles_off;
385       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
386         if (n < xmm_bypass_limit) {
387           VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
388           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
389           // %%% This is really a waste but we'll keep things as they were for now
390           if (true) {
391             map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
392           }
393         }
394         xmm_off += 2;
395       }
396       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
397 
398     } else if (UseSSE == 1) {
399       int xmm_off = xmm_regs_as_doubles_off;
400       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
401         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
402         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
403         xmm_off += 2;
404       }
405       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
406     }
407   }
408 
409   return map;
410 }
411 
412 #define __ this->
413 
save_live_registers_no_oop_map(bool save_fpu_registers)414 void C1_MacroAssembler::save_live_registers_no_oop_map(bool save_fpu_registers) {
415   __ block_comment("save_live_registers");
416 
417   __ pusha();         // integer registers
418 
419   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
420   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
421 
422   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
423 
424 #ifdef ASSERT
425   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
426 #endif
427 
428   if (save_fpu_registers) {
429     if (UseSSE < 2) {
430       // save FPU stack
431       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
432       __ fwait();
433 
434 #ifdef ASSERT
435       Label ok;
436       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
437       __ jccb(Assembler::equal, ok);
438       __ stop("corrupted control word detected");
439       __ bind(ok);
440 #endif
441 
442       // Reset the control word to guard against exceptions being unmasked
443       // since fstp_d can cause FPU stack underflow exceptions.  Write it
444       // into the on stack copy and then reload that to make sure that the
445       // current and future values are correct.
446       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
447       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
448 
449       // Save the FPU registers in de-opt-able form
450       int offset = 0;
451       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
452         __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
453         offset += 8;
454       }
455     }
456 
457     if (UseSSE >= 2) {
458       // save XMM registers
459       // XMM registers can contain float or double values, but this is not known here,
460       // so always save them as doubles.
461       // note that float values are _not_ converted automatically, so for float values
462       // the second word contains only garbage data.
463       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
464       int offset = 0;
465 #ifdef _LP64
466       if (UseAVX < 3) {
467         xmm_bypass_limit = xmm_bypass_limit / 2;
468       }
469 #endif
470       for (int n = 0; n < xmm_bypass_limit; n++) {
471         XMMRegister xmm_name = as_XMMRegister(n);
472         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
473         offset += 8;
474       }
475     } else if (UseSSE == 1) {
476       // save XMM registers as float because double not supported without SSE2(num MMX == num fpu)
477       int offset = 0;
478       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
479         XMMRegister xmm_name = as_XMMRegister(n);
480         __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
481         offset += 8;
482       }
483     }
484   }
485 
486   // FPU stack must be empty now
487   __ verify_FPU(0, "save_live_registers");
488 }
489 
490 #undef __
491 #define __ sasm->
492 
restore_fpu(C1_MacroAssembler * sasm,bool restore_fpu_registers)493 static void restore_fpu(C1_MacroAssembler* sasm, bool restore_fpu_registers) {
494   if (restore_fpu_registers) {
495     if (UseSSE >= 2) {
496       // restore XMM registers
497       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
498 #ifdef _LP64
499       if (UseAVX < 3) {
500         xmm_bypass_limit = xmm_bypass_limit / 2;
501       }
502 #endif
503       int offset = 0;
504       for (int n = 0; n < xmm_bypass_limit; n++) {
505         XMMRegister xmm_name = as_XMMRegister(n);
506         __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
507         offset += 8;
508       }
509     } else if (UseSSE == 1) {
510       // restore XMM registers(num MMX == num fpu)
511       int offset = 0;
512       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
513         XMMRegister xmm_name = as_XMMRegister(n);
514         __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
515         offset += 8;
516       }
517     }
518 
519     if (UseSSE < 2) {
520       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
521     } else {
522       // check that FPU stack is really empty
523       __ verify_FPU(0, "restore_live_registers");
524     }
525 
526   } else {
527     // check that FPU stack is really empty
528     __ verify_FPU(0, "restore_live_registers");
529   }
530 
531 #ifdef ASSERT
532   {
533     Label ok;
534     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
535     __ jcc(Assembler::equal, ok);
536     __ stop("bad offsets in frame");
537     __ bind(ok);
538   }
539 #endif // ASSERT
540 
541   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
542 }
543 
544 #undef __
545 #define __ this->
546 
restore_live_registers(bool restore_fpu_registers)547 void C1_MacroAssembler::restore_live_registers(bool restore_fpu_registers) {
548   __ block_comment("restore_live_registers");
549 
550   restore_fpu(this, restore_fpu_registers);
551   __ popa();
552 }
553 
554 
restore_live_registers_except_rax(bool restore_fpu_registers)555 void C1_MacroAssembler::restore_live_registers_except_rax(bool restore_fpu_registers) {
556   __ block_comment("restore_live_registers_except_rax");
557 
558   restore_fpu(this, restore_fpu_registers);
559 
560 #ifdef _LP64
561   __ movptr(r15, Address(rsp, 0));
562   __ movptr(r14, Address(rsp, wordSize));
563   __ movptr(r13, Address(rsp, 2 * wordSize));
564   __ movptr(r12, Address(rsp, 3 * wordSize));
565   __ movptr(r11, Address(rsp, 4 * wordSize));
566   __ movptr(r10, Address(rsp, 5 * wordSize));
567   __ movptr(r9,  Address(rsp, 6 * wordSize));
568   __ movptr(r8,  Address(rsp, 7 * wordSize));
569   __ movptr(rdi, Address(rsp, 8 * wordSize));
570   __ movptr(rsi, Address(rsp, 9 * wordSize));
571   __ movptr(rbp, Address(rsp, 10 * wordSize));
572   // skip rsp
573   __ movptr(rbx, Address(rsp, 12 * wordSize));
574   __ movptr(rdx, Address(rsp, 13 * wordSize));
575   __ movptr(rcx, Address(rsp, 14 * wordSize));
576 
577   __ addptr(rsp, 16 * wordSize);
578 #else
579 
580   __ pop(rdi);
581   __ pop(rsi);
582   __ pop(rbp);
583   __ pop(rbx); // skip this value
584   __ pop(rbx);
585   __ pop(rdx);
586   __ pop(rcx);
587   __ addptr(rsp, BytesPerWord);
588 #endif // _LP64
589 }
590 
591 #undef __
592 #define __ sasm->
593 
save_live_registers(StubAssembler * sasm,int num_rt_args,bool save_fpu_registers=true)594 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
595                                    bool save_fpu_registers = true) {
596   __ save_live_registers_no_oop_map(save_fpu_registers);
597   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
598 }
599 
restore_live_registers(StubAssembler * sasm,bool restore_fpu_registers=true)600 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
601   __ restore_live_registers(restore_fpu_registers);
602 }
603 
restore_live_registers_except_rax(StubAssembler * sasm,bool restore_fpu_registers=true)604 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
605   sasm->restore_live_registers_except_rax(restore_fpu_registers);
606 }
607 
608 
initialize_pd()609 void Runtime1::initialize_pd() {
610   // nothing to do
611 }
612 
613 
614 // Target: the entry point of the method that creates and posts the exception oop.
615 // has_argument: true if the exception needs arguments (passed on the stack because
616 //               registers must be preserved).
generate_exception_throw(StubAssembler * sasm,address target,bool has_argument)617 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
618   // Preserve all registers.
619   int num_rt_args = has_argument ? (2 + 1) : 1;
620   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
621 
622   // Now all registers are saved and can be used freely.
623   // Verify that no old value is used accidentally.
624   __ invalidate_registers(true, true, true, true, true, true);
625 
626   // Registers used by this stub.
627   const Register temp_reg = rbx;
628 
629   // Load arguments for exception that are passed as arguments into the stub.
630   if (has_argument) {
631 #ifdef _LP64
632     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
633     __ movptr(c_rarg2, Address(rbp, 3*BytesPerWord));
634 #else
635     __ movptr(temp_reg, Address(rbp, 3*BytesPerWord));
636     __ push(temp_reg);
637     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
638     __ push(temp_reg);
639 #endif // _LP64
640   }
641   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
642 
643   OopMapSet* oop_maps = new OopMapSet();
644   oop_maps->add_gc_map(call_offset, oop_map);
645 
646   __ stop("should not reach here");
647 
648   return oop_maps;
649 }
650 
651 
generate_handle_exception(StubID id,StubAssembler * sasm)652 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
653   __ block_comment("generate_handle_exception");
654 
655   // incoming parameters
656   const Register exception_oop = rax;
657   const Register exception_pc  = rdx;
658   // other registers used in this stub
659   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
660 
661   // Save registers, if required.
662   OopMapSet* oop_maps = new OopMapSet();
663   OopMap* oop_map = NULL;
664   switch (id) {
665   case forward_exception_id:
666     // We're handling an exception in the context of a compiled frame.
667     // The registers have been saved in the standard places.  Perform
668     // an exception lookup in the caller and dispatch to the handler
669     // if found.  Otherwise unwind and dispatch to the callers
670     // exception handler.
671     oop_map = generate_oop_map(sasm, 1 /*thread*/);
672 
673     // load and clear pending exception oop into RAX
674     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
675     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
676 
677     // load issuing PC (the return address for this stub) into rdx
678     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
679 
680     // make sure that the vm_results are cleared (may be unnecessary)
681     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
682     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
683     break;
684   case handle_exception_nofpu_id:
685   case handle_exception_id:
686     // At this point all registers MAY be live.
687     oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
688     break;
689   case handle_exception_from_callee_id: {
690     // At this point all registers except exception oop (RAX) and
691     // exception pc (RDX) are dead.
692     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
693     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
694     sasm->set_frame_size(frame_size);
695     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
696     break;
697   }
698   default:  ShouldNotReachHere();
699   }
700 
701 #ifdef TIERED
702   // C2 can leave the fpu stack dirty
703   if (UseSSE < 2) {
704     __ empty_FPU_stack();
705   }
706 #endif // TIERED
707 
708   // verify that only rax, and rdx is valid at this time
709   __ invalidate_registers(false, true, true, false, true, true);
710   // verify that rax, contains a valid exception
711   __ verify_not_null_oop(exception_oop);
712 
713   // load address of JavaThread object for thread-local data
714   NOT_LP64(__ get_thread(thread);)
715 
716 #ifdef ASSERT
717   // check that fields in JavaThread for exception oop and issuing pc are
718   // empty before writing to them
719   Label oop_empty;
720   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
721   __ jcc(Assembler::equal, oop_empty);
722   __ stop("exception oop already set");
723   __ bind(oop_empty);
724 
725   Label pc_empty;
726   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
727   __ jcc(Assembler::equal, pc_empty);
728   __ stop("exception pc already set");
729   __ bind(pc_empty);
730 #endif
731 
732   // save exception oop and issuing pc into JavaThread
733   // (exception handler will load it from here)
734   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
735   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
736 
737   // patch throwing pc into return address (has bci & oop map)
738   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
739 
740   // compute the exception handler.
741   // the exception oop and the throwing pc are read from the fields in JavaThread
742   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
743   oop_maps->add_gc_map(call_offset, oop_map);
744 
745   // rax: handler address
746   //      will be the deopt blob if nmethod was deoptimized while we looked up
747   //      handler regardless of whether handler existed in the nmethod.
748 
749   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
750   __ invalidate_registers(false, true, true, true, true, true);
751 
752   // patch the return address, this stub will directly return to the exception handler
753   __ movptr(Address(rbp, 1*BytesPerWord), rax);
754 
755   switch (id) {
756   case forward_exception_id:
757   case handle_exception_nofpu_id:
758   case handle_exception_id:
759     // Restore the registers that were saved at the beginning.
760     restore_live_registers(sasm, id != handle_exception_nofpu_id);
761     break;
762   case handle_exception_from_callee_id:
763     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
764     // since we do a leave anyway.
765 
766     // Pop the return address.
767     __ leave();
768     __ pop(rcx);
769     __ jmp(rcx);  // jump to exception handler
770     break;
771   default:  ShouldNotReachHere();
772   }
773 
774   return oop_maps;
775 }
776 
777 
generate_unwind_exception(StubAssembler * sasm)778 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
779   // incoming parameters
780   const Register exception_oop = rax;
781   // callee-saved copy of exception_oop during runtime call
782   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
783   // other registers used in this stub
784   const Register exception_pc = rdx;
785   const Register handler_addr = rbx;
786   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
787 
788   // verify that only rax, is valid at this time
789   __ invalidate_registers(false, true, true, true, true, true);
790 
791 #ifdef ASSERT
792   // check that fields in JavaThread for exception oop and issuing pc are empty
793   NOT_LP64(__ get_thread(thread);)
794   Label oop_empty;
795   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
796   __ jcc(Assembler::equal, oop_empty);
797   __ stop("exception oop must be empty");
798   __ bind(oop_empty);
799 
800   Label pc_empty;
801   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
802   __ jcc(Assembler::equal, pc_empty);
803   __ stop("exception pc must be empty");
804   __ bind(pc_empty);
805 #endif
806 
807   // clear the FPU stack in case any FPU results are left behind
808   __ empty_FPU_stack();
809 
810   // save exception_oop in callee-saved register to preserve it during runtime calls
811   __ verify_not_null_oop(exception_oop);
812   __ movptr(exception_oop_callee_saved, exception_oop);
813 
814   NOT_LP64(__ get_thread(thread);)
815   // Get return address (is on top of stack after leave).
816   __ movptr(exception_pc, Address(rsp, 0));
817 
818   // search the exception handler address of the caller (using the return address)
819   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
820   // rax: exception handler address of the caller
821 
822   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
823   __ invalidate_registers(false, true, true, true, false, true);
824 
825   // move result of call into correct register
826   __ movptr(handler_addr, rax);
827 
828   // Restore exception oop to RAX (required convention of exception handler).
829   __ movptr(exception_oop, exception_oop_callee_saved);
830 
831   // verify that there is really a valid exception in rax
832   __ verify_not_null_oop(exception_oop);
833 
834   // get throwing pc (= return address).
835   // rdx has been destroyed by the call, so it must be set again
836   // the pop is also necessary to simulate the effect of a ret(0)
837   __ pop(exception_pc);
838 
839   // continue at exception handler (return address removed)
840   // note: do *not* remove arguments when unwinding the
841   //       activation since the caller assumes having
842   //       all arguments on the stack when entering the
843   //       runtime to determine the exception handler
844   //       (GC happens at call site with arguments!)
845   // rax: exception oop
846   // rdx: throwing pc
847   // rbx: exception handler
848   __ jmp(handler_addr);
849 }
850 
851 
generate_patching(StubAssembler * sasm,address target)852 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
853   // use the maximum number of runtime-arguments here because it is difficult to
854   // distinguish each RT-Call.
855   // Note: This number affects also the RT-Call in generate_handle_exception because
856   //       the oop-map is shared for all calls.
857   const int num_rt_args = 2;  // thread + dummy
858 
859   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
860   assert(deopt_blob != NULL, "deoptimization blob must have been created");
861 
862   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
863 
864 #ifdef _LP64
865   const Register thread = r15_thread;
866   // No need to worry about dummy
867   __ mov(c_rarg0, thread);
868 #else
869   __ push(rax); // push dummy
870 
871   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
872   // push java thread (becomes first argument of C function)
873   __ get_thread(thread);
874   __ push(thread);
875 #endif // _LP64
876   __ set_last_Java_frame(thread, noreg, rbp, NULL);
877   // do the call
878   __ call(RuntimeAddress(target));
879   OopMapSet* oop_maps = new OopMapSet();
880   oop_maps->add_gc_map(__ offset(), oop_map);
881   // verify callee-saved register
882 #ifdef ASSERT
883   guarantee(thread != rax, "change this code");
884   __ push(rax);
885   { Label L;
886     __ get_thread(rax);
887     __ cmpptr(thread, rax);
888     __ jcc(Assembler::equal, L);
889     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
890     __ bind(L);
891   }
892   __ pop(rax);
893 #endif
894   __ reset_last_Java_frame(thread, true);
895 #ifndef _LP64
896   __ pop(rcx); // discard thread arg
897   __ pop(rcx); // discard dummy
898 #endif // _LP64
899 
900   // check for pending exceptions
901   { Label L;
902     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
903     __ jcc(Assembler::equal, L);
904     // exception pending => remove activation and forward to exception handler
905 
906     __ testptr(rax, rax);                                   // have we deoptimized?
907     __ jump_cc(Assembler::equal,
908                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
909 
910     // the deopt blob expects exceptions in the special fields of
911     // JavaThread, so copy and clear pending exception.
912 
913     // load and clear pending exception
914     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
915     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
916 
917     // check that there is really a valid exception
918     __ verify_not_null_oop(rax);
919 
920     // load throwing pc: this is the return address of the stub
921     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
922 
923 #ifdef ASSERT
924     // check that fields in JavaThread for exception oop and issuing pc are empty
925     Label oop_empty;
926     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
927     __ jcc(Assembler::equal, oop_empty);
928     __ stop("exception oop must be empty");
929     __ bind(oop_empty);
930 
931     Label pc_empty;
932     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
933     __ jcc(Assembler::equal, pc_empty);
934     __ stop("exception pc must be empty");
935     __ bind(pc_empty);
936 #endif
937 
938     // store exception oop and throwing pc to JavaThread
939     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
940     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
941 
942     restore_live_registers(sasm);
943 
944     __ leave();
945     __ addptr(rsp, BytesPerWord);  // remove return address from stack
946 
947     // Forward the exception directly to deopt blob. We can blow no
948     // registers and must leave throwing pc on the stack.  A patch may
949     // have values live in registers so the entry point with the
950     // exception in tls.
951     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
952 
953     __ bind(L);
954   }
955 
956 
957   // Runtime will return true if the nmethod has been deoptimized during
958   // the patching process. In that case we must do a deopt reexecute instead.
959 
960   Label cont;
961 
962   __ testptr(rax, rax);                                 // have we deoptimized?
963   __ jcc(Assembler::equal, cont);                       // no
964 
965   // Will reexecute. Proper return address is already on the stack we just restore
966   // registers, pop all of our frame but the return address and jump to the deopt blob
967   restore_live_registers(sasm);
968   __ leave();
969   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
970 
971   __ bind(cont);
972   restore_live_registers(sasm);
973   __ leave();
974   __ ret(0);
975 
976   return oop_maps;
977 }
978 
979 
generate_code_for(StubID id,StubAssembler * sasm)980 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
981 
982   // for better readability
983   const bool must_gc_arguments = true;
984   const bool dont_gc_arguments = false;
985 
986   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
987   bool save_fpu_registers = true;
988 
989   // stub code & info for the different stubs
990   OopMapSet* oop_maps = NULL;
991   switch (id) {
992     case forward_exception_id:
993       {
994         oop_maps = generate_handle_exception(id, sasm);
995         __ leave();
996         __ ret(0);
997       }
998       break;
999 
1000     case new_instance_id:
1001     case fast_new_instance_id:
1002     case fast_new_instance_init_check_id:
1003       {
1004         Register klass = rdx; // Incoming
1005         Register obj   = rax; // Result
1006 
1007         if (id == new_instance_id) {
1008           __ set_info("new_instance", dont_gc_arguments);
1009         } else if (id == fast_new_instance_id) {
1010           __ set_info("fast new_instance", dont_gc_arguments);
1011         } else {
1012           assert(id == fast_new_instance_init_check_id, "bad StubID");
1013           __ set_info("fast new_instance init check", dont_gc_arguments);
1014         }
1015 
1016         // If TLAB is disabled, see if there is support for inlining contiguous
1017         // allocations.
1018         // Otherwise, just go to the slow path.
1019         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && !UseTLAB
1020             && Universe::heap()->supports_inline_contig_alloc()) {
1021           Label slow_path;
1022           Register obj_size = rcx;
1023           Register t1       = rbx;
1024           Register t2       = rsi;
1025           assert_different_registers(klass, obj, obj_size, t1, t2);
1026 
1027           __ push(rdi);
1028           __ push(rbx);
1029 
1030           if (id == fast_new_instance_init_check_id) {
1031             // make sure the klass is initialized
1032             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1033             __ jcc(Assembler::notEqual, slow_path);
1034           }
1035 
1036 #ifdef ASSERT
1037           // assert object can be fast path allocated
1038           {
1039             Label ok, not_ok;
1040             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1041             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1042             __ jcc(Assembler::lessEqual, not_ok);
1043             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1044             __ jcc(Assembler::zero, ok);
1045             __ bind(not_ok);
1046             __ stop("assert(can be fast path allocated)");
1047             __ should_not_reach_here();
1048             __ bind(ok);
1049           }
1050 #endif // ASSERT
1051 
1052           const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
1053           NOT_LP64(__ get_thread(thread));
1054 
1055           // get the instance size (size is postive so movl is fine for 64bit)
1056           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1057 
1058           __ eden_allocate(thread, obj, obj_size, 0, t1, slow_path);
1059 
1060           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ false);
1061           __ verify_oop(obj);
1062           __ pop(rbx);
1063           __ pop(rdi);
1064           __ ret(0);
1065 
1066           __ bind(slow_path);
1067           __ pop(rbx);
1068           __ pop(rdi);
1069         }
1070 
1071         __ enter();
1072         OopMap* map = save_live_registers(sasm, 2);
1073         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1074         oop_maps = new OopMapSet();
1075         oop_maps->add_gc_map(call_offset, map);
1076         restore_live_registers_except_rax(sasm);
1077         __ verify_oop(obj);
1078         __ leave();
1079         __ ret(0);
1080 
1081         // rax,: new instance
1082       }
1083 
1084       break;
1085 
1086     case counter_overflow_id:
1087       {
1088         Register bci = rax, method = rbx;
1089         __ enter();
1090         OopMap* map = save_live_registers(sasm, 3);
1091         // Retrieve bci
1092         __ movl(bci, Address(rbp, 2*BytesPerWord));
1093         // And a pointer to the Method*
1094         __ movptr(method, Address(rbp, 3*BytesPerWord));
1095         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1096         oop_maps = new OopMapSet();
1097         oop_maps->add_gc_map(call_offset, map);
1098         restore_live_registers(sasm);
1099         __ leave();
1100         __ ret(0);
1101       }
1102       break;
1103 
1104     case new_type_array_id:
1105     case new_object_array_id:
1106       {
1107         Register length   = rbx; // Incoming
1108         Register klass    = rdx; // Incoming
1109         Register obj      = rax; // Result
1110 
1111         if (id == new_type_array_id) {
1112           __ set_info("new_type_array", dont_gc_arguments);
1113         } else {
1114           __ set_info("new_object_array", dont_gc_arguments);
1115         }
1116 
1117 #ifdef ASSERT
1118         // assert object type is really an array of the proper kind
1119         {
1120           Label ok;
1121           Register t0 = obj;
1122           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1123           __ sarl(t0, Klass::_lh_array_tag_shift);
1124           int tag = ((id == new_type_array_id)
1125                      ? Klass::_lh_array_tag_type_value
1126                      : Klass::_lh_array_tag_obj_value);
1127           __ cmpl(t0, tag);
1128           __ jcc(Assembler::equal, ok);
1129           __ stop("assert(is an array klass)");
1130           __ should_not_reach_here();
1131           __ bind(ok);
1132         }
1133 #endif // ASSERT
1134 
1135         // If TLAB is disabled, see if there is support for inlining contiguous
1136         // allocations.
1137         // Otherwise, just go to the slow path.
1138         if (!UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
1139           Register arr_size = rsi;
1140           Register t1       = rcx;  // must be rcx for use as shift count
1141           Register t2       = rdi;
1142           Label slow_path;
1143 
1144           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1145           // since size is positive movl does right thing on 64bit
1146           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1147           // since size is postive movl does right thing on 64bit
1148           __ movl(arr_size, length);
1149           assert(t1 == rcx, "fixed register usage");
1150           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1151           __ shrptr(t1, Klass::_lh_header_size_shift);
1152           __ andptr(t1, Klass::_lh_header_size_mask);
1153           __ addptr(arr_size, t1);
1154           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1155           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1156 
1157           // Using t2 for non 64-bit.
1158           const Register thread = NOT_LP64(t2) LP64_ONLY(r15_thread);
1159           NOT_LP64(__ get_thread(thread));
1160           __ eden_allocate(thread, obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1161 
1162           __ initialize_header(obj, klass, length, t1, t2);
1163           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1164           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1165           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1166           __ andptr(t1, Klass::_lh_header_size_mask);
1167           __ subptr(arr_size, t1);  // body length
1168           __ addptr(t1, obj);       // body start
1169           __ initialize_body(t1, arr_size, 0, t2);
1170           __ verify_oop(obj);
1171           __ ret(0);
1172 
1173           __ bind(slow_path);
1174         }
1175 
1176         __ enter();
1177         OopMap* map = save_live_registers(sasm, 3);
1178         int call_offset;
1179         if (id == new_type_array_id) {
1180           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1181         } else {
1182           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1183         }
1184 
1185         oop_maps = new OopMapSet();
1186         oop_maps->add_gc_map(call_offset, map);
1187         restore_live_registers_except_rax(sasm);
1188 
1189         __ verify_oop(obj);
1190         __ leave();
1191         __ ret(0);
1192 
1193         // rax,: new array
1194       }
1195       break;
1196 
1197     case new_multi_array_id:
1198       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1199         // rax,: klass
1200         // rbx,: rank
1201         // rcx: address of 1st dimension
1202         OopMap* map = save_live_registers(sasm, 4);
1203         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1204 
1205         oop_maps = new OopMapSet();
1206         oop_maps->add_gc_map(call_offset, map);
1207         restore_live_registers_except_rax(sasm);
1208 
1209         // rax,: new multi array
1210         __ verify_oop(rax);
1211       }
1212       break;
1213 
1214     case register_finalizer_id:
1215       {
1216         __ set_info("register_finalizer", dont_gc_arguments);
1217 
1218         // This is called via call_runtime so the arguments
1219         // will be place in C abi locations
1220 
1221 #ifdef _LP64
1222         __ verify_oop(c_rarg0);
1223         __ mov(rax, c_rarg0);
1224 #else
1225         // The object is passed on the stack and we haven't pushed a
1226         // frame yet so it's one work away from top of stack.
1227         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1228         __ verify_oop(rax);
1229 #endif // _LP64
1230 
1231         // load the klass and check the has finalizer flag
1232         Label register_finalizer;
1233         Register t = rsi;
1234         __ load_klass(t, rax);
1235         __ movl(t, Address(t, Klass::access_flags_offset()));
1236         __ testl(t, JVM_ACC_HAS_FINALIZER);
1237         __ jcc(Assembler::notZero, register_finalizer);
1238         __ ret(0);
1239 
1240         __ bind(register_finalizer);
1241         __ enter();
1242         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1243         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1244         oop_maps = new OopMapSet();
1245         oop_maps->add_gc_map(call_offset, oop_map);
1246 
1247         // Now restore all the live registers
1248         restore_live_registers(sasm);
1249 
1250         __ leave();
1251         __ ret(0);
1252       }
1253       break;
1254 
1255     case throw_range_check_failed_id:
1256       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1257         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1258       }
1259       break;
1260 
1261     case throw_index_exception_id:
1262       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1263         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1264       }
1265       break;
1266 
1267     case throw_div0_exception_id:
1268       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1269         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1270       }
1271       break;
1272 
1273     case throw_null_pointer_exception_id:
1274       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1275         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1276       }
1277       break;
1278 
1279     case handle_exception_nofpu_id:
1280     case handle_exception_id:
1281       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1282         oop_maps = generate_handle_exception(id, sasm);
1283       }
1284       break;
1285 
1286     case handle_exception_from_callee_id:
1287       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1288         oop_maps = generate_handle_exception(id, sasm);
1289       }
1290       break;
1291 
1292     case unwind_exception_id:
1293       { __ set_info("unwind_exception", dont_gc_arguments);
1294         // note: no stubframe since we are about to leave the current
1295         //       activation and we are calling a leaf VM function only.
1296         generate_unwind_exception(sasm);
1297       }
1298       break;
1299 
1300     case throw_array_store_exception_id:
1301       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1302         // tos + 0: link
1303         //     + 1: return address
1304         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1305       }
1306       break;
1307 
1308     case throw_class_cast_exception_id:
1309       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1310         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1311       }
1312       break;
1313 
1314     case throw_incompatible_class_change_error_id:
1315       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1316         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1317       }
1318       break;
1319 
1320     case slow_subtype_check_id:
1321       {
1322         // Typical calling sequence:
1323         // __ push(klass_RInfo);  // object klass or other subclass
1324         // __ push(sup_k_RInfo);  // array element klass or other superclass
1325         // __ call(slow_subtype_check);
1326         // Note that the subclass is pushed first, and is therefore deepest.
1327         // Previous versions of this code reversed the names 'sub' and 'super'.
1328         // This was operationally harmless but made the code unreadable.
1329         enum layout {
1330           rax_off, SLOT2(raxH_off)
1331           rcx_off, SLOT2(rcxH_off)
1332           rsi_off, SLOT2(rsiH_off)
1333           rdi_off, SLOT2(rdiH_off)
1334           // saved_rbp_off, SLOT2(saved_rbpH_off)
1335           return_off, SLOT2(returnH_off)
1336           sup_k_off, SLOT2(sup_kH_off)
1337           klass_off, SLOT2(superH_off)
1338           framesize,
1339           result_off = klass_off  // deepest argument is also the return value
1340         };
1341 
1342         __ set_info("slow_subtype_check", dont_gc_arguments);
1343         __ push(rdi);
1344         __ push(rsi);
1345         __ push(rcx);
1346         __ push(rax);
1347 
1348         // This is called by pushing args and not with C abi
1349         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1350         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1351 
1352         Label miss;
1353         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1354 
1355         // fallthrough on success:
1356         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1357         __ pop(rax);
1358         __ pop(rcx);
1359         __ pop(rsi);
1360         __ pop(rdi);
1361         __ ret(0);
1362 
1363         __ bind(miss);
1364         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1365         __ pop(rax);
1366         __ pop(rcx);
1367         __ pop(rsi);
1368         __ pop(rdi);
1369         __ ret(0);
1370       }
1371       break;
1372 
1373     case monitorenter_nofpu_id:
1374       save_fpu_registers = false;
1375       // fall through
1376     case monitorenter_id:
1377       {
1378         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1379         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1380 
1381         // Called with store_parameter and not C abi
1382 
1383         f.load_argument(1, rax); // rax,: object
1384         f.load_argument(0, rbx); // rbx,: lock address
1385 
1386         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1387 
1388         oop_maps = new OopMapSet();
1389         oop_maps->add_gc_map(call_offset, map);
1390         restore_live_registers(sasm, save_fpu_registers);
1391       }
1392       break;
1393 
1394     case monitorexit_nofpu_id:
1395       save_fpu_registers = false;
1396       // fall through
1397     case monitorexit_id:
1398       {
1399         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1400         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1401 
1402         // Called with store_parameter and not C abi
1403 
1404         f.load_argument(0, rax); // rax,: lock address
1405 
1406         // note: really a leaf routine but must setup last java sp
1407         //       => use call_RT for now (speed can be improved by
1408         //       doing last java sp setup manually)
1409         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1410 
1411         oop_maps = new OopMapSet();
1412         oop_maps->add_gc_map(call_offset, map);
1413         restore_live_registers(sasm, save_fpu_registers);
1414       }
1415       break;
1416 
1417     case deoptimize_id:
1418       {
1419         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1420         const int num_rt_args = 2;  // thread, trap_request
1421         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1422         f.load_argument(0, rax);
1423         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax);
1424         oop_maps = new OopMapSet();
1425         oop_maps->add_gc_map(call_offset, oop_map);
1426         restore_live_registers(sasm);
1427         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1428         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1429         __ leave();
1430         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1431       }
1432       break;
1433 
1434     case access_field_patching_id:
1435       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1436         // we should set up register map
1437         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1438       }
1439       break;
1440 
1441     case load_klass_patching_id:
1442       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1443         // we should set up register map
1444         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1445       }
1446       break;
1447 
1448     case load_mirror_patching_id:
1449       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1450         // we should set up register map
1451         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1452       }
1453       break;
1454 
1455     case load_appendix_patching_id:
1456       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1457         // we should set up register map
1458         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1459       }
1460       break;
1461 
1462     case dtrace_object_alloc_id:
1463       { // rax,: object
1464         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1465         // we can't gc here so skip the oopmap but make sure that all
1466         // the live registers get saved.
1467         save_live_registers(sasm, 1);
1468 
1469         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1470         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1471         NOT_LP64(__ pop(rax));
1472 
1473         restore_live_registers(sasm);
1474       }
1475       break;
1476 
1477     case fpu2long_stub_id:
1478       {
1479         // rax, and rdx are destroyed, but should be free since the result is returned there
1480         // preserve rsi,ecx
1481         __ push(rsi);
1482         __ push(rcx);
1483         LP64_ONLY(__ push(rdx);)
1484 
1485         // check for NaN
1486         Label return0, do_return, return_min_jlong, do_convert;
1487 
1488         Address value_high_word(rsp, wordSize + 4);
1489         Address value_low_word(rsp, wordSize);
1490         Address result_high_word(rsp, 3*wordSize + 4);
1491         Address result_low_word(rsp, 3*wordSize);
1492 
1493         __ subptr(rsp, 32);                    // more than enough on 32bit
1494         __ fst_d(value_low_word);
1495         __ movl(rax, value_high_word);
1496         __ andl(rax, 0x7ff00000);
1497         __ cmpl(rax, 0x7ff00000);
1498         __ jcc(Assembler::notEqual, do_convert);
1499         __ movl(rax, value_high_word);
1500         __ andl(rax, 0xfffff);
1501         __ orl(rax, value_low_word);
1502         __ jcc(Assembler::notZero, return0);
1503 
1504         __ bind(do_convert);
1505         __ fnstcw(Address(rsp, 0));
1506         __ movzwl(rax, Address(rsp, 0));
1507         __ orl(rax, 0xc00);
1508         __ movw(Address(rsp, 2), rax);
1509         __ fldcw(Address(rsp, 2));
1510         __ fwait();
1511         __ fistp_d(result_low_word);
1512         __ fldcw(Address(rsp, 0));
1513         __ fwait();
1514         // This gets the entire long in rax on 64bit
1515         __ movptr(rax, result_low_word);
1516         // testing of high bits
1517         __ movl(rdx, result_high_word);
1518         __ mov(rcx, rax);
1519         // What the heck is the point of the next instruction???
1520         __ xorl(rcx, 0x0);
1521         __ movl(rsi, 0x80000000);
1522         __ xorl(rsi, rdx);
1523         __ orl(rcx, rsi);
1524         __ jcc(Assembler::notEqual, do_return);
1525         __ fldz();
1526         __ fcomp_d(value_low_word);
1527         __ fnstsw_ax();
1528 #ifdef _LP64
1529         __ testl(rax, 0x4100);  // ZF & CF == 0
1530         __ jcc(Assembler::equal, return_min_jlong);
1531 #else
1532         __ sahf();
1533         __ jcc(Assembler::above, return_min_jlong);
1534 #endif // _LP64
1535         // return max_jlong
1536 #ifndef _LP64
1537         __ movl(rdx, 0x7fffffff);
1538         __ movl(rax, 0xffffffff);
1539 #else
1540         __ mov64(rax, CONST64(0x7fffffffffffffff));
1541 #endif // _LP64
1542         __ jmp(do_return);
1543 
1544         __ bind(return_min_jlong);
1545 #ifndef _LP64
1546         __ movl(rdx, 0x80000000);
1547         __ xorl(rax, rax);
1548 #else
1549         __ mov64(rax, UCONST64(0x8000000000000000));
1550 #endif // _LP64
1551         __ jmp(do_return);
1552 
1553         __ bind(return0);
1554         __ fpop();
1555 #ifndef _LP64
1556         __ xorptr(rdx,rdx);
1557         __ xorptr(rax,rax);
1558 #else
1559         __ xorptr(rax, rax);
1560 #endif // _LP64
1561 
1562         __ bind(do_return);
1563         __ addptr(rsp, 32);
1564         LP64_ONLY(__ pop(rdx);)
1565         __ pop(rcx);
1566         __ pop(rsi);
1567         __ ret(0);
1568       }
1569       break;
1570 
1571     case predicate_failed_trap_id:
1572       {
1573         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1574 
1575         OopMap* map = save_live_registers(sasm, 1);
1576 
1577         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1578         oop_maps = new OopMapSet();
1579         oop_maps->add_gc_map(call_offset, map);
1580         restore_live_registers(sasm);
1581         __ leave();
1582         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1583         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1584 
1585         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1586       }
1587       break;
1588 
1589     default:
1590       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1591         __ movptr(rax, (int)id);
1592         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1593         __ should_not_reach_here();
1594       }
1595       break;
1596   }
1597   return oop_maps;
1598 }
1599 
1600 #undef __
1601 
pd_name_for_address(address entry)1602 const char *Runtime1::pd_name_for_address(address entry) {
1603   return "<unknown function>";
1604 }
1605