1 /*
2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "nativeInst_x86.hpp"
32 #include "oops/instanceOop.hpp"
33 #include "oops/method.hpp"
34 #include "oops/objArrayKlass.hpp"
35 #include "oops/oop.inline.hpp"
36 #include "prims/methodHandles.hpp"
37 #include "runtime/frame.inline.hpp"
38 #include "runtime/handles.inline.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/stubCodeGenerator.hpp"
41 #include "runtime/stubRoutines.hpp"
42 #include "runtime/thread.inline.hpp"
43 #ifdef COMPILER2
44 #include "opto/runtime.hpp"
45 #endif
46 
47 // Declaration and definition of StubGenerator (no .hpp file).
48 // For a more detailed description of the stub routine structure
49 // see the comment in stubRoutines.hpp
50 
51 #define __ _masm->
52 #define a__ ((Assembler*)_masm)->
53 
54 #ifdef PRODUCT
55 #define BLOCK_COMMENT(str) /* nothing */
56 #else
57 #define BLOCK_COMMENT(str) __ block_comment(str)
58 #endif
59 
60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
61 
62 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
63 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
64 
65 // -------------------------------------------------------------------------------------------------------------------------
66 // Stub Code definitions
67 
68 class StubGenerator: public StubCodeGenerator {
69  private:
70 
71 #ifdef PRODUCT
72 #define inc_counter_np(counter) ((void)0)
73 #else
74   void inc_counter_np_(int& counter) {
75     __ incrementl(ExternalAddress((address)&counter));
76   }
77 #define inc_counter_np(counter) \
78   BLOCK_COMMENT("inc_counter " #counter); \
79   inc_counter_np_(counter);
80 #endif //PRODUCT
81 
inc_copy_counter_np(BasicType t)82   void inc_copy_counter_np(BasicType t) {
83 #ifndef PRODUCT
84     switch (t) {
85     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
86     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
87     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
88     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
89     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
90     default:        ShouldNotReachHere();
91     }
92 #endif //PRODUCT
93   }
94 
95   //------------------------------------------------------------------------------------------------------------------------
96   // Call stubs are used to call Java from C
97   //
98   //    [ return_from_Java     ] <--- rsp
99   //    [ argument word n      ]
100   //      ...
101   // -N [ argument word 1      ]
102   // -7 [ Possible padding for stack alignment ]
103   // -6 [ Possible padding for stack alignment ]
104   // -5 [ Possible padding for stack alignment ]
105   // -4 [ mxcsr save           ] <--- rsp_after_call
106   // -3 [ saved rbx,            ]
107   // -2 [ saved rsi            ]
108   // -1 [ saved rdi            ]
109   //  0 [ saved rbp,            ] <--- rbp,
110   //  1 [ return address       ]
111   //  2 [ ptr. to call wrapper ]
112   //  3 [ result               ]
113   //  4 [ result_type          ]
114   //  5 [ method               ]
115   //  6 [ entry_point          ]
116   //  7 [ parameters           ]
117   //  8 [ parameter_size       ]
118   //  9 [ thread               ]
119 
120 
generate_call_stub(address & return_address)121   address generate_call_stub(address& return_address) {
122     StubCodeMark mark(this, "StubRoutines", "call_stub");
123     address start = __ pc();
124 
125     // stub code parameters / addresses
126     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
127     bool  sse_save = false;
128     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
129     const int     locals_count_in_bytes  (4*wordSize);
130     const Address mxcsr_save    (rbp, -4 * wordSize);
131     const Address saved_rbx     (rbp, -3 * wordSize);
132     const Address saved_rsi     (rbp, -2 * wordSize);
133     const Address saved_rdi     (rbp, -1 * wordSize);
134     const Address result        (rbp,  3 * wordSize);
135     const Address result_type   (rbp,  4 * wordSize);
136     const Address method        (rbp,  5 * wordSize);
137     const Address entry_point   (rbp,  6 * wordSize);
138     const Address parameters    (rbp,  7 * wordSize);
139     const Address parameter_size(rbp,  8 * wordSize);
140     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
141     sse_save =  UseSSE > 0;
142 
143     // stub code
144     __ enter();
145     __ movptr(rcx, parameter_size);              // parameter counter
146     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
147     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
148     __ subptr(rsp, rcx);
149     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
150 
151     // save rdi, rsi, & rbx, according to C calling conventions
152     __ movptr(saved_rdi, rdi);
153     __ movptr(saved_rsi, rsi);
154     __ movptr(saved_rbx, rbx);
155 
156     // save and initialize %mxcsr
157     if (sse_save) {
158       Label skip_ldmx;
159       __ stmxcsr(mxcsr_save);
160       __ movl(rax, mxcsr_save);
161       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
162       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
163       __ cmp32(rax, mxcsr_std);
164       __ jcc(Assembler::equal, skip_ldmx);
165       __ ldmxcsr(mxcsr_std);
166       __ bind(skip_ldmx);
167     }
168 
169     // make sure the control word is correct.
170     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
171 
172 #ifdef ASSERT
173     // make sure we have no pending exceptions
174     { Label L;
175       __ movptr(rcx, thread);
176       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
177       __ jcc(Assembler::equal, L);
178       __ stop("StubRoutines::call_stub: entered with pending exception");
179       __ bind(L);
180     }
181 #endif
182 
183     // pass parameters if any
184     BLOCK_COMMENT("pass parameters if any");
185     Label parameters_done;
186     __ movl(rcx, parameter_size);  // parameter counter
187     __ testl(rcx, rcx);
188     __ jcc(Assembler::zero, parameters_done);
189 
190     // parameter passing loop
191 
192     Label loop;
193     // Copy Java parameters in reverse order (receiver last)
194     // Note that the argument order is inverted in the process
195     // source is rdx[rcx: N-1..0]
196     // dest   is rsp[rbx: 0..N-1]
197 
198     __ movptr(rdx, parameters);          // parameter pointer
199     __ xorptr(rbx, rbx);
200 
201     __ BIND(loop);
202 
203     // get parameter
204     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
205     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
206                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
207     __ increment(rbx);
208     __ decrement(rcx);
209     __ jcc(Assembler::notZero, loop);
210 
211     // call Java function
212     __ BIND(parameters_done);
213     __ movptr(rbx, method);           // get Method*
214     __ movptr(rax, entry_point);      // get entry_point
215     __ mov(rsi, rsp);                 // set sender sp
216     BLOCK_COMMENT("call Java function");
217     __ call(rax);
218 
219     BLOCK_COMMENT("call_stub_return_address:");
220     return_address = __ pc();
221 
222 #ifdef COMPILER2
223     {
224       Label L_skip;
225       if (UseSSE >= 2) {
226         __ verify_FPU(0, "call_stub_return");
227       } else {
228         for (int i = 1; i < 8; i++) {
229           __ ffree(i);
230         }
231 
232         // UseSSE <= 1 so double result should be left on TOS
233         __ movl(rsi, result_type);
234         __ cmpl(rsi, T_DOUBLE);
235         __ jcc(Assembler::equal, L_skip);
236         if (UseSSE == 0) {
237           // UseSSE == 0 so float result should be left on TOS
238           __ cmpl(rsi, T_FLOAT);
239           __ jcc(Assembler::equal, L_skip);
240         }
241         __ ffree(0);
242       }
243       __ BIND(L_skip);
244     }
245 #endif // COMPILER2
246 
247     // store result depending on type
248     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
249     __ movptr(rdi, result);
250     Label is_long, is_float, is_double, exit;
251     __ movl(rsi, result_type);
252     __ cmpl(rsi, T_LONG);
253     __ jcc(Assembler::equal, is_long);
254     __ cmpl(rsi, T_FLOAT);
255     __ jcc(Assembler::equal, is_float);
256     __ cmpl(rsi, T_DOUBLE);
257     __ jcc(Assembler::equal, is_double);
258 
259     // handle T_INT case
260     __ movl(Address(rdi, 0), rax);
261     __ BIND(exit);
262 
263     // check that FPU stack is empty
264     __ verify_FPU(0, "generate_call_stub");
265 
266     // pop parameters
267     __ lea(rsp, rsp_after_call);
268 
269     // restore %mxcsr
270     if (sse_save) {
271       __ ldmxcsr(mxcsr_save);
272     }
273 
274     // restore rdi, rsi and rbx,
275     __ movptr(rbx, saved_rbx);
276     __ movptr(rsi, saved_rsi);
277     __ movptr(rdi, saved_rdi);
278     __ addptr(rsp, 4*wordSize);
279 
280     // return
281     __ pop(rbp);
282     __ ret(0);
283 
284     // handle return types different from T_INT
285     __ BIND(is_long);
286     __ movl(Address(rdi, 0 * wordSize), rax);
287     __ movl(Address(rdi, 1 * wordSize), rdx);
288     __ jmp(exit);
289 
290     __ BIND(is_float);
291     // interpreter uses xmm0 for return values
292     if (UseSSE >= 1) {
293       __ movflt(Address(rdi, 0), xmm0);
294     } else {
295       __ fstp_s(Address(rdi, 0));
296     }
297     __ jmp(exit);
298 
299     __ BIND(is_double);
300     // interpreter uses xmm0 for return values
301     if (UseSSE >= 2) {
302       __ movdbl(Address(rdi, 0), xmm0);
303     } else {
304       __ fstp_d(Address(rdi, 0));
305     }
306     __ jmp(exit);
307 
308     return start;
309   }
310 
311 
312   //------------------------------------------------------------------------------------------------------------------------
313   // Return point for a Java call if there's an exception thrown in Java code.
314   // The exception is caught and transformed into a pending exception stored in
315   // JavaThread that can be tested from within the VM.
316   //
317   // Note: Usually the parameters are removed by the callee. In case of an exception
318   //       crossing an activation frame boundary, that is not the case if the callee
319   //       is compiled code => need to setup the rsp.
320   //
321   // rax,: exception oop
322 
generate_catch_exception()323   address generate_catch_exception() {
324     StubCodeMark mark(this, "StubRoutines", "catch_exception");
325     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
326     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
327     address start = __ pc();
328 
329     // get thread directly
330     __ movptr(rcx, thread);
331 #ifdef ASSERT
332     // verify that threads correspond
333     { Label L;
334       __ get_thread(rbx);
335       __ cmpptr(rbx, rcx);
336       __ jcc(Assembler::equal, L);
337       __ stop("StubRoutines::catch_exception: threads must correspond");
338       __ bind(L);
339     }
340 #endif
341     // set pending exception
342     __ verify_oop(rax);
343     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
344     __ lea(Address(rcx, Thread::exception_file_offset   ()),
345            ExternalAddress((address)__FILE__));
346     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
347     // complete return to VM
348     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
349     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
350 
351     return start;
352   }
353 
354 
355   //------------------------------------------------------------------------------------------------------------------------
356   // Continuation point for runtime calls returning with a pending exception.
357   // The pending exception check happened in the runtime or native call stub.
358   // The pending exception in Thread is converted into a Java-level exception.
359   //
360   // Contract with Java-level exception handlers:
361   // rax: exception
362   // rdx: throwing pc
363   //
364   // NOTE: At entry of this stub, exception-pc must be on stack !!
365 
generate_forward_exception()366   address generate_forward_exception() {
367     StubCodeMark mark(this, "StubRoutines", "forward exception");
368     address start = __ pc();
369     const Register thread = rcx;
370 
371     // other registers used in this stub
372     const Register exception_oop = rax;
373     const Register handler_addr  = rbx;
374     const Register exception_pc  = rdx;
375 
376     // Upon entry, the sp points to the return address returning into Java
377     // (interpreted or compiled) code; i.e., the return address becomes the
378     // throwing pc.
379     //
380     // Arguments pushed before the runtime call are still on the stack but
381     // the exception handler will reset the stack pointer -> ignore them.
382     // A potential result in registers can be ignored as well.
383 
384 #ifdef ASSERT
385     // make sure this code is only executed if there is a pending exception
386     { Label L;
387       __ get_thread(thread);
388       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
389       __ jcc(Assembler::notEqual, L);
390       __ stop("StubRoutines::forward exception: no pending exception (1)");
391       __ bind(L);
392     }
393 #endif
394 
395     // compute exception handler into rbx,
396     __ get_thread(thread);
397     __ movptr(exception_pc, Address(rsp, 0));
398     BLOCK_COMMENT("call exception_handler_for_return_address");
399     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
400     __ mov(handler_addr, rax);
401 
402     // setup rax & rdx, remove return address & clear pending exception
403     __ get_thread(thread);
404     __ pop(exception_pc);
405     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
406     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
407 
408 #ifdef ASSERT
409     // make sure exception is set
410     { Label L;
411       __ testptr(exception_oop, exception_oop);
412       __ jcc(Assembler::notEqual, L);
413       __ stop("StubRoutines::forward exception: no pending exception (2)");
414       __ bind(L);
415     }
416 #endif
417 
418     // Verify that there is really a valid exception in RAX.
419     __ verify_oop(exception_oop);
420 
421     // continue at exception handler (return address removed)
422     // rax: exception
423     // rbx: exception handler
424     // rdx: throwing pc
425     __ jmp(handler_addr);
426 
427     return start;
428   }
429 
430 
431   //----------------------------------------------------------------------------------------------------
432   // Support for int32_t Atomic::xchg(int32_t exchange_value, volatile int32_t* dest)
433   //
434   // xchg exists as far back as 8086, lock needed for MP only
435   // Stack layout immediately after call:
436   //
437   // 0 [ret addr ] <--- rsp
438   // 1 [  ex     ]
439   // 2 [  dest   ]
440   //
441   // Result:   *dest <- ex, return (old *dest)
442   //
443   // Note: win32 does not currently use this code
444 
generate_atomic_xchg()445   address generate_atomic_xchg() {
446     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
447     address start = __ pc();
448 
449     __ push(rdx);
450     Address exchange(rsp, 2 * wordSize);
451     Address dest_addr(rsp, 3 * wordSize);
452     __ movl(rax, exchange);
453     __ movptr(rdx, dest_addr);
454     __ xchgl(rax, Address(rdx, 0));
455     __ pop(rdx);
456     __ ret(0);
457 
458     return start;
459   }
460 
461   //----------------------------------------------------------------------------------------------------
462   // Support for void verify_mxcsr()
463   //
464   // This routine is used with -Xcheck:jni to verify that native
465   // JNI code does not return to Java code without restoring the
466   // MXCSR register to our expected state.
467 
468 
generate_verify_mxcsr()469   address generate_verify_mxcsr() {
470     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
471     address start = __ pc();
472 
473     const Address mxcsr_save(rsp, 0);
474 
475     if (CheckJNICalls && UseSSE > 0 ) {
476       Label ok_ret;
477       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
478       __ push(rax);
479       __ subptr(rsp, wordSize);      // allocate a temp location
480       __ stmxcsr(mxcsr_save);
481       __ movl(rax, mxcsr_save);
482       __ andl(rax, MXCSR_MASK);
483       __ cmp32(rax, mxcsr_std);
484       __ jcc(Assembler::equal, ok_ret);
485 
486       __ warn("MXCSR changed by native JNI code.");
487 
488       __ ldmxcsr(mxcsr_std);
489 
490       __ bind(ok_ret);
491       __ addptr(rsp, wordSize);
492       __ pop(rax);
493     }
494 
495     __ ret(0);
496 
497     return start;
498   }
499 
500 
501   //---------------------------------------------------------------------------
502   // Support for void verify_fpu_cntrl_wrd()
503   //
504   // This routine is used with -Xcheck:jni to verify that native
505   // JNI code does not return to Java code without restoring the
506   // FP control word to our expected state.
507 
generate_verify_fpu_cntrl_wrd()508   address generate_verify_fpu_cntrl_wrd() {
509     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
510     address start = __ pc();
511 
512     const Address fpu_cntrl_wrd_save(rsp, 0);
513 
514     if (CheckJNICalls) {
515       Label ok_ret;
516       __ push(rax);
517       __ subptr(rsp, wordSize);      // allocate a temp location
518       __ fnstcw(fpu_cntrl_wrd_save);
519       __ movl(rax, fpu_cntrl_wrd_save);
520       __ andl(rax, FPU_CNTRL_WRD_MASK);
521       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
522       __ cmp32(rax, fpu_std);
523       __ jcc(Assembler::equal, ok_ret);
524 
525       __ warn("Floating point control word changed by native JNI code.");
526 
527       __ fldcw(fpu_std);
528 
529       __ bind(ok_ret);
530       __ addptr(rsp, wordSize);
531       __ pop(rax);
532     }
533 
534     __ ret(0);
535 
536     return start;
537   }
538 
539   //---------------------------------------------------------------------------
540   // Wrapper for slow-case handling of double-to-integer conversion
541   // d2i or f2i fast case failed either because it is nan or because
542   // of under/overflow.
543   // Input:  FPU TOS: float value
544   // Output: rax, (rdx): integer (long) result
545 
generate_d2i_wrapper(BasicType t,address fcn)546   address generate_d2i_wrapper(BasicType t, address fcn) {
547     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
548     address start = __ pc();
549 
550   // Capture info about frame layout
551   enum layout { FPUState_off         = 0,
552                 rbp_off              = FPUStateSizeInWords,
553                 rdi_off,
554                 rsi_off,
555                 rcx_off,
556                 rbx_off,
557                 saved_argument_off,
558                 saved_argument_off2, // 2nd half of double
559                 framesize
560   };
561 
562   assert(FPUStateSizeInWords == 27, "update stack layout");
563 
564     // Save outgoing argument to stack across push_FPU_state()
565     __ subptr(rsp, wordSize * 2);
566     __ fstp_d(Address(rsp, 0));
567 
568     // Save CPU & FPU state
569     __ push(rbx);
570     __ push(rcx);
571     __ push(rsi);
572     __ push(rdi);
573     __ push(rbp);
574     __ push_FPU_state();
575 
576     // push_FPU_state() resets the FP top of stack
577     // Load original double into FP top of stack
578     __ fld_d(Address(rsp, saved_argument_off * wordSize));
579     // Store double into stack as outgoing argument
580     __ subptr(rsp, wordSize*2);
581     __ fst_d(Address(rsp, 0));
582 
583     // Prepare FPU for doing math in C-land
584     __ empty_FPU_stack();
585     // Call the C code to massage the double.  Result in EAX
586     if (t == T_INT)
587       { BLOCK_COMMENT("SharedRuntime::d2i"); }
588     else if (t == T_LONG)
589       { BLOCK_COMMENT("SharedRuntime::d2l"); }
590     __ call_VM_leaf( fcn, 2 );
591 
592     // Restore CPU & FPU state
593     __ pop_FPU_state();
594     __ pop(rbp);
595     __ pop(rdi);
596     __ pop(rsi);
597     __ pop(rcx);
598     __ pop(rbx);
599     __ addptr(rsp, wordSize * 2);
600 
601     __ ret(0);
602 
603     return start;
604   }
605 
606 
607   //----------------------------------------------------------------------------------------------------
608   // Non-destructive plausibility checks for oops
609 
generate_verify_oop()610   address generate_verify_oop() {
611     StubCodeMark mark(this, "StubRoutines", "verify_oop");
612     address start = __ pc();
613 
614     // Incoming arguments on stack after saving rax,:
615     //
616     // [tos    ]: saved rdx
617     // [tos + 1]: saved EFLAGS
618     // [tos + 2]: return address
619     // [tos + 3]: char* error message
620     // [tos + 4]: oop   object to verify
621     // [tos + 5]: saved rax, - saved by caller and bashed
622 
623     Label exit, error;
624     __ pushf();
625     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
626     __ push(rdx);                                // save rdx
627     // make sure object is 'reasonable'
628     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
629     __ testptr(rax, rax);
630     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
631 
632     // Check if the oop is in the right area of memory
633     const int oop_mask = Universe::verify_oop_mask();
634     const int oop_bits = Universe::verify_oop_bits();
635     __ mov(rdx, rax);
636     __ andptr(rdx, oop_mask);
637     __ cmpptr(rdx, oop_bits);
638     __ jcc(Assembler::notZero, error);
639 
640     // make sure klass is 'reasonable', which is not zero.
641     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
642     __ testptr(rax, rax);
643     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
644 
645     // return if everything seems ok
646     __ bind(exit);
647     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
648     __ pop(rdx);                                 // restore rdx
649     __ popf();                                   // restore EFLAGS
650     __ ret(3 * wordSize);                        // pop arguments
651 
652     // handle errors
653     __ bind(error);
654     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
655     __ pop(rdx);                                 // get saved rdx back
656     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
657     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
658     BLOCK_COMMENT("call MacroAssembler::debug");
659     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
660     __ popa();
661     __ ret(3 * wordSize);                        // pop arguments
662     return start;
663   }
664 
665 
666   // Copy 64 bytes chunks
667   //
668   // Inputs:
669   //   from        - source array address
670   //   to_from     - destination array address - from
671   //   qword_count - 8-bytes element count, negative
672   //
xmm_copy_forward(Register from,Register to_from,Register qword_count)673   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
674     assert( UseSSE >= 2, "supported cpu only" );
675     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
676 
677     // Copy 64-byte chunks
678     __ jmpb(L_copy_64_bytes);
679     __ align(OptoLoopAlignment);
680   __ BIND(L_copy_64_bytes_loop);
681 
682     if (UseUnalignedLoadStores) {
683       if (UseAVX > 2) {
684         __ evmovdqul(xmm0, Address(from, 0), Assembler::AVX_512bit);
685         __ evmovdqul(Address(from, to_from, Address::times_1, 0), xmm0, Assembler::AVX_512bit);
686       } else if (UseAVX == 2) {
687         __ vmovdqu(xmm0, Address(from,  0));
688         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
689         __ vmovdqu(xmm1, Address(from, 32));
690         __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
691       } else {
692         __ movdqu(xmm0, Address(from, 0));
693         __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
694         __ movdqu(xmm1, Address(from, 16));
695         __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
696         __ movdqu(xmm2, Address(from, 32));
697         __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
698         __ movdqu(xmm3, Address(from, 48));
699         __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
700       }
701     } else {
702       __ movq(xmm0, Address(from, 0));
703       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
704       __ movq(xmm1, Address(from, 8));
705       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
706       __ movq(xmm2, Address(from, 16));
707       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
708       __ movq(xmm3, Address(from, 24));
709       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
710       __ movq(xmm4, Address(from, 32));
711       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
712       __ movq(xmm5, Address(from, 40));
713       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
714       __ movq(xmm6, Address(from, 48));
715       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
716       __ movq(xmm7, Address(from, 56));
717       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
718     }
719 
720     __ addl(from, 64);
721   __ BIND(L_copy_64_bytes);
722     __ subl(qword_count, 8);
723     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
724 
725     if (UseUnalignedLoadStores && (UseAVX == 2)) {
726       // clean upper bits of YMM registers
727       __ vpxor(xmm0, xmm0);
728       __ vpxor(xmm1, xmm1);
729     }
730     __ addl(qword_count, 8);
731     __ jccb(Assembler::zero, L_exit);
732     //
733     // length is too short, just copy qwords
734     //
735   __ BIND(L_copy_8_bytes);
736     __ movq(xmm0, Address(from, 0));
737     __ movq(Address(from, to_from, Address::times_1), xmm0);
738     __ addl(from, 8);
739     __ decrement(qword_count);
740     __ jcc(Assembler::greater, L_copy_8_bytes);
741   __ BIND(L_exit);
742   }
743 
744   // Copy 64 bytes chunks
745   //
746   // Inputs:
747   //   from        - source array address
748   //   to_from     - destination array address - from
749   //   qword_count - 8-bytes element count, negative
750   //
mmx_copy_forward(Register from,Register to_from,Register qword_count)751   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
752     assert( VM_Version::supports_mmx(), "supported cpu only" );
753     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
754     // Copy 64-byte chunks
755     __ jmpb(L_copy_64_bytes);
756     __ align(OptoLoopAlignment);
757   __ BIND(L_copy_64_bytes_loop);
758     __ movq(mmx0, Address(from, 0));
759     __ movq(mmx1, Address(from, 8));
760     __ movq(mmx2, Address(from, 16));
761     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
762     __ movq(mmx3, Address(from, 24));
763     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
764     __ movq(mmx4, Address(from, 32));
765     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
766     __ movq(mmx5, Address(from, 40));
767     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
768     __ movq(mmx6, Address(from, 48));
769     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
770     __ movq(mmx7, Address(from, 56));
771     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
772     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
773     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
774     __ addptr(from, 64);
775   __ BIND(L_copy_64_bytes);
776     __ subl(qword_count, 8);
777     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
778     __ addl(qword_count, 8);
779     __ jccb(Assembler::zero, L_exit);
780     //
781     // length is too short, just copy qwords
782     //
783   __ BIND(L_copy_8_bytes);
784     __ movq(mmx0, Address(from, 0));
785     __ movq(Address(from, to_from, Address::times_1), mmx0);
786     __ addptr(from, 8);
787     __ decrement(qword_count);
788     __ jcc(Assembler::greater, L_copy_8_bytes);
789   __ BIND(L_exit);
790     __ emms();
791   }
792 
generate_disjoint_copy(BasicType t,bool aligned,Address::ScaleFactor sf,address * entry,const char * name,bool dest_uninitialized=false)793   address generate_disjoint_copy(BasicType t, bool aligned,
794                                  Address::ScaleFactor sf,
795                                  address* entry, const char *name,
796                                  bool dest_uninitialized = false) {
797     __ align(CodeEntryAlignment);
798     StubCodeMark mark(this, "StubRoutines", name);
799     address start = __ pc();
800 
801     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
802     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
803 
804     int shift = Address::times_ptr - sf;
805 
806     const Register from     = rsi;  // source array address
807     const Register to       = rdi;  // destination array address
808     const Register count    = rcx;  // elements count
809     const Register to_from  = to;   // (to - from)
810     const Register saved_to = rdx;  // saved destination array address
811 
812     __ enter(); // required for proper stackwalking of RuntimeStub frame
813     __ push(rsi);
814     __ push(rdi);
815     __ movptr(from , Address(rsp, 12+ 4));
816     __ movptr(to   , Address(rsp, 12+ 8));
817     __ movl(count, Address(rsp, 12+ 12));
818 
819     if (entry != NULL) {
820       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
821       BLOCK_COMMENT("Entry:");
822     }
823 
824     if (t == T_OBJECT) {
825       __ testl(count, count);
826       __ jcc(Assembler::zero, L_0_count);
827     }
828 
829     DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
830     if (dest_uninitialized) {
831       decorators |= IS_DEST_UNINITIALIZED;
832     }
833     if (aligned) {
834       decorators |= ARRAYCOPY_ALIGNED;
835     }
836 
837     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
838     bs->arraycopy_prologue(_masm, decorators, t, from, to, count);
839 
840     __ subptr(to, from); // to --> to_from
841     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
842     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
843     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
844       // align source address at 4 bytes address boundary
845       if (t == T_BYTE) {
846         // One byte misalignment happens only for byte arrays
847         __ testl(from, 1);
848         __ jccb(Assembler::zero, L_skip_align1);
849         __ movb(rax, Address(from, 0));
850         __ movb(Address(from, to_from, Address::times_1, 0), rax);
851         __ increment(from);
852         __ decrement(count);
853       __ BIND(L_skip_align1);
854       }
855       // Two bytes misalignment happens only for byte and short (char) arrays
856       __ testl(from, 2);
857       __ jccb(Assembler::zero, L_skip_align2);
858       __ movw(rax, Address(from, 0));
859       __ movw(Address(from, to_from, Address::times_1, 0), rax);
860       __ addptr(from, 2);
861       __ subl(count, 1<<(shift-1));
862     __ BIND(L_skip_align2);
863     }
864     if (!VM_Version::supports_mmx()) {
865       __ mov(rax, count);      // save 'count'
866       __ shrl(count, shift); // bytes count
867       __ addptr(to_from, from);// restore 'to'
868       __ rep_mov();
869       __ subptr(to_from, from);// restore 'to_from'
870       __ mov(count, rax);      // restore 'count'
871       __ jmpb(L_copy_2_bytes); // all dwords were copied
872     } else {
873       if (!UseUnalignedLoadStores) {
874         // align to 8 bytes, we know we are 4 byte aligned to start
875         __ testptr(from, 4);
876         __ jccb(Assembler::zero, L_copy_64_bytes);
877         __ movl(rax, Address(from, 0));
878         __ movl(Address(from, to_from, Address::times_1, 0), rax);
879         __ addptr(from, 4);
880         __ subl(count, 1<<shift);
881       }
882     __ BIND(L_copy_64_bytes);
883       __ mov(rax, count);
884       __ shrl(rax, shift+1);  // 8 bytes chunk count
885       //
886       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
887       //
888       if (UseXMMForArrayCopy) {
889         xmm_copy_forward(from, to_from, rax);
890       } else {
891         mmx_copy_forward(from, to_from, rax);
892       }
893     }
894     // copy tailing dword
895   __ BIND(L_copy_4_bytes);
896     __ testl(count, 1<<shift);
897     __ jccb(Assembler::zero, L_copy_2_bytes);
898     __ movl(rax, Address(from, 0));
899     __ movl(Address(from, to_from, Address::times_1, 0), rax);
900     if (t == T_BYTE || t == T_SHORT) {
901       __ addptr(from, 4);
902     __ BIND(L_copy_2_bytes);
903       // copy tailing word
904       __ testl(count, 1<<(shift-1));
905       __ jccb(Assembler::zero, L_copy_byte);
906       __ movw(rax, Address(from, 0));
907       __ movw(Address(from, to_from, Address::times_1, 0), rax);
908       if (t == T_BYTE) {
909         __ addptr(from, 2);
910       __ BIND(L_copy_byte);
911         // copy tailing byte
912         __ testl(count, 1);
913         __ jccb(Assembler::zero, L_exit);
914         __ movb(rax, Address(from, 0));
915         __ movb(Address(from, to_from, Address::times_1, 0), rax);
916       __ BIND(L_exit);
917       } else {
918       __ BIND(L_copy_byte);
919       }
920     } else {
921     __ BIND(L_copy_2_bytes);
922     }
923 
924     __ movl(count, Address(rsp, 12+12)); // reread 'count'
925     bs->arraycopy_epilogue(_masm, decorators, t, from, to, count);
926 
927     if (t == T_OBJECT) {
928     __ BIND(L_0_count);
929     }
930     inc_copy_counter_np(t);
931     __ pop(rdi);
932     __ pop(rsi);
933     __ leave(); // required for proper stackwalking of RuntimeStub frame
934     __ vzeroupper();
935     __ xorptr(rax, rax); // return 0
936     __ ret(0);
937     return start;
938   }
939 
940 
generate_fill(BasicType t,bool aligned,const char * name)941   address generate_fill(BasicType t, bool aligned, const char *name) {
942     __ align(CodeEntryAlignment);
943     StubCodeMark mark(this, "StubRoutines", name);
944     address start = __ pc();
945 
946     BLOCK_COMMENT("Entry:");
947 
948     const Register to       = rdi;  // source array address
949     const Register value    = rdx;  // value
950     const Register count    = rsi;  // elements count
951 
952     __ enter(); // required for proper stackwalking of RuntimeStub frame
953     __ push(rsi);
954     __ push(rdi);
955     __ movptr(to   , Address(rsp, 12+ 4));
956     __ movl(value, Address(rsp, 12+ 8));
957     __ movl(count, Address(rsp, 12+ 12));
958 
959     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
960 
961     __ pop(rdi);
962     __ pop(rsi);
963     __ leave(); // required for proper stackwalking of RuntimeStub frame
964     __ ret(0);
965     return start;
966   }
967 
generate_conjoint_copy(BasicType t,bool aligned,Address::ScaleFactor sf,address nooverlap_target,address * entry,const char * name,bool dest_uninitialized=false)968   address generate_conjoint_copy(BasicType t, bool aligned,
969                                  Address::ScaleFactor sf,
970                                  address nooverlap_target,
971                                  address* entry, const char *name,
972                                  bool dest_uninitialized = false) {
973     __ align(CodeEntryAlignment);
974     StubCodeMark mark(this, "StubRoutines", name);
975     address start = __ pc();
976 
977     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
978     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
979 
980     int shift = Address::times_ptr - sf;
981 
982     const Register src   = rax;  // source array address
983     const Register dst   = rdx;  // destination array address
984     const Register from  = rsi;  // source array address
985     const Register to    = rdi;  // destination array address
986     const Register count = rcx;  // elements count
987     const Register end   = rax;  // array end address
988 
989     __ enter(); // required for proper stackwalking of RuntimeStub frame
990     __ push(rsi);
991     __ push(rdi);
992     __ movptr(src  , Address(rsp, 12+ 4));   // from
993     __ movptr(dst  , Address(rsp, 12+ 8));   // to
994     __ movl2ptr(count, Address(rsp, 12+12)); // count
995 
996     if (entry != NULL) {
997       *entry = __ pc(); // Entry point from generic arraycopy stub.
998       BLOCK_COMMENT("Entry:");
999     }
1000 
1001     // nooverlap_target expects arguments in rsi and rdi.
1002     __ mov(from, src);
1003     __ mov(to  , dst);
1004 
1005     // arrays overlap test: dispatch to disjoint stub if necessary.
1006     RuntimeAddress nooverlap(nooverlap_target);
1007     __ cmpptr(dst, src);
1008     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1009     __ jump_cc(Assembler::belowEqual, nooverlap);
1010     __ cmpptr(dst, end);
1011     __ jump_cc(Assembler::aboveEqual, nooverlap);
1012 
1013     if (t == T_OBJECT) {
1014       __ testl(count, count);
1015       __ jcc(Assembler::zero, L_0_count);
1016     }
1017 
1018     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1019     if (dest_uninitialized) {
1020       decorators |= IS_DEST_UNINITIALIZED;
1021     }
1022     if (aligned) {
1023       decorators |= ARRAYCOPY_ALIGNED;
1024     }
1025 
1026     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
1027     bs->arraycopy_prologue(_masm, decorators, t, from, to, count);
1028 
1029     // copy from high to low
1030     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1031     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1032     if (t == T_BYTE || t == T_SHORT) {
1033       // Align the end of destination array at 4 bytes address boundary
1034       __ lea(end, Address(dst, count, sf, 0));
1035       if (t == T_BYTE) {
1036         // One byte misalignment happens only for byte arrays
1037         __ testl(end, 1);
1038         __ jccb(Assembler::zero, L_skip_align1);
1039         __ decrement(count);
1040         __ movb(rdx, Address(from, count, sf, 0));
1041         __ movb(Address(to, count, sf, 0), rdx);
1042       __ BIND(L_skip_align1);
1043       }
1044       // Two bytes misalignment happens only for byte and short (char) arrays
1045       __ testl(end, 2);
1046       __ jccb(Assembler::zero, L_skip_align2);
1047       __ subptr(count, 1<<(shift-1));
1048       __ movw(rdx, Address(from, count, sf, 0));
1049       __ movw(Address(to, count, sf, 0), rdx);
1050     __ BIND(L_skip_align2);
1051       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1052       __ jcc(Assembler::below, L_copy_4_bytes);
1053     }
1054 
1055     if (!VM_Version::supports_mmx()) {
1056       __ std();
1057       __ mov(rax, count); // Save 'count'
1058       __ mov(rdx, to);    // Save 'to'
1059       __ lea(rsi, Address(from, count, sf, -4));
1060       __ lea(rdi, Address(to  , count, sf, -4));
1061       __ shrptr(count, shift); // bytes count
1062       __ rep_mov();
1063       __ cld();
1064       __ mov(count, rax); // restore 'count'
1065       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1066       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1067       __ mov(to, rdx);   // restore 'to'
1068       __ jmpb(L_copy_2_bytes); // all dword were copied
1069    } else {
1070       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1071       __ testptr(end, 4);
1072       __ jccb(Assembler::zero, L_copy_8_bytes);
1073       __ subl(count, 1<<shift);
1074       __ movl(rdx, Address(from, count, sf, 0));
1075       __ movl(Address(to, count, sf, 0), rdx);
1076       __ jmpb(L_copy_8_bytes);
1077 
1078       __ align(OptoLoopAlignment);
1079       // Move 8 bytes
1080     __ BIND(L_copy_8_bytes_loop);
1081       if (UseXMMForArrayCopy) {
1082         __ movq(xmm0, Address(from, count, sf, 0));
1083         __ movq(Address(to, count, sf, 0), xmm0);
1084       } else {
1085         __ movq(mmx0, Address(from, count, sf, 0));
1086         __ movq(Address(to, count, sf, 0), mmx0);
1087       }
1088     __ BIND(L_copy_8_bytes);
1089       __ subl(count, 2<<shift);
1090       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1091       __ addl(count, 2<<shift);
1092       if (!UseXMMForArrayCopy) {
1093         __ emms();
1094       }
1095     }
1096   __ BIND(L_copy_4_bytes);
1097     // copy prefix qword
1098     __ testl(count, 1<<shift);
1099     __ jccb(Assembler::zero, L_copy_2_bytes);
1100     __ movl(rdx, Address(from, count, sf, -4));
1101     __ movl(Address(to, count, sf, -4), rdx);
1102 
1103     if (t == T_BYTE || t == T_SHORT) {
1104         __ subl(count, (1<<shift));
1105       __ BIND(L_copy_2_bytes);
1106         // copy prefix dword
1107         __ testl(count, 1<<(shift-1));
1108         __ jccb(Assembler::zero, L_copy_byte);
1109         __ movw(rdx, Address(from, count, sf, -2));
1110         __ movw(Address(to, count, sf, -2), rdx);
1111         if (t == T_BYTE) {
1112           __ subl(count, 1<<(shift-1));
1113         __ BIND(L_copy_byte);
1114           // copy prefix byte
1115           __ testl(count, 1);
1116           __ jccb(Assembler::zero, L_exit);
1117           __ movb(rdx, Address(from, 0));
1118           __ movb(Address(to, 0), rdx);
1119         __ BIND(L_exit);
1120         } else {
1121         __ BIND(L_copy_byte);
1122         }
1123     } else {
1124     __ BIND(L_copy_2_bytes);
1125     }
1126 
1127     __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1128     bs->arraycopy_epilogue(_masm, decorators, t, from, to, count);
1129 
1130     if (t == T_OBJECT) {
1131     __ BIND(L_0_count);
1132     }
1133     inc_copy_counter_np(t);
1134     __ pop(rdi);
1135     __ pop(rsi);
1136     __ leave(); // required for proper stackwalking of RuntimeStub frame
1137     __ xorptr(rax, rax); // return 0
1138     __ ret(0);
1139     return start;
1140   }
1141 
1142 
generate_disjoint_long_copy(address * entry,const char * name)1143   address generate_disjoint_long_copy(address* entry, const char *name) {
1144     __ align(CodeEntryAlignment);
1145     StubCodeMark mark(this, "StubRoutines", name);
1146     address start = __ pc();
1147 
1148     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1149     const Register from       = rax;  // source array address
1150     const Register to         = rdx;  // destination array address
1151     const Register count      = rcx;  // elements count
1152     const Register to_from    = rdx;  // (to - from)
1153 
1154     __ enter(); // required for proper stackwalking of RuntimeStub frame
1155     __ movptr(from , Address(rsp, 8+0));       // from
1156     __ movptr(to   , Address(rsp, 8+4));       // to
1157     __ movl2ptr(count, Address(rsp, 8+8));     // count
1158 
1159     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1160     BLOCK_COMMENT("Entry:");
1161 
1162     __ subptr(to, from); // to --> to_from
1163     if (VM_Version::supports_mmx()) {
1164       if (UseXMMForArrayCopy) {
1165         xmm_copy_forward(from, to_from, count);
1166       } else {
1167         mmx_copy_forward(from, to_from, count);
1168       }
1169     } else {
1170       __ jmpb(L_copy_8_bytes);
1171       __ align(OptoLoopAlignment);
1172     __ BIND(L_copy_8_bytes_loop);
1173       __ fild_d(Address(from, 0));
1174       __ fistp_d(Address(from, to_from, Address::times_1));
1175       __ addptr(from, 8);
1176     __ BIND(L_copy_8_bytes);
1177       __ decrement(count);
1178       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1179     }
1180     inc_copy_counter_np(T_LONG);
1181     __ leave(); // required for proper stackwalking of RuntimeStub frame
1182     __ vzeroupper();
1183     __ xorptr(rax, rax); // return 0
1184     __ ret(0);
1185     return start;
1186   }
1187 
generate_conjoint_long_copy(address nooverlap_target,address * entry,const char * name)1188   address generate_conjoint_long_copy(address nooverlap_target,
1189                                       address* entry, const char *name) {
1190     __ align(CodeEntryAlignment);
1191     StubCodeMark mark(this, "StubRoutines", name);
1192     address start = __ pc();
1193 
1194     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1195     const Register from       = rax;  // source array address
1196     const Register to         = rdx;  // destination array address
1197     const Register count      = rcx;  // elements count
1198     const Register end_from   = rax;  // source array end address
1199 
1200     __ enter(); // required for proper stackwalking of RuntimeStub frame
1201     __ movptr(from , Address(rsp, 8+0));       // from
1202     __ movptr(to   , Address(rsp, 8+4));       // to
1203     __ movl2ptr(count, Address(rsp, 8+8));     // count
1204 
1205     *entry = __ pc(); // Entry point from generic arraycopy stub.
1206     BLOCK_COMMENT("Entry:");
1207 
1208     // arrays overlap test
1209     __ cmpptr(to, from);
1210     RuntimeAddress nooverlap(nooverlap_target);
1211     __ jump_cc(Assembler::belowEqual, nooverlap);
1212     __ lea(end_from, Address(from, count, Address::times_8, 0));
1213     __ cmpptr(to, end_from);
1214     __ movptr(from, Address(rsp, 8));  // from
1215     __ jump_cc(Assembler::aboveEqual, nooverlap);
1216 
1217     __ jmpb(L_copy_8_bytes);
1218 
1219     __ align(OptoLoopAlignment);
1220   __ BIND(L_copy_8_bytes_loop);
1221     if (VM_Version::supports_mmx()) {
1222       if (UseXMMForArrayCopy) {
1223         __ movq(xmm0, Address(from, count, Address::times_8));
1224         __ movq(Address(to, count, Address::times_8), xmm0);
1225       } else {
1226         __ movq(mmx0, Address(from, count, Address::times_8));
1227         __ movq(Address(to, count, Address::times_8), mmx0);
1228       }
1229     } else {
1230       __ fild_d(Address(from, count, Address::times_8));
1231       __ fistp_d(Address(to, count, Address::times_8));
1232     }
1233   __ BIND(L_copy_8_bytes);
1234     __ decrement(count);
1235     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1236 
1237     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1238       __ emms();
1239     }
1240     inc_copy_counter_np(T_LONG);
1241     __ leave(); // required for proper stackwalking of RuntimeStub frame
1242     __ xorptr(rax, rax); // return 0
1243     __ ret(0);
1244     return start;
1245   }
1246 
1247 
1248   // Helper for generating a dynamic type check.
1249   // The sub_klass must be one of {rbx, rdx, rsi}.
1250   // The temp is killed.
generate_type_check(Register sub_klass,Address & super_check_offset_addr,Address & super_klass_addr,Register temp,Label * L_success,Label * L_failure)1251   void generate_type_check(Register sub_klass,
1252                            Address& super_check_offset_addr,
1253                            Address& super_klass_addr,
1254                            Register temp,
1255                            Label* L_success, Label* L_failure) {
1256     BLOCK_COMMENT("type_check:");
1257 
1258     Label L_fallthrough;
1259 #define LOCAL_JCC(assembler_con, label_ptr)                             \
1260     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1261     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1262 
1263     // The following is a strange variation of the fast path which requires
1264     // one less register, because needed values are on the argument stack.
1265     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1266     //                                  L_success, L_failure, NULL);
1267     assert_different_registers(sub_klass, temp);
1268 
1269     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1270 
1271     // if the pointers are equal, we are done (e.g., String[] elements)
1272     __ cmpptr(sub_klass, super_klass_addr);
1273     LOCAL_JCC(Assembler::equal, L_success);
1274 
1275     // check the supertype display:
1276     __ movl2ptr(temp, super_check_offset_addr);
1277     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1278     __ movptr(temp, super_check_addr); // load displayed supertype
1279     __ cmpptr(temp, super_klass_addr); // test the super type
1280     LOCAL_JCC(Assembler::equal, L_success);
1281 
1282     // if it was a primary super, we can just fail immediately
1283     __ cmpl(super_check_offset_addr, sc_offset);
1284     LOCAL_JCC(Assembler::notEqual, L_failure);
1285 
1286     // The repne_scan instruction uses fixed registers, which will get spilled.
1287     // We happen to know this works best when super_klass is in rax.
1288     Register super_klass = temp;
1289     __ movptr(super_klass, super_klass_addr);
1290     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1291                                      L_success, L_failure);
1292 
1293     __ bind(L_fallthrough);
1294 
1295     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1296     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1297 
1298 #undef LOCAL_JCC
1299   }
1300 
1301   //
1302   //  Generate checkcasting array copy stub
1303   //
1304   //  Input:
1305   //    4(rsp)   - source array address
1306   //    8(rsp)   - destination array address
1307   //   12(rsp)   - element count, can be zero
1308   //   16(rsp)   - size_t ckoff (super_check_offset)
1309   //   20(rsp)   - oop ckval (super_klass)
1310   //
1311   //  Output:
1312   //    rax, ==  0  -  success
1313   //    rax, == -1^K - failure, where K is partial transfer count
1314   //
generate_checkcast_copy(const char * name,address * entry,bool dest_uninitialized=false)1315   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1316     __ align(CodeEntryAlignment);
1317     StubCodeMark mark(this, "StubRoutines", name);
1318     address start = __ pc();
1319 
1320     Label L_load_element, L_store_element, L_do_card_marks, L_done;
1321 
1322     // register use:
1323     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1324     //  rdi, rsi      -- element access (oop, klass)
1325     //  rbx,           -- temp
1326     const Register from       = rax;    // source array address
1327     const Register to         = rdx;    // destination array address
1328     const Register length     = rcx;    // elements count
1329     const Register elem       = rdi;    // each oop copied
1330     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1331     const Register temp       = rbx;    // lone remaining temp
1332 
1333     __ enter(); // required for proper stackwalking of RuntimeStub frame
1334 
1335     __ push(rsi);
1336     __ push(rdi);
1337     __ push(rbx);
1338 
1339     Address   from_arg(rsp, 16+ 4);     // from
1340     Address     to_arg(rsp, 16+ 8);     // to
1341     Address length_arg(rsp, 16+12);     // elements count
1342     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1343     Address  ckval_arg(rsp, 16+20);     // super_klass
1344 
1345     // Load up:
1346     __ movptr(from,     from_arg);
1347     __ movptr(to,         to_arg);
1348     __ movl2ptr(length, length_arg);
1349 
1350     if (entry != NULL) {
1351       *entry = __ pc(); // Entry point from generic arraycopy stub.
1352       BLOCK_COMMENT("Entry:");
1353     }
1354 
1355     //---------------------------------------------------------------
1356     // Assembler stub will be used for this call to arraycopy
1357     // if the two arrays are subtypes of Object[] but the
1358     // destination array type is not equal to or a supertype
1359     // of the source type.  Each element must be separately
1360     // checked.
1361 
1362     // Loop-invariant addresses.  They are exclusive end pointers.
1363     Address end_from_addr(from, length, Address::times_ptr, 0);
1364     Address   end_to_addr(to,   length, Address::times_ptr, 0);
1365 
1366     Register end_from = from;           // re-use
1367     Register end_to   = to;             // re-use
1368     Register count    = length;         // re-use
1369 
1370     // Loop-variant addresses.  They assume post-incremented count < 0.
1371     Address from_element_addr(end_from, count, Address::times_ptr, 0);
1372     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1373     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1374 
1375     DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST;
1376     if (dest_uninitialized) {
1377       decorators |= IS_DEST_UNINITIALIZED;
1378     }
1379 
1380     BasicType type = T_OBJECT;
1381     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
1382     bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
1383 
1384     // Copy from low to high addresses, indexed from the end of each array.
1385     __ lea(end_from, end_from_addr);
1386     __ lea(end_to,   end_to_addr);
1387     assert(length == count, "");        // else fix next line:
1388     __ negptr(count);                   // negate and test the length
1389     __ jccb(Assembler::notZero, L_load_element);
1390 
1391     // Empty array:  Nothing to do.
1392     __ xorptr(rax, rax);                  // return 0 on (trivial) success
1393     __ jmp(L_done);
1394 
1395     // ======== begin loop ========
1396     // (Loop is rotated; its entry is L_load_element.)
1397     // Loop control:
1398     //   for (count = -count; count != 0; count++)
1399     // Base pointers src, dst are biased by 8*count,to last element.
1400     __ align(OptoLoopAlignment);
1401 
1402     __ BIND(L_store_element);
1403     __ movptr(to_element_addr, elem);     // store the oop
1404     __ increment(count);                // increment the count toward zero
1405     __ jccb(Assembler::zero, L_do_card_marks);
1406 
1407     // ======== loop entry is here ========
1408     __ BIND(L_load_element);
1409     __ movptr(elem, from_element_addr);   // load the oop
1410     __ testptr(elem, elem);
1411     __ jccb(Assembler::zero, L_store_element);
1412 
1413     // (Could do a trick here:  Remember last successful non-null
1414     // element stored and make a quick oop equality check on it.)
1415 
1416     __ movptr(elem_klass, elem_klass_addr); // query the object klass
1417     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1418                         &L_store_element, NULL);
1419     // (On fall-through, we have failed the element type check.)
1420     // ======== end loop ========
1421 
1422     // It was a real error; we must depend on the caller to finish the job.
1423     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1424     // Emit GC store barriers for the oops we have copied (length_arg + count),
1425     // and report their number to the caller.
1426     assert_different_registers(to, count, rax);
1427     Label L_post_barrier;
1428     __ addl(count, length_arg);         // transfers = (length - remaining)
1429     __ movl2ptr(rax, count);            // save the value
1430     __ notptr(rax);                     // report (-1^K) to caller (does not affect flags)
1431     __ jccb(Assembler::notZero, L_post_barrier);
1432     __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
1433 
1434     // Come here on success only.
1435     __ BIND(L_do_card_marks);
1436     __ xorptr(rax, rax);                // return 0 on success
1437     __ movl2ptr(count, length_arg);
1438 
1439     __ BIND(L_post_barrier);
1440     __ movptr(to, to_arg);              // reload
1441     bs->arraycopy_epilogue(_masm, decorators, type, from, to, count);
1442 
1443     // Common exit point (success or failure).
1444     __ BIND(L_done);
1445     __ pop(rbx);
1446     __ pop(rdi);
1447     __ pop(rsi);
1448     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1449     __ leave(); // required for proper stackwalking of RuntimeStub frame
1450     __ ret(0);
1451 
1452     return start;
1453   }
1454 
1455   //
1456   //  Generate 'unsafe' array copy stub
1457   //  Though just as safe as the other stubs, it takes an unscaled
1458   //  size_t argument instead of an element count.
1459   //
1460   //  Input:
1461   //    4(rsp)   - source array address
1462   //    8(rsp)   - destination array address
1463   //   12(rsp)   - byte count, can be zero
1464   //
1465   //  Output:
1466   //    rax, ==  0  -  success
1467   //    rax, == -1  -  need to call System.arraycopy
1468   //
1469   // Examines the alignment of the operands and dispatches
1470   // to a long, int, short, or byte copy loop.
1471   //
generate_unsafe_copy(const char * name,address byte_copy_entry,address short_copy_entry,address int_copy_entry,address long_copy_entry)1472   address generate_unsafe_copy(const char *name,
1473                                address byte_copy_entry,
1474                                address short_copy_entry,
1475                                address int_copy_entry,
1476                                address long_copy_entry) {
1477 
1478     Label L_long_aligned, L_int_aligned, L_short_aligned;
1479 
1480     __ align(CodeEntryAlignment);
1481     StubCodeMark mark(this, "StubRoutines", name);
1482     address start = __ pc();
1483 
1484     const Register from       = rax;  // source array address
1485     const Register to         = rdx;  // destination array address
1486     const Register count      = rcx;  // elements count
1487 
1488     __ enter(); // required for proper stackwalking of RuntimeStub frame
1489     __ push(rsi);
1490     __ push(rdi);
1491     Address  from_arg(rsp, 12+ 4);      // from
1492     Address    to_arg(rsp, 12+ 8);      // to
1493     Address count_arg(rsp, 12+12);      // byte count
1494 
1495     // Load up:
1496     __ movptr(from ,  from_arg);
1497     __ movptr(to   ,    to_arg);
1498     __ movl2ptr(count, count_arg);
1499 
1500     // bump this on entry, not on exit:
1501     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1502 
1503     const Register bits = rsi;
1504     __ mov(bits, from);
1505     __ orptr(bits, to);
1506     __ orptr(bits, count);
1507 
1508     __ testl(bits, BytesPerLong-1);
1509     __ jccb(Assembler::zero, L_long_aligned);
1510 
1511     __ testl(bits, BytesPerInt-1);
1512     __ jccb(Assembler::zero, L_int_aligned);
1513 
1514     __ testl(bits, BytesPerShort-1);
1515     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1516 
1517     __ BIND(L_short_aligned);
1518     __ shrptr(count, LogBytesPerShort); // size => short_count
1519     __ movl(count_arg, count);          // update 'count'
1520     __ jump(RuntimeAddress(short_copy_entry));
1521 
1522     __ BIND(L_int_aligned);
1523     __ shrptr(count, LogBytesPerInt); // size => int_count
1524     __ movl(count_arg, count);          // update 'count'
1525     __ jump(RuntimeAddress(int_copy_entry));
1526 
1527     __ BIND(L_long_aligned);
1528     __ shrptr(count, LogBytesPerLong); // size => qword_count
1529     __ movl(count_arg, count);          // update 'count'
1530     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1531     __ pop(rsi);
1532     __ jump(RuntimeAddress(long_copy_entry));
1533 
1534     return start;
1535   }
1536 
1537 
1538   // Perform range checks on the proposed arraycopy.
1539   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
arraycopy_range_checks(Register src,Register src_pos,Register dst,Register dst_pos,Address & length,Label & L_failed)1540   void arraycopy_range_checks(Register src,
1541                               Register src_pos,
1542                               Register dst,
1543                               Register dst_pos,
1544                               Address& length,
1545                               Label& L_failed) {
1546     BLOCK_COMMENT("arraycopy_range_checks:");
1547     const Register src_end = src_pos;   // source array end position
1548     const Register dst_end = dst_pos;   // destination array end position
1549     __ addl(src_end, length); // src_pos + length
1550     __ addl(dst_end, length); // dst_pos + length
1551 
1552     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1553     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1554     __ jcc(Assembler::above, L_failed);
1555 
1556     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1557     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1558     __ jcc(Assembler::above, L_failed);
1559 
1560     BLOCK_COMMENT("arraycopy_range_checks done");
1561   }
1562 
1563 
1564   //
1565   //  Generate generic array copy stubs
1566   //
1567   //  Input:
1568   //     4(rsp)    -  src oop
1569   //     8(rsp)    -  src_pos
1570   //    12(rsp)    -  dst oop
1571   //    16(rsp)    -  dst_pos
1572   //    20(rsp)    -  element count
1573   //
1574   //  Output:
1575   //    rax, ==  0  -  success
1576   //    rax, == -1^K - failure, where K is partial transfer count
1577   //
generate_generic_copy(const char * name,address entry_jbyte_arraycopy,address entry_jshort_arraycopy,address entry_jint_arraycopy,address entry_oop_arraycopy,address entry_jlong_arraycopy,address entry_checkcast_arraycopy)1578   address generate_generic_copy(const char *name,
1579                                 address entry_jbyte_arraycopy,
1580                                 address entry_jshort_arraycopy,
1581                                 address entry_jint_arraycopy,
1582                                 address entry_oop_arraycopy,
1583                                 address entry_jlong_arraycopy,
1584                                 address entry_checkcast_arraycopy) {
1585     Label L_failed, L_failed_0, L_objArray;
1586 
1587     { int modulus = CodeEntryAlignment;
1588       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1589       int advance = target - (__ offset() % modulus);
1590       if (advance < 0)  advance += modulus;
1591       if (advance > 0)  __ nop(advance);
1592     }
1593     StubCodeMark mark(this, "StubRoutines", name);
1594 
1595     // Short-hop target to L_failed.  Makes for denser prologue code.
1596     __ BIND(L_failed_0);
1597     __ jmp(L_failed);
1598     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1599 
1600     __ align(CodeEntryAlignment);
1601     address start = __ pc();
1602 
1603     __ enter(); // required for proper stackwalking of RuntimeStub frame
1604     __ push(rsi);
1605     __ push(rdi);
1606 
1607     // bump this on entry, not on exit:
1608     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1609 
1610     // Input values
1611     Address SRC     (rsp, 12+ 4);
1612     Address SRC_POS (rsp, 12+ 8);
1613     Address DST     (rsp, 12+12);
1614     Address DST_POS (rsp, 12+16);
1615     Address LENGTH  (rsp, 12+20);
1616 
1617     //-----------------------------------------------------------------------
1618     // Assembler stub will be used for this call to arraycopy
1619     // if the following conditions are met:
1620     //
1621     // (1) src and dst must not be null.
1622     // (2) src_pos must not be negative.
1623     // (3) dst_pos must not be negative.
1624     // (4) length  must not be negative.
1625     // (5) src klass and dst klass should be the same and not NULL.
1626     // (6) src and dst should be arrays.
1627     // (7) src_pos + length must not exceed length of src.
1628     // (8) dst_pos + length must not exceed length of dst.
1629     //
1630 
1631     const Register src     = rax;       // source array oop
1632     const Register src_pos = rsi;
1633     const Register dst     = rdx;       // destination array oop
1634     const Register dst_pos = rdi;
1635     const Register length  = rcx;       // transfer count
1636 
1637     //  if (src == NULL) return -1;
1638     __ movptr(src, SRC);      // src oop
1639     __ testptr(src, src);
1640     __ jccb(Assembler::zero, L_failed_0);
1641 
1642     //  if (src_pos < 0) return -1;
1643     __ movl2ptr(src_pos, SRC_POS);  // src_pos
1644     __ testl(src_pos, src_pos);
1645     __ jccb(Assembler::negative, L_failed_0);
1646 
1647     //  if (dst == NULL) return -1;
1648     __ movptr(dst, DST);      // dst oop
1649     __ testptr(dst, dst);
1650     __ jccb(Assembler::zero, L_failed_0);
1651 
1652     //  if (dst_pos < 0) return -1;
1653     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1654     __ testl(dst_pos, dst_pos);
1655     __ jccb(Assembler::negative, L_failed_0);
1656 
1657     //  if (length < 0) return -1;
1658     __ movl2ptr(length, LENGTH);   // length
1659     __ testl(length, length);
1660     __ jccb(Assembler::negative, L_failed_0);
1661 
1662     //  if (src->klass() == NULL) return -1;
1663     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1664     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1665     const Register rcx_src_klass = rcx;    // array klass
1666     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1667 
1668 #ifdef ASSERT
1669     //  assert(src->klass() != NULL);
1670     BLOCK_COMMENT("assert klasses not null");
1671     { Label L1, L2;
1672       __ testptr(rcx_src_klass, rcx_src_klass);
1673       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1674       __ bind(L1);
1675       __ stop("broken null klass");
1676       __ bind(L2);
1677       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1678       __ jccb(Assembler::equal, L1);      // this would be broken also
1679       BLOCK_COMMENT("assert done");
1680     }
1681 #endif //ASSERT
1682 
1683     // Load layout helper (32-bits)
1684     //
1685     //  |array_tag|     | header_size | element_type |     |log2_element_size|
1686     // 32        30    24            16              8     2                 0
1687     //
1688     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1689     //
1690 
1691     int lh_offset = in_bytes(Klass::layout_helper_offset());
1692     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1693 
1694     // Handle objArrays completely differently...
1695     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1696     __ cmpl(src_klass_lh_addr, objArray_lh);
1697     __ jcc(Assembler::equal, L_objArray);
1698 
1699     //  if (src->klass() != dst->klass()) return -1;
1700     __ cmpptr(rcx_src_klass, dst_klass_addr);
1701     __ jccb(Assembler::notEqual, L_failed_0);
1702 
1703     const Register rcx_lh = rcx;  // layout helper
1704     assert(rcx_lh == rcx_src_klass, "known alias");
1705     __ movl(rcx_lh, src_klass_lh_addr);
1706 
1707     //  if (!src->is_Array()) return -1;
1708     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1709     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1710 
1711     // At this point, it is known to be a typeArray (array_tag 0x3).
1712 #ifdef ASSERT
1713     { Label L;
1714       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1715       __ jcc(Assembler::greaterEqual, L); // signed cmp
1716       __ stop("must be a primitive array");
1717       __ bind(L);
1718     }
1719 #endif
1720 
1721     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1722     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1723 
1724     // TypeArrayKlass
1725     //
1726     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1727     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1728     //
1729     const Register rsi_offset = rsi; // array offset
1730     const Register src_array  = src; // src array offset
1731     const Register dst_array  = dst; // dst array offset
1732     const Register rdi_elsize = rdi; // log2 element size
1733 
1734     __ mov(rsi_offset, rcx_lh);
1735     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1736     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1737     __ addptr(src_array, rsi_offset);  // src array offset
1738     __ addptr(dst_array, rsi_offset);  // dst array offset
1739     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1740 
1741     // next registers should be set before the jump to corresponding stub
1742     const Register from       = src; // source array address
1743     const Register to         = dst; // destination array address
1744     const Register count      = rcx; // elements count
1745     // some of them should be duplicated on stack
1746 #define FROM   Address(rsp, 12+ 4)
1747 #define TO     Address(rsp, 12+ 8)   // Not used now
1748 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1749 
1750     BLOCK_COMMENT("scale indexes to element size");
1751     __ movl2ptr(rsi, SRC_POS);  // src_pos
1752     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1753     assert(src_array == from, "");
1754     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1755     __ movl2ptr(rdi, DST_POS);  // dst_pos
1756     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1757     assert(dst_array == to, "");
1758     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1759     __ movptr(FROM, from);      // src_addr
1760     __ mov(rdi_elsize, rcx_lh); // log2 elsize
1761     __ movl2ptr(count, LENGTH); // elements count
1762 
1763     BLOCK_COMMENT("choose copy loop based on element size");
1764     __ cmpl(rdi_elsize, 0);
1765 
1766     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1767     __ cmpl(rdi_elsize, LogBytesPerShort);
1768     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1769     __ cmpl(rdi_elsize, LogBytesPerInt);
1770     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1771 #ifdef ASSERT
1772     __ cmpl(rdi_elsize, LogBytesPerLong);
1773     __ jccb(Assembler::notEqual, L_failed);
1774 #endif
1775     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1776     __ pop(rsi);
1777     __ jump(RuntimeAddress(entry_jlong_arraycopy));
1778 
1779   __ BIND(L_failed);
1780     __ xorptr(rax, rax);
1781     __ notptr(rax); // return -1
1782     __ pop(rdi);
1783     __ pop(rsi);
1784     __ leave(); // required for proper stackwalking of RuntimeStub frame
1785     __ ret(0);
1786 
1787     // ObjArrayKlass
1788   __ BIND(L_objArray);
1789     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1790 
1791     Label L_plain_copy, L_checkcast_copy;
1792     //  test array classes for subtyping
1793     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1794     __ jccb(Assembler::notEqual, L_checkcast_copy);
1795 
1796     // Identically typed arrays can be copied without element-wise checks.
1797     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1798     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1799 
1800   __ BIND(L_plain_copy);
1801     __ movl2ptr(count, LENGTH); // elements count
1802     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1803     __ lea(from, Address(src, src_pos, Address::times_ptr,
1804                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1805     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1806     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1807                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1808     __ movptr(FROM,  from);   // src_addr
1809     __ movptr(TO,    to);     // dst_addr
1810     __ movl(COUNT, count);  // count
1811     __ jump(RuntimeAddress(entry_oop_arraycopy));
1812 
1813   __ BIND(L_checkcast_copy);
1814     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1815     {
1816       // Handy offsets:
1817       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
1818       int sco_offset = in_bytes(Klass::super_check_offset_offset());
1819 
1820       Register rsi_dst_klass = rsi;
1821       Register rdi_temp      = rdi;
1822       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1823       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1824       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1825 
1826       // Before looking at dst.length, make sure dst is also an objArray.
1827       __ movptr(rsi_dst_klass, dst_klass_addr);
1828       __ cmpl(dst_klass_lh_addr, objArray_lh);
1829       __ jccb(Assembler::notEqual, L_failed);
1830 
1831       // It is safe to examine both src.length and dst.length.
1832       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1833       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1834       // (Now src_pos and dst_pos are killed, but not src and dst.)
1835 
1836       // We'll need this temp (don't forget to pop it after the type check).
1837       __ push(rbx);
1838       Register rbx_src_klass = rbx;
1839 
1840       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1841       __ movptr(rsi_dst_klass, dst_klass_addr);
1842       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1843       Label L_fail_array_check;
1844       generate_type_check(rbx_src_klass,
1845                           super_check_offset_addr, dst_klass_addr,
1846                           rdi_temp, NULL, &L_fail_array_check);
1847       // (On fall-through, we have passed the array type check.)
1848       __ pop(rbx);
1849       __ jmp(L_plain_copy);
1850 
1851       __ BIND(L_fail_array_check);
1852       // Reshuffle arguments so we can call checkcast_arraycopy:
1853 
1854       // match initial saves for checkcast_arraycopy
1855       // push(rsi);    // already done; see above
1856       // push(rdi);    // already done; see above
1857       // push(rbx);    // already done; see above
1858 
1859       // Marshal outgoing arguments now, freeing registers.
1860       Address   from_arg(rsp, 16+ 4);   // from
1861       Address     to_arg(rsp, 16+ 8);   // to
1862       Address length_arg(rsp, 16+12);   // elements count
1863       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1864       Address  ckval_arg(rsp, 16+20);   // super_klass
1865 
1866       Address SRC_POS_arg(rsp, 16+ 8);
1867       Address DST_POS_arg(rsp, 16+16);
1868       Address  LENGTH_arg(rsp, 16+20);
1869       // push rbx, changed the incoming offsets (why not just use rbp,??)
1870       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1871 
1872       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1873       __ movl2ptr(length, LENGTH_arg);    // reload elements count
1874       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1875       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1876 
1877       __ movptr(ckval_arg, rbx);          // destination element type
1878       __ movl(rbx, Address(rbx, sco_offset));
1879       __ movl(ckoff_arg, rbx);          // corresponding class check offset
1880 
1881       __ movl(length_arg, length);      // outgoing length argument
1882 
1883       __ lea(from, Address(src, src_pos, Address::times_ptr,
1884                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1885       __ movptr(from_arg, from);
1886 
1887       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1888                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1889       __ movptr(to_arg, to);
1890       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1891     }
1892 
1893     return start;
1894   }
1895 
generate_arraycopy_stubs()1896   void generate_arraycopy_stubs() {
1897     address entry;
1898     address entry_jbyte_arraycopy;
1899     address entry_jshort_arraycopy;
1900     address entry_jint_arraycopy;
1901     address entry_oop_arraycopy;
1902     address entry_jlong_arraycopy;
1903     address entry_checkcast_arraycopy;
1904 
1905     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
1906         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
1907                                "arrayof_jbyte_disjoint_arraycopy");
1908     StubRoutines::_arrayof_jbyte_arraycopy =
1909         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
1910                                NULL, "arrayof_jbyte_arraycopy");
1911     StubRoutines::_jbyte_disjoint_arraycopy =
1912         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
1913                                "jbyte_disjoint_arraycopy");
1914     StubRoutines::_jbyte_arraycopy =
1915         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
1916                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
1917 
1918     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
1919         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
1920                                "arrayof_jshort_disjoint_arraycopy");
1921     StubRoutines::_arrayof_jshort_arraycopy =
1922         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
1923                                NULL, "arrayof_jshort_arraycopy");
1924     StubRoutines::_jshort_disjoint_arraycopy =
1925         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
1926                                "jshort_disjoint_arraycopy");
1927     StubRoutines::_jshort_arraycopy =
1928         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
1929                                &entry_jshort_arraycopy, "jshort_arraycopy");
1930 
1931     // Next arrays are always aligned on 4 bytes at least.
1932     StubRoutines::_jint_disjoint_arraycopy =
1933         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
1934                                "jint_disjoint_arraycopy");
1935     StubRoutines::_jint_arraycopy =
1936         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
1937                                &entry_jint_arraycopy, "jint_arraycopy");
1938 
1939     StubRoutines::_oop_disjoint_arraycopy =
1940         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
1941                                "oop_disjoint_arraycopy");
1942     StubRoutines::_oop_arraycopy =
1943         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
1944                                &entry_oop_arraycopy, "oop_arraycopy");
1945 
1946     StubRoutines::_oop_disjoint_arraycopy_uninit =
1947         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
1948                                "oop_disjoint_arraycopy_uninit",
1949                                /*dest_uninitialized*/true);
1950     StubRoutines::_oop_arraycopy_uninit =
1951         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
1952                                NULL, "oop_arraycopy_uninit",
1953                                /*dest_uninitialized*/true);
1954 
1955     StubRoutines::_jlong_disjoint_arraycopy =
1956         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
1957     StubRoutines::_jlong_arraycopy =
1958         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
1959                                     "jlong_arraycopy");
1960 
1961     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
1962     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
1963     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
1964     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
1965     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
1966     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
1967 
1968     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
1969     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
1970     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
1971     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
1972 
1973     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
1974     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
1975     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
1976     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
1977 
1978     StubRoutines::_checkcast_arraycopy =
1979         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
1980     StubRoutines::_checkcast_arraycopy_uninit =
1981         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
1982 
1983     StubRoutines::_unsafe_arraycopy =
1984         generate_unsafe_copy("unsafe_arraycopy",
1985                                entry_jbyte_arraycopy,
1986                                entry_jshort_arraycopy,
1987                                entry_jint_arraycopy,
1988                                entry_jlong_arraycopy);
1989 
1990     StubRoutines::_generic_arraycopy =
1991         generate_generic_copy("generic_arraycopy",
1992                                entry_jbyte_arraycopy,
1993                                entry_jshort_arraycopy,
1994                                entry_jint_arraycopy,
1995                                entry_oop_arraycopy,
1996                                entry_jlong_arraycopy,
1997                                entry_checkcast_arraycopy);
1998   }
1999 
2000   // AES intrinsic stubs
2001   enum {AESBlockSize = 16};
2002 
generate_key_shuffle_mask()2003   address generate_key_shuffle_mask() {
2004     __ align(16);
2005     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2006     address start = __ pc();
2007     __ emit_data(0x00010203, relocInfo::none, 0 );
2008     __ emit_data(0x04050607, relocInfo::none, 0 );
2009     __ emit_data(0x08090a0b, relocInfo::none, 0 );
2010     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
2011     return start;
2012   }
2013 
generate_counter_shuffle_mask()2014   address generate_counter_shuffle_mask() {
2015     __ align(16);
2016     StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask");
2017     address start = __ pc();
2018     __ emit_data(0x0c0d0e0f, relocInfo::none, 0);
2019     __ emit_data(0x08090a0b, relocInfo::none, 0);
2020     __ emit_data(0x04050607, relocInfo::none, 0);
2021     __ emit_data(0x00010203, relocInfo::none, 0);
2022     return start;
2023   }
2024 
2025   // Utility routine for loading a 128-bit key word in little endian format
2026   // can optionally specify that the shuffle mask is already in an xmmregister
load_key(XMMRegister xmmdst,Register key,int offset,XMMRegister xmm_shuf_mask=NULL)2027   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2028     __ movdqu(xmmdst, Address(key, offset));
2029     if (xmm_shuf_mask != NULL) {
2030       __ pshufb(xmmdst, xmm_shuf_mask);
2031     } else {
2032       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2033     }
2034   }
2035 
2036   // aesenc using specified key+offset
2037   // can optionally specify that the shuffle mask is already in an xmmregister
aes_enc_key(XMMRegister xmmdst,XMMRegister xmmtmp,Register key,int offset,XMMRegister xmm_shuf_mask=NULL)2038   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2039     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2040     __ aesenc(xmmdst, xmmtmp);
2041   }
2042 
2043   // aesdec using specified key+offset
2044   // can optionally specify that the shuffle mask is already in an xmmregister
aes_dec_key(XMMRegister xmmdst,XMMRegister xmmtmp,Register key,int offset,XMMRegister xmm_shuf_mask=NULL)2045   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2046     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2047     __ aesdec(xmmdst, xmmtmp);
2048   }
2049 
2050   // Utility routine for increase 128bit counter (iv in CTR mode)
2051   //  XMM_128bit,  D3, D2, D1, D0
inc_counter(Register reg,XMMRegister xmmdst,int inc_delta,Label & next_block)2052   void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) {
2053     __ pextrd(reg, xmmdst, 0x0);
2054     __ addl(reg, inc_delta);
2055     __ pinsrd(xmmdst, reg, 0x0);
2056     __ jcc(Assembler::carryClear, next_block); // jump if no carry
2057 
2058     __ pextrd(reg, xmmdst, 0x01); // Carry-> D1
2059     __ addl(reg, 0x01);
2060     __ pinsrd(xmmdst, reg, 0x01);
2061     __ jcc(Assembler::carryClear, next_block); // jump if no carry
2062 
2063     __ pextrd(reg, xmmdst, 0x02); // Carry-> D2
2064     __ addl(reg, 0x01);
2065     __ pinsrd(xmmdst, reg, 0x02);
2066     __ jcc(Assembler::carryClear, next_block); // jump if no carry
2067 
2068     __ pextrd(reg, xmmdst, 0x03); // Carry -> D3
2069     __ addl(reg, 0x01);
2070     __ pinsrd(xmmdst, reg, 0x03);
2071 
2072     __ BIND(next_block);          // next instruction
2073   }
2074 
2075 
2076   // Arguments:
2077   //
2078   // Inputs:
2079   //   c_rarg0   - source byte array address
2080   //   c_rarg1   - destination byte array address
2081   //   c_rarg2   - K (key) in little endian int array
2082   //
generate_aescrypt_encryptBlock()2083   address generate_aescrypt_encryptBlock() {
2084     assert(UseAES, "need AES instructions and misaligned SSE support");
2085     __ align(CodeEntryAlignment);
2086     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2087     Label L_doLast;
2088     address start = __ pc();
2089 
2090     const Register from        = rdx;      // source array address
2091     const Register to          = rdx;      // destination array address
2092     const Register key         = rcx;      // key array address
2093     const Register keylen      = rax;
2094     const Address  from_param(rbp, 8+0);
2095     const Address  to_param  (rbp, 8+4);
2096     const Address  key_param (rbp, 8+8);
2097 
2098     const XMMRegister xmm_result = xmm0;
2099     const XMMRegister xmm_key_shuf_mask = xmm1;
2100     const XMMRegister xmm_temp1  = xmm2;
2101     const XMMRegister xmm_temp2  = xmm3;
2102     const XMMRegister xmm_temp3  = xmm4;
2103     const XMMRegister xmm_temp4  = xmm5;
2104 
2105     __ enter();   // required for proper stackwalking of RuntimeStub frame
2106 
2107     __ movptr(from, from_param);
2108     __ movptr(key, key_param);
2109 
2110     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2111     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2112 
2113     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2114     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
2115     __ movptr(to, to_param);
2116 
2117     // For encryption, the java expanded key ordering is just what we need
2118 
2119     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
2120     __ pxor(xmm_result, xmm_temp1);
2121 
2122     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2123     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2124     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2125     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2126 
2127     __ aesenc(xmm_result, xmm_temp1);
2128     __ aesenc(xmm_result, xmm_temp2);
2129     __ aesenc(xmm_result, xmm_temp3);
2130     __ aesenc(xmm_result, xmm_temp4);
2131 
2132     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2133     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2134     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2135     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2136 
2137     __ aesenc(xmm_result, xmm_temp1);
2138     __ aesenc(xmm_result, xmm_temp2);
2139     __ aesenc(xmm_result, xmm_temp3);
2140     __ aesenc(xmm_result, xmm_temp4);
2141 
2142     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2143     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2144 
2145     __ cmpl(keylen, 44);
2146     __ jccb(Assembler::equal, L_doLast);
2147 
2148     __ aesenc(xmm_result, xmm_temp1);
2149     __ aesenc(xmm_result, xmm_temp2);
2150 
2151     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2152     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2153 
2154     __ cmpl(keylen, 52);
2155     __ jccb(Assembler::equal, L_doLast);
2156 
2157     __ aesenc(xmm_result, xmm_temp1);
2158     __ aesenc(xmm_result, xmm_temp2);
2159 
2160     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2161     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2162 
2163     __ BIND(L_doLast);
2164     __ aesenc(xmm_result, xmm_temp1);
2165     __ aesenclast(xmm_result, xmm_temp2);
2166     __ movdqu(Address(to, 0), xmm_result);        // store the result
2167     __ xorptr(rax, rax); // return 0
2168     __ leave(); // required for proper stackwalking of RuntimeStub frame
2169     __ ret(0);
2170 
2171     return start;
2172   }
2173 
2174 
2175   // Arguments:
2176   //
2177   // Inputs:
2178   //   c_rarg0   - source byte array address
2179   //   c_rarg1   - destination byte array address
2180   //   c_rarg2   - K (key) in little endian int array
2181   //
generate_aescrypt_decryptBlock()2182   address generate_aescrypt_decryptBlock() {
2183     assert(UseAES, "need AES instructions and misaligned SSE support");
2184     __ align(CodeEntryAlignment);
2185     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2186     Label L_doLast;
2187     address start = __ pc();
2188 
2189     const Register from        = rdx;      // source array address
2190     const Register to          = rdx;      // destination array address
2191     const Register key         = rcx;      // key array address
2192     const Register keylen      = rax;
2193     const Address  from_param(rbp, 8+0);
2194     const Address  to_param  (rbp, 8+4);
2195     const Address  key_param (rbp, 8+8);
2196 
2197     const XMMRegister xmm_result = xmm0;
2198     const XMMRegister xmm_key_shuf_mask = xmm1;
2199     const XMMRegister xmm_temp1  = xmm2;
2200     const XMMRegister xmm_temp2  = xmm3;
2201     const XMMRegister xmm_temp3  = xmm4;
2202     const XMMRegister xmm_temp4  = xmm5;
2203 
2204     __ enter(); // required for proper stackwalking of RuntimeStub frame
2205 
2206     __ movptr(from, from_param);
2207     __ movptr(key, key_param);
2208 
2209     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2210     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2211 
2212     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2213     __ movdqu(xmm_result, Address(from, 0));
2214     __ movptr(to, to_param);
2215 
2216     // for decryption java expanded key ordering is rotated one position from what we want
2217     // so we start from 0x10 here and hit 0x00 last
2218     // we don't know if the key is aligned, hence not using load-execute form
2219     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2220     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2221     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2222     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2223 
2224     __ pxor  (xmm_result, xmm_temp1);
2225     __ aesdec(xmm_result, xmm_temp2);
2226     __ aesdec(xmm_result, xmm_temp3);
2227     __ aesdec(xmm_result, xmm_temp4);
2228 
2229     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2230     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2231     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2232     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2233 
2234     __ aesdec(xmm_result, xmm_temp1);
2235     __ aesdec(xmm_result, xmm_temp2);
2236     __ aesdec(xmm_result, xmm_temp3);
2237     __ aesdec(xmm_result, xmm_temp4);
2238 
2239     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2240     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2241     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
2242 
2243     __ cmpl(keylen, 44);
2244     __ jccb(Assembler::equal, L_doLast);
2245 
2246     __ aesdec(xmm_result, xmm_temp1);
2247     __ aesdec(xmm_result, xmm_temp2);
2248 
2249     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2250     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2251 
2252     __ cmpl(keylen, 52);
2253     __ jccb(Assembler::equal, L_doLast);
2254 
2255     __ aesdec(xmm_result, xmm_temp1);
2256     __ aesdec(xmm_result, xmm_temp2);
2257 
2258     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2259     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2260 
2261     __ BIND(L_doLast);
2262     __ aesdec(xmm_result, xmm_temp1);
2263     __ aesdec(xmm_result, xmm_temp2);
2264 
2265     // for decryption the aesdeclast operation is always on key+0x00
2266     __ aesdeclast(xmm_result, xmm_temp3);
2267     __ movdqu(Address(to, 0), xmm_result);  // store the result
2268     __ xorptr(rax, rax); // return 0
2269     __ leave(); // required for proper stackwalking of RuntimeStub frame
2270     __ ret(0);
2271 
2272     return start;
2273   }
2274 
handleSOERegisters(bool saving)2275   void handleSOERegisters(bool saving) {
2276     const int saveFrameSizeInBytes = 4 * wordSize;
2277     const Address saved_rbx     (rbp, -3 * wordSize);
2278     const Address saved_rsi     (rbp, -2 * wordSize);
2279     const Address saved_rdi     (rbp, -1 * wordSize);
2280 
2281     if (saving) {
2282       __ subptr(rsp, saveFrameSizeInBytes);
2283       __ movptr(saved_rsi, rsi);
2284       __ movptr(saved_rdi, rdi);
2285       __ movptr(saved_rbx, rbx);
2286     } else {
2287       // restoring
2288       __ movptr(rsi, saved_rsi);
2289       __ movptr(rdi, saved_rdi);
2290       __ movptr(rbx, saved_rbx);
2291     }
2292   }
2293 
2294   // Arguments:
2295   //
2296   // Inputs:
2297   //   c_rarg0   - source byte array address
2298   //   c_rarg1   - destination byte array address
2299   //   c_rarg2   - K (key) in little endian int array
2300   //   c_rarg3   - r vector byte array address
2301   //   c_rarg4   - input length
2302   //
2303   // Output:
2304   //   rax       - input length
2305   //
generate_cipherBlockChaining_encryptAESCrypt()2306   address generate_cipherBlockChaining_encryptAESCrypt() {
2307     assert(UseAES, "need AES instructions and misaligned SSE support");
2308     __ align(CodeEntryAlignment);
2309     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
2310     address start = __ pc();
2311 
2312     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
2313     const Register from        = rsi;      // source array address
2314     const Register to          = rdx;      // destination array address
2315     const Register key         = rcx;      // key array address
2316     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2317                                            // and left with the results of the last encryption block
2318     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2319     const Register pos         = rax;
2320 
2321     // xmm register assignments for the loops below
2322     const XMMRegister xmm_result = xmm0;
2323     const XMMRegister xmm_temp   = xmm1;
2324     // first 6 keys preloaded into xmm2-xmm7
2325     const int XMM_REG_NUM_KEY_FIRST = 2;
2326     const int XMM_REG_NUM_KEY_LAST  = 7;
2327     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2328 
2329     __ enter(); // required for proper stackwalking of RuntimeStub frame
2330     handleSOERegisters(true /*saving*/);
2331 
2332     // load registers from incoming parameters
2333     const Address  from_param(rbp, 8+0);
2334     const Address  to_param  (rbp, 8+4);
2335     const Address  key_param (rbp, 8+8);
2336     const Address  rvec_param (rbp, 8+12);
2337     const Address  len_param  (rbp, 8+16);
2338     __ movptr(from , from_param);
2339     __ movptr(to   , to_param);
2340     __ movptr(key  , key_param);
2341     __ movptr(rvec , rvec_param);
2342     __ movptr(len_reg , len_param);
2343 
2344     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
2345     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2346     // load up xmm regs 2 thru 7 with keys 0-5
2347     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2348       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2349       offset += 0x10;
2350     }
2351 
2352     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
2353 
2354     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2355     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2356     __ cmpl(rax, 44);
2357     __ jcc(Assembler::notEqual, L_key_192_256);
2358 
2359     // 128 bit code follows here
2360     __ movl(pos, 0);
2361     __ align(OptoLoopAlignment);
2362     __ BIND(L_loopTop_128);
2363     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2364     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2365 
2366     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2367     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2368       __ aesenc(xmm_result, as_XMMRegister(rnum));
2369     }
2370     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
2371       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2372     }
2373     load_key(xmm_temp, key, 0xa0);
2374     __ aesenclast(xmm_result, xmm_temp);
2375 
2376     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2377     // no need to store r to memory until we exit
2378     __ addptr(pos, AESBlockSize);
2379     __ subptr(len_reg, AESBlockSize);
2380     __ jcc(Assembler::notEqual, L_loopTop_128);
2381 
2382     __ BIND(L_exit);
2383     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
2384 
2385     handleSOERegisters(false /*restoring*/);
2386     __ movptr(rax, len_param); // return length
2387     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
2388     __ ret(0);
2389 
2390     __ BIND(L_key_192_256);
2391     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2392     __ cmpl(rax, 52);
2393     __ jcc(Assembler::notEqual, L_key_256);
2394 
2395     // 192-bit code follows here (could be changed to use more xmm registers)
2396     __ movl(pos, 0);
2397     __ align(OptoLoopAlignment);
2398     __ BIND(L_loopTop_192);
2399     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2400     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2401 
2402     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2403     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2404       __ aesenc(xmm_result, as_XMMRegister(rnum));
2405     }
2406     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
2407       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2408     }
2409     load_key(xmm_temp, key, 0xc0);
2410     __ aesenclast(xmm_result, xmm_temp);
2411 
2412     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2413     // no need to store r to memory until we exit
2414     __ addptr(pos, AESBlockSize);
2415     __ subptr(len_reg, AESBlockSize);
2416     __ jcc(Assembler::notEqual, L_loopTop_192);
2417     __ jmp(L_exit);
2418 
2419     __ BIND(L_key_256);
2420     // 256-bit code follows here (could be changed to use more xmm registers)
2421     __ movl(pos, 0);
2422     __ align(OptoLoopAlignment);
2423     __ BIND(L_loopTop_256);
2424     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2425     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2426 
2427     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2428     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2429       __ aesenc(xmm_result, as_XMMRegister(rnum));
2430     }
2431     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
2432       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2433     }
2434     load_key(xmm_temp, key, 0xe0);
2435     __ aesenclast(xmm_result, xmm_temp);
2436 
2437     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2438     // no need to store r to memory until we exit
2439     __ addptr(pos, AESBlockSize);
2440     __ subptr(len_reg, AESBlockSize);
2441     __ jcc(Assembler::notEqual, L_loopTop_256);
2442     __ jmp(L_exit);
2443 
2444     return start;
2445   }
2446 
2447 
2448   // CBC AES Decryption.
2449   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
2450   //
2451   // Arguments:
2452   //
2453   // Inputs:
2454   //   c_rarg0   - source byte array address
2455   //   c_rarg1   - destination byte array address
2456   //   c_rarg2   - K (key) in little endian int array
2457   //   c_rarg3   - r vector byte array address
2458   //   c_rarg4   - input length
2459   //
2460   // Output:
2461   //   rax       - input length
2462   //
2463 
generate_cipherBlockChaining_decryptAESCrypt_Parallel()2464   address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
2465     assert(UseAES, "need AES instructions and misaligned SSE support");
2466     __ align(CodeEntryAlignment);
2467     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
2468     address start = __ pc();
2469 
2470     const Register from        = rsi;      // source array address
2471     const Register to          = rdx;      // destination array address
2472     const Register key         = rcx;      // key array address
2473     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2474                                            // and left with the results of the last encryption block
2475     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2476     const Register pos         = rax;
2477 
2478     const int PARALLEL_FACTOR = 4;
2479     const int ROUNDS[3] = { 10, 12, 14 }; //aes rounds for key128, key192, key256
2480 
2481     Label L_exit;
2482     Label L_singleBlock_loopTop[3]; //128, 192, 256
2483     Label L_multiBlock_loopTop[3]; //128, 192, 256
2484 
2485     const XMMRegister xmm_prev_block_cipher = xmm0; // holds cipher of previous block
2486     const XMMRegister xmm_key_shuf_mask = xmm1;
2487 
2488     const XMMRegister xmm_key_tmp0 = xmm2;
2489     const XMMRegister xmm_key_tmp1 = xmm3;
2490 
2491     // registers holding the six results in the parallelized loop
2492     const XMMRegister xmm_result0 = xmm4;
2493     const XMMRegister xmm_result1 = xmm5;
2494     const XMMRegister xmm_result2 = xmm6;
2495     const XMMRegister xmm_result3 = xmm7;
2496 
2497     __ enter(); // required for proper stackwalking of RuntimeStub frame
2498     handleSOERegisters(true /*saving*/);
2499 
2500     // load registers from incoming parameters
2501     const Address  from_param(rbp, 8+0);
2502     const Address  to_param  (rbp, 8+4);
2503     const Address  key_param (rbp, 8+8);
2504     const Address  rvec_param (rbp, 8+12);
2505     const Address  len_param  (rbp, 8+16);
2506 
2507     __ movptr(from , from_param);
2508     __ movptr(to   , to_param);
2509     __ movptr(key  , key_param);
2510     __ movptr(rvec , rvec_param);
2511     __ movptr(len_reg , len_param);
2512 
2513     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2514     __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec
2515 
2516     __ xorptr(pos, pos);
2517 
2518     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2519     // rvec is reused
2520     __ movl(rvec, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2521     __ cmpl(rvec, 52);
2522     __ jcc(Assembler::equal, L_multiBlock_loopTop[1]);
2523     __ cmpl(rvec, 60);
2524     __ jcc(Assembler::equal, L_multiBlock_loopTop[2]);
2525 
2526 #define DoFour(opc, src_reg)           \
2527   __ opc(xmm_result0, src_reg);         \
2528   __ opc(xmm_result1, src_reg);         \
2529   __ opc(xmm_result2, src_reg);         \
2530   __ opc(xmm_result3, src_reg);         \
2531 
2532     for (int k = 0; k < 3; ++k) {
2533       __ align(OptoLoopAlignment);
2534       __ BIND(L_multiBlock_loopTop[k]);
2535       __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left
2536       __ jcc(Assembler::less, L_singleBlock_loopTop[k]);
2537 
2538       __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); // get next 4 blocks into xmmresult registers
2539       __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
2540       __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
2541       __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
2542 
2543       // the java expanded key ordering is rotated one position from what we want
2544       // so we start from 0x10 here and hit 0x00 last
2545       load_key(xmm_key_tmp0, key, 0x10, xmm_key_shuf_mask);
2546       DoFour(pxor, xmm_key_tmp0); //xor with first key
2547       // do the aes dec rounds
2548       for (int rnum = 1; rnum <= ROUNDS[k];) {
2549         //load two keys at a time
2550         //k1->0x20, ..., k9->0xa0, k10->0x00
2551         load_key(xmm_key_tmp1, key, (rnum + 1) * 0x10, xmm_key_shuf_mask);
2552         load_key(xmm_key_tmp0, key, ((rnum + 2) % (ROUNDS[k] + 1)) * 0x10, xmm_key_shuf_mask); // hit 0x00 last!
2553         DoFour(aesdec, xmm_key_tmp1);
2554         rnum++;
2555         if (rnum != ROUNDS[k]) {
2556           DoFour(aesdec, xmm_key_tmp0);
2557         }
2558         else {
2559           DoFour(aesdeclast, xmm_key_tmp0);
2560         }
2561         rnum++;
2562       }
2563 
2564       // for each result, xor with the r vector of previous cipher block
2565       __ pxor(xmm_result0, xmm_prev_block_cipher);
2566       __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0 * AESBlockSize));
2567       __ pxor(xmm_result1, xmm_prev_block_cipher);
2568       __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1 * AESBlockSize));
2569       __ pxor(xmm_result2, xmm_prev_block_cipher);
2570       __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2 * AESBlockSize));
2571       __ pxor(xmm_result3, xmm_prev_block_cipher);
2572       __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3 * AESBlockSize)); // this will carry over to next set of blocks
2573 
2574             // store 4 results into the next 64 bytes of output
2575        __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
2576        __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
2577        __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
2578        __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
2579 
2580        __ addptr(pos, 4 * AESBlockSize);
2581        __ subptr(len_reg, 4 * AESBlockSize);
2582        __ jmp(L_multiBlock_loopTop[k]);
2583 
2584        //singleBlock starts here
2585        __ align(OptoLoopAlignment);
2586        __ BIND(L_singleBlock_loopTop[k]);
2587        __ cmpptr(len_reg, 0); // any blocks left?
2588        __ jcc(Assembler::equal, L_exit);
2589        __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
2590        __ movdqa(xmm_result1, xmm_result0);
2591 
2592        load_key(xmm_key_tmp0, key, 0x10, xmm_key_shuf_mask);
2593        __ pxor(xmm_result0, xmm_key_tmp0);
2594        // do the aes dec rounds
2595        for (int rnum = 1; rnum < ROUNDS[k]; rnum++) {
2596          // the java expanded key ordering is rotated one position from what we want
2597          load_key(xmm_key_tmp0, key, (rnum + 1) * 0x10, xmm_key_shuf_mask);
2598          __ aesdec(xmm_result0, xmm_key_tmp0);
2599        }
2600        load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask);
2601        __ aesdeclast(xmm_result0, xmm_key_tmp0);
2602        __ pxor(xmm_result0, xmm_prev_block_cipher); // xor with the current r vector
2603        __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result0); // store into the next 16 bytes of output
2604        // no need to store r to memory until we exit
2605        __ movdqa(xmm_prev_block_cipher, xmm_result1); // set up next r vector with cipher input from this block
2606 
2607        __ addptr(pos, AESBlockSize);
2608        __ subptr(len_reg, AESBlockSize);
2609        __ jmp(L_singleBlock_loopTop[k]);
2610     }//for 128/192/256
2611 
2612     __ BIND(L_exit);
2613     __ movptr(rvec, rvec_param);                        // restore this since reused earlier
2614     __ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object
2615     handleSOERegisters(false /*restoring*/);
2616     __ movptr(rax, len_param);                          // return length
2617     __ leave();                                         // required for proper stackwalking of RuntimeStub frame
2618     __ ret(0);
2619 
2620     return start;
2621   }
2622 
2623   // CTR AES crypt.
2624   // In 32-bit stub, parallelize 4 blocks at a time
2625   // Arguments:
2626   //
2627   // Inputs:
2628   //   c_rarg0   - source byte array address
2629   //   c_rarg1   - destination byte array address
2630   //   c_rarg2   - K (key) in little endian int array
2631   //   c_rarg3   - counter vector byte array address
2632   //   c_rarg4   - input length
2633   //
2634   // Output:
2635   //   rax       - input length
2636   //
generate_counterMode_AESCrypt_Parallel()2637   address generate_counterMode_AESCrypt_Parallel() {
2638     assert(UseAES, "need AES instructions and misaligned SSE support");
2639     __ align(CodeEntryAlignment);
2640     StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt");
2641     address start = __ pc();
2642     const Register from        = rsi;      // source array address
2643     const Register to          = rdx;      // destination array address
2644     const Register key         = rcx;      // key array address
2645     const Register counter     = rdi;      // counter byte array initialized from initvector array address
2646                                            // and updated with the incremented counter in the end
2647     const Register len_reg     = rbx;
2648     const Register pos         = rax;
2649 
2650     __ enter(); // required for proper stackwalking of RuntimeStub frame
2651     handleSOERegisters(true /*saving*/); // save rbx, rsi, rdi
2652 
2653     // load registers from incoming parameters
2654     const Address  from_param(rbp, 8+0);
2655     const Address  to_param  (rbp, 8+4);
2656     const Address  key_param (rbp, 8+8);
2657     const Address  rvec_param (rbp, 8+12);
2658     const Address  len_param  (rbp, 8+16);
2659     const Address  saved_counter_param(rbp, 8 + 20);
2660     const Address  used_addr_param(rbp, 8 + 24);
2661 
2662     __ movptr(from , from_param);
2663     __ movptr(to   , to_param);
2664     __ movptr(len_reg , len_param);
2665 
2666     // Use the partially used encrpyted counter from last invocation
2667     Label L_exit_preLoop, L_preLoop_start;
2668 
2669     // Use the registers 'counter' and 'key' here in this preloop
2670     // to hold of last 2 params 'used' and 'saved_encCounter_start'
2671     Register used = counter;
2672     Register saved_encCounter_start = key;
2673     Register used_addr = saved_encCounter_start;
2674 
2675     __ movptr(used_addr, used_addr_param);
2676     __ movptr(used, Address(used_addr, 0));
2677     __ movptr(saved_encCounter_start, saved_counter_param);
2678 
2679     __ BIND(L_preLoop_start);
2680     __ cmpptr(used, 16);
2681     __ jcc(Assembler::aboveEqual, L_exit_preLoop);
2682     __ cmpptr(len_reg, 0);
2683     __ jcc(Assembler::lessEqual, L_exit_preLoop);
2684     __ movb(rax, Address(saved_encCounter_start, used));
2685     __ xorb(rax, Address(from, 0));
2686     __ movb(Address(to, 0), rax);
2687     __ addptr(from, 1);
2688     __ addptr(to, 1);
2689     __ addptr(used, 1);
2690     __ subptr(len_reg, 1);
2691 
2692     __ jmp(L_preLoop_start);
2693 
2694     __ BIND(L_exit_preLoop);
2695     __ movptr(used_addr, used_addr_param);
2696     __ movptr(used_addr, used_addr_param);
2697     __ movl(Address(used_addr, 0), used);
2698 
2699     // load the parameters 'key' and 'counter'
2700     __ movptr(key, key_param);
2701     __ movptr(counter, rvec_param);
2702 
2703     // xmm register assignments for the loops below
2704     const XMMRegister xmm_curr_counter      = xmm0;
2705     const XMMRegister xmm_counter_shuf_mask = xmm1;  // need to be reloaded
2706     const XMMRegister xmm_key_shuf_mask     = xmm2;  // need to be reloaded
2707     const XMMRegister xmm_key               = xmm3;
2708     const XMMRegister xmm_result0           = xmm4;
2709     const XMMRegister xmm_result1           = xmm5;
2710     const XMMRegister xmm_result2           = xmm6;
2711     const XMMRegister xmm_result3           = xmm7;
2712     const XMMRegister xmm_from0             = xmm1;   //reuse XMM register
2713     const XMMRegister xmm_from1             = xmm2;
2714     const XMMRegister xmm_from2             = xmm3;
2715     const XMMRegister xmm_from3             = xmm4;
2716 
2717     //for key_128, key_192, key_256
2718     const int rounds[3] = {10, 12, 14};
2719     Label L_singleBlockLoopTop[3];
2720     Label L_multiBlock_loopTop[3];
2721     Label L_key192_top, L_key256_top;
2722     Label L_incCounter[3][4]; // 3: different key length,  4: 4 blocks at a time
2723     Label L_incCounter_single[3]; //for single block, key128, key192, key256
2724     Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3];
2725     Label L_processTail_extr[3], L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3];
2726 
2727     Label L_exit;
2728     const int PARALLEL_FACTOR = 4;  //because of the limited register number
2729 
2730     // initialize counter with initial counter
2731     __ movdqu(xmm_curr_counter, Address(counter, 0x00));
2732     __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2733     __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled for increase
2734 
2735     // key length could be only {11, 13, 15} * 4 = {44, 52, 60}
2736     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2737     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2738     __ cmpl(rax, 52);
2739     __ jcc(Assembler::equal, L_key192_top);
2740     __ cmpl(rax, 60);
2741     __ jcc(Assembler::equal, L_key256_top);
2742 
2743     //key128 begins here
2744     __ movptr(pos, NULL_WORD); // init pos before L_multiBlock_loopTop
2745 
2746 #define CTR_DoFour(opc, src_reg)               \
2747     __ opc(xmm_result0, src_reg);              \
2748     __ opc(xmm_result1, src_reg);              \
2749     __ opc(xmm_result2, src_reg);              \
2750     __ opc(xmm_result3, src_reg);
2751 
2752     // k == 0 :  generate code for key_128
2753     // k == 1 :  generate code for key_192
2754     // k == 2 :  generate code for key_256
2755     for (int k = 0; k < 3; ++k) {
2756       //multi blocks starts here
2757       __ align(OptoLoopAlignment);
2758       __ BIND(L_multiBlock_loopTop[k]);
2759       __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left
2760       __ jcc(Assembler::less, L_singleBlockLoopTop[k]);
2761 
2762       __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2763       __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2764 
2765       //load, then increase counters
2766       CTR_DoFour(movdqa, xmm_curr_counter);
2767       __ push(rbx);
2768       inc_counter(rbx, xmm_result1, 0x01, L_incCounter[k][0]);
2769       inc_counter(rbx, xmm_result2, 0x02, L_incCounter[k][1]);
2770       inc_counter(rbx, xmm_result3, 0x03, L_incCounter[k][2]);
2771       inc_counter(rbx, xmm_curr_counter, 0x04, L_incCounter[k][3]);
2772       __ pop (rbx);
2773 
2774       load_key(xmm_key, key, 0x00, xmm_key_shuf_mask); // load Round 0 key. interleaving for better performance
2775 
2776       CTR_DoFour(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR
2777       CTR_DoFour(pxor, xmm_key);   //PXOR with Round 0 key
2778 
2779       for (int i = 1; i < rounds[k]; ++i) {
2780         load_key(xmm_key, key, (0x10 * i), xmm_key_shuf_mask);
2781         CTR_DoFour(aesenc, xmm_key);
2782       }
2783       load_key(xmm_key, key, (0x10 * rounds[k]), xmm_key_shuf_mask);
2784       CTR_DoFour(aesenclast, xmm_key);
2785 
2786       // get next PARALLEL_FACTOR blocks into xmm_from registers
2787       __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
2788       __ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
2789       __ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
2790 
2791       // PXOR with input text
2792       __ pxor(xmm_result0, xmm_from0); //result0 is xmm4
2793       __ pxor(xmm_result1, xmm_from1);
2794       __ pxor(xmm_result2, xmm_from2);
2795 
2796       // store PARALLEL_FACTOR results into the next 64 bytes of output
2797       __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
2798       __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
2799       __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
2800 
2801       // do it here after xmm_result0 is saved, because xmm_from3 reuse the same register of xmm_result0.
2802       __ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
2803       __ pxor(xmm_result3, xmm_from3);
2804       __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
2805 
2806       __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text
2807       __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length
2808       __ jmp(L_multiBlock_loopTop[k]);
2809 
2810       // singleBlock starts here
2811       __ align(OptoLoopAlignment);
2812       __ BIND(L_singleBlockLoopTop[k]);
2813       __ cmpptr(len_reg, 0);
2814       __ jcc(Assembler::equal, L_exit);
2815       __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2816       __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2817       __ movdqa(xmm_result0, xmm_curr_counter);
2818       load_key(xmm_key, key, 0x00, xmm_key_shuf_mask);
2819       __ push(rbx);//rbx is used for increasing counter
2820       inc_counter(rbx, xmm_curr_counter, 0x01, L_incCounter_single[k]);
2821       __ pop (rbx);
2822       __ pshufb(xmm_result0, xmm_counter_shuf_mask);
2823       __ pxor(xmm_result0, xmm_key);
2824       for (int i = 1; i < rounds[k]; i++) {
2825         load_key(xmm_key, key, (0x10 * i), xmm_key_shuf_mask);
2826         __ aesenc(xmm_result0, xmm_key);
2827       }
2828       load_key(xmm_key, key, (0x10 * rounds[k]), xmm_key_shuf_mask);
2829       __ aesenclast(xmm_result0, xmm_key);
2830       __ cmpptr(len_reg, AESBlockSize);
2831       __ jcc(Assembler::less, L_processTail_insr[k]);
2832         __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
2833         __ pxor(xmm_result0, xmm_from0);
2834         __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
2835         __ addptr(pos, AESBlockSize);
2836         __ subptr(len_reg, AESBlockSize);
2837         __ jmp(L_singleBlockLoopTop[k]);
2838 
2839       __ BIND(L_processTail_insr[k]);                                               // Process the tail part of the input array
2840         __ addptr(pos, len_reg);                                                    // 1. Insert bytes from src array into xmm_from0 register
2841         __ testptr(len_reg, 8);
2842         __ jcc(Assembler::zero, L_processTail_4_insr[k]);
2843           __ subptr(pos,8);
2844           __ pinsrd(xmm_from0, Address(from, pos), 0);
2845           __ pinsrd(xmm_from0, Address(from, pos, Address::times_1, 4), 1);
2846         __ BIND(L_processTail_4_insr[k]);
2847         __ testptr(len_reg, 4);
2848         __ jcc(Assembler::zero, L_processTail_2_insr[k]);
2849           __ subptr(pos,4);
2850           __ pslldq(xmm_from0, 4);
2851           __ pinsrd(xmm_from0, Address(from, pos), 0);
2852         __ BIND(L_processTail_2_insr[k]);
2853         __ testptr(len_reg, 2);
2854         __ jcc(Assembler::zero, L_processTail_1_insr[k]);
2855           __ subptr(pos, 2);
2856           __ pslldq(xmm_from0, 2);
2857           __ pinsrw(xmm_from0, Address(from, pos), 0);
2858         __ BIND(L_processTail_1_insr[k]);
2859         __ testptr(len_reg, 1);
2860         __ jcc(Assembler::zero, L_processTail_exit_insr[k]);
2861           __ subptr(pos, 1);
2862           __ pslldq(xmm_from0, 1);
2863           __ pinsrb(xmm_from0, Address(from, pos), 0);
2864         __ BIND(L_processTail_exit_insr[k]);
2865 
2866         __ movptr(saved_encCounter_start, saved_counter_param);
2867         __ movdqu(Address(saved_encCounter_start, 0), xmm_result0);               // 2. Perform pxor of the encrypted counter and plaintext Bytes.
2868         __ pxor(xmm_result0, xmm_from0);                                          //    Also the encrypted counter is saved for next invocation.
2869 
2870         __ testptr(len_reg, 8);
2871         __ jcc(Assembler::zero, L_processTail_4_extr[k]);                        // 3. Extract bytes from xmm_result0 into the dest. array
2872           __ pextrd(Address(to, pos), xmm_result0, 0);
2873           __ pextrd(Address(to, pos, Address::times_1, 4), xmm_result0, 1);
2874           __ psrldq(xmm_result0, 8);
2875           __ addptr(pos, 8);
2876         __ BIND(L_processTail_4_extr[k]);
2877         __ testptr(len_reg, 4);
2878         __ jcc(Assembler::zero, L_processTail_2_extr[k]);
2879           __ pextrd(Address(to, pos), xmm_result0, 0);
2880           __ psrldq(xmm_result0, 4);
2881           __ addptr(pos, 4);
2882         __ BIND(L_processTail_2_extr[k]);
2883         __ testptr(len_reg, 2);
2884         __ jcc(Assembler::zero, L_processTail_1_extr[k]);
2885           __ pextrb(Address(to, pos), xmm_result0, 0);
2886           __ pextrb(Address(to, pos, Address::times_1, 1), xmm_result0, 1);
2887           __ psrldq(xmm_result0, 2);
2888           __ addptr(pos, 2);
2889         __ BIND(L_processTail_1_extr[k]);
2890         __ testptr(len_reg, 1);
2891         __ jcc(Assembler::zero, L_processTail_exit_extr[k]);
2892           __ pextrb(Address(to, pos), xmm_result0, 0);
2893 
2894         __ BIND(L_processTail_exit_extr[k]);
2895         __ movptr(used_addr, used_addr_param);
2896         __ movl(Address(used_addr, 0), len_reg);
2897         __ jmp(L_exit);
2898     }
2899 
2900     __ BIND(L_exit);
2901     __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2902     __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back.
2903     __ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back
2904     handleSOERegisters(false /*restoring*/);
2905     __ movptr(rax, len_param); // return length
2906     __ leave();                // required for proper stackwalking of RuntimeStub frame
2907     __ ret(0);
2908 
2909     __ BIND (L_key192_top);
2910     __ movptr(pos, NULL_WORD); // init pos before L_multiBlock_loopTop
2911     __ jmp(L_multiBlock_loopTop[1]); //key192
2912 
2913     __ BIND (L_key256_top);
2914     __ movptr(pos, NULL_WORD); // init pos before L_multiBlock_loopTop
2915     __ jmp(L_multiBlock_loopTop[2]); //key192
2916 
2917     return start;
2918   }
2919 
generate_upper_word_mask()2920   address generate_upper_word_mask() {
2921     __ align(64);
2922     StubCodeMark mark(this, "StubRoutines", "upper_word_mask");
2923     address start = __ pc();
2924     __ emit_data(0x00000000, relocInfo::none, 0);
2925     __ emit_data(0x00000000, relocInfo::none, 0);
2926     __ emit_data(0x00000000, relocInfo::none, 0);
2927     __ emit_data(0xFFFFFFFF, relocInfo::none, 0);
2928     return start;
2929   }
2930 
generate_shuffle_byte_flip_mask()2931   address generate_shuffle_byte_flip_mask() {
2932     __ align(64);
2933     StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask");
2934     address start = __ pc();
2935     __ emit_data(0x0c0d0e0f, relocInfo::none, 0);
2936     __ emit_data(0x08090a0b, relocInfo::none, 0);
2937     __ emit_data(0x04050607, relocInfo::none, 0);
2938     __ emit_data(0x00010203, relocInfo::none, 0);
2939     return start;
2940   }
2941 
2942   // ofs and limit are use for multi-block byte array.
2943   // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
generate_sha1_implCompress(bool multi_block,const char * name)2944   address generate_sha1_implCompress(bool multi_block, const char *name) {
2945     __ align(CodeEntryAlignment);
2946     StubCodeMark mark(this, "StubRoutines", name);
2947     address start = __ pc();
2948 
2949     Register buf   = rax;
2950     Register state = rdx;
2951     Register ofs   = rcx;
2952     Register limit = rdi;
2953 
2954     const Address  buf_param(rbp, 8 + 0);
2955     const Address  state_param(rbp, 8 + 4);
2956     const Address  ofs_param(rbp, 8 + 8);
2957     const Address  limit_param(rbp, 8 + 12);
2958 
2959     const XMMRegister abcd = xmm0;
2960     const XMMRegister e0 = xmm1;
2961     const XMMRegister e1 = xmm2;
2962     const XMMRegister msg0 = xmm3;
2963 
2964     const XMMRegister msg1 = xmm4;
2965     const XMMRegister msg2 = xmm5;
2966     const XMMRegister msg3 = xmm6;
2967     const XMMRegister shuf_mask = xmm7;
2968 
2969     __ enter();
2970     __ subptr(rsp, 8 * wordSize);
2971     handleSOERegisters(true /*saving*/);
2972 
2973     __ movptr(buf, buf_param);
2974     __ movptr(state, state_param);
2975     if (multi_block) {
2976       __ movptr(ofs, ofs_param);
2977       __ movptr(limit, limit_param);
2978     }
2979 
2980     __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
2981       buf, state, ofs, limit, rsp, multi_block);
2982 
2983     handleSOERegisters(false /*restoring*/);
2984     __ addptr(rsp, 8 * wordSize);
2985     __ leave();
2986     __ ret(0);
2987     return start;
2988   }
2989 
generate_pshuffle_byte_flip_mask()2990   address generate_pshuffle_byte_flip_mask() {
2991     __ align(64);
2992     StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask");
2993     address start = __ pc();
2994     __ emit_data(0x00010203, relocInfo::none, 0);
2995     __ emit_data(0x04050607, relocInfo::none, 0);
2996     __ emit_data(0x08090a0b, relocInfo::none, 0);
2997     __ emit_data(0x0c0d0e0f, relocInfo::none, 0);
2998     return start;
2999   }
3000 
3001   // ofs and limit are use for multi-block byte array.
3002   // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
generate_sha256_implCompress(bool multi_block,const char * name)3003  address generate_sha256_implCompress(bool multi_block, const char *name) {
3004     __ align(CodeEntryAlignment);
3005     StubCodeMark mark(this, "StubRoutines", name);
3006     address start = __ pc();
3007 
3008     Register buf = rbx;
3009     Register state = rsi;
3010     Register ofs = rdx;
3011     Register limit = rcx;
3012 
3013     const Address  buf_param(rbp, 8 + 0);
3014     const Address  state_param(rbp, 8 + 4);
3015     const Address  ofs_param(rbp, 8 + 8);
3016     const Address  limit_param(rbp, 8 + 12);
3017 
3018     const XMMRegister msg = xmm0;
3019     const XMMRegister state0 = xmm1;
3020     const XMMRegister state1 = xmm2;
3021     const XMMRegister msgtmp0 = xmm3;
3022 
3023     const XMMRegister msgtmp1 = xmm4;
3024     const XMMRegister msgtmp2 = xmm5;
3025     const XMMRegister msgtmp3 = xmm6;
3026     const XMMRegister msgtmp4 = xmm7;
3027 
3028     __ enter();
3029     __ subptr(rsp, 8 * wordSize);
3030     handleSOERegisters(true /*saving*/);
3031     __ movptr(buf, buf_param);
3032     __ movptr(state, state_param);
3033     if (multi_block) {
3034      __ movptr(ofs, ofs_param);
3035      __ movptr(limit, limit_param);
3036     }
3037 
3038     __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
3039       buf, state, ofs, limit, rsp, multi_block);
3040 
3041     handleSOERegisters(false);
3042     __ addptr(rsp, 8 * wordSize);
3043     __ leave();
3044     __ ret(0);
3045     return start;
3046   }
3047 
3048   // byte swap x86 long
generate_ghash_long_swap_mask()3049   address generate_ghash_long_swap_mask() {
3050     __ align(CodeEntryAlignment);
3051     StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask");
3052     address start = __ pc();
3053     __ emit_data(0x0b0a0908, relocInfo::none, 0);
3054     __ emit_data(0x0f0e0d0c, relocInfo::none, 0);
3055     __ emit_data(0x03020100, relocInfo::none, 0);
3056     __ emit_data(0x07060504, relocInfo::none, 0);
3057 
3058   return start;
3059   }
3060 
3061   // byte swap x86 byte array
generate_ghash_byte_swap_mask()3062   address generate_ghash_byte_swap_mask() {
3063     __ align(CodeEntryAlignment);
3064     StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask");
3065     address start = __ pc();
3066     __ emit_data(0x0c0d0e0f, relocInfo::none, 0);
3067     __ emit_data(0x08090a0b, relocInfo::none, 0);
3068     __ emit_data(0x04050607, relocInfo::none, 0);
3069     __ emit_data(0x00010203, relocInfo::none, 0);
3070   return start;
3071   }
3072 
3073   /* Single and multi-block ghash operations */
generate_ghash_processBlocks()3074   address generate_ghash_processBlocks() {
3075     assert(UseGHASHIntrinsics, "need GHASH intrinsics and CLMUL support");
3076     __ align(CodeEntryAlignment);
3077     Label L_ghash_loop, L_exit;
3078     StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
3079     address start = __ pc();
3080 
3081     const Register state        = rdi;
3082     const Register subkeyH      = rsi;
3083     const Register data         = rdx;
3084     const Register blocks       = rcx;
3085 
3086     const Address  state_param(rbp, 8+0);
3087     const Address  subkeyH_param(rbp, 8+4);
3088     const Address  data_param(rbp, 8+8);
3089     const Address  blocks_param(rbp, 8+12);
3090 
3091     const XMMRegister xmm_temp0 = xmm0;
3092     const XMMRegister xmm_temp1 = xmm1;
3093     const XMMRegister xmm_temp2 = xmm2;
3094     const XMMRegister xmm_temp3 = xmm3;
3095     const XMMRegister xmm_temp4 = xmm4;
3096     const XMMRegister xmm_temp5 = xmm5;
3097     const XMMRegister xmm_temp6 = xmm6;
3098     const XMMRegister xmm_temp7 = xmm7;
3099 
3100     __ enter();
3101     handleSOERegisters(true);  // Save registers
3102 
3103     __ movptr(state, state_param);
3104     __ movptr(subkeyH, subkeyH_param);
3105     __ movptr(data, data_param);
3106     __ movptr(blocks, blocks_param);
3107 
3108     __ movdqu(xmm_temp0, Address(state, 0));
3109     __ pshufb(xmm_temp0, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3110 
3111     __ movdqu(xmm_temp1, Address(subkeyH, 0));
3112     __ pshufb(xmm_temp1, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3113 
3114     __ BIND(L_ghash_loop);
3115     __ movdqu(xmm_temp2, Address(data, 0));
3116     __ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
3117 
3118     __ pxor(xmm_temp0, xmm_temp2);
3119 
3120     //
3121     // Multiply with the hash key
3122     //
3123     __ movdqu(xmm_temp3, xmm_temp0);
3124     __ pclmulqdq(xmm_temp3, xmm_temp1, 0);      // xmm3 holds a0*b0
3125     __ movdqu(xmm_temp4, xmm_temp0);
3126     __ pclmulqdq(xmm_temp4, xmm_temp1, 16);     // xmm4 holds a0*b1
3127 
3128     __ movdqu(xmm_temp5, xmm_temp0);
3129     __ pclmulqdq(xmm_temp5, xmm_temp1, 1);      // xmm5 holds a1*b0
3130     __ movdqu(xmm_temp6, xmm_temp0);
3131     __ pclmulqdq(xmm_temp6, xmm_temp1, 17);     // xmm6 holds a1*b1
3132 
3133     __ pxor(xmm_temp4, xmm_temp5);      // xmm4 holds a0*b1 + a1*b0
3134 
3135     __ movdqu(xmm_temp5, xmm_temp4);    // move the contents of xmm4 to xmm5
3136     __ psrldq(xmm_temp4, 8);    // shift by xmm4 64 bits to the right
3137     __ pslldq(xmm_temp5, 8);    // shift by xmm5 64 bits to the left
3138     __ pxor(xmm_temp3, xmm_temp5);
3139     __ pxor(xmm_temp6, xmm_temp4);      // Register pair <xmm6:xmm3> holds the result
3140                                         // of the carry-less multiplication of
3141                                         // xmm0 by xmm1.
3142 
3143     // We shift the result of the multiplication by one bit position
3144     // to the left to cope for the fact that the bits are reversed.
3145     __ movdqu(xmm_temp7, xmm_temp3);
3146     __ movdqu(xmm_temp4, xmm_temp6);
3147     __ pslld (xmm_temp3, 1);
3148     __ pslld(xmm_temp6, 1);
3149     __ psrld(xmm_temp7, 31);
3150     __ psrld(xmm_temp4, 31);
3151     __ movdqu(xmm_temp5, xmm_temp7);
3152     __ pslldq(xmm_temp4, 4);
3153     __ pslldq(xmm_temp7, 4);
3154     __ psrldq(xmm_temp5, 12);
3155     __ por(xmm_temp3, xmm_temp7);
3156     __ por(xmm_temp6, xmm_temp4);
3157     __ por(xmm_temp6, xmm_temp5);
3158 
3159     //
3160     // First phase of the reduction
3161     //
3162     // Move xmm3 into xmm4, xmm5, xmm7 in order to perform the shifts
3163     // independently.
3164     __ movdqu(xmm_temp7, xmm_temp3);
3165     __ movdqu(xmm_temp4, xmm_temp3);
3166     __ movdqu(xmm_temp5, xmm_temp3);
3167     __ pslld(xmm_temp7, 31);    // packed right shift shifting << 31
3168     __ pslld(xmm_temp4, 30);    // packed right shift shifting << 30
3169     __ pslld(xmm_temp5, 25);    // packed right shift shifting << 25
3170     __ pxor(xmm_temp7, xmm_temp4);      // xor the shifted versions
3171     __ pxor(xmm_temp7, xmm_temp5);
3172     __ movdqu(xmm_temp4, xmm_temp7);
3173     __ pslldq(xmm_temp7, 12);
3174     __ psrldq(xmm_temp4, 4);
3175     __ pxor(xmm_temp3, xmm_temp7);      // first phase of the reduction complete
3176 
3177     //
3178     // Second phase of the reduction
3179     //
3180     // Make 3 copies of xmm3 in xmm2, xmm5, xmm7 for doing these
3181     // shift operations.
3182     __ movdqu(xmm_temp2, xmm_temp3);
3183     __ movdqu(xmm_temp7, xmm_temp3);
3184     __ movdqu(xmm_temp5, xmm_temp3);
3185     __ psrld(xmm_temp2, 1);     // packed left shifting >> 1
3186     __ psrld(xmm_temp7, 2);     // packed left shifting >> 2
3187     __ psrld(xmm_temp5, 7);     // packed left shifting >> 7
3188     __ pxor(xmm_temp2, xmm_temp7);      // xor the shifted versions
3189     __ pxor(xmm_temp2, xmm_temp5);
3190     __ pxor(xmm_temp2, xmm_temp4);
3191     __ pxor(xmm_temp3, xmm_temp2);
3192     __ pxor(xmm_temp6, xmm_temp3);      // the result is in xmm6
3193 
3194     __ decrement(blocks);
3195     __ jcc(Assembler::zero, L_exit);
3196     __ movdqu(xmm_temp0, xmm_temp6);
3197     __ addptr(data, 16);
3198     __ jmp(L_ghash_loop);
3199 
3200     __ BIND(L_exit);
3201        // Byte swap 16-byte result
3202     __ pshufb(xmm_temp6, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3203     __ movdqu(Address(state, 0), xmm_temp6);   // store the result
3204 
3205     handleSOERegisters(false);  // restore registers
3206     __ leave();
3207     __ ret(0);
3208     return start;
3209   }
3210 
3211   /**
3212    *  Arguments:
3213    *
3214    * Inputs:
3215    *   rsp(4)   - int crc
3216    *   rsp(8)   - byte* buf
3217    *   rsp(12)  - int length
3218    *
3219    * Ouput:
3220    *       rax   - int crc result
3221    */
generate_updateBytesCRC32()3222   address generate_updateBytesCRC32() {
3223     assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3224 
3225     __ align(CodeEntryAlignment);
3226     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
3227 
3228     address start = __ pc();
3229 
3230     const Register crc   = rdx;  // crc
3231     const Register buf   = rsi;  // source java byte array address
3232     const Register len   = rcx;  // length
3233     const Register table = rdi;  // crc_table address (reuse register)
3234     const Register tmp   = rbx;
3235     assert_different_registers(crc, buf, len, table, tmp, rax);
3236 
3237     BLOCK_COMMENT("Entry:");
3238     __ enter(); // required for proper stackwalking of RuntimeStub frame
3239     __ push(rsi);
3240     __ push(rdi);
3241     __ push(rbx);
3242 
3243     Address crc_arg(rbp, 8 + 0);
3244     Address buf_arg(rbp, 8 + 4);
3245     Address len_arg(rbp, 8 + 8);
3246 
3247     // Load up:
3248     __ movl(crc,   crc_arg);
3249     __ movptr(buf, buf_arg);
3250     __ movl(len,   len_arg);
3251 
3252     __ kernel_crc32(crc, buf, len, table, tmp);
3253 
3254     __ movl(rax, crc);
3255     __ pop(rbx);
3256     __ pop(rdi);
3257     __ pop(rsi);
3258     __ vzeroupper();
3259     __ leave(); // required for proper stackwalking of RuntimeStub frame
3260     __ ret(0);
3261 
3262     return start;
3263   }
3264 
3265   /**
3266   *  Arguments:
3267   *
3268   * Inputs:
3269   *   rsp(4)   - int crc
3270   *   rsp(8)   - byte* buf
3271   *   rsp(12)  - int length
3272   *   rsp(16)  - table_start - optional (present only when doing a library_calll,
3273   *              not used by x86 algorithm)
3274   *
3275   * Ouput:
3276   *       rax  - int crc result
3277   */
generate_updateBytesCRC32C(bool is_pclmulqdq_supported)3278   address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3279     assert(UseCRC32CIntrinsics, "need SSE4_2");
3280     __ align(CodeEntryAlignment);
3281     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
3282     address start = __ pc();
3283     const Register crc = rax;  // crc
3284     const Register buf = rcx;  // source java byte array address
3285     const Register len = rdx;  // length
3286     const Register d = rbx;
3287     const Register g = rsi;
3288     const Register h = rdi;
3289     const Register empty = 0; // will never be used, in order not
3290                               // to change a signature for crc32c_IPL_Alg2_Alt2
3291                               // between 64/32 I'm just keeping it here
3292     assert_different_registers(crc, buf, len, d, g, h);
3293 
3294     BLOCK_COMMENT("Entry:");
3295     __ enter(); // required for proper stackwalking of RuntimeStub frame
3296     Address crc_arg(rsp, 4 + 4 + 0); // ESP+4 +
3297                                      // we need to add additional 4 because __ enter
3298                                      // have just pushed ebp on a stack
3299     Address buf_arg(rsp, 4 + 4 + 4);
3300     Address len_arg(rsp, 4 + 4 + 8);
3301       // Load up:
3302       __ movl(crc, crc_arg);
3303       __ movl(buf, buf_arg);
3304       __ movl(len, len_arg);
3305       __ push(d);
3306       __ push(g);
3307       __ push(h);
3308       __ crc32c_ipl_alg2_alt2(crc, buf, len,
3309                               d, g, h,
3310                               empty, empty, empty,
3311                               xmm0, xmm1, xmm2,
3312                               is_pclmulqdq_supported);
3313       __ pop(h);
3314       __ pop(g);
3315       __ pop(d);
3316     __ vzeroupper();
3317     __ leave(); // required for proper stackwalking of RuntimeStub frame
3318     __ ret(0);
3319 
3320     return start;
3321   }
3322 
generate_libmExp()3323  address generate_libmExp() {
3324     StubCodeMark mark(this, "StubRoutines", "libmExp");
3325 
3326     address start = __ pc();
3327 
3328     const XMMRegister x0  = xmm0;
3329     const XMMRegister x1  = xmm1;
3330     const XMMRegister x2  = xmm2;
3331     const XMMRegister x3  = xmm3;
3332 
3333     const XMMRegister x4  = xmm4;
3334     const XMMRegister x5  = xmm5;
3335     const XMMRegister x6  = xmm6;
3336     const XMMRegister x7  = xmm7;
3337 
3338     const Register tmp   = rbx;
3339 
3340     BLOCK_COMMENT("Entry:");
3341     __ enter(); // required for proper stackwalking of RuntimeStub frame
3342     __ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3343     __ leave(); // required for proper stackwalking of RuntimeStub frame
3344     __ ret(0);
3345 
3346     return start;
3347 
3348   }
3349 
generate_libmLog()3350  address generate_libmLog() {
3351    StubCodeMark mark(this, "StubRoutines", "libmLog");
3352 
3353    address start = __ pc();
3354 
3355    const XMMRegister x0 = xmm0;
3356    const XMMRegister x1 = xmm1;
3357    const XMMRegister x2 = xmm2;
3358    const XMMRegister x3 = xmm3;
3359 
3360    const XMMRegister x4 = xmm4;
3361    const XMMRegister x5 = xmm5;
3362    const XMMRegister x6 = xmm6;
3363    const XMMRegister x7 = xmm7;
3364 
3365    const Register tmp = rbx;
3366 
3367    BLOCK_COMMENT("Entry:");
3368    __ enter(); // required for proper stackwalking of RuntimeStub frame
3369    __ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3370    __ leave(); // required for proper stackwalking of RuntimeStub frame
3371    __ ret(0);
3372 
3373    return start;
3374 
3375  }
3376 
generate_libmLog10()3377  address generate_libmLog10() {
3378    StubCodeMark mark(this, "StubRoutines", "libmLog10");
3379 
3380    address start = __ pc();
3381 
3382    const XMMRegister x0 = xmm0;
3383    const XMMRegister x1 = xmm1;
3384    const XMMRegister x2 = xmm2;
3385    const XMMRegister x3 = xmm3;
3386 
3387    const XMMRegister x4 = xmm4;
3388    const XMMRegister x5 = xmm5;
3389    const XMMRegister x6 = xmm6;
3390    const XMMRegister x7 = xmm7;
3391 
3392    const Register tmp = rbx;
3393 
3394    BLOCK_COMMENT("Entry:");
3395    __ enter(); // required for proper stackwalking of RuntimeStub frame
3396    __ fast_log10(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3397    __ leave(); // required for proper stackwalking of RuntimeStub frame
3398    __ ret(0);
3399 
3400    return start;
3401 
3402  }
3403 
generate_libmPow()3404  address generate_libmPow() {
3405    StubCodeMark mark(this, "StubRoutines", "libmPow");
3406 
3407    address start = __ pc();
3408 
3409    const XMMRegister x0 = xmm0;
3410    const XMMRegister x1 = xmm1;
3411    const XMMRegister x2 = xmm2;
3412    const XMMRegister x3 = xmm3;
3413 
3414    const XMMRegister x4 = xmm4;
3415    const XMMRegister x5 = xmm5;
3416    const XMMRegister x6 = xmm6;
3417    const XMMRegister x7 = xmm7;
3418 
3419    const Register tmp = rbx;
3420 
3421    BLOCK_COMMENT("Entry:");
3422    __ enter(); // required for proper stackwalking of RuntimeStub frame
3423    __ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3424    __ leave(); // required for proper stackwalking of RuntimeStub frame
3425    __ ret(0);
3426 
3427    return start;
3428 
3429  }
3430 
generate_libm_reduce_pi04l()3431  address generate_libm_reduce_pi04l() {
3432    StubCodeMark mark(this, "StubRoutines", "libm_reduce_pi04l");
3433 
3434    address start = __ pc();
3435 
3436    BLOCK_COMMENT("Entry:");
3437    __ libm_reduce_pi04l(rax, rcx, rdx, rbx, rsi, rdi, rbp, rsp);
3438 
3439    return start;
3440 
3441  }
3442 
generate_libm_sin_cos_huge()3443  address generate_libm_sin_cos_huge() {
3444    StubCodeMark mark(this, "StubRoutines", "libm_sin_cos_huge");
3445 
3446    address start = __ pc();
3447 
3448    const XMMRegister x0 = xmm0;
3449    const XMMRegister x1 = xmm1;
3450 
3451    BLOCK_COMMENT("Entry:");
3452    __ libm_sincos_huge(x0, x1, rax, rcx, rdx, rbx, rsi, rdi, rbp, rsp);
3453 
3454    return start;
3455 
3456  }
3457 
generate_libmSin()3458  address generate_libmSin() {
3459    StubCodeMark mark(this, "StubRoutines", "libmSin");
3460 
3461    address start = __ pc();
3462 
3463    const XMMRegister x0 = xmm0;
3464    const XMMRegister x1 = xmm1;
3465    const XMMRegister x2 = xmm2;
3466    const XMMRegister x3 = xmm3;
3467 
3468    const XMMRegister x4 = xmm4;
3469    const XMMRegister x5 = xmm5;
3470    const XMMRegister x6 = xmm6;
3471    const XMMRegister x7 = xmm7;
3472 
3473    BLOCK_COMMENT("Entry:");
3474    __ enter(); // required for proper stackwalking of RuntimeStub frame
3475    __ fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rdx);
3476    __ leave(); // required for proper stackwalking of RuntimeStub frame
3477    __ ret(0);
3478 
3479    return start;
3480 
3481  }
3482 
generate_libmCos()3483  address generate_libmCos() {
3484    StubCodeMark mark(this, "StubRoutines", "libmCos");
3485 
3486    address start = __ pc();
3487 
3488    const XMMRegister x0 = xmm0;
3489    const XMMRegister x1 = xmm1;
3490    const XMMRegister x2 = xmm2;
3491    const XMMRegister x3 = xmm3;
3492 
3493    const XMMRegister x4 = xmm4;
3494    const XMMRegister x5 = xmm5;
3495    const XMMRegister x6 = xmm6;
3496    const XMMRegister x7 = xmm7;
3497 
3498    const Register tmp = rbx;
3499 
3500    BLOCK_COMMENT("Entry:");
3501    __ enter(); // required for proper stackwalking of RuntimeStub frame
3502    __ fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3503    __ leave(); // required for proper stackwalking of RuntimeStub frame
3504    __ ret(0);
3505 
3506    return start;
3507 
3508  }
3509 
generate_libm_tan_cot_huge()3510  address generate_libm_tan_cot_huge() {
3511    StubCodeMark mark(this, "StubRoutines", "libm_tan_cot_huge");
3512 
3513    address start = __ pc();
3514 
3515    const XMMRegister x0 = xmm0;
3516    const XMMRegister x1 = xmm1;
3517 
3518    BLOCK_COMMENT("Entry:");
3519    __ libm_tancot_huge(x0, x1, rax, rcx, rdx, rbx, rsi, rdi, rbp, rsp);
3520 
3521    return start;
3522 
3523  }
3524 
generate_libmTan()3525  address generate_libmTan() {
3526    StubCodeMark mark(this, "StubRoutines", "libmTan");
3527 
3528    address start = __ pc();
3529 
3530    const XMMRegister x0 = xmm0;
3531    const XMMRegister x1 = xmm1;
3532    const XMMRegister x2 = xmm2;
3533    const XMMRegister x3 = xmm3;
3534 
3535    const XMMRegister x4 = xmm4;
3536    const XMMRegister x5 = xmm5;
3537    const XMMRegister x6 = xmm6;
3538    const XMMRegister x7 = xmm7;
3539 
3540    const Register tmp = rbx;
3541 
3542    BLOCK_COMMENT("Entry:");
3543    __ enter(); // required for proper stackwalking of RuntimeStub frame
3544    __ fast_tan(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3545    __ leave(); // required for proper stackwalking of RuntimeStub frame
3546    __ ret(0);
3547 
3548    return start;
3549 
3550  }
3551 
3552   // Safefetch stubs.
generate_safefetch(const char * name,int size,address * entry,address * fault_pc,address * continuation_pc)3553   void generate_safefetch(const char* name, int size, address* entry,
3554                           address* fault_pc, address* continuation_pc) {
3555     // safefetch signatures:
3556     //   int      SafeFetch32(int*      adr, int      errValue);
3557     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
3558 
3559     StubCodeMark mark(this, "StubRoutines", name);
3560 
3561     // Entry point, pc or function descriptor.
3562     *entry = __ pc();
3563 
3564     __ movl(rax, Address(rsp, 0x8));
3565     __ movl(rcx, Address(rsp, 0x4));
3566     // Load *adr into eax, may fault.
3567     *fault_pc = __ pc();
3568     switch (size) {
3569       case 4:
3570         // int32_t
3571         __ movl(rax, Address(rcx, 0));
3572         break;
3573       case 8:
3574         // int64_t
3575         Unimplemented();
3576         break;
3577       default:
3578         ShouldNotReachHere();
3579     }
3580 
3581     // Return errValue or *adr.
3582     *continuation_pc = __ pc();
3583     __ ret(0);
3584   }
3585 
3586  public:
3587   // Information about frame layout at time of blocking runtime call.
3588   // Note that we only have to preserve callee-saved registers since
3589   // the compilers are responsible for supplying a continuation point
3590   // if they expect all registers to be preserved.
3591   enum layout {
3592     thread_off,    // last_java_sp
3593     arg1_off,
3594     arg2_off,
3595     rbp_off,       // callee saved register
3596     ret_pc,
3597     framesize
3598   };
3599 
3600  private:
3601 
3602 #undef  __
3603 #define __ masm->
3604 
3605   //------------------------------------------------------------------------------------------------------------------------
3606   // Continuation point for throwing of implicit exceptions that are not handled in
3607   // the current activation. Fabricates an exception oop and initiates normal
3608   // exception dispatching in this frame.
3609   //
3610   // Previously the compiler (c2) allowed for callee save registers on Java calls.
3611   // This is no longer true after adapter frames were removed but could possibly
3612   // be brought back in the future if the interpreter code was reworked and it
3613   // was deemed worthwhile. The comment below was left to describe what must
3614   // happen here if callee saves were resurrected. As it stands now this stub
3615   // could actually be a vanilla BufferBlob and have now oopMap at all.
3616   // Since it doesn't make much difference we've chosen to leave it the
3617   // way it was in the callee save days and keep the comment.
3618 
3619   // If we need to preserve callee-saved values we need a callee-saved oop map and
3620   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
3621   // If the compiler needs all registers to be preserved between the fault
3622   // point and the exception handler then it must assume responsibility for that in
3623   // AbstractCompiler::continuation_for_implicit_null_exception or
3624   // continuation_for_implicit_division_by_zero_exception. All other implicit
3625   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
3626   // either at call sites or otherwise assume that stack unwinding will be initiated,
3627   // so caller saved registers were assumed volatile in the compiler.
generate_throw_exception(const char * name,address runtime_entry,Register arg1=noreg,Register arg2=noreg)3628   address generate_throw_exception(const char* name, address runtime_entry,
3629                                    Register arg1 = noreg, Register arg2 = noreg) {
3630 
3631     int insts_size = 256;
3632     int locs_size  = 32;
3633 
3634     CodeBuffer code(name, insts_size, locs_size);
3635     OopMapSet* oop_maps  = new OopMapSet();
3636     MacroAssembler* masm = new MacroAssembler(&code);
3637 
3638     address start = __ pc();
3639 
3640     // This is an inlined and slightly modified version of call_VM
3641     // which has the ability to fetch the return PC out of
3642     // thread-local storage and also sets up last_Java_sp slightly
3643     // differently than the real call_VM
3644     Register java_thread = rbx;
3645     __ get_thread(java_thread);
3646 
3647     __ enter(); // required for proper stackwalking of RuntimeStub frame
3648 
3649     // pc and rbp, already pushed
3650     __ subptr(rsp, (framesize-2) * wordSize); // prolog
3651 
3652     // Frame is now completed as far as size and linkage.
3653 
3654     int frame_complete = __ pc() - start;
3655 
3656     // push java thread (becomes first argument of C function)
3657     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
3658     if (arg1 != noreg) {
3659       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
3660     }
3661     if (arg2 != noreg) {
3662       assert(arg1 != noreg, "missing reg arg");
3663       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
3664     }
3665 
3666     // Set up last_Java_sp and last_Java_fp
3667     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
3668 
3669     // Call runtime
3670     BLOCK_COMMENT("call runtime_entry");
3671     __ call(RuntimeAddress(runtime_entry));
3672     // Generate oop map
3673     OopMap* map =  new OopMap(framesize, 0);
3674     oop_maps->add_gc_map(__ pc() - start, map);
3675 
3676     // restore the thread (cannot use the pushed argument since arguments
3677     // may be overwritten by C code generated by an optimizing compiler);
3678     // however can use the register value directly if it is callee saved.
3679     __ get_thread(java_thread);
3680 
3681     __ reset_last_Java_frame(java_thread, true);
3682 
3683     __ leave(); // required for proper stackwalking of RuntimeStub frame
3684 
3685     // check for pending exceptions
3686 #ifdef ASSERT
3687     Label L;
3688     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3689     __ jcc(Assembler::notEqual, L);
3690     __ should_not_reach_here();
3691     __ bind(L);
3692 #endif /* ASSERT */
3693     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3694 
3695 
3696     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
3697     return stub->entry_point();
3698   }
3699 
3700 
create_control_words()3701   void create_control_words() {
3702     // Round to nearest, 53-bit mode, exceptions masked
3703     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
3704     // Round to zero, 53-bit mode, exception mased
3705     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
3706     // Round to nearest, 24-bit mode, exceptions masked
3707     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
3708     // Round to nearest, 64-bit mode, exceptions masked
3709     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
3710     // Round to nearest, 64-bit mode, exceptions masked
3711     StubRoutines::_mxcsr_std           = 0x1F80;
3712     // Note: the following two constants are 80-bit values
3713     //       layout is critical for correct loading by FPU.
3714     // Bias for strict fp multiply/divide
3715     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
3716     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
3717     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
3718     // Un-Bias for strict fp multiply/divide
3719     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
3720     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
3721     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
3722   }
3723 
3724   //---------------------------------------------------------------------------
3725   // Initialization
3726 
generate_initial()3727   void generate_initial() {
3728     // Generates all stubs and initializes the entry points
3729 
3730     //------------------------------------------------------------------------------------------------------------------------
3731     // entry points that exist in all platforms
3732     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
3733     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
3734     StubRoutines::_forward_exception_entry      = generate_forward_exception();
3735 
3736     StubRoutines::_call_stub_entry              =
3737       generate_call_stub(StubRoutines::_call_stub_return_address);
3738     // is referenced by megamorphic call
3739     StubRoutines::_catch_exception_entry        = generate_catch_exception();
3740 
3741     // These are currently used by Solaris/Intel
3742     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
3743 
3744     // platform dependent
3745     create_control_words();
3746 
3747     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
3748     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
3749     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
3750                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
3751     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
3752                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
3753 
3754     // Build this early so it's available for the interpreter
3755     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",
3756                                                                                       CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
3757     StubRoutines::_throw_delayed_StackOverflowError_entry  = generate_throw_exception("delayed StackOverflowError throw_exception",
3758                                                                                       CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
3759 
3760     if (UseCRC32Intrinsics) {
3761       // set table address before stub generation which use it
3762       StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
3763       StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
3764     }
3765 
3766     if (UseCRC32CIntrinsics) {
3767       bool supports_clmul = VM_Version::supports_clmul();
3768       StubRoutines::x86::generate_CRC32C_table(supports_clmul);
3769       StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
3770       StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
3771     }
3772     if (VM_Version::supports_sse2() && UseLibmIntrinsic && InlineIntrinsics) {
3773       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) ||
3774           vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) ||
3775           vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3776         StubRoutines::x86::_L_2il0floatpacket_0_adr = (address)StubRoutines::x86::_L_2il0floatpacket_0;
3777         StubRoutines::x86::_Pi4Inv_adr = (address)StubRoutines::x86::_Pi4Inv;
3778         StubRoutines::x86::_Pi4x3_adr = (address)StubRoutines::x86::_Pi4x3;
3779         StubRoutines::x86::_Pi4x4_adr = (address)StubRoutines::x86::_Pi4x4;
3780         StubRoutines::x86::_ones_adr = (address)StubRoutines::x86::_ones;
3781       }
3782       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3783         StubRoutines::_dexp = generate_libmExp();
3784       }
3785       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3786         StubRoutines::_dlog = generate_libmLog();
3787       }
3788       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3789         StubRoutines::_dlog10 = generate_libmLog10();
3790       }
3791       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3792         StubRoutines::_dpow = generate_libmPow();
3793       }
3794       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) ||
3795         vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) ||
3796         vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3797         StubRoutines::_dlibm_reduce_pi04l = generate_libm_reduce_pi04l();
3798       }
3799       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) ||
3800         vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3801         StubRoutines::_dlibm_sin_cos_huge = generate_libm_sin_cos_huge();
3802       }
3803       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3804         StubRoutines::_dsin = generate_libmSin();
3805       }
3806       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3807         StubRoutines::_dcos = generate_libmCos();
3808       }
3809       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3810         StubRoutines::_dlibm_tan_cot_huge = generate_libm_tan_cot_huge();
3811         StubRoutines::_dtan = generate_libmTan();
3812       }
3813     }
3814   }
3815 
generate_all()3816   void generate_all() {
3817     // Generates all stubs and initializes the entry points
3818 
3819     // These entry points require SharedInfo::stack0 to be set up in non-core builds
3820     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
3821     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
3822     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
3823     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
3824 
3825     //------------------------------------------------------------------------------------------------------------------------
3826     // entry points that are platform specific
3827 
3828     // support for verify_oop (must happen after universe_init)
3829     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
3830 
3831     // arraycopy stubs used by compilers
3832     generate_arraycopy_stubs();
3833 
3834     // don't bother generating these AES intrinsic stubs unless global flag is set
3835     if (UseAESIntrinsics) {
3836       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
3837 
3838       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3839       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3840       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
3841       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
3842     }
3843 
3844     if (UseAESCTRIntrinsics) {
3845       StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask();
3846       StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel();
3847     }
3848 
3849     if (UseSHA1Intrinsics) {
3850       StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
3851       StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
3852       StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
3853       StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
3854     }
3855     if (UseSHA256Intrinsics) {
3856       StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
3857       StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
3858       StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
3859       StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
3860     }
3861 
3862     // Generate GHASH intrinsics code
3863     if (UseGHASHIntrinsics) {
3864       StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask();
3865       StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask();
3866       StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
3867     }
3868 
3869     // Safefetch stubs.
3870     generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
3871                                                    &StubRoutines::_safefetch32_fault_pc,
3872                                                    &StubRoutines::_safefetch32_continuation_pc);
3873     StubRoutines::_safefetchN_entry           = StubRoutines::_safefetch32_entry;
3874     StubRoutines::_safefetchN_fault_pc        = StubRoutines::_safefetch32_fault_pc;
3875     StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
3876   }
3877 
3878 
3879  public:
StubGenerator(CodeBuffer * code,bool all)3880   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3881     if (all) {
3882       generate_all();
3883     } else {
3884       generate_initial();
3885     }
3886   }
3887 }; // end class declaration
3888 
3889 
StubGenerator_generate(CodeBuffer * code,bool all)3890 void StubGenerator_generate(CodeBuffer* code, bool all) {
3891   StubGenerator g(code, all);
3892 }
3893