1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/classLoaderDataGraph.hpp"
27 #include "classfile/metadataOnStackMark.hpp"
28 #include "classfile/stringTable.hpp"
29 #include "code/codeCache.hpp"
30 #include "code/icBuffer.hpp"
31 #include "gc/g1/g1Allocator.inline.hpp"
32 #include "gc/g1/g1BarrierSet.hpp"
33 #include "gc/g1/g1CollectedHeap.inline.hpp"
34 #include "gc/g1/g1CollectionSet.hpp"
35 #include "gc/g1/g1CollectorPolicy.hpp"
36 #include "gc/g1/g1CollectorState.hpp"
37 #include "gc/g1/g1ConcurrentRefine.hpp"
38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
40 #include "gc/g1/g1EvacStats.inline.hpp"
41 #include "gc/g1/g1FullCollector.hpp"
42 #include "gc/g1/g1GCPhaseTimes.hpp"
43 #include "gc/g1/g1HeapSizingPolicy.hpp"
44 #include "gc/g1/g1HeapTransition.hpp"
45 #include "gc/g1/g1HeapVerifier.hpp"
46 #include "gc/g1/g1HotCardCache.hpp"
47 #include "gc/g1/g1MemoryPool.hpp"
48 #include "gc/g1/g1OopClosures.inline.hpp"
49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
50 #include "gc/g1/g1Policy.hpp"
51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
52 #include "gc/g1/g1RemSet.hpp"
53 #include "gc/g1/g1RootClosures.hpp"
54 #include "gc/g1/g1RootProcessor.hpp"
55 #include "gc/g1/g1SATBMarkQueueSet.hpp"
56 #include "gc/g1/g1StringDedup.hpp"
57 #include "gc/g1/g1ThreadLocalData.hpp"
58 #include "gc/g1/g1YCTypes.hpp"
59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
60 #include "gc/g1/g1VMOperations.hpp"
61 #include "gc/g1/heapRegion.inline.hpp"
62 #include "gc/g1/heapRegionRemSet.hpp"
63 #include "gc/g1/heapRegionSet.inline.hpp"
64 #include "gc/shared/gcBehaviours.hpp"
65 #include "gc/shared/gcHeapSummary.hpp"
66 #include "gc/shared/gcId.hpp"
67 #include "gc/shared/gcLocker.hpp"
68 #include "gc/shared/gcTimer.hpp"
69 #include "gc/shared/gcTrace.hpp"
70 #include "gc/shared/gcTraceTime.inline.hpp"
71 #include "gc/shared/generationSpec.hpp"
72 #include "gc/shared/isGCActiveMark.hpp"
73 #include "gc/shared/oopStorageParState.hpp"
74 #include "gc/shared/parallelCleaning.hpp"
75 #include "gc/shared/preservedMarks.inline.hpp"
76 #include "gc/shared/suspendibleThreadSet.hpp"
77 #include "gc/shared/referenceProcessor.inline.hpp"
78 #include "gc/shared/taskqueue.inline.hpp"
79 #include "gc/shared/weakProcessor.inline.hpp"
80 #include "gc/shared/workerPolicy.hpp"
81 #include "logging/log.hpp"
82 #include "memory/allocation.hpp"
83 #include "memory/iterator.hpp"
84 #include "memory/resourceArea.hpp"
85 #include "oops/access.inline.hpp"
86 #include "oops/compressedOops.inline.hpp"
87 #include "oops/oop.inline.hpp"
88 #include "runtime/atomic.hpp"
89 #include "runtime/flags/flagSetting.hpp"
90 #include "runtime/handles.inline.hpp"
91 #include "runtime/init.hpp"
92 #include "runtime/orderAccess.hpp"
93 #include "runtime/threadSMR.hpp"
94 #include "runtime/vmThread.hpp"
95 #include "utilities/align.hpp"
96 #include "utilities/globalDefinitions.hpp"
97 #include "utilities/stack.inline.hpp"
98 
99 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
100 
101 // INVARIANTS/NOTES
102 //
103 // All allocation activity covered by the G1CollectedHeap interface is
104 // serialized by acquiring the HeapLock.  This happens in mem_allocate
105 // and allocate_new_tlab, which are the "entry" points to the
106 // allocation code from the rest of the JVM.  (Note that this does not
107 // apply to TLAB allocation, which is not part of this interface: it
108 // is done by clients of this interface.)
109 
110 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
111  private:
112   size_t _num_dirtied;
113   G1CollectedHeap* _g1h;
114   G1CardTable* _g1_ct;
115 
region_for_card(jbyte * card_ptr) const116   HeapRegion* region_for_card(jbyte* card_ptr) const {
117     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
118   }
119 
will_become_free(HeapRegion * hr) const120   bool will_become_free(HeapRegion* hr) const {
121     // A region will be freed by free_collection_set if the region is in the
122     // collection set and has not had an evacuation failure.
123     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
124   }
125 
126  public:
RedirtyLoggedCardTableEntryClosure(G1CollectedHeap * g1h)127   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
128     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
129 
do_card_ptr(jbyte * card_ptr,uint worker_i)130   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
131     HeapRegion* hr = region_for_card(card_ptr);
132 
133     // Should only dirty cards in regions that won't be freed.
134     if (!will_become_free(hr)) {
135       *card_ptr = G1CardTable::dirty_card_val();
136       _num_dirtied++;
137     }
138 
139     return true;
140   }
141 
num_dirtied() const142   size_t num_dirtied()   const { return _num_dirtied; }
143 };
144 
145 
reset_from_card_cache(uint start_idx,size_t num_regions)146 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
147   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
148 }
149 
on_commit(uint start_idx,size_t num_regions,bool zero_filled)150 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
151   // The from card cache is not the memory that is actually committed. So we cannot
152   // take advantage of the zero_filled parameter.
153   reset_from_card_cache(start_idx, num_regions);
154 }
155 
156 
new_heap_region(uint hrs_index,MemRegion mr)157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
158                                              MemRegion mr) {
159   return new HeapRegion(hrs_index, bot(), mr);
160 }
161 
162 // Private methods.
163 
new_region(size_t word_size,HeapRegionType type,bool do_expand)164 HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand) {
165   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
166          "the only time we use this to allocate a humongous region is "
167          "when we are allocating a single humongous region");
168 
169   HeapRegion* res = _hrm->allocate_free_region(type);
170 
171   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
172     // Currently, only attempts to allocate GC alloc regions set
173     // do_expand to true. So, we should only reach here during a
174     // safepoint. If this assumption changes we might have to
175     // reconsider the use of _expand_heap_after_alloc_failure.
176     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
177 
178     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
179                               word_size * HeapWordSize);
180 
181     if (expand(word_size * HeapWordSize)) {
182       // Given that expand() succeeded in expanding the heap, and we
183       // always expand the heap by an amount aligned to the heap
184       // region size, the free list should in theory not be empty.
185       // In either case allocate_free_region() will check for NULL.
186       res = _hrm->allocate_free_region(type);
187     } else {
188       _expand_heap_after_alloc_failure = false;
189     }
190   }
191   return res;
192 }
193 
194 HeapWord*
humongous_obj_allocate_initialize_regions(uint first,uint num_regions,size_t word_size)195 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
196                                                            uint num_regions,
197                                                            size_t word_size) {
198   assert(first != G1_NO_HRM_INDEX, "pre-condition");
199   assert(is_humongous(word_size), "word_size should be humongous");
200   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
201 
202   // Index of last region in the series.
203   uint last = first + num_regions - 1;
204 
205   // We need to initialize the region(s) we just discovered. This is
206   // a bit tricky given that it can happen concurrently with
207   // refinement threads refining cards on these regions and
208   // potentially wanting to refine the BOT as they are scanning
209   // those cards (this can happen shortly after a cleanup; see CR
210   // 6991377). So we have to set up the region(s) carefully and in
211   // a specific order.
212 
213   // The word size sum of all the regions we will allocate.
214   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
215   assert(word_size <= word_size_sum, "sanity");
216 
217   // This will be the "starts humongous" region.
218   HeapRegion* first_hr = region_at(first);
219   // The header of the new object will be placed at the bottom of
220   // the first region.
221   HeapWord* new_obj = first_hr->bottom();
222   // This will be the new top of the new object.
223   HeapWord* obj_top = new_obj + word_size;
224 
225   // First, we need to zero the header of the space that we will be
226   // allocating. When we update top further down, some refinement
227   // threads might try to scan the region. By zeroing the header we
228   // ensure that any thread that will try to scan the region will
229   // come across the zero klass word and bail out.
230   //
231   // NOTE: It would not have been correct to have used
232   // CollectedHeap::fill_with_object() and make the space look like
233   // an int array. The thread that is doing the allocation will
234   // later update the object header to a potentially different array
235   // type and, for a very short period of time, the klass and length
236   // fields will be inconsistent. This could cause a refinement
237   // thread to calculate the object size incorrectly.
238   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
239 
240   // Next, pad out the unused tail of the last region with filler
241   // objects, for improved usage accounting.
242   // How many words we use for filler objects.
243   size_t word_fill_size = word_size_sum - word_size;
244 
245   // How many words memory we "waste" which cannot hold a filler object.
246   size_t words_not_fillable = 0;
247 
248   if (word_fill_size >= min_fill_size()) {
249     fill_with_objects(obj_top, word_fill_size);
250   } else if (word_fill_size > 0) {
251     // We have space to fill, but we cannot fit an object there.
252     words_not_fillable = word_fill_size;
253     word_fill_size = 0;
254   }
255 
256   // We will set up the first region as "starts humongous". This
257   // will also update the BOT covering all the regions to reflect
258   // that there is a single object that starts at the bottom of the
259   // first region.
260   first_hr->set_starts_humongous(obj_top, word_fill_size);
261   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
262   // Then, if there are any, we will set up the "continues
263   // humongous" regions.
264   HeapRegion* hr = NULL;
265   for (uint i = first + 1; i <= last; ++i) {
266     hr = region_at(i);
267     hr->set_continues_humongous(first_hr);
268     _g1_policy->remset_tracker()->update_at_allocate(hr);
269   }
270 
271   // Up to this point no concurrent thread would have been able to
272   // do any scanning on any region in this series. All the top
273   // fields still point to bottom, so the intersection between
274   // [bottom,top] and [card_start,card_end] will be empty. Before we
275   // update the top fields, we'll do a storestore to make sure that
276   // no thread sees the update to top before the zeroing of the
277   // object header and the BOT initialization.
278   OrderAccess::storestore();
279 
280   // Now, we will update the top fields of the "continues humongous"
281   // regions except the last one.
282   for (uint i = first; i < last; ++i) {
283     hr = region_at(i);
284     hr->set_top(hr->end());
285   }
286 
287   hr = region_at(last);
288   // If we cannot fit a filler object, we must set top to the end
289   // of the humongous object, otherwise we cannot iterate the heap
290   // and the BOT will not be complete.
291   hr->set_top(hr->end() - words_not_fillable);
292 
293   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
294          "obj_top should be in last region");
295 
296   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
297 
298   assert(words_not_fillable == 0 ||
299          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
300          "Miscalculation in humongous allocation");
301 
302   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
303 
304   for (uint i = first; i <= last; ++i) {
305     hr = region_at(i);
306     _humongous_set.add(hr);
307     _hr_printer.alloc(hr);
308   }
309 
310   return new_obj;
311 }
312 
humongous_obj_size_in_regions(size_t word_size)313 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
314   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
315   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
316 }
317 
318 // If could fit into free regions w/o expansion, try.
319 // Otherwise, if can expand, do so.
320 // Otherwise, if using ex regions might help, try with ex given back.
humongous_obj_allocate(size_t word_size)321 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
323 
324   _verifier->verify_region_sets_optional();
325 
326   uint first = G1_NO_HRM_INDEX;
327   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
328 
329   if (obj_regions == 1) {
330     // Only one region to allocate, try to use a fast path by directly allocating
331     // from the free lists. Do not try to expand here, we will potentially do that
332     // later.
333     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
334     if (hr != NULL) {
335       first = hr->hrm_index();
336     }
337   } else {
338     // Policy: Try only empty regions (i.e. already committed first). Maybe we
339     // are lucky enough to find some.
340     first = _hrm->find_contiguous_only_empty(obj_regions);
341     if (first != G1_NO_HRM_INDEX) {
342       _hrm->allocate_free_regions_starting_at(first, obj_regions);
343     }
344   }
345 
346   if (first == G1_NO_HRM_INDEX) {
347     // Policy: We could not find enough regions for the humongous object in the
348     // free list. Look through the heap to find a mix of free and uncommitted regions.
349     // If so, try expansion.
350     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
351     if (first != G1_NO_HRM_INDEX) {
352       // We found something. Make sure these regions are committed, i.e. expand
353       // the heap. Alternatively we could do a defragmentation GC.
354       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
355                                     word_size * HeapWordSize);
356 
357       _hrm->expand_at(first, obj_regions, workers());
358       g1_policy()->record_new_heap_size(num_regions());
359 
360 #ifdef ASSERT
361       for (uint i = first; i < first + obj_regions; ++i) {
362         HeapRegion* hr = region_at(i);
363         assert(hr->is_free(), "sanity");
364         assert(hr->is_empty(), "sanity");
365         assert(is_on_master_free_list(hr), "sanity");
366       }
367 #endif
368       _hrm->allocate_free_regions_starting_at(first, obj_regions);
369     } else {
370       // Policy: Potentially trigger a defragmentation GC.
371     }
372   }
373 
374   HeapWord* result = NULL;
375   if (first != G1_NO_HRM_INDEX) {
376     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
377     assert(result != NULL, "it should always return a valid result");
378 
379     // A successful humongous object allocation changes the used space
380     // information of the old generation so we need to recalculate the
381     // sizes and update the jstat counters here.
382     g1mm()->update_sizes();
383   }
384 
385   _verifier->verify_region_sets_optional();
386 
387   return result;
388 }
389 
allocate_new_tlab(size_t min_size,size_t requested_size,size_t * actual_size)390 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
391                                              size_t requested_size,
392                                              size_t* actual_size) {
393   assert_heap_not_locked_and_not_at_safepoint();
394   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
395 
396   return attempt_allocation(min_size, requested_size, actual_size);
397 }
398 
399 HeapWord*
mem_allocate(size_t word_size,bool * gc_overhead_limit_was_exceeded)400 G1CollectedHeap::mem_allocate(size_t word_size,
401                               bool*  gc_overhead_limit_was_exceeded) {
402   assert_heap_not_locked_and_not_at_safepoint();
403 
404   if (is_humongous(word_size)) {
405     return attempt_allocation_humongous(word_size);
406   }
407   size_t dummy = 0;
408   return attempt_allocation(word_size, word_size, &dummy);
409 }
410 
attempt_allocation_slow(size_t word_size)411 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
412   ResourceMark rm; // For retrieving the thread names in log messages.
413 
414   // Make sure you read the note in attempt_allocation_humongous().
415 
416   assert_heap_not_locked_and_not_at_safepoint();
417   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
418          "be called for humongous allocation requests");
419 
420   // We should only get here after the first-level allocation attempt
421   // (attempt_allocation()) failed to allocate.
422 
423   // We will loop until a) we manage to successfully perform the
424   // allocation or b) we successfully schedule a collection which
425   // fails to perform the allocation. b) is the only case when we'll
426   // return NULL.
427   HeapWord* result = NULL;
428   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
429     bool should_try_gc;
430     uint gc_count_before;
431 
432     {
433       MutexLockerEx x(Heap_lock);
434       result = _allocator->attempt_allocation_locked(word_size);
435       if (result != NULL) {
436         return result;
437       }
438 
439       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
440       // This is different to when only GCLocker::needs_gc() is set: try to avoid
441       // waiting because the GCLocker is active to not wait too long.
442       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
443         // No need for an ergo message here, can_expand_young_list() does this when
444         // it returns true.
445         result = _allocator->attempt_allocation_force(word_size);
446         if (result != NULL) {
447           return result;
448         }
449       }
450       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
451       // the GCLocker initiated GC has been performed and then retry. This includes
452       // the case when the GC Locker is not active but has not been performed.
453       should_try_gc = !GCLocker::needs_gc();
454       // Read the GC count while still holding the Heap_lock.
455       gc_count_before = total_collections();
456     }
457 
458     if (should_try_gc) {
459       bool succeeded;
460       result = do_collection_pause(word_size, gc_count_before, &succeeded,
461                                    GCCause::_g1_inc_collection_pause);
462       if (result != NULL) {
463         assert(succeeded, "only way to get back a non-NULL result");
464         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
465                              Thread::current()->name(), p2i(result));
466         return result;
467       }
468 
469       if (succeeded) {
470         // We successfully scheduled a collection which failed to allocate. No
471         // point in trying to allocate further. We'll just return NULL.
472         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
473                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
474         return NULL;
475       }
476       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
477                            Thread::current()->name(), word_size);
478     } else {
479       // Failed to schedule a collection.
480       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
481         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
482                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
483         return NULL;
484       }
485       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
486       // The GCLocker is either active or the GCLocker initiated
487       // GC has not yet been performed. Stall until it is and
488       // then retry the allocation.
489       GCLocker::stall_until_clear();
490       gclocker_retry_count += 1;
491     }
492 
493     // We can reach here if we were unsuccessful in scheduling a
494     // collection (because another thread beat us to it) or if we were
495     // stalled due to the GC locker. In either can we should retry the
496     // allocation attempt in case another thread successfully
497     // performed a collection and reclaimed enough space. We do the
498     // first attempt (without holding the Heap_lock) here and the
499     // follow-on attempt will be at the start of the next loop
500     // iteration (after taking the Heap_lock).
501     size_t dummy = 0;
502     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
503     if (result != NULL) {
504       return result;
505     }
506 
507     // Give a warning if we seem to be looping forever.
508     if ((QueuedAllocationWarningCount > 0) &&
509         (try_count % QueuedAllocationWarningCount == 0)) {
510       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
511                              Thread::current()->name(), try_count, word_size);
512     }
513   }
514 
515   ShouldNotReachHere();
516   return NULL;
517 }
518 
begin_archive_alloc_range(bool open)519 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
520   assert_at_safepoint_on_vm_thread();
521   if (_archive_allocator == NULL) {
522     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
523   }
524 }
525 
is_archive_alloc_too_large(size_t word_size)526 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
527   // Allocations in archive regions cannot be of a size that would be considered
528   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
529   // may be different at archive-restore time.
530   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
531 }
532 
archive_mem_allocate(size_t word_size)533 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
534   assert_at_safepoint_on_vm_thread();
535   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
536   if (is_archive_alloc_too_large(word_size)) {
537     return NULL;
538   }
539   return _archive_allocator->archive_mem_allocate(word_size);
540 }
541 
end_archive_alloc_range(GrowableArray<MemRegion> * ranges,size_t end_alignment_in_bytes)542 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
543                                               size_t end_alignment_in_bytes) {
544   assert_at_safepoint_on_vm_thread();
545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
546 
547   // Call complete_archive to do the real work, filling in the MemRegion
548   // array with the archive regions.
549   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
550   delete _archive_allocator;
551   _archive_allocator = NULL;
552 }
553 
check_archive_addresses(MemRegion * ranges,size_t count)554 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
555   assert(ranges != NULL, "MemRegion array NULL");
556   assert(count != 0, "No MemRegions provided");
557   MemRegion reserved = _hrm->reserved();
558   for (size_t i = 0; i < count; i++) {
559     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
560       return false;
561     }
562   }
563   return true;
564 }
565 
alloc_archive_regions(MemRegion * ranges,size_t count,bool open)566 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
567                                             size_t count,
568                                             bool open) {
569   assert(!is_init_completed(), "Expect to be called at JVM init time");
570   assert(ranges != NULL, "MemRegion array NULL");
571   assert(count != 0, "No MemRegions provided");
572   MutexLockerEx x(Heap_lock);
573 
574   MemRegion reserved = _hrm->reserved();
575   HeapWord* prev_last_addr = NULL;
576   HeapRegion* prev_last_region = NULL;
577 
578   // Temporarily disable pretouching of heap pages. This interface is used
579   // when mmap'ing archived heap data in, so pre-touching is wasted.
580   FlagSetting fs(AlwaysPreTouch, false);
581 
582   // Enable archive object checking used by G1MarkSweep. We have to let it know
583   // about each archive range, so that objects in those ranges aren't marked.
584   G1ArchiveAllocator::enable_archive_object_check();
585 
586   // For each specified MemRegion range, allocate the corresponding G1
587   // regions and mark them as archive regions. We expect the ranges
588   // in ascending starting address order, without overlap.
589   for (size_t i = 0; i < count; i++) {
590     MemRegion curr_range = ranges[i];
591     HeapWord* start_address = curr_range.start();
592     size_t word_size = curr_range.word_size();
593     HeapWord* last_address = curr_range.last();
594     size_t commits = 0;
595 
596     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
597               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
598               p2i(start_address), p2i(last_address));
599     guarantee(start_address > prev_last_addr,
600               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
601               p2i(start_address), p2i(prev_last_addr));
602     prev_last_addr = last_address;
603 
604     // Check for ranges that start in the same G1 region in which the previous
605     // range ended, and adjust the start address so we don't try to allocate
606     // the same region again. If the current range is entirely within that
607     // region, skip it, just adjusting the recorded top.
608     HeapRegion* start_region = _hrm->addr_to_region(start_address);
609     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
610       start_address = start_region->end();
611       if (start_address > last_address) {
612         increase_used(word_size * HeapWordSize);
613         start_region->set_top(last_address + 1);
614         continue;
615       }
616       start_region->set_top(start_address);
617       curr_range = MemRegion(start_address, last_address + 1);
618       start_region = _hrm->addr_to_region(start_address);
619     }
620 
621     // Perform the actual region allocation, exiting if it fails.
622     // Then note how much new space we have allocated.
623     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
624       return false;
625     }
626     increase_used(word_size * HeapWordSize);
627     if (commits != 0) {
628       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
629                                 HeapRegion::GrainWords * HeapWordSize * commits);
630 
631     }
632 
633     // Mark each G1 region touched by the range as archive, add it to
634     // the old set, and set top.
635     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
636     HeapRegion* last_region = _hrm->addr_to_region(last_address);
637     prev_last_region = last_region;
638 
639     while (curr_region != NULL) {
640       assert(curr_region->is_empty() && !curr_region->is_pinned(),
641              "Region already in use (index %u)", curr_region->hrm_index());
642       if (open) {
643         curr_region->set_open_archive();
644       } else {
645         curr_region->set_closed_archive();
646       }
647       _hr_printer.alloc(curr_region);
648       _archive_set.add(curr_region);
649       HeapWord* top;
650       HeapRegion* next_region;
651       if (curr_region != last_region) {
652         top = curr_region->end();
653         next_region = _hrm->next_region_in_heap(curr_region);
654       } else {
655         top = last_address + 1;
656         next_region = NULL;
657       }
658       curr_region->set_top(top);
659       curr_region->set_first_dead(top);
660       curr_region->set_end_of_live(top);
661       curr_region = next_region;
662     }
663 
664     // Notify mark-sweep of the archive
665     G1ArchiveAllocator::set_range_archive(curr_range, open);
666   }
667   return true;
668 }
669 
fill_archive_regions(MemRegion * ranges,size_t count)670 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
671   assert(!is_init_completed(), "Expect to be called at JVM init time");
672   assert(ranges != NULL, "MemRegion array NULL");
673   assert(count != 0, "No MemRegions provided");
674   MemRegion reserved = _hrm->reserved();
675   HeapWord *prev_last_addr = NULL;
676   HeapRegion* prev_last_region = NULL;
677 
678   // For each MemRegion, create filler objects, if needed, in the G1 regions
679   // that contain the address range. The address range actually within the
680   // MemRegion will not be modified. That is assumed to have been initialized
681   // elsewhere, probably via an mmap of archived heap data.
682   MutexLockerEx x(Heap_lock);
683   for (size_t i = 0; i < count; i++) {
684     HeapWord* start_address = ranges[i].start();
685     HeapWord* last_address = ranges[i].last();
686 
687     assert(reserved.contains(start_address) && reserved.contains(last_address),
688            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
689            p2i(start_address), p2i(last_address));
690     assert(start_address > prev_last_addr,
691            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
692            p2i(start_address), p2i(prev_last_addr));
693 
694     HeapRegion* start_region = _hrm->addr_to_region(start_address);
695     HeapRegion* last_region = _hrm->addr_to_region(last_address);
696     HeapWord* bottom_address = start_region->bottom();
697 
698     // Check for a range beginning in the same region in which the
699     // previous one ended.
700     if (start_region == prev_last_region) {
701       bottom_address = prev_last_addr + 1;
702     }
703 
704     // Verify that the regions were all marked as archive regions by
705     // alloc_archive_regions.
706     HeapRegion* curr_region = start_region;
707     while (curr_region != NULL) {
708       guarantee(curr_region->is_archive(),
709                 "Expected archive region at index %u", curr_region->hrm_index());
710       if (curr_region != last_region) {
711         curr_region = _hrm->next_region_in_heap(curr_region);
712       } else {
713         curr_region = NULL;
714       }
715     }
716 
717     prev_last_addr = last_address;
718     prev_last_region = last_region;
719 
720     // Fill the memory below the allocated range with dummy object(s),
721     // if the region bottom does not match the range start, or if the previous
722     // range ended within the same G1 region, and there is a gap.
723     if (start_address != bottom_address) {
724       size_t fill_size = pointer_delta(start_address, bottom_address);
725       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
726       increase_used(fill_size * HeapWordSize);
727     }
728   }
729 }
730 
attempt_allocation(size_t min_word_size,size_t desired_word_size,size_t * actual_word_size)731 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
732                                                      size_t desired_word_size,
733                                                      size_t* actual_word_size) {
734   assert_heap_not_locked_and_not_at_safepoint();
735   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
736          "be called for humongous allocation requests");
737 
738   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
739 
740   if (result == NULL) {
741     *actual_word_size = desired_word_size;
742     result = attempt_allocation_slow(desired_word_size);
743   }
744 
745   assert_heap_not_locked();
746   if (result != NULL) {
747     assert(*actual_word_size != 0, "Actual size must have been set here");
748     dirty_young_block(result, *actual_word_size);
749   } else {
750     *actual_word_size = 0;
751   }
752 
753   return result;
754 }
755 
dealloc_archive_regions(MemRegion * ranges,size_t count,bool is_open)756 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
757   assert(!is_init_completed(), "Expect to be called at JVM init time");
758   assert(ranges != NULL, "MemRegion array NULL");
759   assert(count != 0, "No MemRegions provided");
760   MemRegion reserved = _hrm->reserved();
761   HeapWord* prev_last_addr = NULL;
762   HeapRegion* prev_last_region = NULL;
763   size_t size_used = 0;
764   size_t uncommitted_regions = 0;
765 
766   // For each Memregion, free the G1 regions that constitute it, and
767   // notify mark-sweep that the range is no longer to be considered 'archive.'
768   MutexLockerEx x(Heap_lock);
769   for (size_t i = 0; i < count; i++) {
770     HeapWord* start_address = ranges[i].start();
771     HeapWord* last_address = ranges[i].last();
772 
773     assert(reserved.contains(start_address) && reserved.contains(last_address),
774            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
775            p2i(start_address), p2i(last_address));
776     assert(start_address > prev_last_addr,
777            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
778            p2i(start_address), p2i(prev_last_addr));
779     size_used += ranges[i].byte_size();
780     prev_last_addr = last_address;
781 
782     HeapRegion* start_region = _hrm->addr_to_region(start_address);
783     HeapRegion* last_region = _hrm->addr_to_region(last_address);
784 
785     // Check for ranges that start in the same G1 region in which the previous
786     // range ended, and adjust the start address so we don't try to free
787     // the same region again. If the current range is entirely within that
788     // region, skip it.
789     if (start_region == prev_last_region) {
790       start_address = start_region->end();
791       if (start_address > last_address) {
792         continue;
793       }
794       start_region = _hrm->addr_to_region(start_address);
795     }
796     prev_last_region = last_region;
797 
798     // After verifying that each region was marked as an archive region by
799     // alloc_archive_regions, set it free and empty and uncommit it.
800     HeapRegion* curr_region = start_region;
801     while (curr_region != NULL) {
802       guarantee(curr_region->is_archive(),
803                 "Expected archive region at index %u", curr_region->hrm_index());
804       uint curr_index = curr_region->hrm_index();
805       _archive_set.remove(curr_region);
806       curr_region->set_free();
807       curr_region->set_top(curr_region->bottom());
808       if (curr_region != last_region) {
809         curr_region = _hrm->next_region_in_heap(curr_region);
810       } else {
811         curr_region = NULL;
812       }
813       _hrm->shrink_at(curr_index, 1);
814       uncommitted_regions++;
815     }
816 
817     // Notify mark-sweep that this is no longer an archive range.
818     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
819   }
820 
821   if (uncommitted_regions != 0) {
822     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
823                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
824   }
825   decrease_used(size_used);
826 }
827 
materialize_archived_object(oop obj)828 oop G1CollectedHeap::materialize_archived_object(oop obj) {
829   assert(obj != NULL, "archived obj is NULL");
830   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
831 
832   // Loading an archived object makes it strongly reachable. If it is
833   // loaded during concurrent marking, it must be enqueued to the SATB
834   // queue, shading the previously white object gray.
835   G1BarrierSet::enqueue(obj);
836 
837   return obj;
838 }
839 
attempt_allocation_humongous(size_t word_size)840 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
841   ResourceMark rm; // For retrieving the thread names in log messages.
842 
843   // The structure of this method has a lot of similarities to
844   // attempt_allocation_slow(). The reason these two were not merged
845   // into a single one is that such a method would require several "if
846   // allocation is not humongous do this, otherwise do that"
847   // conditional paths which would obscure its flow. In fact, an early
848   // version of this code did use a unified method which was harder to
849   // follow and, as a result, it had subtle bugs that were hard to
850   // track down. So keeping these two methods separate allows each to
851   // be more readable. It will be good to keep these two in sync as
852   // much as possible.
853 
854   assert_heap_not_locked_and_not_at_safepoint();
855   assert(is_humongous(word_size), "attempt_allocation_humongous() "
856          "should only be called for humongous allocations");
857 
858   // Humongous objects can exhaust the heap quickly, so we should check if we
859   // need to start a marking cycle at each humongous object allocation. We do
860   // the check before we do the actual allocation. The reason for doing it
861   // before the allocation is that we avoid having to keep track of the newly
862   // allocated memory while we do a GC.
863   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
864                                            word_size)) {
865     collect(GCCause::_g1_humongous_allocation);
866   }
867 
868   // We will loop until a) we manage to successfully perform the
869   // allocation or b) we successfully schedule a collection which
870   // fails to perform the allocation. b) is the only case when we'll
871   // return NULL.
872   HeapWord* result = NULL;
873   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
874     bool should_try_gc;
875     uint gc_count_before;
876 
877 
878     {
879       MutexLockerEx x(Heap_lock);
880 
881       // Given that humongous objects are not allocated in young
882       // regions, we'll first try to do the allocation without doing a
883       // collection hoping that there's enough space in the heap.
884       result = humongous_obj_allocate(word_size);
885       if (result != NULL) {
886         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
887         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
888         return result;
889       }
890 
891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
892       // the GCLocker initiated GC has been performed and then retry. This includes
893       // the case when the GC Locker is not active but has not been performed.
894       should_try_gc = !GCLocker::needs_gc();
895       // Read the GC count while still holding the Heap_lock.
896       gc_count_before = total_collections();
897     }
898 
899     if (should_try_gc) {
900       bool succeeded;
901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
902                                    GCCause::_g1_humongous_allocation);
903       if (result != NULL) {
904         assert(succeeded, "only way to get back a non-NULL result");
905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
906                              Thread::current()->name(), p2i(result));
907         return result;
908       }
909 
910       if (succeeded) {
911         // We successfully scheduled a collection which failed to allocate. No
912         // point in trying to allocate further. We'll just return NULL.
913         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
914                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
915         return NULL;
916       }
917       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
918                            Thread::current()->name(), word_size);
919     } else {
920       // Failed to schedule a collection.
921       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
922         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
923                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
924         return NULL;
925       }
926       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
927       // The GCLocker is either active or the GCLocker initiated
928       // GC has not yet been performed. Stall until it is and
929       // then retry the allocation.
930       GCLocker::stall_until_clear();
931       gclocker_retry_count += 1;
932     }
933 
934 
935     // We can reach here if we were unsuccessful in scheduling a
936     // collection (because another thread beat us to it) or if we were
937     // stalled due to the GC locker. In either can we should retry the
938     // allocation attempt in case another thread successfully
939     // performed a collection and reclaimed enough space.
940     // Humongous object allocation always needs a lock, so we wait for the retry
941     // in the next iteration of the loop, unlike for the regular iteration case.
942     // Give a warning if we seem to be looping forever.
943 
944     if ((QueuedAllocationWarningCount > 0) &&
945         (try_count % QueuedAllocationWarningCount == 0)) {
946       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
947                              Thread::current()->name(), try_count, word_size);
948     }
949   }
950 
951   ShouldNotReachHere();
952   return NULL;
953 }
954 
attempt_allocation_at_safepoint(size_t word_size,bool expect_null_mutator_alloc_region)955 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
956                                                            bool expect_null_mutator_alloc_region) {
957   assert_at_safepoint_on_vm_thread();
958   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
959          "the current alloc region was unexpectedly found to be non-NULL");
960 
961   if (!is_humongous(word_size)) {
962     return _allocator->attempt_allocation_locked(word_size);
963   } else {
964     HeapWord* result = humongous_obj_allocate(word_size);
965     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
966       collector_state()->set_initiate_conc_mark_if_possible(true);
967     }
968     return result;
969   }
970 
971   ShouldNotReachHere();
972 }
973 
974 class PostCompactionPrinterClosure: public HeapRegionClosure {
975 private:
976   G1HRPrinter* _hr_printer;
977 public:
do_heap_region(HeapRegion * hr)978   bool do_heap_region(HeapRegion* hr) {
979     assert(!hr->is_young(), "not expecting to find young regions");
980     _hr_printer->post_compaction(hr);
981     return false;
982   }
983 
PostCompactionPrinterClosure(G1HRPrinter * hr_printer)984   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
985     : _hr_printer(hr_printer) { }
986 };
987 
print_hrm_post_compaction()988 void G1CollectedHeap::print_hrm_post_compaction() {
989   if (_hr_printer.is_active()) {
990     PostCompactionPrinterClosure cl(hr_printer());
991     heap_region_iterate(&cl);
992   }
993 }
994 
abort_concurrent_cycle()995 void G1CollectedHeap::abort_concurrent_cycle() {
996   // If we start the compaction before the CM threads finish
997   // scanning the root regions we might trip them over as we'll
998   // be moving objects / updating references. So let's wait until
999   // they are done. By telling them to abort, they should complete
1000   // early.
1001   _cm->root_regions()->abort();
1002   _cm->root_regions()->wait_until_scan_finished();
1003 
1004   // Disable discovery and empty the discovered lists
1005   // for the CM ref processor.
1006   _ref_processor_cm->disable_discovery();
1007   _ref_processor_cm->abandon_partial_discovery();
1008   _ref_processor_cm->verify_no_references_recorded();
1009 
1010   // Abandon current iterations of concurrent marking and concurrent
1011   // refinement, if any are in progress.
1012   concurrent_mark()->concurrent_cycle_abort();
1013 }
1014 
prepare_heap_for_full_collection()1015 void G1CollectedHeap::prepare_heap_for_full_collection() {
1016   // Make sure we'll choose a new allocation region afterwards.
1017   _allocator->release_mutator_alloc_region();
1018   _allocator->abandon_gc_alloc_regions();
1019 
1020   // We may have added regions to the current incremental collection
1021   // set between the last GC or pause and now. We need to clear the
1022   // incremental collection set and then start rebuilding it afresh
1023   // after this full GC.
1024   abandon_collection_set(collection_set());
1025 
1026   tear_down_region_sets(false /* free_list_only */);
1027 
1028   hrm()->prepare_for_full_collection_start();
1029 }
1030 
verify_before_full_collection(bool explicit_gc)1031 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1032   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1033   assert(used() == recalculate_used(), "Should be equal");
1034   _verifier->verify_region_sets_optional();
1035   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1036   _verifier->check_bitmaps("Full GC Start");
1037 }
1038 
prepare_heap_for_mutators()1039 void G1CollectedHeap::prepare_heap_for_mutators() {
1040   hrm()->prepare_for_full_collection_end();
1041 
1042   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1043   ClassLoaderDataGraph::purge();
1044   MetaspaceUtils::verify_metrics();
1045 
1046   // Prepare heap for normal collections.
1047   assert(num_free_regions() == 0, "we should not have added any free regions");
1048   rebuild_region_sets(false /* free_list_only */);
1049   abort_refinement();
1050   resize_heap_if_necessary();
1051 
1052   // Rebuild the strong code root lists for each region
1053   rebuild_strong_code_roots();
1054 
1055   // Purge code root memory
1056   purge_code_root_memory();
1057 
1058   // Start a new incremental collection set for the next pause
1059   start_new_collection_set();
1060 
1061   _allocator->init_mutator_alloc_region();
1062 
1063   // Post collection state updates.
1064   MetaspaceGC::compute_new_size();
1065 }
1066 
abort_refinement()1067 void G1CollectedHeap::abort_refinement() {
1068   if (_hot_card_cache->use_cache()) {
1069     _hot_card_cache->reset_hot_cache();
1070   }
1071 
1072   // Discard all remembered set updates.
1073   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1074   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1075 }
1076 
verify_after_full_collection()1077 void G1CollectedHeap::verify_after_full_collection() {
1078   _hrm->verify_optional();
1079   _verifier->verify_region_sets_optional();
1080   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1081   // Clear the previous marking bitmap, if needed for bitmap verification.
1082   // Note we cannot do this when we clear the next marking bitmap in
1083   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1084   // objects marked during a full GC against the previous bitmap.
1085   // But we need to clear it before calling check_bitmaps below since
1086   // the full GC has compacted objects and updated TAMS but not updated
1087   // the prev bitmap.
1088   if (G1VerifyBitmaps) {
1089     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1090     _cm->clear_prev_bitmap(workers());
1091   }
1092   // This call implicitly verifies that the next bitmap is clear after Full GC.
1093   _verifier->check_bitmaps("Full GC End");
1094 
1095   // At this point there should be no regions in the
1096   // entire heap tagged as young.
1097   assert(check_young_list_empty(), "young list should be empty at this point");
1098 
1099   // Note: since we've just done a full GC, concurrent
1100   // marking is no longer active. Therefore we need not
1101   // re-enable reference discovery for the CM ref processor.
1102   // That will be done at the start of the next marking cycle.
1103   // We also know that the STW processor should no longer
1104   // discover any new references.
1105   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1106   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1107   _ref_processor_stw->verify_no_references_recorded();
1108   _ref_processor_cm->verify_no_references_recorded();
1109 }
1110 
print_heap_after_full_collection(G1HeapTransition * heap_transition)1111 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1112   // Post collection logging.
1113   // We should do this after we potentially resize the heap so
1114   // that all the COMMIT / UNCOMMIT events are generated before
1115   // the compaction events.
1116   print_hrm_post_compaction();
1117   heap_transition->print();
1118   print_heap_after_gc();
1119   print_heap_regions();
1120 #ifdef TRACESPINNING
1121   ParallelTaskTerminator::print_termination_counts();
1122 #endif
1123 }
1124 
do_full_collection(bool explicit_gc,bool clear_all_soft_refs)1125 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1126                                          bool clear_all_soft_refs) {
1127   assert_at_safepoint_on_vm_thread();
1128 
1129   if (GCLocker::check_active_before_gc()) {
1130     // Full GC was not completed.
1131     return false;
1132   }
1133 
1134   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1135       soft_ref_policy()->should_clear_all_soft_refs();
1136 
1137   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1138   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1139 
1140   collector.prepare_collection();
1141   collector.collect();
1142   collector.complete_collection();
1143 
1144   // Full collection was successfully completed.
1145   return true;
1146 }
1147 
do_full_collection(bool clear_all_soft_refs)1148 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1149   // Currently, there is no facility in the do_full_collection(bool) API to notify
1150   // the caller that the collection did not succeed (e.g., because it was locked
1151   // out by the GC locker). So, right now, we'll ignore the return value.
1152   bool dummy = do_full_collection(true,                /* explicit_gc */
1153                                   clear_all_soft_refs);
1154 }
1155 
resize_heap_if_necessary()1156 void G1CollectedHeap::resize_heap_if_necessary() {
1157   assert_at_safepoint_on_vm_thread();
1158 
1159   // Capacity, free and used after the GC counted as full regions to
1160   // include the waste in the following calculations.
1161   const size_t capacity_after_gc = capacity();
1162   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1163 
1164   // This is enforced in arguments.cpp.
1165   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1166          "otherwise the code below doesn't make sense");
1167 
1168   // We don't have floating point command-line arguments
1169   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1170   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1171   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1172   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1173 
1174   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1175   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1176 
1177   // We have to be careful here as these two calculations can overflow
1178   // 32-bit size_t's.
1179   double used_after_gc_d = (double) used_after_gc;
1180   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1181   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1182 
1183   // Let's make sure that they are both under the max heap size, which
1184   // by default will make them fit into a size_t.
1185   double desired_capacity_upper_bound = (double) max_heap_size;
1186   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1187                                     desired_capacity_upper_bound);
1188   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1189                                     desired_capacity_upper_bound);
1190 
1191   // We can now safely turn them into size_t's.
1192   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1193   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1194 
1195   // This assert only makes sense here, before we adjust them
1196   // with respect to the min and max heap size.
1197   assert(minimum_desired_capacity <= maximum_desired_capacity,
1198          "minimum_desired_capacity = " SIZE_FORMAT ", "
1199          "maximum_desired_capacity = " SIZE_FORMAT,
1200          minimum_desired_capacity, maximum_desired_capacity);
1201 
1202   // Should not be greater than the heap max size. No need to adjust
1203   // it with respect to the heap min size as it's a lower bound (i.e.,
1204   // we'll try to make the capacity larger than it, not smaller).
1205   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1206   // Should not be less than the heap min size. No need to adjust it
1207   // with respect to the heap max size as it's an upper bound (i.e.,
1208   // we'll try to make the capacity smaller than it, not greater).
1209   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1210 
1211   if (capacity_after_gc < minimum_desired_capacity) {
1212     // Don't expand unless it's significant
1213     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1214 
1215     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1216                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1217                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1218                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1219 
1220     expand(expand_bytes, _workers);
1221 
1222     // No expansion, now see if we want to shrink
1223   } else if (capacity_after_gc > maximum_desired_capacity) {
1224     // Capacity too large, compute shrinking size
1225     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1226 
1227     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1228                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1229                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1230                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1231 
1232     shrink(shrink_bytes);
1233   }
1234 }
1235 
satisfy_failed_allocation_helper(size_t word_size,bool do_gc,bool clear_all_soft_refs,bool expect_null_mutator_alloc_region,bool * gc_succeeded)1236 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1237                                                             bool do_gc,
1238                                                             bool clear_all_soft_refs,
1239                                                             bool expect_null_mutator_alloc_region,
1240                                                             bool* gc_succeeded) {
1241   *gc_succeeded = true;
1242   // Let's attempt the allocation first.
1243   HeapWord* result =
1244     attempt_allocation_at_safepoint(word_size,
1245                                     expect_null_mutator_alloc_region);
1246   if (result != NULL) {
1247     return result;
1248   }
1249 
1250   // In a G1 heap, we're supposed to keep allocation from failing by
1251   // incremental pauses.  Therefore, at least for now, we'll favor
1252   // expansion over collection.  (This might change in the future if we can
1253   // do something smarter than full collection to satisfy a failed alloc.)
1254   result = expand_and_allocate(word_size);
1255   if (result != NULL) {
1256     return result;
1257   }
1258 
1259   if (do_gc) {
1260     // Expansion didn't work, we'll try to do a Full GC.
1261     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1262                                        clear_all_soft_refs);
1263   }
1264 
1265   return NULL;
1266 }
1267 
satisfy_failed_allocation(size_t word_size,bool * succeeded)1268 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1269                                                      bool* succeeded) {
1270   assert_at_safepoint_on_vm_thread();
1271 
1272   // Attempts to allocate followed by Full GC.
1273   HeapWord* result =
1274     satisfy_failed_allocation_helper(word_size,
1275                                      true,  /* do_gc */
1276                                      false, /* clear_all_soft_refs */
1277                                      false, /* expect_null_mutator_alloc_region */
1278                                      succeeded);
1279 
1280   if (result != NULL || !*succeeded) {
1281     return result;
1282   }
1283 
1284   // Attempts to allocate followed by Full GC that will collect all soft references.
1285   result = satisfy_failed_allocation_helper(word_size,
1286                                             true, /* do_gc */
1287                                             true, /* clear_all_soft_refs */
1288                                             true, /* expect_null_mutator_alloc_region */
1289                                             succeeded);
1290 
1291   if (result != NULL || !*succeeded) {
1292     return result;
1293   }
1294 
1295   // Attempts to allocate, no GC
1296   result = satisfy_failed_allocation_helper(word_size,
1297                                             false, /* do_gc */
1298                                             false, /* clear_all_soft_refs */
1299                                             true,  /* expect_null_mutator_alloc_region */
1300                                             succeeded);
1301 
1302   if (result != NULL) {
1303     return result;
1304   }
1305 
1306   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1307          "Flag should have been handled and cleared prior to this point");
1308 
1309   // What else?  We might try synchronous finalization later.  If the total
1310   // space available is large enough for the allocation, then a more
1311   // complete compaction phase than we've tried so far might be
1312   // appropriate.
1313   return NULL;
1314 }
1315 
1316 // Attempting to expand the heap sufficiently
1317 // to support an allocation of the given "word_size".  If
1318 // successful, perform the allocation and return the address of the
1319 // allocated block, or else "NULL".
1320 
expand_and_allocate(size_t word_size)1321 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1322   assert_at_safepoint_on_vm_thread();
1323 
1324   _verifier->verify_region_sets_optional();
1325 
1326   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1327   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1328                             word_size * HeapWordSize);
1329 
1330 
1331   if (expand(expand_bytes, _workers)) {
1332     _hrm->verify_optional();
1333     _verifier->verify_region_sets_optional();
1334     return attempt_allocation_at_safepoint(word_size,
1335                                            false /* expect_null_mutator_alloc_region */);
1336   }
1337   return NULL;
1338 }
1339 
expand(size_t expand_bytes,WorkGang * pretouch_workers,double * expand_time_ms)1340 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1341   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1342   aligned_expand_bytes = align_up(aligned_expand_bytes,
1343                                        HeapRegion::GrainBytes);
1344 
1345   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1346                             expand_bytes, aligned_expand_bytes);
1347 
1348   if (is_maximal_no_gc()) {
1349     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1350     return false;
1351   }
1352 
1353   double expand_heap_start_time_sec = os::elapsedTime();
1354   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1355   assert(regions_to_expand > 0, "Must expand by at least one region");
1356 
1357   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1358   if (expand_time_ms != NULL) {
1359     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1360   }
1361 
1362   if (expanded_by > 0) {
1363     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1364     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1365     g1_policy()->record_new_heap_size(num_regions());
1366   } else {
1367     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1368 
1369     // The expansion of the virtual storage space was unsuccessful.
1370     // Let's see if it was because we ran out of swap.
1371     if (G1ExitOnExpansionFailure &&
1372         _hrm->available() >= regions_to_expand) {
1373       // We had head room...
1374       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1375     }
1376   }
1377   return regions_to_expand > 0;
1378 }
1379 
shrink_helper(size_t shrink_bytes)1380 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1381   size_t aligned_shrink_bytes =
1382     ReservedSpace::page_align_size_down(shrink_bytes);
1383   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1384                                          HeapRegion::GrainBytes);
1385   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1386 
1387   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1388   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1389 
1390 
1391   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1392                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1393   if (num_regions_removed > 0) {
1394     g1_policy()->record_new_heap_size(num_regions());
1395   } else {
1396     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1397   }
1398 }
1399 
shrink(size_t shrink_bytes)1400 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1401   _verifier->verify_region_sets_optional();
1402 
1403   // We should only reach here at the end of a Full GC or during Remark which
1404   // means we should not not be holding to any GC alloc regions. The method
1405   // below will make sure of that and do any remaining clean up.
1406   _allocator->abandon_gc_alloc_regions();
1407 
1408   // Instead of tearing down / rebuilding the free lists here, we
1409   // could instead use the remove_all_pending() method on free_list to
1410   // remove only the ones that we need to remove.
1411   tear_down_region_sets(true /* free_list_only */);
1412   shrink_helper(shrink_bytes);
1413   rebuild_region_sets(true /* free_list_only */);
1414 
1415   _hrm->verify_optional();
1416   _verifier->verify_region_sets_optional();
1417 }
1418 
1419 class OldRegionSetChecker : public HeapRegionSetChecker {
1420 public:
check_mt_safety()1421   void check_mt_safety() {
1422     // Master Old Set MT safety protocol:
1423     // (a) If we're at a safepoint, operations on the master old set
1424     // should be invoked:
1425     // - by the VM thread (which will serialize them), or
1426     // - by the GC workers while holding the FreeList_lock, if we're
1427     //   at a safepoint for an evacuation pause (this lock is taken
1428     //   anyway when an GC alloc region is retired so that a new one
1429     //   is allocated from the free list), or
1430     // - by the GC workers while holding the OldSets_lock, if we're at a
1431     //   safepoint for a cleanup pause.
1432     // (b) If we're not at a safepoint, operations on the master old set
1433     // should be invoked while holding the Heap_lock.
1434 
1435     if (SafepointSynchronize::is_at_safepoint()) {
1436       guarantee(Thread::current()->is_VM_thread() ||
1437                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1438                 "master old set MT safety protocol at a safepoint");
1439     } else {
1440       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1441     }
1442   }
is_correct_type(HeapRegion * hr)1443   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
get_description()1444   const char* get_description() { return "Old Regions"; }
1445 };
1446 
1447 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1448 public:
check_mt_safety()1449   void check_mt_safety() {
1450     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1451               "May only change archive regions during initialization or safepoint.");
1452   }
is_correct_type(HeapRegion * hr)1453   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
get_description()1454   const char* get_description() { return "Archive Regions"; }
1455 };
1456 
1457 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1458 public:
check_mt_safety()1459   void check_mt_safety() {
1460     // Humongous Set MT safety protocol:
1461     // (a) If we're at a safepoint, operations on the master humongous
1462     // set should be invoked by either the VM thread (which will
1463     // serialize them) or by the GC workers while holding the
1464     // OldSets_lock.
1465     // (b) If we're not at a safepoint, operations on the master
1466     // humongous set should be invoked while holding the Heap_lock.
1467 
1468     if (SafepointSynchronize::is_at_safepoint()) {
1469       guarantee(Thread::current()->is_VM_thread() ||
1470                 OldSets_lock->owned_by_self(),
1471                 "master humongous set MT safety protocol at a safepoint");
1472     } else {
1473       guarantee(Heap_lock->owned_by_self(),
1474                 "master humongous set MT safety protocol outside a safepoint");
1475     }
1476   }
is_correct_type(HeapRegion * hr)1477   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
get_description()1478   const char* get_description() { return "Humongous Regions"; }
1479 };
1480 
G1CollectedHeap(G1CollectorPolicy * collector_policy)1481 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1482   CollectedHeap(),
1483   _young_gen_sampling_thread(NULL),
1484   _workers(NULL),
1485   _collector_policy(collector_policy),
1486   _card_table(NULL),
1487   _soft_ref_policy(),
1488   _old_set("Old Region Set", new OldRegionSetChecker()),
1489   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1490   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1491   _bot(NULL),
1492   _listener(),
1493   _hrm(NULL),
1494   _allocator(NULL),
1495   _verifier(NULL),
1496   _summary_bytes_used(0),
1497   _archive_allocator(NULL),
1498   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1499   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1500   _expand_heap_after_alloc_failure(true),
1501   _g1mm(NULL),
1502   _humongous_reclaim_candidates(),
1503   _has_humongous_reclaim_candidates(false),
1504   _hr_printer(),
1505   _collector_state(),
1506   _old_marking_cycles_started(0),
1507   _old_marking_cycles_completed(0),
1508   _eden(),
1509   _survivor(),
1510   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1511   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1512   _g1_policy(G1Policy::create_policy(collector_policy, _gc_timer_stw)),
1513   _heap_sizing_policy(NULL),
1514   _collection_set(this, _g1_policy),
1515   _hot_card_cache(NULL),
1516   _g1_rem_set(NULL),
1517   _dirty_card_queue_set(false),
1518   _cm(NULL),
1519   _cm_thread(NULL),
1520   _cr(NULL),
1521   _task_queues(NULL),
1522   _evacuation_failed(false),
1523   _evacuation_failed_info_array(NULL),
1524   _preserved_marks_set(true /* in_c_heap */),
1525 #ifndef PRODUCT
1526   _evacuation_failure_alot_for_current_gc(false),
1527   _evacuation_failure_alot_gc_number(0),
1528   _evacuation_failure_alot_count(0),
1529 #endif
1530   _ref_processor_stw(NULL),
1531   _is_alive_closure_stw(this),
1532   _is_subject_to_discovery_stw(this),
1533   _ref_processor_cm(NULL),
1534   _is_alive_closure_cm(this),
1535   _is_subject_to_discovery_cm(this),
1536   _in_cset_fast_test() {
1537 
1538   _verifier = new G1HeapVerifier(this);
1539 
1540   _allocator = new G1Allocator(this);
1541 
1542   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1543 
1544   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1545 
1546   // Override the default _filler_array_max_size so that no humongous filler
1547   // objects are created.
1548   _filler_array_max_size = _humongous_object_threshold_in_words;
1549 
1550   uint n_queues = ParallelGCThreads;
1551   _task_queues = new RefToScanQueueSet(n_queues);
1552 
1553   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1554 
1555   for (uint i = 0; i < n_queues; i++) {
1556     RefToScanQueue* q = new RefToScanQueue();
1557     q->initialize();
1558     _task_queues->register_queue(i, q);
1559     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1560   }
1561 
1562   // Initialize the G1EvacuationFailureALot counters and flags.
1563   NOT_PRODUCT(reset_evacuation_should_fail();)
1564 
1565   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1566 }
1567 
actual_reserved_page_size(ReservedSpace rs)1568 static size_t actual_reserved_page_size(ReservedSpace rs) {
1569   size_t page_size = os::vm_page_size();
1570   if (UseLargePages) {
1571     // There are two ways to manage large page memory.
1572     // 1. OS supports committing large page memory.
1573     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1574     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1575     //    we reserved memory without large page.
1576     if (os::can_commit_large_page_memory() || rs.special()) {
1577       page_size = rs.alignment();
1578     }
1579   }
1580 
1581   return page_size;
1582 }
1583 
create_aux_memory_mapper(const char * description,size_t size,size_t translation_factor)1584 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1585                                                                  size_t size,
1586                                                                  size_t translation_factor) {
1587   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1588   // Allocate a new reserved space, preferring to use large pages.
1589   ReservedSpace rs(size, preferred_page_size);
1590   size_t page_size = actual_reserved_page_size(rs);
1591   G1RegionToSpaceMapper* result  =
1592     G1RegionToSpaceMapper::create_mapper(rs,
1593                                          size,
1594                                          page_size,
1595                                          HeapRegion::GrainBytes,
1596                                          translation_factor,
1597                                          mtGC);
1598 
1599   os::trace_page_sizes_for_requested_size(description,
1600                                           size,
1601                                           preferred_page_size,
1602                                           page_size,
1603                                           rs.base(),
1604                                           rs.size());
1605 
1606   return result;
1607 }
1608 
initialize_concurrent_refinement()1609 jint G1CollectedHeap::initialize_concurrent_refinement() {
1610   jint ecode = JNI_OK;
1611   _cr = G1ConcurrentRefine::create(&ecode);
1612   return ecode;
1613 }
1614 
initialize_young_gen_sampling_thread()1615 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1616   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1617   if (_young_gen_sampling_thread->osthread() == NULL) {
1618     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1619     return JNI_ENOMEM;
1620   }
1621   return JNI_OK;
1622 }
1623 
initialize()1624 jint G1CollectedHeap::initialize() {
1625   os::enable_vtime();
1626 
1627   // Necessary to satisfy locking discipline assertions.
1628 
1629   MutexLocker x(Heap_lock);
1630 
1631   // While there are no constraints in the GC code that HeapWordSize
1632   // be any particular value, there are multiple other areas in the
1633   // system which believe this to be true (e.g. oop->object_size in some
1634   // cases incorrectly returns the size in wordSize units rather than
1635   // HeapWordSize).
1636   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1637 
1638   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1639   size_t max_byte_size = g1_collector_policy()->heap_reserved_size_bytes();
1640   size_t heap_alignment = collector_policy()->heap_alignment();
1641 
1642   // Ensure that the sizes are properly aligned.
1643   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1644   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1645   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1646 
1647   // Reserve the maximum.
1648 
1649   // When compressed oops are enabled, the preferred heap base
1650   // is calculated by subtracting the requested size from the
1651   // 32Gb boundary and using the result as the base address for
1652   // heap reservation. If the requested size is not aligned to
1653   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1654   // into the ReservedHeapSpace constructor) then the actual
1655   // base of the reserved heap may end up differing from the
1656   // address that was requested (i.e. the preferred heap base).
1657   // If this happens then we could end up using a non-optimal
1658   // compressed oops mode.
1659 
1660   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1661                                                  heap_alignment);
1662 
1663   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1664 
1665   // Create the barrier set for the entire reserved region.
1666   G1CardTable* ct = new G1CardTable(reserved_region());
1667   ct->initialize();
1668   G1BarrierSet* bs = new G1BarrierSet(ct);
1669   bs->initialize();
1670   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1671   BarrierSet::set_barrier_set(bs);
1672   _card_table = ct;
1673 
1674   G1BarrierSet::satb_mark_queue_set().initialize(this,
1675                                                  SATB_Q_CBL_mon,
1676                                                  &bs->satb_mark_queue_buffer_allocator(),
1677                                                  G1SATBProcessCompletedThreshold,
1678                                                  G1SATBBufferEnqueueingThresholdPercent,
1679                                                  Shared_SATB_Q_lock);
1680 
1681   // process_completed_buffers_threshold and max_completed_buffers are updated
1682   // later, based on the concurrent refinement object.
1683   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1684                                                   &bs->dirty_card_queue_buffer_allocator(),
1685                                                   Shared_DirtyCardQ_lock,
1686                                                   true); // init_free_ids
1687 
1688   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1689                                     &bs->dirty_card_queue_buffer_allocator(),
1690                                     Shared_DirtyCardQ_lock);
1691 
1692   // Create the hot card cache.
1693   _hot_card_cache = new G1HotCardCache(this);
1694 
1695   // Carve out the G1 part of the heap.
1696   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1697   size_t page_size = actual_reserved_page_size(heap_rs);
1698   G1RegionToSpaceMapper* heap_storage =
1699     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1700                                               g1_rs.size(),
1701                                               page_size,
1702                                               HeapRegion::GrainBytes,
1703                                               1,
1704                                               mtJavaHeap);
1705   if(heap_storage == NULL) {
1706     vm_shutdown_during_initialization("Could not initialize G1 heap");
1707     return JNI_ERR;
1708   }
1709 
1710   os::trace_page_sizes("Heap",
1711                        collector_policy()->min_heap_byte_size(),
1712                        max_byte_size,
1713                        page_size,
1714                        heap_rs.base(),
1715                        heap_rs.size());
1716   heap_storage->set_mapping_changed_listener(&_listener);
1717 
1718   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1719   G1RegionToSpaceMapper* bot_storage =
1720     create_aux_memory_mapper("Block Offset Table",
1721                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1722                              G1BlockOffsetTable::heap_map_factor());
1723 
1724   G1RegionToSpaceMapper* cardtable_storage =
1725     create_aux_memory_mapper("Card Table",
1726                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1727                              G1CardTable::heap_map_factor());
1728 
1729   G1RegionToSpaceMapper* card_counts_storage =
1730     create_aux_memory_mapper("Card Counts Table",
1731                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1732                              G1CardCounts::heap_map_factor());
1733 
1734   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1735   G1RegionToSpaceMapper* prev_bitmap_storage =
1736     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1737   G1RegionToSpaceMapper* next_bitmap_storage =
1738     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1739 
1740   _hrm = HeapRegionManager::create_manager(this, g1_collector_policy());
1741 
1742   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1743   _card_table->initialize(cardtable_storage);
1744   // Do later initialization work for concurrent refinement.
1745   _hot_card_cache->initialize(card_counts_storage);
1746 
1747   // 6843694 - ensure that the maximum region index can fit
1748   // in the remembered set structures.
1749   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1750   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1751 
1752   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1753   // start within the first card.
1754   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1755   // Also create a G1 rem set.
1756   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1757   _g1_rem_set->initialize(max_reserved_capacity(), max_regions());
1758 
1759   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1760   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1761   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1762             "too many cards per region");
1763 
1764   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1765 
1766   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1767 
1768   {
1769     HeapWord* start = _hrm->reserved().start();
1770     HeapWord* end = _hrm->reserved().end();
1771     size_t granularity = HeapRegion::GrainBytes;
1772 
1773     _in_cset_fast_test.initialize(start, end, granularity);
1774     _humongous_reclaim_candidates.initialize(start, end, granularity);
1775   }
1776 
1777   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1778                           true /* are_GC_task_threads */,
1779                           false /* are_ConcurrentGC_threads */);
1780   if (_workers == NULL) {
1781     return JNI_ENOMEM;
1782   }
1783   _workers->initialize_workers();
1784 
1785   // Create the G1ConcurrentMark data structure and thread.
1786   // (Must do this late, so that "max_regions" is defined.)
1787   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1788   if (_cm == NULL || !_cm->completed_initialization()) {
1789     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1790     return JNI_ENOMEM;
1791   }
1792   _cm_thread = _cm->cm_thread();
1793 
1794   // Now expand into the initial heap size.
1795   if (!expand(init_byte_size, _workers)) {
1796     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1797     return JNI_ENOMEM;
1798   }
1799 
1800   // Perform any initialization actions delegated to the policy.
1801   g1_policy()->init(this, &_collection_set);
1802 
1803   jint ecode = initialize_concurrent_refinement();
1804   if (ecode != JNI_OK) {
1805     return ecode;
1806   }
1807 
1808   ecode = initialize_young_gen_sampling_thread();
1809   if (ecode != JNI_OK) {
1810     return ecode;
1811   }
1812 
1813   {
1814     DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1815     dcqs.set_process_completed_buffers_threshold(concurrent_refine()->yellow_zone());
1816     dcqs.set_max_completed_buffers(concurrent_refine()->red_zone());
1817   }
1818 
1819   // Here we allocate the dummy HeapRegion that is required by the
1820   // G1AllocRegion class.
1821   HeapRegion* dummy_region = _hrm->get_dummy_region();
1822 
1823   // We'll re-use the same region whether the alloc region will
1824   // require BOT updates or not and, if it doesn't, then a non-young
1825   // region will complain that it cannot support allocations without
1826   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1827   dummy_region->set_eden();
1828   // Make sure it's full.
1829   dummy_region->set_top(dummy_region->end());
1830   G1AllocRegion::setup(this, dummy_region);
1831 
1832   _allocator->init_mutator_alloc_region();
1833 
1834   // Do create of the monitoring and management support so that
1835   // values in the heap have been properly initialized.
1836   _g1mm = new G1MonitoringSupport(this);
1837 
1838   G1StringDedup::initialize();
1839 
1840   _preserved_marks_set.init(ParallelGCThreads);
1841 
1842   _collection_set.initialize(max_regions());
1843 
1844   return JNI_OK;
1845 }
1846 
stop()1847 void G1CollectedHeap::stop() {
1848   // Stop all concurrent threads. We do this to make sure these threads
1849   // do not continue to execute and access resources (e.g. logging)
1850   // that are destroyed during shutdown.
1851   _cr->stop();
1852   _young_gen_sampling_thread->stop();
1853   _cm_thread->stop();
1854   if (G1StringDedup::is_enabled()) {
1855     G1StringDedup::stop();
1856   }
1857 }
1858 
safepoint_synchronize_begin()1859 void G1CollectedHeap::safepoint_synchronize_begin() {
1860   SuspendibleThreadSet::synchronize();
1861 }
1862 
safepoint_synchronize_end()1863 void G1CollectedHeap::safepoint_synchronize_end() {
1864   SuspendibleThreadSet::desynchronize();
1865 }
1866 
conservative_max_heap_alignment()1867 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1868   return HeapRegion::max_region_size();
1869 }
1870 
post_initialize()1871 void G1CollectedHeap::post_initialize() {
1872   CollectedHeap::post_initialize();
1873   ref_processing_init();
1874 }
1875 
ref_processing_init()1876 void G1CollectedHeap::ref_processing_init() {
1877   // Reference processing in G1 currently works as follows:
1878   //
1879   // * There are two reference processor instances. One is
1880   //   used to record and process discovered references
1881   //   during concurrent marking; the other is used to
1882   //   record and process references during STW pauses
1883   //   (both full and incremental).
1884   // * Both ref processors need to 'span' the entire heap as
1885   //   the regions in the collection set may be dotted around.
1886   //
1887   // * For the concurrent marking ref processor:
1888   //   * Reference discovery is enabled at initial marking.
1889   //   * Reference discovery is disabled and the discovered
1890   //     references processed etc during remarking.
1891   //   * Reference discovery is MT (see below).
1892   //   * Reference discovery requires a barrier (see below).
1893   //   * Reference processing may or may not be MT
1894   //     (depending on the value of ParallelRefProcEnabled
1895   //     and ParallelGCThreads).
1896   //   * A full GC disables reference discovery by the CM
1897   //     ref processor and abandons any entries on it's
1898   //     discovered lists.
1899   //
1900   // * For the STW processor:
1901   //   * Non MT discovery is enabled at the start of a full GC.
1902   //   * Processing and enqueueing during a full GC is non-MT.
1903   //   * During a full GC, references are processed after marking.
1904   //
1905   //   * Discovery (may or may not be MT) is enabled at the start
1906   //     of an incremental evacuation pause.
1907   //   * References are processed near the end of a STW evacuation pause.
1908   //   * For both types of GC:
1909   //     * Discovery is atomic - i.e. not concurrent.
1910   //     * Reference discovery will not need a barrier.
1911 
1912   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1913 
1914   // Concurrent Mark ref processor
1915   _ref_processor_cm =
1916     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1917                            mt_processing,                                  // mt processing
1918                            ParallelGCThreads,                              // degree of mt processing
1919                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1920                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1921                            false,                                          // Reference discovery is not atomic
1922                            &_is_alive_closure_cm,                          // is alive closure
1923                            true);                                          // allow changes to number of processing threads
1924 
1925   // STW ref processor
1926   _ref_processor_stw =
1927     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1928                            mt_processing,                        // mt processing
1929                            ParallelGCThreads,                    // degree of mt processing
1930                            (ParallelGCThreads > 1),              // mt discovery
1931                            ParallelGCThreads,                    // degree of mt discovery
1932                            true,                                 // Reference discovery is atomic
1933                            &_is_alive_closure_stw,               // is alive closure
1934                            true);                                // allow changes to number of processing threads
1935 }
1936 
collector_policy() const1937 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1938   return _collector_policy;
1939 }
1940 
g1_collector_policy() const1941 G1CollectorPolicy* G1CollectedHeap::g1_collector_policy() const {
1942   return _collector_policy;
1943 }
1944 
soft_ref_policy()1945 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1946   return &_soft_ref_policy;
1947 }
1948 
capacity() const1949 size_t G1CollectedHeap::capacity() const {
1950   return _hrm->length() * HeapRegion::GrainBytes;
1951 }
1952 
unused_committed_regions_in_bytes() const1953 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1954   return _hrm->total_free_bytes();
1955 }
1956 
iterate_hcc_closure(CardTableEntryClosure * cl,uint worker_i)1957 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1958   _hot_card_cache->drain(cl, worker_i);
1959 }
1960 
iterate_dirty_card_closure(CardTableEntryClosure * cl,uint worker_i)1961 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1962   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1963   size_t n_completed_buffers = 0;
1964   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1965     n_completed_buffers++;
1966   }
1967   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1968   dcqs.clear_n_completed_buffers();
1969   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1970 }
1971 
1972 // Computes the sum of the storage used by the various regions.
used() const1973 size_t G1CollectedHeap::used() const {
1974   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1975   if (_archive_allocator != NULL) {
1976     result += _archive_allocator->used();
1977   }
1978   return result;
1979 }
1980 
used_unlocked() const1981 size_t G1CollectedHeap::used_unlocked() const {
1982   return _summary_bytes_used;
1983 }
1984 
1985 class SumUsedClosure: public HeapRegionClosure {
1986   size_t _used;
1987 public:
SumUsedClosure()1988   SumUsedClosure() : _used(0) {}
do_heap_region(HeapRegion * r)1989   bool do_heap_region(HeapRegion* r) {
1990     _used += r->used();
1991     return false;
1992   }
result()1993   size_t result() { return _used; }
1994 };
1995 
recalculate_used() const1996 size_t G1CollectedHeap::recalculate_used() const {
1997   SumUsedClosure blk;
1998   heap_region_iterate(&blk);
1999   return blk.result();
2000 }
2001 
is_user_requested_concurrent_full_gc(GCCause::Cause cause)2002 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2003   switch (cause) {
2004     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2005     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2006     case GCCause::_wb_conc_mark:                        return true;
2007     default :                                           return false;
2008   }
2009 }
2010 
should_do_concurrent_full_gc(GCCause::Cause cause)2011 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2012   switch (cause) {
2013     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2014     case GCCause::_g1_humongous_allocation: return true;
2015     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2016     default:                                return is_user_requested_concurrent_full_gc(cause);
2017   }
2018 }
2019 
should_upgrade_to_full_gc(GCCause::Cause cause)2020 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2021   if(g1_policy()->force_upgrade_to_full()) {
2022     return true;
2023   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2024     return false;
2025   } else if (has_regions_left_for_allocation()) {
2026     return false;
2027   } else {
2028     return true;
2029   }
2030 }
2031 
2032 #ifndef PRODUCT
allocate_dummy_regions()2033 void G1CollectedHeap::allocate_dummy_regions() {
2034   // Let's fill up most of the region
2035   size_t word_size = HeapRegion::GrainWords - 1024;
2036   // And as a result the region we'll allocate will be humongous.
2037   guarantee(is_humongous(word_size), "sanity");
2038 
2039   // _filler_array_max_size is set to humongous object threshold
2040   // but temporarily change it to use CollectedHeap::fill_with_object().
2041   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2042 
2043   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2044     // Let's use the existing mechanism for the allocation
2045     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2046     if (dummy_obj != NULL) {
2047       MemRegion mr(dummy_obj, word_size);
2048       CollectedHeap::fill_with_object(mr);
2049     } else {
2050       // If we can't allocate once, we probably cannot allocate
2051       // again. Let's get out of the loop.
2052       break;
2053     }
2054   }
2055 }
2056 #endif // !PRODUCT
2057 
increment_old_marking_cycles_started()2058 void G1CollectedHeap::increment_old_marking_cycles_started() {
2059   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2060          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2061          "Wrong marking cycle count (started: %d, completed: %d)",
2062          _old_marking_cycles_started, _old_marking_cycles_completed);
2063 
2064   _old_marking_cycles_started++;
2065 }
2066 
increment_old_marking_cycles_completed(bool concurrent)2067 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2068   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2069 
2070   // We assume that if concurrent == true, then the caller is a
2071   // concurrent thread that was joined the Suspendible Thread
2072   // Set. If there's ever a cheap way to check this, we should add an
2073   // assert here.
2074 
2075   // Given that this method is called at the end of a Full GC or of a
2076   // concurrent cycle, and those can be nested (i.e., a Full GC can
2077   // interrupt a concurrent cycle), the number of full collections
2078   // completed should be either one (in the case where there was no
2079   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2080   // behind the number of full collections started.
2081 
2082   // This is the case for the inner caller, i.e. a Full GC.
2083   assert(concurrent ||
2084          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2085          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2086          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2087          "is inconsistent with _old_marking_cycles_completed = %u",
2088          _old_marking_cycles_started, _old_marking_cycles_completed);
2089 
2090   // This is the case for the outer caller, i.e. the concurrent cycle.
2091   assert(!concurrent ||
2092          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2093          "for outer caller (concurrent cycle): "
2094          "_old_marking_cycles_started = %u "
2095          "is inconsistent with _old_marking_cycles_completed = %u",
2096          _old_marking_cycles_started, _old_marking_cycles_completed);
2097 
2098   _old_marking_cycles_completed += 1;
2099 
2100   // We need to clear the "in_progress" flag in the CM thread before
2101   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2102   // is set) so that if a waiter requests another System.gc() it doesn't
2103   // incorrectly see that a marking cycle is still in progress.
2104   if (concurrent) {
2105     _cm_thread->set_idle();
2106   }
2107 
2108   // This notify_all() will ensure that a thread that called
2109   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2110   // and it's waiting for a full GC to finish will be woken up. It is
2111   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2112   FullGCCount_lock->notify_all();
2113 }
2114 
collect(GCCause::Cause cause)2115 void G1CollectedHeap::collect(GCCause::Cause cause) {
2116   try_collect(cause, true);
2117 }
2118 
try_collect(GCCause::Cause cause,bool retry_on_gc_failure)2119 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2120   assert_heap_not_locked();
2121 
2122   bool gc_succeeded;
2123   bool should_retry_gc;
2124 
2125   do {
2126     should_retry_gc = false;
2127 
2128     uint gc_count_before;
2129     uint old_marking_count_before;
2130     uint full_gc_count_before;
2131 
2132     {
2133       MutexLocker ml(Heap_lock);
2134 
2135       // Read the GC count while holding the Heap_lock
2136       gc_count_before = total_collections();
2137       full_gc_count_before = total_full_collections();
2138       old_marking_count_before = _old_marking_cycles_started;
2139     }
2140 
2141     if (should_do_concurrent_full_gc(cause)) {
2142       // Schedule an initial-mark evacuation pause that will start a
2143       // concurrent cycle. We're setting word_size to 0 which means that
2144       // we are not requesting a post-GC allocation.
2145       VM_G1CollectForAllocation op(0,     /* word_size */
2146                                    gc_count_before,
2147                                    cause,
2148                                    true,  /* should_initiate_conc_mark */
2149                                    g1_policy()->max_pause_time_ms());
2150       VMThread::execute(&op);
2151       gc_succeeded = op.gc_succeeded();
2152       if (!gc_succeeded && retry_on_gc_failure) {
2153         if (old_marking_count_before == _old_marking_cycles_started) {
2154           should_retry_gc = op.should_retry_gc();
2155         } else {
2156           // A Full GC happened while we were trying to schedule the
2157           // concurrent cycle. No point in starting a new cycle given
2158           // that the whole heap was collected anyway.
2159         }
2160 
2161         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2162           GCLocker::stall_until_clear();
2163         }
2164       }
2165     } else {
2166       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2167           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2168 
2169         // Schedule a standard evacuation pause. We're setting word_size
2170         // to 0 which means that we are not requesting a post-GC allocation.
2171         VM_G1CollectForAllocation op(0,     /* word_size */
2172                                      gc_count_before,
2173                                      cause,
2174                                      false, /* should_initiate_conc_mark */
2175                                      g1_policy()->max_pause_time_ms());
2176         VMThread::execute(&op);
2177         gc_succeeded = op.gc_succeeded();
2178       } else {
2179         // Schedule a Full GC.
2180         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2181         VMThread::execute(&op);
2182         gc_succeeded = op.gc_succeeded();
2183       }
2184     }
2185   } while (should_retry_gc);
2186   return gc_succeeded;
2187 }
2188 
is_in(const void * p) const2189 bool G1CollectedHeap::is_in(const void* p) const {
2190   if (_hrm->reserved().contains(p)) {
2191     // Given that we know that p is in the reserved space,
2192     // heap_region_containing() should successfully
2193     // return the containing region.
2194     HeapRegion* hr = heap_region_containing(p);
2195     return hr->is_in(p);
2196   } else {
2197     return false;
2198   }
2199 }
2200 
2201 #ifdef ASSERT
is_in_exact(const void * p) const2202 bool G1CollectedHeap::is_in_exact(const void* p) const {
2203   bool contains = reserved_region().contains(p);
2204   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2205   if (contains && available) {
2206     return true;
2207   } else {
2208     return false;
2209   }
2210 }
2211 #endif
2212 
2213 // Iteration functions.
2214 
2215 // Iterates an ObjectClosure over all objects within a HeapRegion.
2216 
2217 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2218   ObjectClosure* _cl;
2219 public:
IterateObjectClosureRegionClosure(ObjectClosure * cl)2220   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
do_heap_region(HeapRegion * r)2221   bool do_heap_region(HeapRegion* r) {
2222     if (!r->is_continues_humongous()) {
2223       r->object_iterate(_cl);
2224     }
2225     return false;
2226   }
2227 };
2228 
object_iterate(ObjectClosure * cl)2229 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2230   IterateObjectClosureRegionClosure blk(cl);
2231   heap_region_iterate(&blk);
2232 }
2233 
heap_region_iterate(HeapRegionClosure * cl) const2234 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2235   _hrm->iterate(cl);
2236 }
2237 
heap_region_par_iterate_from_worker_offset(HeapRegionClosure * cl,HeapRegionClaimer * hrclaimer,uint worker_id) const2238 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2239                                                                  HeapRegionClaimer *hrclaimer,
2240                                                                  uint worker_id) const {
2241   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2242 }
2243 
heap_region_par_iterate_from_start(HeapRegionClosure * cl,HeapRegionClaimer * hrclaimer) const2244 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2245                                                          HeapRegionClaimer *hrclaimer) const {
2246   _hrm->par_iterate(cl, hrclaimer, 0);
2247 }
2248 
collection_set_iterate(HeapRegionClosure * cl)2249 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2250   _collection_set.iterate(cl);
2251 }
2252 
collection_set_iterate_from(HeapRegionClosure * cl,uint worker_id)2253 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2254   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2255 }
2256 
block_start(const void * addr) const2257 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2258   HeapRegion* hr = heap_region_containing(addr);
2259   return hr->block_start(addr);
2260 }
2261 
block_size(const HeapWord * addr) const2262 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2263   HeapRegion* hr = heap_region_containing(addr);
2264   return hr->block_size(addr);
2265 }
2266 
block_is_obj(const HeapWord * addr) const2267 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2268   HeapRegion* hr = heap_region_containing(addr);
2269   return hr->block_is_obj(addr);
2270 }
2271 
supports_tlab_allocation() const2272 bool G1CollectedHeap::supports_tlab_allocation() const {
2273   return true;
2274 }
2275 
tlab_capacity(Thread * ignored) const2276 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2277   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2278 }
2279 
tlab_used(Thread * ignored) const2280 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2281   return _eden.length() * HeapRegion::GrainBytes;
2282 }
2283 
2284 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2285 // must be equal to the humongous object limit.
max_tlab_size() const2286 size_t G1CollectedHeap::max_tlab_size() const {
2287   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2288 }
2289 
unsafe_max_tlab_alloc(Thread * ignored) const2290 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2291   return _allocator->unsafe_max_tlab_alloc();
2292 }
2293 
max_capacity() const2294 size_t G1CollectedHeap::max_capacity() const {
2295   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2296 }
2297 
max_reserved_capacity() const2298 size_t G1CollectedHeap::max_reserved_capacity() const {
2299   return _hrm->max_length() * HeapRegion::GrainBytes;
2300 }
2301 
millis_since_last_gc()2302 jlong G1CollectedHeap::millis_since_last_gc() {
2303   // See the notes in GenCollectedHeap::millis_since_last_gc()
2304   // for more information about the implementation.
2305   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2306     _g1_policy->collection_pause_end_millis();
2307   if (ret_val < 0) {
2308     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2309       ". returning zero instead.", ret_val);
2310     return 0;
2311   }
2312   return ret_val;
2313 }
2314 
deduplicate_string(oop str)2315 void G1CollectedHeap::deduplicate_string(oop str) {
2316   assert(java_lang_String::is_instance(str), "invariant");
2317 
2318   if (G1StringDedup::is_enabled()) {
2319     G1StringDedup::deduplicate(str);
2320   }
2321 }
2322 
prepare_for_verify()2323 void G1CollectedHeap::prepare_for_verify() {
2324   _verifier->prepare_for_verify();
2325 }
2326 
verify(VerifyOption vo)2327 void G1CollectedHeap::verify(VerifyOption vo) {
2328   _verifier->verify(vo);
2329 }
2330 
supports_concurrent_phase_control() const2331 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2332   return true;
2333 }
2334 
concurrent_phases() const2335 const char* const* G1CollectedHeap::concurrent_phases() const {
2336   return _cm_thread->concurrent_phases();
2337 }
2338 
request_concurrent_phase(const char * phase)2339 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2340   return _cm_thread->request_concurrent_phase(phase);
2341 }
2342 
2343 class PrintRegionClosure: public HeapRegionClosure {
2344   outputStream* _st;
2345 public:
PrintRegionClosure(outputStream * st)2346   PrintRegionClosure(outputStream* st) : _st(st) {}
do_heap_region(HeapRegion * r)2347   bool do_heap_region(HeapRegion* r) {
2348     r->print_on(_st);
2349     return false;
2350   }
2351 };
2352 
is_obj_dead_cond(const oop obj,const HeapRegion * hr,const VerifyOption vo) const2353 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2354                                        const HeapRegion* hr,
2355                                        const VerifyOption vo) const {
2356   switch (vo) {
2357   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2358   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2359   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2360   default:                            ShouldNotReachHere();
2361   }
2362   return false; // keep some compilers happy
2363 }
2364 
is_obj_dead_cond(const oop obj,const VerifyOption vo) const2365 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2366                                        const VerifyOption vo) const {
2367   switch (vo) {
2368   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2369   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2370   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2371   default:                            ShouldNotReachHere();
2372   }
2373   return false; // keep some compilers happy
2374 }
2375 
print_heap_regions() const2376 void G1CollectedHeap::print_heap_regions() const {
2377   LogTarget(Trace, gc, heap, region) lt;
2378   if (lt.is_enabled()) {
2379     LogStream ls(lt);
2380     print_regions_on(&ls);
2381   }
2382 }
2383 
print_on(outputStream * st) const2384 void G1CollectedHeap::print_on(outputStream* st) const {
2385   st->print(" %-20s", "garbage-first heap");
2386   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2387             capacity()/K, used_unlocked()/K);
2388   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2389             p2i(_hrm->reserved().start()),
2390             p2i(_hrm->reserved().end()));
2391   st->cr();
2392   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2393   uint young_regions = young_regions_count();
2394   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2395             (size_t) young_regions * HeapRegion::GrainBytes / K);
2396   uint survivor_regions = survivor_regions_count();
2397   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2398             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2399   st->cr();
2400   MetaspaceUtils::print_on(st);
2401 }
2402 
print_regions_on(outputStream * st) const2403 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2404   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2405                "HS=humongous(starts), HC=humongous(continues), "
2406                "CS=collection set, F=free, A=archive, "
2407                "TAMS=top-at-mark-start (previous, next)");
2408   PrintRegionClosure blk(st);
2409   heap_region_iterate(&blk);
2410 }
2411 
print_extended_on(outputStream * st) const2412 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2413   print_on(st);
2414 
2415   // Print the per-region information.
2416   print_regions_on(st);
2417 }
2418 
print_on_error(outputStream * st) const2419 void G1CollectedHeap::print_on_error(outputStream* st) const {
2420   this->CollectedHeap::print_on_error(st);
2421 
2422   if (_cm != NULL) {
2423     st->cr();
2424     _cm->print_on_error(st);
2425   }
2426 }
2427 
print_gc_threads_on(outputStream * st) const2428 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2429   workers()->print_worker_threads_on(st);
2430   _cm_thread->print_on(st);
2431   st->cr();
2432   _cm->print_worker_threads_on(st);
2433   _cr->print_threads_on(st);
2434   _young_gen_sampling_thread->print_on(st);
2435   if (G1StringDedup::is_enabled()) {
2436     G1StringDedup::print_worker_threads_on(st);
2437   }
2438 }
2439 
gc_threads_do(ThreadClosure * tc) const2440 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2441   workers()->threads_do(tc);
2442   tc->do_thread(_cm_thread);
2443   _cm->threads_do(tc);
2444   _cr->threads_do(tc);
2445   tc->do_thread(_young_gen_sampling_thread);
2446   if (G1StringDedup::is_enabled()) {
2447     G1StringDedup::threads_do(tc);
2448   }
2449 }
2450 
print_tracing_info() const2451 void G1CollectedHeap::print_tracing_info() const {
2452   g1_rem_set()->print_summary_info();
2453   concurrent_mark()->print_summary_info();
2454 }
2455 
2456 #ifndef PRODUCT
2457 // Helpful for debugging RSet issues.
2458 
2459 class PrintRSetsClosure : public HeapRegionClosure {
2460 private:
2461   const char* _msg;
2462   size_t _occupied_sum;
2463 
2464 public:
do_heap_region(HeapRegion * r)2465   bool do_heap_region(HeapRegion* r) {
2466     HeapRegionRemSet* hrrs = r->rem_set();
2467     size_t occupied = hrrs->occupied();
2468     _occupied_sum += occupied;
2469 
2470     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2471     if (occupied == 0) {
2472       tty->print_cr("  RSet is empty");
2473     } else {
2474       hrrs->print();
2475     }
2476     tty->print_cr("----------");
2477     return false;
2478   }
2479 
PrintRSetsClosure(const char * msg)2480   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2481     tty->cr();
2482     tty->print_cr("========================================");
2483     tty->print_cr("%s", msg);
2484     tty->cr();
2485   }
2486 
~PrintRSetsClosure()2487   ~PrintRSetsClosure() {
2488     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2489     tty->print_cr("========================================");
2490     tty->cr();
2491   }
2492 };
2493 
print_cset_rsets()2494 void G1CollectedHeap::print_cset_rsets() {
2495   PrintRSetsClosure cl("Printing CSet RSets");
2496   collection_set_iterate(&cl);
2497 }
2498 
print_all_rsets()2499 void G1CollectedHeap::print_all_rsets() {
2500   PrintRSetsClosure cl("Printing All RSets");;
2501   heap_region_iterate(&cl);
2502 }
2503 #endif // PRODUCT
2504 
create_g1_heap_summary()2505 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2506 
2507   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2508   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2509   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2510 
2511   size_t eden_capacity_bytes =
2512     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2513 
2514   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2515   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2516                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2517 }
2518 
create_g1_evac_summary(G1EvacStats * stats)2519 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2520   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2521                        stats->unused(), stats->used(), stats->region_end_waste(),
2522                        stats->regions_filled(), stats->direct_allocated(),
2523                        stats->failure_used(), stats->failure_waste());
2524 }
2525 
trace_heap(GCWhen::Type when,const GCTracer * gc_tracer)2526 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2527   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2528   gc_tracer->report_gc_heap_summary(when, heap_summary);
2529 
2530   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2531   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2532 }
2533 
heap()2534 G1CollectedHeap* G1CollectedHeap::heap() {
2535   CollectedHeap* heap = Universe::heap();
2536   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2537   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2538   return (G1CollectedHeap*)heap;
2539 }
2540 
gc_prologue(bool full)2541 void G1CollectedHeap::gc_prologue(bool full) {
2542   // always_do_update_barrier = false;
2543   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2544 
2545   // This summary needs to be printed before incrementing total collections.
2546   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2547 
2548   // Update common counters.
2549   increment_total_collections(full /* full gc */);
2550   if (full) {
2551     increment_old_marking_cycles_started();
2552   }
2553 
2554   // Fill TLAB's and such
2555   double start = os::elapsedTime();
2556   ensure_parsability(true);
2557   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2558 }
2559 
gc_epilogue(bool full)2560 void G1CollectedHeap::gc_epilogue(bool full) {
2561   // Update common counters.
2562   if (full) {
2563     // Update the number of full collections that have been completed.
2564     increment_old_marking_cycles_completed(false /* concurrent */);
2565   }
2566 
2567   // We are at the end of the GC. Total collections has already been increased.
2568   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2569 
2570   // FIXME: what is this about?
2571   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2572   // is set.
2573 #if COMPILER2_OR_JVMCI
2574   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2575 #endif
2576   // always_do_update_barrier = true;
2577 
2578   double start = os::elapsedTime();
2579   resize_all_tlabs();
2580   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2581 
2582   MemoryService::track_memory_usage();
2583   // We have just completed a GC. Update the soft reference
2584   // policy with the new heap occupancy
2585   Universe::update_heap_info_at_gc();
2586 }
2587 
do_collection_pause(size_t word_size,uint gc_count_before,bool * succeeded,GCCause::Cause gc_cause)2588 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2589                                                uint gc_count_before,
2590                                                bool* succeeded,
2591                                                GCCause::Cause gc_cause) {
2592   assert_heap_not_locked_and_not_at_safepoint();
2593   VM_G1CollectForAllocation op(word_size,
2594                                gc_count_before,
2595                                gc_cause,
2596                                false, /* should_initiate_conc_mark */
2597                                g1_policy()->max_pause_time_ms());
2598   VMThread::execute(&op);
2599 
2600   HeapWord* result = op.result();
2601   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2602   assert(result == NULL || ret_succeeded,
2603          "the result should be NULL if the VM did not succeed");
2604   *succeeded = ret_succeeded;
2605 
2606   assert_heap_not_locked();
2607   return result;
2608 }
2609 
do_concurrent_mark()2610 void G1CollectedHeap::do_concurrent_mark() {
2611   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2612   if (!_cm_thread->in_progress()) {
2613     _cm_thread->set_started();
2614     CGC_lock->notify();
2615   }
2616 }
2617 
pending_card_num()2618 size_t G1CollectedHeap::pending_card_num() {
2619   size_t extra_cards = 0;
2620   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2621     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2622     extra_cards += dcq.size();
2623   }
2624   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2625   size_t buffer_size = dcqs.buffer_size();
2626   size_t buffer_num = dcqs.completed_buffers_num();
2627 
2628   return buffer_size * buffer_num + extra_cards;
2629 }
2630 
is_potential_eager_reclaim_candidate(HeapRegion * r) const2631 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2632   // We don't nominate objects with many remembered set entries, on
2633   // the assumption that such objects are likely still live.
2634   HeapRegionRemSet* rem_set = r->rem_set();
2635 
2636   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2637          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2638          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2639 }
2640 
2641 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2642  private:
2643   size_t _total_humongous;
2644   size_t _candidate_humongous;
2645 
2646   DirtyCardQueue _dcq;
2647 
humongous_region_is_candidate(G1CollectedHeap * g1h,HeapRegion * region) const2648   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2649     assert(region->is_starts_humongous(), "Must start a humongous object");
2650 
2651     oop obj = oop(region->bottom());
2652 
2653     // Dead objects cannot be eager reclaim candidates. Due to class
2654     // unloading it is unsafe to query their classes so we return early.
2655     if (g1h->is_obj_dead(obj, region)) {
2656       return false;
2657     }
2658 
2659     // If we do not have a complete remembered set for the region, then we can
2660     // not be sure that we have all references to it.
2661     if (!region->rem_set()->is_complete()) {
2662       return false;
2663     }
2664     // Candidate selection must satisfy the following constraints
2665     // while concurrent marking is in progress:
2666     //
2667     // * In order to maintain SATB invariants, an object must not be
2668     // reclaimed if it was allocated before the start of marking and
2669     // has not had its references scanned.  Such an object must have
2670     // its references (including type metadata) scanned to ensure no
2671     // live objects are missed by the marking process.  Objects
2672     // allocated after the start of concurrent marking don't need to
2673     // be scanned.
2674     //
2675     // * An object must not be reclaimed if it is on the concurrent
2676     // mark stack.  Objects allocated after the start of concurrent
2677     // marking are never pushed on the mark stack.
2678     //
2679     // Nominating only objects allocated after the start of concurrent
2680     // marking is sufficient to meet both constraints.  This may miss
2681     // some objects that satisfy the constraints, but the marking data
2682     // structures don't support efficiently performing the needed
2683     // additional tests or scrubbing of the mark stack.
2684     //
2685     // However, we presently only nominate is_typeArray() objects.
2686     // A humongous object containing references induces remembered
2687     // set entries on other regions.  In order to reclaim such an
2688     // object, those remembered sets would need to be cleaned up.
2689     //
2690     // We also treat is_typeArray() objects specially, allowing them
2691     // to be reclaimed even if allocated before the start of
2692     // concurrent mark.  For this we rely on mark stack insertion to
2693     // exclude is_typeArray() objects, preventing reclaiming an object
2694     // that is in the mark stack.  We also rely on the metadata for
2695     // such objects to be built-in and so ensured to be kept live.
2696     // Frequent allocation and drop of large binary blobs is an
2697     // important use case for eager reclaim, and this special handling
2698     // may reduce needed headroom.
2699 
2700     return obj->is_typeArray() &&
2701            g1h->is_potential_eager_reclaim_candidate(region);
2702   }
2703 
2704  public:
RegisterHumongousWithInCSetFastTestClosure()2705   RegisterHumongousWithInCSetFastTestClosure()
2706   : _total_humongous(0),
2707     _candidate_humongous(0),
2708     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2709   }
2710 
do_heap_region(HeapRegion * r)2711   virtual bool do_heap_region(HeapRegion* r) {
2712     if (!r->is_starts_humongous()) {
2713       return false;
2714     }
2715     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2716 
2717     bool is_candidate = humongous_region_is_candidate(g1h, r);
2718     uint rindex = r->hrm_index();
2719     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2720     if (is_candidate) {
2721       _candidate_humongous++;
2722       g1h->register_humongous_region_with_cset(rindex);
2723       // Is_candidate already filters out humongous object with large remembered sets.
2724       // If we have a humongous object with a few remembered sets, we simply flush these
2725       // remembered set entries into the DCQS. That will result in automatic
2726       // re-evaluation of their remembered set entries during the following evacuation
2727       // phase.
2728       if (!r->rem_set()->is_empty()) {
2729         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2730                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2731         G1CardTable* ct = g1h->card_table();
2732         HeapRegionRemSetIterator hrrs(r->rem_set());
2733         size_t card_index;
2734         while (hrrs.has_next(card_index)) {
2735           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2736           // The remembered set might contain references to already freed
2737           // regions. Filter out such entries to avoid failing card table
2738           // verification.
2739           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2740             if (*card_ptr != G1CardTable::dirty_card_val()) {
2741               *card_ptr = G1CardTable::dirty_card_val();
2742               _dcq.enqueue(card_ptr);
2743             }
2744           }
2745         }
2746         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2747                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2748                hrrs.n_yielded(), r->rem_set()->occupied());
2749         // We should only clear the card based remembered set here as we will not
2750         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2751         // (and probably never) we do not enter this path if there are other kind of
2752         // remembered sets for this region.
2753         r->rem_set()->clear_locked(true /* only_cardset */);
2754         // Clear_locked() above sets the state to Empty. However we want to continue
2755         // collecting remembered set entries for humongous regions that were not
2756         // reclaimed.
2757         r->rem_set()->set_state_complete();
2758       }
2759       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2760     }
2761     _total_humongous++;
2762 
2763     return false;
2764   }
2765 
total_humongous() const2766   size_t total_humongous() const { return _total_humongous; }
candidate_humongous() const2767   size_t candidate_humongous() const { return _candidate_humongous; }
2768 
flush_rem_set_entries()2769   void flush_rem_set_entries() { _dcq.flush(); }
2770 };
2771 
register_humongous_regions_with_cset()2772 void G1CollectedHeap::register_humongous_regions_with_cset() {
2773   if (!G1EagerReclaimHumongousObjects) {
2774     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2775     return;
2776   }
2777   double time = os::elapsed_counter();
2778 
2779   // Collect reclaim candidate information and register candidates with cset.
2780   RegisterHumongousWithInCSetFastTestClosure cl;
2781   heap_region_iterate(&cl);
2782 
2783   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2784   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2785                                                                   cl.total_humongous(),
2786                                                                   cl.candidate_humongous());
2787   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2788 
2789   // Finally flush all remembered set entries to re-check into the global DCQS.
2790   cl.flush_rem_set_entries();
2791 }
2792 
2793 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2794   public:
do_heap_region(HeapRegion * hr)2795     bool do_heap_region(HeapRegion* hr) {
2796       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2797         hr->verify_rem_set();
2798       }
2799       return false;
2800     }
2801 };
2802 
num_task_queues() const2803 uint G1CollectedHeap::num_task_queues() const {
2804   return _task_queues->size();
2805 }
2806 
2807 #if TASKQUEUE_STATS
print_taskqueue_stats_hdr(outputStream * const st)2808 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2809   st->print_raw_cr("GC Task Stats");
2810   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2811   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2812 }
2813 
print_taskqueue_stats() const2814 void G1CollectedHeap::print_taskqueue_stats() const {
2815   if (!log_is_enabled(Trace, gc, task, stats)) {
2816     return;
2817   }
2818   Log(gc, task, stats) log;
2819   ResourceMark rm;
2820   LogStream ls(log.trace());
2821   outputStream* st = &ls;
2822 
2823   print_taskqueue_stats_hdr(st);
2824 
2825   TaskQueueStats totals;
2826   const uint n = num_task_queues();
2827   for (uint i = 0; i < n; ++i) {
2828     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2829     totals += task_queue(i)->stats;
2830   }
2831   st->print_raw("tot "); totals.print(st); st->cr();
2832 
2833   DEBUG_ONLY(totals.verify());
2834 }
2835 
reset_taskqueue_stats()2836 void G1CollectedHeap::reset_taskqueue_stats() {
2837   const uint n = num_task_queues();
2838   for (uint i = 0; i < n; ++i) {
2839     task_queue(i)->stats.reset();
2840   }
2841 }
2842 #endif // TASKQUEUE_STATS
2843 
wait_for_root_region_scanning()2844 void G1CollectedHeap::wait_for_root_region_scanning() {
2845   double scan_wait_start = os::elapsedTime();
2846   // We have to wait until the CM threads finish scanning the
2847   // root regions as it's the only way to ensure that all the
2848   // objects on them have been correctly scanned before we start
2849   // moving them during the GC.
2850   bool waited = _cm->root_regions()->wait_until_scan_finished();
2851   double wait_time_ms = 0.0;
2852   if (waited) {
2853     double scan_wait_end = os::elapsedTime();
2854     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2855   }
2856   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2857 }
2858 
2859 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2860 private:
2861   G1HRPrinter* _hr_printer;
2862 public:
G1PrintCollectionSetClosure(G1HRPrinter * hr_printer)2863   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2864 
do_heap_region(HeapRegion * r)2865   virtual bool do_heap_region(HeapRegion* r) {
2866     _hr_printer->cset(r);
2867     return false;
2868   }
2869 };
2870 
start_new_collection_set()2871 void G1CollectedHeap::start_new_collection_set() {
2872   collection_set()->start_incremental_building();
2873 
2874   clear_cset_fast_test();
2875 
2876   guarantee(_eden.length() == 0, "eden should have been cleared");
2877   g1_policy()->transfer_survivors_to_cset(survivor());
2878 }
2879 
2880 bool
do_collection_pause_at_safepoint(double target_pause_time_ms)2881 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2882   assert_at_safepoint_on_vm_thread();
2883   guarantee(!is_gc_active(), "collection is not reentrant");
2884 
2885   if (GCLocker::check_active_before_gc()) {
2886     return false;
2887   }
2888 
2889   _gc_timer_stw->register_gc_start();
2890 
2891   GCIdMark gc_id_mark;
2892   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2893 
2894   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2895   ResourceMark rm;
2896 
2897   g1_policy()->note_gc_start();
2898 
2899   wait_for_root_region_scanning();
2900 
2901   print_heap_before_gc();
2902   print_heap_regions();
2903   trace_heap_before_gc(_gc_tracer_stw);
2904 
2905   _verifier->verify_region_sets_optional();
2906   _verifier->verify_dirty_young_regions();
2907 
2908   // We should not be doing initial mark unless the conc mark thread is running
2909   if (!_cm_thread->should_terminate()) {
2910     // This call will decide whether this pause is an initial-mark
2911     // pause. If it is, in_initial_mark_gc() will return true
2912     // for the duration of this pause.
2913     g1_policy()->decide_on_conc_mark_initiation();
2914   }
2915 
2916   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2917   assert(!collector_state()->in_initial_mark_gc() ||
2918           collector_state()->in_young_only_phase(), "sanity");
2919 
2920   // We also do not allow mixed GCs during marking.
2921   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2922 
2923   // Record whether this pause is an initial mark. When the current
2924   // thread has completed its logging output and it's safe to signal
2925   // the CM thread, the flag's value in the policy has been reset.
2926   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2927 
2928   // Inner scope for scope based logging, timers, and stats collection
2929   {
2930     EvacuationInfo evacuation_info;
2931 
2932     if (collector_state()->in_initial_mark_gc()) {
2933       // We are about to start a marking cycle, so we increment the
2934       // full collection counter.
2935       increment_old_marking_cycles_started();
2936       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2937     }
2938 
2939     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2940 
2941     GCTraceCPUTime tcpu;
2942 
2943     G1HeapVerifier::G1VerifyType verify_type;
2944     FormatBuffer<> gc_string("Pause Young ");
2945     if (collector_state()->in_initial_mark_gc()) {
2946       gc_string.append("(Concurrent Start)");
2947       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2948     } else if (collector_state()->in_young_only_phase()) {
2949       if (collector_state()->in_young_gc_before_mixed()) {
2950         gc_string.append("(Prepare Mixed)");
2951       } else {
2952         gc_string.append("(Normal)");
2953       }
2954       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2955     } else {
2956       gc_string.append("(Mixed)");
2957       verify_type = G1HeapVerifier::G1VerifyMixed;
2958     }
2959     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2960 
2961     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
2962                                                             workers()->active_workers(),
2963                                                             Threads::number_of_non_daemon_threads());
2964     active_workers = workers()->update_active_workers(active_workers);
2965     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2966 
2967     G1MonitoringScope ms(g1mm(),
2968                          false /* full_gc */,
2969                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2970 
2971     G1HeapTransition heap_transition(this);
2972     size_t heap_used_bytes_before_gc = used();
2973 
2974     // Don't dynamically change the number of GC threads this early.  A value of
2975     // 0 is used to indicate serial work.  When parallel work is done,
2976     // it will be set.
2977 
2978     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2979       IsGCActiveMark x;
2980 
2981       gc_prologue(false);
2982 
2983       if (VerifyRememberedSets) {
2984         log_info(gc, verify)("[Verifying RemSets before GC]");
2985         VerifyRegionRemSetClosure v_cl;
2986         heap_region_iterate(&v_cl);
2987       }
2988 
2989       _verifier->verify_before_gc(verify_type);
2990 
2991       _verifier->check_bitmaps("GC Start");
2992 
2993 #if COMPILER2_OR_JVMCI
2994       DerivedPointerTable::clear();
2995 #endif
2996 
2997       // Please see comment in g1CollectedHeap.hpp and
2998       // G1CollectedHeap::ref_processing_init() to see how
2999       // reference processing currently works in G1.
3000 
3001       // Enable discovery in the STW reference processor
3002       _ref_processor_stw->enable_discovery();
3003 
3004       {
3005         // We want to temporarily turn off discovery by the
3006         // CM ref processor, if necessary, and turn it back on
3007         // on again later if we do. Using a scoped
3008         // NoRefDiscovery object will do this.
3009         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3010 
3011         // Forget the current alloc region (we might even choose it to be part
3012         // of the collection set!).
3013         _allocator->release_mutator_alloc_region();
3014 
3015         // This timing is only used by the ergonomics to handle our pause target.
3016         // It is unclear why this should not include the full pause. We will
3017         // investigate this in CR 7178365.
3018         //
3019         // Preserving the old comment here if that helps the investigation:
3020         //
3021         // The elapsed time induced by the start time below deliberately elides
3022         // the possible verification above.
3023         double sample_start_time_sec = os::elapsedTime();
3024 
3025         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3026 
3027         if (collector_state()->in_initial_mark_gc()) {
3028           concurrent_mark()->pre_initial_mark();
3029         }
3030 
3031         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3032 
3033         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3034 
3035         register_humongous_regions_with_cset();
3036 
3037         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3038 
3039         // We call this after finalize_cset() to
3040         // ensure that the CSet has been finalized.
3041         _cm->verify_no_cset_oops();
3042 
3043         if (_hr_printer.is_active()) {
3044           G1PrintCollectionSetClosure cl(&_hr_printer);
3045           _collection_set.iterate(&cl);
3046         }
3047 
3048         // Initialize the GC alloc regions.
3049         _allocator->init_gc_alloc_regions(evacuation_info);
3050 
3051         G1ParScanThreadStateSet per_thread_states(this,
3052                                                   workers()->active_workers(),
3053                                                   collection_set()->young_region_length(),
3054                                                   collection_set()->optional_region_length());
3055         pre_evacuate_collection_set();
3056 
3057         // Actually do the work...
3058         evacuate_collection_set(&per_thread_states);
3059         evacuate_optional_collection_set(&per_thread_states);
3060 
3061         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3062 
3063         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3064         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3065 
3066         eagerly_reclaim_humongous_regions();
3067 
3068         record_obj_copy_mem_stats();
3069         _survivor_evac_stats.adjust_desired_plab_sz();
3070         _old_evac_stats.adjust_desired_plab_sz();
3071 
3072         double start = os::elapsedTime();
3073         start_new_collection_set();
3074         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3075 
3076         if (evacuation_failed()) {
3077           double recalculate_used_start = os::elapsedTime();
3078           set_used(recalculate_used());
3079           g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3080 
3081           if (_archive_allocator != NULL) {
3082             _archive_allocator->clear_used();
3083           }
3084           for (uint i = 0; i < ParallelGCThreads; i++) {
3085             if (_evacuation_failed_info_array[i].has_failed()) {
3086               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3087             }
3088           }
3089         } else {
3090           // The "used" of the the collection set have already been subtracted
3091           // when they were freed.  Add in the bytes evacuated.
3092           increase_used(g1_policy()->bytes_copied_during_gc());
3093         }
3094 
3095         if (collector_state()->in_initial_mark_gc()) {
3096           // We have to do this before we notify the CM threads that
3097           // they can start working to make sure that all the
3098           // appropriate initialization is done on the CM object.
3099           concurrent_mark()->post_initial_mark();
3100           // Note that we don't actually trigger the CM thread at
3101           // this point. We do that later when we're sure that
3102           // the current thread has completed its logging output.
3103         }
3104 
3105         allocate_dummy_regions();
3106 
3107         _allocator->init_mutator_alloc_region();
3108 
3109         {
3110           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3111           if (expand_bytes > 0) {
3112             size_t bytes_before = capacity();
3113             // No need for an ergo logging here,
3114             // expansion_amount() does this when it returns a value > 0.
3115             double expand_ms;
3116             if (!expand(expand_bytes, _workers, &expand_ms)) {
3117               // We failed to expand the heap. Cannot do anything about it.
3118             }
3119             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3120           }
3121         }
3122 
3123         // We redo the verification but now wrt to the new CSet which
3124         // has just got initialized after the previous CSet was freed.
3125         _cm->verify_no_cset_oops();
3126 
3127         // This timing is only used by the ergonomics to handle our pause target.
3128         // It is unclear why this should not include the full pause. We will
3129         // investigate this in CR 7178365.
3130         double sample_end_time_sec = os::elapsedTime();
3131         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3132         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3133         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3134 
3135         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3136         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3137 
3138         if (VerifyRememberedSets) {
3139           log_info(gc, verify)("[Verifying RemSets after GC]");
3140           VerifyRegionRemSetClosure v_cl;
3141           heap_region_iterate(&v_cl);
3142         }
3143 
3144         _verifier->verify_after_gc(verify_type);
3145         _verifier->check_bitmaps("GC End");
3146 
3147         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3148         _ref_processor_stw->verify_no_references_recorded();
3149 
3150         // CM reference discovery will be re-enabled if necessary.
3151       }
3152 
3153 #ifdef TRACESPINNING
3154       ParallelTaskTerminator::print_termination_counts();
3155 #endif
3156 
3157       gc_epilogue(false);
3158     }
3159 
3160     // Print the remainder of the GC log output.
3161     if (evacuation_failed()) {
3162       log_info(gc)("To-space exhausted");
3163     }
3164 
3165     g1_policy()->print_phases();
3166     heap_transition.print();
3167 
3168     // It is not yet to safe to tell the concurrent mark to
3169     // start as we have some optional output below. We don't want the
3170     // output from the concurrent mark thread interfering with this
3171     // logging output either.
3172 
3173     _hrm->verify_optional();
3174     _verifier->verify_region_sets_optional();
3175 
3176     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3177     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3178 
3179     print_heap_after_gc();
3180     print_heap_regions();
3181     trace_heap_after_gc(_gc_tracer_stw);
3182 
3183     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3184     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3185     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3186     // before any GC notifications are raised.
3187     g1mm()->update_sizes();
3188 
3189     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3190     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3191     _gc_timer_stw->register_gc_end();
3192     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3193   }
3194   // It should now be safe to tell the concurrent mark thread to start
3195   // without its logging output interfering with the logging output
3196   // that came from the pause.
3197 
3198   if (should_start_conc_mark) {
3199     // CAUTION: after the doConcurrentMark() call below,
3200     // the concurrent marking thread(s) could be running
3201     // concurrently with us. Make sure that anything after
3202     // this point does not assume that we are the only GC thread
3203     // running. Note: of course, the actual marking work will
3204     // not start until the safepoint itself is released in
3205     // SuspendibleThreadSet::desynchronize().
3206     do_concurrent_mark();
3207   }
3208 
3209   return true;
3210 }
3211 
remove_self_forwarding_pointers()3212 void G1CollectedHeap::remove_self_forwarding_pointers() {
3213   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3214   workers()->run_task(&rsfp_task);
3215 }
3216 
restore_after_evac_failure()3217 void G1CollectedHeap::restore_after_evac_failure() {
3218   double remove_self_forwards_start = os::elapsedTime();
3219 
3220   remove_self_forwarding_pointers();
3221   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3222   _preserved_marks_set.restore(&task_executor);
3223 
3224   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3225 }
3226 
preserve_mark_during_evac_failure(uint worker_id,oop obj,markOop m)3227 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3228   if (!_evacuation_failed) {
3229     _evacuation_failed = true;
3230   }
3231 
3232   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3233   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3234 }
3235 
offer_termination()3236 bool G1ParEvacuateFollowersClosure::offer_termination() {
3237   EventGCPhaseParallel event;
3238   G1ParScanThreadState* const pss = par_scan_state();
3239   start_term_time();
3240   const bool res = terminator()->offer_termination();
3241   end_term_time();
3242   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3243   return res;
3244 }
3245 
do_void()3246 void G1ParEvacuateFollowersClosure::do_void() {
3247   EventGCPhaseParallel event;
3248   G1ParScanThreadState* const pss = par_scan_state();
3249   pss->trim_queue();
3250   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3251   do {
3252     EventGCPhaseParallel event;
3253     pss->steal_and_trim_queue(queues());
3254     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3255   } while (!offer_termination());
3256 }
3257 
3258 class G1ParTask : public AbstractGangTask {
3259 protected:
3260   G1CollectedHeap*         _g1h;
3261   G1ParScanThreadStateSet* _pss;
3262   RefToScanQueueSet*       _queues;
3263   G1RootProcessor*         _root_processor;
3264   TaskTerminator           _terminator;
3265   uint                     _n_workers;
3266 
3267 public:
G1ParTask(G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,RefToScanQueueSet * task_queues,G1RootProcessor * root_processor,uint n_workers)3268   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3269     : AbstractGangTask("G1 collection"),
3270       _g1h(g1h),
3271       _pss(per_thread_states),
3272       _queues(task_queues),
3273       _root_processor(root_processor),
3274       _terminator(n_workers, _queues),
3275       _n_workers(n_workers)
3276   {}
3277 
work(uint worker_id)3278   void work(uint worker_id) {
3279     if (worker_id >= _n_workers) return;  // no work needed this round
3280 
3281     double start_sec = os::elapsedTime();
3282     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3283 
3284     {
3285       ResourceMark rm;
3286       HandleMark   hm;
3287 
3288       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3289 
3290       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3291       pss->set_ref_discoverer(rp);
3292 
3293       double start_strong_roots_sec = os::elapsedTime();
3294 
3295       _root_processor->evacuate_roots(pss, worker_id);
3296 
3297       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3298       // treating the nmethods visited to act as roots for concurrent marking.
3299       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3300       // objects copied by the current evacuation.
3301       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3302 
3303       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3304 
3305       double term_sec = 0.0;
3306       size_t evac_term_attempts = 0;
3307       {
3308         double start = os::elapsedTime();
3309         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, _terminator.terminator(), G1GCPhaseTimes::ObjCopy);
3310         evac.do_void();
3311 
3312         evac_term_attempts = evac.term_attempts();
3313         term_sec = evac.term_time();
3314         double elapsed_sec = os::elapsedTime() - start;
3315 
3316         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3317         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3318         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3319         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3320       }
3321 
3322       assert(pss->queue_is_empty(), "should be empty");
3323 
3324       if (log_is_enabled(Debug, gc, task, stats)) {
3325         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3326         size_t lab_waste;
3327         size_t lab_undo_waste;
3328         pss->waste(lab_waste, lab_undo_waste);
3329         _g1h->print_termination_stats(worker_id,
3330                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3331                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3332                                       term_sec * 1000.0,                          /* evac term time */
3333                                       evac_term_attempts,                         /* evac term attempts */
3334                                       lab_waste,                                  /* alloc buffer waste */
3335                                       lab_undo_waste                              /* undo waste */
3336                                       );
3337       }
3338 
3339       // Close the inner scope so that the ResourceMark and HandleMark
3340       // destructors are executed here and are included as part of the
3341       // "GC Worker Time".
3342     }
3343     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3344   }
3345 };
3346 
print_termination_stats_hdr()3347 void G1CollectedHeap::print_termination_stats_hdr() {
3348   log_debug(gc, task, stats)("GC Termination Stats");
3349   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3350   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3351   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3352 }
3353 
print_termination_stats(uint worker_id,double elapsed_ms,double strong_roots_ms,double term_ms,size_t term_attempts,size_t alloc_buffer_waste,size_t undo_waste) const3354 void G1CollectedHeap::print_termination_stats(uint worker_id,
3355                                               double elapsed_ms,
3356                                               double strong_roots_ms,
3357                                               double term_ms,
3358                                               size_t term_attempts,
3359                                               size_t alloc_buffer_waste,
3360                                               size_t undo_waste) const {
3361   log_debug(gc, task, stats)
3362               ("%3d %9.2f %9.2f %6.2f "
3363                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3364                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3365                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3366                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3367                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3368                alloc_buffer_waste * HeapWordSize / K,
3369                undo_waste * HeapWordSize / K);
3370 }
3371 
complete_cleaning(BoolObjectClosure * is_alive,bool class_unloading_occurred)3372 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3373                                         bool class_unloading_occurred) {
3374   uint n_workers = workers()->active_workers();
3375 
3376   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3377   ParallelCleaningTask g1_unlink_task(is_alive, &dedup_closure, n_workers, class_unloading_occurred);
3378   workers()->run_task(&g1_unlink_task);
3379 }
3380 
partial_cleaning(BoolObjectClosure * is_alive,bool process_strings,bool process_string_dedup)3381 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3382                                        bool process_strings,
3383                                        bool process_string_dedup) {
3384   if (!process_strings && !process_string_dedup) {
3385     // Nothing to clean.
3386     return;
3387   }
3388 
3389   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3390   StringCleaningTask g1_unlink_task(is_alive, process_string_dedup ? &dedup_closure : NULL, process_strings);
3391   workers()->run_task(&g1_unlink_task);
3392 }
3393 
3394 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3395  private:
3396   DirtyCardQueueSet* _queue;
3397   G1CollectedHeap* _g1h;
3398  public:
G1RedirtyLoggedCardsTask(DirtyCardQueueSet * queue,G1CollectedHeap * g1h)3399   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3400     _queue(queue), _g1h(g1h) { }
3401 
work(uint worker_id)3402   virtual void work(uint worker_id) {
3403     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3404     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3405 
3406     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3407     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3408 
3409     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3410   }
3411 };
3412 
redirty_logged_cards()3413 void G1CollectedHeap::redirty_logged_cards() {
3414   double redirty_logged_cards_start = os::elapsedTime();
3415 
3416   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3417   dirty_card_queue_set().reset_for_par_iteration();
3418   workers()->run_task(&redirty_task);
3419 
3420   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3421   dcq.merge_bufferlists(&dirty_card_queue_set());
3422   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3423 
3424   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3425 }
3426 
3427 // Weak Reference Processing support
3428 
do_object_b(oop p)3429 bool G1STWIsAliveClosure::do_object_b(oop p) {
3430   // An object is reachable if it is outside the collection set,
3431   // or is inside and copied.
3432   return !_g1h->is_in_cset(p) || p->is_forwarded();
3433 }
3434 
do_object_b(oop obj)3435 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3436   assert(obj != NULL, "must not be NULL");
3437   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3438   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3439   // may falsely indicate that this is not the case here: however the collection set only
3440   // contains old regions when concurrent mark is not running.
3441   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3442 }
3443 
3444 // Non Copying Keep Alive closure
3445 class G1KeepAliveClosure: public OopClosure {
3446   G1CollectedHeap*_g1h;
3447 public:
G1KeepAliveClosure(G1CollectedHeap * g1h)3448   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
do_oop(narrowOop * p)3449   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
do_oop(oop * p)3450   void do_oop(oop* p) {
3451     oop obj = *p;
3452     assert(obj != NULL, "the caller should have filtered out NULL values");
3453 
3454     const InCSetState cset_state =_g1h->in_cset_state(obj);
3455     if (!cset_state.is_in_cset_or_humongous()) {
3456       return;
3457     }
3458     if (cset_state.is_in_cset()) {
3459       assert( obj->is_forwarded(), "invariant" );
3460       *p = obj->forwardee();
3461     } else {
3462       assert(!obj->is_forwarded(), "invariant" );
3463       assert(cset_state.is_humongous(),
3464              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3465      _g1h->set_humongous_is_live(obj);
3466     }
3467   }
3468 };
3469 
3470 // Copying Keep Alive closure - can be called from both
3471 // serial and parallel code as long as different worker
3472 // threads utilize different G1ParScanThreadState instances
3473 // and different queues.
3474 
3475 class G1CopyingKeepAliveClosure: public OopClosure {
3476   G1CollectedHeap*         _g1h;
3477   G1ParScanThreadState*    _par_scan_state;
3478 
3479 public:
G1CopyingKeepAliveClosure(G1CollectedHeap * g1h,G1ParScanThreadState * pss)3480   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3481                             G1ParScanThreadState* pss):
3482     _g1h(g1h),
3483     _par_scan_state(pss)
3484   {}
3485 
do_oop(narrowOop * p)3486   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
do_oop(oop * p)3487   virtual void do_oop(      oop* p) { do_oop_work(p); }
3488 
do_oop_work(T * p)3489   template <class T> void do_oop_work(T* p) {
3490     oop obj = RawAccess<>::oop_load(p);
3491 
3492     if (_g1h->is_in_cset_or_humongous(obj)) {
3493       // If the referent object has been forwarded (either copied
3494       // to a new location or to itself in the event of an
3495       // evacuation failure) then we need to update the reference
3496       // field and, if both reference and referent are in the G1
3497       // heap, update the RSet for the referent.
3498       //
3499       // If the referent has not been forwarded then we have to keep
3500       // it alive by policy. Therefore we have copy the referent.
3501       //
3502       // When the queue is drained (after each phase of reference processing)
3503       // the object and it's followers will be copied, the reference field set
3504       // to point to the new location, and the RSet updated.
3505       _par_scan_state->push_on_queue(p);
3506     }
3507   }
3508 };
3509 
3510 // Serial drain queue closure. Called as the 'complete_gc'
3511 // closure for each discovered list in some of the
3512 // reference processing phases.
3513 
3514 class G1STWDrainQueueClosure: public VoidClosure {
3515 protected:
3516   G1CollectedHeap* _g1h;
3517   G1ParScanThreadState* _par_scan_state;
3518 
par_scan_state()3519   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3520 
3521 public:
G1STWDrainQueueClosure(G1CollectedHeap * g1h,G1ParScanThreadState * pss)3522   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3523     _g1h(g1h),
3524     _par_scan_state(pss)
3525   { }
3526 
do_void()3527   void do_void() {
3528     G1ParScanThreadState* const pss = par_scan_state();
3529     pss->trim_queue();
3530   }
3531 };
3532 
3533 // Parallel Reference Processing closures
3534 
3535 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3536 // processing during G1 evacuation pauses.
3537 
3538 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3539 private:
3540   G1CollectedHeap*          _g1h;
3541   G1ParScanThreadStateSet*  _pss;
3542   RefToScanQueueSet*        _queues;
3543   WorkGang*                 _workers;
3544 
3545 public:
G1STWRefProcTaskExecutor(G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,WorkGang * workers,RefToScanQueueSet * task_queues)3546   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3547                            G1ParScanThreadStateSet* per_thread_states,
3548                            WorkGang* workers,
3549                            RefToScanQueueSet *task_queues) :
3550     _g1h(g1h),
3551     _pss(per_thread_states),
3552     _queues(task_queues),
3553     _workers(workers)
3554   {
3555     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3556   }
3557 
3558   // Executes the given task using concurrent marking worker threads.
3559   virtual void execute(ProcessTask& task, uint ergo_workers);
3560 };
3561 
3562 // Gang task for possibly parallel reference processing
3563 
3564 class G1STWRefProcTaskProxy: public AbstractGangTask {
3565   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3566   ProcessTask&     _proc_task;
3567   G1CollectedHeap* _g1h;
3568   G1ParScanThreadStateSet* _pss;
3569   RefToScanQueueSet* _task_queues;
3570   ParallelTaskTerminator* _terminator;
3571 
3572 public:
G1STWRefProcTaskProxy(ProcessTask & proc_task,G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,RefToScanQueueSet * task_queues,ParallelTaskTerminator * terminator)3573   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3574                         G1CollectedHeap* g1h,
3575                         G1ParScanThreadStateSet* per_thread_states,
3576                         RefToScanQueueSet *task_queues,
3577                         ParallelTaskTerminator* terminator) :
3578     AbstractGangTask("Process reference objects in parallel"),
3579     _proc_task(proc_task),
3580     _g1h(g1h),
3581     _pss(per_thread_states),
3582     _task_queues(task_queues),
3583     _terminator(terminator)
3584   {}
3585 
work(uint worker_id)3586   virtual void work(uint worker_id) {
3587     // The reference processing task executed by a single worker.
3588     ResourceMark rm;
3589     HandleMark   hm;
3590 
3591     G1STWIsAliveClosure is_alive(_g1h);
3592 
3593     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3594     pss->set_ref_discoverer(NULL);
3595 
3596     // Keep alive closure.
3597     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3598 
3599     // Complete GC closure
3600     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3601 
3602     // Call the reference processing task's work routine.
3603     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3604 
3605     // Note we cannot assert that the refs array is empty here as not all
3606     // of the processing tasks (specifically phase2 - pp2_work) execute
3607     // the complete_gc closure (which ordinarily would drain the queue) so
3608     // the queue may not be empty.
3609   }
3610 };
3611 
3612 // Driver routine for parallel reference processing.
3613 // Creates an instance of the ref processing gang
3614 // task and has the worker threads execute it.
execute(ProcessTask & proc_task,uint ergo_workers)3615 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3616   assert(_workers != NULL, "Need parallel worker threads.");
3617 
3618   assert(_workers->active_workers() >= ergo_workers,
3619          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3620          ergo_workers, _workers->active_workers());
3621   TaskTerminator terminator(ergo_workers, _queues);
3622   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3623 
3624   _workers->run_task(&proc_task_proxy, ergo_workers);
3625 }
3626 
3627 // End of weak reference support closures
3628 
process_discovered_references(G1ParScanThreadStateSet * per_thread_states)3629 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3630   double ref_proc_start = os::elapsedTime();
3631 
3632   ReferenceProcessor* rp = _ref_processor_stw;
3633   assert(rp->discovery_enabled(), "should have been enabled");
3634 
3635   // Closure to test whether a referent is alive.
3636   G1STWIsAliveClosure is_alive(this);
3637 
3638   // Even when parallel reference processing is enabled, the processing
3639   // of JNI refs is serial and performed serially by the current thread
3640   // rather than by a worker. The following PSS will be used for processing
3641   // JNI refs.
3642 
3643   // Use only a single queue for this PSS.
3644   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3645   pss->set_ref_discoverer(NULL);
3646   assert(pss->queue_is_empty(), "pre-condition");
3647 
3648   // Keep alive closure.
3649   G1CopyingKeepAliveClosure keep_alive(this, pss);
3650 
3651   // Serial Complete GC closure
3652   G1STWDrainQueueClosure drain_queue(this, pss);
3653 
3654   // Setup the soft refs policy...
3655   rp->setup_policy(false);
3656 
3657   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3658 
3659   ReferenceProcessorStats stats;
3660   if (!rp->processing_is_mt()) {
3661     // Serial reference processing...
3662     stats = rp->process_discovered_references(&is_alive,
3663                                               &keep_alive,
3664                                               &drain_queue,
3665                                               NULL,
3666                                               pt);
3667   } else {
3668     uint no_of_gc_workers = workers()->active_workers();
3669 
3670     // Parallel reference processing
3671     assert(no_of_gc_workers <= rp->max_num_queues(),
3672            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3673            no_of_gc_workers,  rp->max_num_queues());
3674 
3675     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3676     stats = rp->process_discovered_references(&is_alive,
3677                                               &keep_alive,
3678                                               &drain_queue,
3679                                               &par_task_executor,
3680                                               pt);
3681   }
3682 
3683   _gc_tracer_stw->report_gc_reference_stats(stats);
3684 
3685   // We have completed copying any necessary live referent objects.
3686   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3687 
3688   make_pending_list_reachable();
3689 
3690   rp->verify_no_references_recorded();
3691 
3692   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3693   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3694 }
3695 
make_pending_list_reachable()3696 void G1CollectedHeap::make_pending_list_reachable() {
3697   if (collector_state()->in_initial_mark_gc()) {
3698     oop pll_head = Universe::reference_pending_list();
3699     if (pll_head != NULL) {
3700       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3701       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3702     }
3703   }
3704 }
3705 
merge_per_thread_state_info(G1ParScanThreadStateSet * per_thread_states)3706 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3707   double merge_pss_time_start = os::elapsedTime();
3708   per_thread_states->flush();
3709   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3710 }
3711 
pre_evacuate_collection_set()3712 void G1CollectedHeap::pre_evacuate_collection_set() {
3713   _expand_heap_after_alloc_failure = true;
3714   _evacuation_failed = false;
3715 
3716   // Disable the hot card cache.
3717   _hot_card_cache->reset_hot_cache_claimed_index();
3718   _hot_card_cache->set_use_cache(false);
3719 
3720   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3721   _preserved_marks_set.assert_empty();
3722 
3723   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3724 
3725   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3726   if (collector_state()->in_initial_mark_gc()) {
3727     double start_clear_claimed_marks = os::elapsedTime();
3728 
3729     ClassLoaderDataGraph::clear_claimed_marks();
3730 
3731     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3732     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3733   }
3734 }
3735 
evacuate_collection_set(G1ParScanThreadStateSet * per_thread_states)3736 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3737   // Should G1EvacuationFailureALot be in effect for this GC?
3738   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3739 
3740   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3741 
3742   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3743 
3744   double start_par_time_sec = os::elapsedTime();
3745   double end_par_time_sec;
3746 
3747   {
3748     const uint n_workers = workers()->active_workers();
3749     G1RootProcessor root_processor(this, n_workers);
3750     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3751 
3752     print_termination_stats_hdr();
3753 
3754     workers()->run_task(&g1_par_task);
3755     end_par_time_sec = os::elapsedTime();
3756 
3757     // Closing the inner scope will execute the destructor
3758     // for the G1RootProcessor object. We record the current
3759     // elapsed time before closing the scope so that time
3760     // taken for the destructor is NOT included in the
3761     // reported parallel time.
3762   }
3763 
3764   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3765   phase_times->record_par_time(par_time_ms);
3766 
3767   double code_root_fixup_time_ms =
3768         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3769   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3770 }
3771 
3772 class G1EvacuateOptionalRegionTask : public AbstractGangTask {
3773   G1CollectedHeap* _g1h;
3774   G1ParScanThreadStateSet* _per_thread_states;
3775   G1OptionalCSet* _optional;
3776   RefToScanQueueSet* _queues;
3777   ParallelTaskTerminator _terminator;
3778 
trim_ticks(G1ParScanThreadState * pss)3779   Tickspan trim_ticks(G1ParScanThreadState* pss) {
3780     Tickspan copy_time = pss->trim_ticks();
3781     pss->reset_trim_ticks();
3782     return copy_time;
3783   }
3784 
scan_roots(G1ParScanThreadState * pss,uint worker_id)3785   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3786     G1EvacuationRootClosures* root_cls = pss->closures();
3787     G1ScanObjsDuringScanRSClosure obj_cl(_g1h, pss);
3788 
3789     size_t scanned = 0;
3790     size_t claimed = 0;
3791     size_t skipped = 0;
3792     size_t used_memory = 0;
3793 
3794     Ticks    start = Ticks::now();
3795     Tickspan copy_time;
3796 
3797     for (uint i = _optional->current_index(); i < _optional->current_limit(); i++) {
3798       HeapRegion* hr = _optional->region_at(i);
3799       G1ScanRSForOptionalClosure scan_opt_cl(&obj_cl);
3800       pss->oops_into_optional_region(hr)->oops_do(&scan_opt_cl, root_cls->raw_strong_oops());
3801       copy_time += trim_ticks(pss);
3802 
3803       G1ScanRSForRegionClosure scan_rs_cl(_g1h->g1_rem_set()->scan_state(), &obj_cl, pss, G1GCPhaseTimes::OptScanRS, worker_id);
3804       scan_rs_cl.do_heap_region(hr);
3805       copy_time += trim_ticks(pss);
3806       scanned += scan_rs_cl.cards_scanned();
3807       claimed += scan_rs_cl.cards_claimed();
3808       skipped += scan_rs_cl.cards_skipped();
3809 
3810       // Chunk lists for this region is no longer needed.
3811       used_memory += pss->oops_into_optional_region(hr)->used_memory();
3812     }
3813 
3814     Tickspan scan_time = (Ticks::now() - start) - copy_time;
3815     G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3816     p->record_or_add_time_secs(G1GCPhaseTimes::OptScanRS, worker_id, scan_time.seconds());
3817     p->record_or_add_time_secs(G1GCPhaseTimes::OptObjCopy, worker_id, copy_time.seconds());
3818 
3819     p->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_id, scanned, G1GCPhaseTimes::OptCSetScannedCards);
3820     p->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_id, claimed, G1GCPhaseTimes::OptCSetClaimedCards);
3821     p->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_id, skipped, G1GCPhaseTimes::OptCSetSkippedCards);
3822     p->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_id, used_memory, G1GCPhaseTimes::OptCSetUsedMemory);
3823   }
3824 
evacuate_live_objects(G1ParScanThreadState * pss,uint worker_id)3825   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3826     Ticks start = Ticks::now();
3827     G1ParEvacuateFollowersClosure cl(_g1h, pss, _queues, &_terminator, G1GCPhaseTimes::OptObjCopy);
3828     cl.do_void();
3829 
3830     Tickspan evac_time = (Ticks::now() - start);
3831     G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3832     p->record_or_add_time_secs(G1GCPhaseTimes::OptObjCopy, worker_id, evac_time.seconds());
3833     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming done during optional evacuation");
3834   }
3835 
3836  public:
G1EvacuateOptionalRegionTask(G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,G1OptionalCSet * cset,RefToScanQueueSet * queues,uint n_workers)3837   G1EvacuateOptionalRegionTask(G1CollectedHeap* g1h,
3838                                G1ParScanThreadStateSet* per_thread_states,
3839                                G1OptionalCSet* cset,
3840                                RefToScanQueueSet* queues,
3841                                uint n_workers) :
3842     AbstractGangTask("G1 Evacuation Optional Region Task"),
3843     _g1h(g1h),
3844     _per_thread_states(per_thread_states),
3845     _optional(cset),
3846     _queues(queues),
3847     _terminator(n_workers, _queues) {
3848   }
3849 
work(uint worker_id)3850   void work(uint worker_id) {
3851     ResourceMark rm;
3852     HandleMark  hm;
3853 
3854     G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3855     pss->set_ref_discoverer(_g1h->ref_processor_stw());
3856 
3857     scan_roots(pss, worker_id);
3858     evacuate_live_objects(pss, worker_id);
3859   }
3860 };
3861 
evacuate_optional_regions(G1ParScanThreadStateSet * per_thread_states,G1OptionalCSet * ocset)3862 void G1CollectedHeap::evacuate_optional_regions(G1ParScanThreadStateSet* per_thread_states, G1OptionalCSet* ocset) {
3863   class G1MarkScope : public MarkScope {};
3864   G1MarkScope code_mark_scope;
3865 
3866   G1EvacuateOptionalRegionTask task(this, per_thread_states, ocset, _task_queues, workers()->active_workers());
3867   workers()->run_task(&task);
3868 }
3869 
evacuate_optional_collection_set(G1ParScanThreadStateSet * per_thread_states)3870 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3871   G1OptionalCSet optional_cset(&_collection_set, per_thread_states);
3872   if (optional_cset.is_empty()) {
3873     return;
3874   }
3875 
3876   if (evacuation_failed()) {
3877     return;
3878   }
3879 
3880   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3881   const double gc_start_time_ms = phase_times->cur_collection_start_sec() * 1000.0;
3882 
3883   double start_time_sec = os::elapsedTime();
3884 
3885   do {
3886     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3887     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3888 
3889     if (time_left_ms < 0) {
3890       log_trace(gc, ergo, cset)("Skipping %u optional regions, pause time exceeded %.3fms", optional_cset.size(), time_used_ms);
3891       break;
3892     }
3893 
3894     optional_cset.prepare_evacuation(time_left_ms * _g1_policy->optional_evacuation_fraction());
3895     if (optional_cset.prepare_failed()) {
3896       log_trace(gc, ergo, cset)("Skipping %u optional regions, no regions can be evacuated in %.3fms", optional_cset.size(), time_left_ms);
3897       break;
3898     }
3899 
3900     evacuate_optional_regions(per_thread_states, &optional_cset);
3901 
3902     optional_cset.complete_evacuation();
3903     if (optional_cset.evacuation_failed()) {
3904       break;
3905     }
3906   } while (!optional_cset.is_empty());
3907 
3908   phase_times->record_optional_evacuation((os::elapsedTime() - start_time_sec) * 1000.0);
3909 }
3910 
post_evacuate_collection_set(EvacuationInfo & evacuation_info,G1ParScanThreadStateSet * per_thread_states)3911 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3912   // Also cleans the card table from temporary duplicate detection information used
3913   // during UpdateRS/ScanRS.
3914   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
3915 
3916   // Process any discovered reference objects - we have
3917   // to do this _before_ we retire the GC alloc regions
3918   // as we may have to copy some 'reachable' referent
3919   // objects (and their reachable sub-graphs) that were
3920   // not copied during the pause.
3921   process_discovered_references(per_thread_states);
3922 
3923   // FIXME
3924   // CM's reference processing also cleans up the string table.
3925   // Should we do that here also? We could, but it is a serial operation
3926   // and could significantly increase the pause time.
3927 
3928   G1STWIsAliveClosure is_alive(this);
3929   G1KeepAliveClosure keep_alive(this);
3930 
3931   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3932                               g1_policy()->phase_times()->weak_phase_times());
3933 
3934   if (G1StringDedup::is_enabled()) {
3935     double fixup_start = os::elapsedTime();
3936 
3937     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
3938 
3939     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
3940     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
3941   }
3942 
3943   if (evacuation_failed()) {
3944     restore_after_evac_failure();
3945 
3946     // Reset the G1EvacuationFailureALot counters and flags
3947     // Note: the values are reset only when an actual
3948     // evacuation failure occurs.
3949     NOT_PRODUCT(reset_evacuation_should_fail();)
3950   }
3951 
3952   _preserved_marks_set.assert_empty();
3953 
3954   _allocator->release_gc_alloc_regions(evacuation_info);
3955 
3956   merge_per_thread_state_info(per_thread_states);
3957 
3958   // Reset and re-enable the hot card cache.
3959   // Note the counts for the cards in the regions in the
3960   // collection set are reset when the collection set is freed.
3961   _hot_card_cache->reset_hot_cache();
3962   _hot_card_cache->set_use_cache(true);
3963 
3964   purge_code_root_memory();
3965 
3966   redirty_logged_cards();
3967 #if COMPILER2_OR_JVMCI
3968   double start = os::elapsedTime();
3969   DerivedPointerTable::update_pointers();
3970   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3971 #endif
3972   g1_policy()->print_age_table();
3973 }
3974 
record_obj_copy_mem_stats()3975 void G1CollectedHeap::record_obj_copy_mem_stats() {
3976   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3977 
3978   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3979                                                create_g1_evac_summary(&_old_evac_stats));
3980 }
3981 
free_region(HeapRegion * hr,FreeRegionList * free_list,bool skip_remset,bool skip_hot_card_cache,bool locked)3982 void G1CollectedHeap::free_region(HeapRegion* hr,
3983                                   FreeRegionList* free_list,
3984                                   bool skip_remset,
3985                                   bool skip_hot_card_cache,
3986                                   bool locked) {
3987   assert(!hr->is_free(), "the region should not be free");
3988   assert(!hr->is_empty(), "the region should not be empty");
3989   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3990   assert(free_list != NULL, "pre-condition");
3991 
3992   if (G1VerifyBitmaps) {
3993     MemRegion mr(hr->bottom(), hr->end());
3994     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3995   }
3996 
3997   // Clear the card counts for this region.
3998   // Note: we only need to do this if the region is not young
3999   // (since we don't refine cards in young regions).
4000   if (!skip_hot_card_cache && !hr->is_young()) {
4001     _hot_card_cache->reset_card_counts(hr);
4002   }
4003   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4004   _g1_policy->remset_tracker()->update_at_free(hr);
4005   free_list->add_ordered(hr);
4006 }
4007 
free_humongous_region(HeapRegion * hr,FreeRegionList * free_list)4008 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4009                                             FreeRegionList* free_list) {
4010   assert(hr->is_humongous(), "this is only for humongous regions");
4011   assert(free_list != NULL, "pre-condition");
4012   hr->clear_humongous();
4013   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4014 }
4015 
remove_from_old_sets(const uint old_regions_removed,const uint humongous_regions_removed)4016 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4017                                            const uint humongous_regions_removed) {
4018   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4019     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4020     _old_set.bulk_remove(old_regions_removed);
4021     _humongous_set.bulk_remove(humongous_regions_removed);
4022   }
4023 
4024 }
4025 
prepend_to_freelist(FreeRegionList * list)4026 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4027   assert(list != NULL, "list can't be null");
4028   if (!list->is_empty()) {
4029     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4030     _hrm->insert_list_into_free_list(list);
4031   }
4032 }
4033 
decrement_summary_bytes(size_t bytes)4034 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4035   decrease_used(bytes);
4036 }
4037 
4038 class G1FreeCollectionSetTask : public AbstractGangTask {
4039 private:
4040 
4041   // Closure applied to all regions in the collection set to do work that needs to
4042   // be done serially in a single thread.
4043   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4044   private:
4045     EvacuationInfo* _evacuation_info;
4046     const size_t* _surviving_young_words;
4047 
4048     // Bytes used in successfully evacuated regions before the evacuation.
4049     size_t _before_used_bytes;
4050     // Bytes used in unsucessfully evacuated regions before the evacuation
4051     size_t _after_used_bytes;
4052 
4053     size_t _bytes_allocated_in_old_since_last_gc;
4054 
4055     size_t _failure_used_words;
4056     size_t _failure_waste_words;
4057 
4058     FreeRegionList _local_free_list;
4059   public:
G1SerialFreeCollectionSetClosure(EvacuationInfo * evacuation_info,const size_t * surviving_young_words)4060     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4061       HeapRegionClosure(),
4062       _evacuation_info(evacuation_info),
4063       _surviving_young_words(surviving_young_words),
4064       _before_used_bytes(0),
4065       _after_used_bytes(0),
4066       _bytes_allocated_in_old_since_last_gc(0),
4067       _failure_used_words(0),
4068       _failure_waste_words(0),
4069       _local_free_list("Local Region List for CSet Freeing") {
4070     }
4071 
do_heap_region(HeapRegion * r)4072     virtual bool do_heap_region(HeapRegion* r) {
4073       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4074 
4075       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4076       g1h->clear_in_cset(r);
4077 
4078       if (r->is_young()) {
4079         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4080                "Young index %d is wrong for region %u of type %s with %u young regions",
4081                r->young_index_in_cset(),
4082                r->hrm_index(),
4083                r->get_type_str(),
4084                g1h->collection_set()->young_region_length());
4085         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4086         r->record_surv_words_in_group(words_survived);
4087       }
4088 
4089       if (!r->evacuation_failed()) {
4090         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4091         _before_used_bytes += r->used();
4092         g1h->free_region(r,
4093                          &_local_free_list,
4094                          true, /* skip_remset */
4095                          true, /* skip_hot_card_cache */
4096                          true  /* locked */);
4097       } else {
4098         r->uninstall_surv_rate_group();
4099         r->set_young_index_in_cset(-1);
4100         r->set_evacuation_failed(false);
4101         // When moving a young gen region to old gen, we "allocate" that whole region
4102         // there. This is in addition to any already evacuated objects. Notify the
4103         // policy about that.
4104         // Old gen regions do not cause an additional allocation: both the objects
4105         // still in the region and the ones already moved are accounted for elsewhere.
4106         if (r->is_young()) {
4107           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4108         }
4109         // The region is now considered to be old.
4110         r->set_old();
4111         // Do some allocation statistics accounting. Regions that failed evacuation
4112         // are always made old, so there is no need to update anything in the young
4113         // gen statistics, but we need to update old gen statistics.
4114         size_t used_words = r->marked_bytes() / HeapWordSize;
4115 
4116         _failure_used_words += used_words;
4117         _failure_waste_words += HeapRegion::GrainWords - used_words;
4118 
4119         g1h->old_set_add(r);
4120         _after_used_bytes += r->used();
4121       }
4122       return false;
4123     }
4124 
complete_work()4125     void complete_work() {
4126       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4127 
4128       _evacuation_info->set_regions_freed(_local_free_list.length());
4129       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4130 
4131       g1h->prepend_to_freelist(&_local_free_list);
4132       g1h->decrement_summary_bytes(_before_used_bytes);
4133 
4134       G1Policy* policy = g1h->g1_policy();
4135       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4136 
4137       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4138     }
4139   };
4140 
4141   G1CollectionSet* _collection_set;
4142   G1SerialFreeCollectionSetClosure _cl;
4143   const size_t* _surviving_young_words;
4144 
4145   size_t _rs_lengths;
4146 
4147   volatile jint _serial_work_claim;
4148 
4149   struct WorkItem {
4150     uint region_idx;
4151     bool is_young;
4152     bool evacuation_failed;
4153 
WorkItemG1FreeCollectionSetTask::WorkItem4154     WorkItem(HeapRegion* r) {
4155       region_idx = r->hrm_index();
4156       is_young = r->is_young();
4157       evacuation_failed = r->evacuation_failed();
4158     }
4159   };
4160 
4161   volatile size_t _parallel_work_claim;
4162   size_t _num_work_items;
4163   WorkItem* _work_items;
4164 
do_serial_work()4165   void do_serial_work() {
4166     // Need to grab the lock to be allowed to modify the old region list.
4167     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4168     _collection_set->iterate(&_cl);
4169   }
4170 
do_parallel_work_for_region(uint region_idx,bool is_young,bool evacuation_failed)4171   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4172     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4173 
4174     HeapRegion* r = g1h->region_at(region_idx);
4175     assert(!g1h->is_on_master_free_list(r), "sanity");
4176 
4177     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4178 
4179     if (!is_young) {
4180       g1h->_hot_card_cache->reset_card_counts(r);
4181     }
4182 
4183     if (!evacuation_failed) {
4184       r->rem_set()->clear_locked();
4185     }
4186   }
4187 
4188   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4189   private:
4190     size_t _cur_idx;
4191     WorkItem* _work_items;
4192   public:
G1PrepareFreeCollectionSetClosure(WorkItem * work_items)4193     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4194 
do_heap_region(HeapRegion * r)4195     virtual bool do_heap_region(HeapRegion* r) {
4196       _work_items[_cur_idx++] = WorkItem(r);
4197       return false;
4198     }
4199   };
4200 
prepare_work()4201   void prepare_work() {
4202     G1PrepareFreeCollectionSetClosure cl(_work_items);
4203     _collection_set->iterate(&cl);
4204   }
4205 
complete_work()4206   void complete_work() {
4207     _cl.complete_work();
4208 
4209     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4210     policy->record_max_rs_lengths(_rs_lengths);
4211     policy->cset_regions_freed();
4212   }
4213 public:
G1FreeCollectionSetTask(G1CollectionSet * collection_set,EvacuationInfo * evacuation_info,const size_t * surviving_young_words)4214   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4215     AbstractGangTask("G1 Free Collection Set"),
4216     _collection_set(collection_set),
4217     _cl(evacuation_info, surviving_young_words),
4218     _surviving_young_words(surviving_young_words),
4219     _rs_lengths(0),
4220     _serial_work_claim(0),
4221     _parallel_work_claim(0),
4222     _num_work_items(collection_set->region_length()),
4223     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4224     prepare_work();
4225   }
4226 
~G1FreeCollectionSetTask()4227   ~G1FreeCollectionSetTask() {
4228     complete_work();
4229     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4230   }
4231 
4232   // Chunk size for work distribution. The chosen value has been determined experimentally
4233   // to be a good tradeoff between overhead and achievable parallelism.
chunk_size()4234   static uint chunk_size() { return 32; }
4235 
work(uint worker_id)4236   virtual void work(uint worker_id) {
4237     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4238 
4239     // Claim serial work.
4240     if (_serial_work_claim == 0) {
4241       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4242       if (value == 0) {
4243         double serial_time = os::elapsedTime();
4244         do_serial_work();
4245         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4246       }
4247     }
4248 
4249     // Start parallel work.
4250     double young_time = 0.0;
4251     bool has_young_time = false;
4252     double non_young_time = 0.0;
4253     bool has_non_young_time = false;
4254 
4255     while (true) {
4256       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4257       size_t cur = end - chunk_size();
4258 
4259       if (cur >= _num_work_items) {
4260         break;
4261       }
4262 
4263       EventGCPhaseParallel event;
4264       double start_time = os::elapsedTime();
4265 
4266       end = MIN2(end, _num_work_items);
4267 
4268       for (; cur < end; cur++) {
4269         bool is_young = _work_items[cur].is_young;
4270 
4271         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4272 
4273         double end_time = os::elapsedTime();
4274         double time_taken = end_time - start_time;
4275         if (is_young) {
4276           young_time += time_taken;
4277           has_young_time = true;
4278           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4279         } else {
4280           non_young_time += time_taken;
4281           has_non_young_time = true;
4282           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4283         }
4284         start_time = end_time;
4285       }
4286     }
4287 
4288     if (has_young_time) {
4289       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4290     }
4291     if (has_non_young_time) {
4292       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4293     }
4294   }
4295 };
4296 
free_collection_set(G1CollectionSet * collection_set,EvacuationInfo & evacuation_info,const size_t * surviving_young_words)4297 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4298   _eden.clear();
4299 
4300   double free_cset_start_time = os::elapsedTime();
4301 
4302   {
4303     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4304     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4305 
4306     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4307 
4308     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4309                         cl.name(),
4310                         num_workers,
4311                         _collection_set.region_length());
4312     workers()->run_task(&cl, num_workers);
4313   }
4314   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4315 
4316   collection_set->clear();
4317 }
4318 
4319 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4320  private:
4321   FreeRegionList* _free_region_list;
4322   HeapRegionSet* _proxy_set;
4323   uint _humongous_objects_reclaimed;
4324   uint _humongous_regions_reclaimed;
4325   size_t _freed_bytes;
4326  public:
4327 
G1FreeHumongousRegionClosure(FreeRegionList * free_region_list)4328   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4329     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4330   }
4331 
do_heap_region(HeapRegion * r)4332   virtual bool do_heap_region(HeapRegion* r) {
4333     if (!r->is_starts_humongous()) {
4334       return false;
4335     }
4336 
4337     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4338 
4339     oop obj = (oop)r->bottom();
4340     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4341 
4342     // The following checks whether the humongous object is live are sufficient.
4343     // The main additional check (in addition to having a reference from the roots
4344     // or the young gen) is whether the humongous object has a remembered set entry.
4345     //
4346     // A humongous object cannot be live if there is no remembered set for it
4347     // because:
4348     // - there can be no references from within humongous starts regions referencing
4349     // the object because we never allocate other objects into them.
4350     // (I.e. there are no intra-region references that may be missed by the
4351     // remembered set)
4352     // - as soon there is a remembered set entry to the humongous starts region
4353     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4354     // until the end of a concurrent mark.
4355     //
4356     // It is not required to check whether the object has been found dead by marking
4357     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4358     // all objects allocated during that time are considered live.
4359     // SATB marking is even more conservative than the remembered set.
4360     // So if at this point in the collection there is no remembered set entry,
4361     // nobody has a reference to it.
4362     // At the start of collection we flush all refinement logs, and remembered sets
4363     // are completely up-to-date wrt to references to the humongous object.
4364     //
4365     // Other implementation considerations:
4366     // - never consider object arrays at this time because they would pose
4367     // considerable effort for cleaning up the the remembered sets. This is
4368     // required because stale remembered sets might reference locations that
4369     // are currently allocated into.
4370     uint region_idx = r->hrm_index();
4371     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4372         !r->rem_set()->is_empty()) {
4373       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4374                                region_idx,
4375                                (size_t)obj->size() * HeapWordSize,
4376                                p2i(r->bottom()),
4377                                r->rem_set()->occupied(),
4378                                r->rem_set()->strong_code_roots_list_length(),
4379                                next_bitmap->is_marked(r->bottom()),
4380                                g1h->is_humongous_reclaim_candidate(region_idx),
4381                                obj->is_typeArray()
4382                               );
4383       return false;
4384     }
4385 
4386     guarantee(obj->is_typeArray(),
4387               "Only eagerly reclaiming type arrays is supported, but the object "
4388               PTR_FORMAT " is not.", p2i(r->bottom()));
4389 
4390     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4391                              region_idx,
4392                              (size_t)obj->size() * HeapWordSize,
4393                              p2i(r->bottom()),
4394                              r->rem_set()->occupied(),
4395                              r->rem_set()->strong_code_roots_list_length(),
4396                              next_bitmap->is_marked(r->bottom()),
4397                              g1h->is_humongous_reclaim_candidate(region_idx),
4398                              obj->is_typeArray()
4399                             );
4400 
4401     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4402     cm->humongous_object_eagerly_reclaimed(r);
4403     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4404            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4405            region_idx,
4406            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4407            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4408     _humongous_objects_reclaimed++;
4409     do {
4410       HeapRegion* next = g1h->next_region_in_humongous(r);
4411       _freed_bytes += r->used();
4412       r->set_containing_set(NULL);
4413       _humongous_regions_reclaimed++;
4414       g1h->free_humongous_region(r, _free_region_list);
4415       r = next;
4416     } while (r != NULL);
4417 
4418     return false;
4419   }
4420 
humongous_objects_reclaimed()4421   uint humongous_objects_reclaimed() {
4422     return _humongous_objects_reclaimed;
4423   }
4424 
humongous_regions_reclaimed()4425   uint humongous_regions_reclaimed() {
4426     return _humongous_regions_reclaimed;
4427   }
4428 
bytes_freed() const4429   size_t bytes_freed() const {
4430     return _freed_bytes;
4431   }
4432 };
4433 
eagerly_reclaim_humongous_regions()4434 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4435   assert_at_safepoint_on_vm_thread();
4436 
4437   if (!G1EagerReclaimHumongousObjects ||
4438       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4439     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4440     return;
4441   }
4442 
4443   double start_time = os::elapsedTime();
4444 
4445   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4446 
4447   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4448   heap_region_iterate(&cl);
4449 
4450   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4451 
4452   G1HRPrinter* hrp = hr_printer();
4453   if (hrp->is_active()) {
4454     FreeRegionListIterator iter(&local_cleanup_list);
4455     while (iter.more_available()) {
4456       HeapRegion* hr = iter.get_next();
4457       hrp->cleanup(hr);
4458     }
4459   }
4460 
4461   prepend_to_freelist(&local_cleanup_list);
4462   decrement_summary_bytes(cl.bytes_freed());
4463 
4464   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4465                                                                     cl.humongous_objects_reclaimed());
4466 }
4467 
4468 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4469 public:
do_heap_region(HeapRegion * r)4470   virtual bool do_heap_region(HeapRegion* r) {
4471     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4472     G1CollectedHeap::heap()->clear_in_cset(r);
4473     r->set_young_index_in_cset(-1);
4474     return false;
4475   }
4476 };
4477 
abandon_collection_set(G1CollectionSet * collection_set)4478 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4479   G1AbandonCollectionSetClosure cl;
4480   collection_set->iterate(&cl);
4481 
4482   collection_set->clear();
4483   collection_set->stop_incremental_building();
4484 }
4485 
is_old_gc_alloc_region(HeapRegion * hr)4486 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4487   return _allocator->is_retained_old_region(hr);
4488 }
4489 
set_region_short_lived_locked(HeapRegion * hr)4490 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4491   _eden.add(hr);
4492   _g1_policy->set_region_eden(hr);
4493 }
4494 
4495 #ifdef ASSERT
4496 
4497 class NoYoungRegionsClosure: public HeapRegionClosure {
4498 private:
4499   bool _success;
4500 public:
NoYoungRegionsClosure()4501   NoYoungRegionsClosure() : _success(true) { }
do_heap_region(HeapRegion * r)4502   bool do_heap_region(HeapRegion* r) {
4503     if (r->is_young()) {
4504       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4505                             p2i(r->bottom()), p2i(r->end()));
4506       _success = false;
4507     }
4508     return false;
4509   }
success()4510   bool success() { return _success; }
4511 };
4512 
check_young_list_empty()4513 bool G1CollectedHeap::check_young_list_empty() {
4514   bool ret = (young_regions_count() == 0);
4515 
4516   NoYoungRegionsClosure closure;
4517   heap_region_iterate(&closure);
4518   ret = ret && closure.success();
4519 
4520   return ret;
4521 }
4522 
4523 #endif // ASSERT
4524 
4525 class TearDownRegionSetsClosure : public HeapRegionClosure {
4526   HeapRegionSet *_old_set;
4527 
4528 public:
TearDownRegionSetsClosure(HeapRegionSet * old_set)4529   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4530 
do_heap_region(HeapRegion * r)4531   bool do_heap_region(HeapRegion* r) {
4532     if (r->is_old()) {
4533       _old_set->remove(r);
4534     } else if(r->is_young()) {
4535       r->uninstall_surv_rate_group();
4536     } else {
4537       // We ignore free regions, we'll empty the free list afterwards.
4538       // We ignore humongous and archive regions, we're not tearing down these
4539       // sets.
4540       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4541              "it cannot be another type");
4542     }
4543     return false;
4544   }
4545 
~TearDownRegionSetsClosure()4546   ~TearDownRegionSetsClosure() {
4547     assert(_old_set->is_empty(), "post-condition");
4548   }
4549 };
4550 
tear_down_region_sets(bool free_list_only)4551 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4552   assert_at_safepoint_on_vm_thread();
4553 
4554   if (!free_list_only) {
4555     TearDownRegionSetsClosure cl(&_old_set);
4556     heap_region_iterate(&cl);
4557 
4558     // Note that emptying the _young_list is postponed and instead done as
4559     // the first step when rebuilding the regions sets again. The reason for
4560     // this is that during a full GC string deduplication needs to know if
4561     // a collected region was young or old when the full GC was initiated.
4562   }
4563   _hrm->remove_all_free_regions();
4564 }
4565 
increase_used(size_t bytes)4566 void G1CollectedHeap::increase_used(size_t bytes) {
4567   _summary_bytes_used += bytes;
4568 }
4569 
decrease_used(size_t bytes)4570 void G1CollectedHeap::decrease_used(size_t bytes) {
4571   assert(_summary_bytes_used >= bytes,
4572          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4573          _summary_bytes_used, bytes);
4574   _summary_bytes_used -= bytes;
4575 }
4576 
set_used(size_t bytes)4577 void G1CollectedHeap::set_used(size_t bytes) {
4578   _summary_bytes_used = bytes;
4579 }
4580 
4581 class RebuildRegionSetsClosure : public HeapRegionClosure {
4582 private:
4583   bool _free_list_only;
4584 
4585   HeapRegionSet* _old_set;
4586   HeapRegionManager* _hrm;
4587 
4588   size_t _total_used;
4589 
4590 public:
RebuildRegionSetsClosure(bool free_list_only,HeapRegionSet * old_set,HeapRegionManager * hrm)4591   RebuildRegionSetsClosure(bool free_list_only,
4592                            HeapRegionSet* old_set,
4593                            HeapRegionManager* hrm) :
4594     _free_list_only(free_list_only),
4595     _old_set(old_set), _hrm(hrm), _total_used(0) {
4596     assert(_hrm->num_free_regions() == 0, "pre-condition");
4597     if (!free_list_only) {
4598       assert(_old_set->is_empty(), "pre-condition");
4599     }
4600   }
4601 
do_heap_region(HeapRegion * r)4602   bool do_heap_region(HeapRegion* r) {
4603     if (r->is_empty()) {
4604       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4605       // Add free regions to the free list
4606       r->set_free();
4607       _hrm->insert_into_free_list(r);
4608     } else if (!_free_list_only) {
4609       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4610 
4611       if (r->is_archive() || r->is_humongous()) {
4612         // We ignore archive and humongous regions. We left these sets unchanged.
4613       } else {
4614         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4615         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4616         r->move_to_old();
4617         _old_set->add(r);
4618       }
4619       _total_used += r->used();
4620     }
4621 
4622     return false;
4623   }
4624 
total_used()4625   size_t total_used() {
4626     return _total_used;
4627   }
4628 };
4629 
rebuild_region_sets(bool free_list_only)4630 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4631   assert_at_safepoint_on_vm_thread();
4632 
4633   if (!free_list_only) {
4634     _eden.clear();
4635     _survivor.clear();
4636   }
4637 
4638   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4639   heap_region_iterate(&cl);
4640 
4641   if (!free_list_only) {
4642     set_used(cl.total_used());
4643     if (_archive_allocator != NULL) {
4644       _archive_allocator->clear_used();
4645     }
4646   }
4647   assert(used() == recalculate_used(),
4648          "inconsistent used(), value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4649          used(), recalculate_used());
4650 }
4651 
is_in_closed_subset(const void * p) const4652 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4653   HeapRegion* hr = heap_region_containing(p);
4654   return hr->is_in(p);
4655 }
4656 
4657 // Methods for the mutator alloc region
4658 
new_mutator_alloc_region(size_t word_size,bool force)4659 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4660                                                       bool force) {
4661   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4662   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4663   if (force || should_allocate) {
4664     HeapRegion* new_alloc_region = new_region(word_size,
4665                                               HeapRegionType::Eden,
4666                                               false /* do_expand */);
4667     if (new_alloc_region != NULL) {
4668       set_region_short_lived_locked(new_alloc_region);
4669       _hr_printer.alloc(new_alloc_region, !should_allocate);
4670       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4671       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4672       return new_alloc_region;
4673     }
4674   }
4675   return NULL;
4676 }
4677 
retire_mutator_alloc_region(HeapRegion * alloc_region,size_t allocated_bytes)4678 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4679                                                   size_t allocated_bytes) {
4680   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4681   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4682 
4683   collection_set()->add_eden_region(alloc_region);
4684   increase_used(allocated_bytes);
4685   _hr_printer.retire(alloc_region);
4686   // We update the eden sizes here, when the region is retired,
4687   // instead of when it's allocated, since this is the point that its
4688   // used space has been recorded in _summary_bytes_used.
4689   g1mm()->update_eden_size();
4690 }
4691 
4692 // Methods for the GC alloc regions
4693 
has_more_regions(InCSetState dest)4694 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4695   if (dest.is_old()) {
4696     return true;
4697   } else {
4698     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4699   }
4700 }
4701 
new_gc_alloc_region(size_t word_size,InCSetState dest)4702 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4703   assert(FreeList_lock->owned_by_self(), "pre-condition");
4704 
4705   if (!has_more_regions(dest)) {
4706     return NULL;
4707   }
4708 
4709   HeapRegionType type;
4710   if (dest.is_young()) {
4711     type = HeapRegionType::Survivor;
4712   } else {
4713     type = HeapRegionType::Old;
4714   }
4715 
4716   HeapRegion* new_alloc_region = new_region(word_size,
4717                                             type,
4718                                             true /* do_expand */);
4719 
4720   if (new_alloc_region != NULL) {
4721     if (type.is_survivor()) {
4722       new_alloc_region->set_survivor();
4723       _survivor.add(new_alloc_region);
4724       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4725     } else {
4726       new_alloc_region->set_old();
4727       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4728     }
4729     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4730     _hr_printer.alloc(new_alloc_region);
4731     return new_alloc_region;
4732   }
4733   return NULL;
4734 }
4735 
retire_gc_alloc_region(HeapRegion * alloc_region,size_t allocated_bytes,InCSetState dest)4736 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4737                                              size_t allocated_bytes,
4738                                              InCSetState dest) {
4739   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4740   if (dest.is_old()) {
4741     old_set_add(alloc_region);
4742   }
4743 
4744   bool const during_im = collector_state()->in_initial_mark_gc();
4745   if (during_im && allocated_bytes > 0) {
4746     _cm->root_regions()->add(alloc_region);
4747   }
4748   _hr_printer.retire(alloc_region);
4749 }
4750 
alloc_highest_free_region()4751 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4752   bool expanded = false;
4753   uint index = _hrm->find_highest_free(&expanded);
4754 
4755   if (index != G1_NO_HRM_INDEX) {
4756     if (expanded) {
4757       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4758                                 HeapRegion::GrainWords * HeapWordSize);
4759     }
4760     _hrm->allocate_free_regions_starting_at(index, 1);
4761     return region_at(index);
4762   }
4763   return NULL;
4764 }
4765 
4766 // Optimized nmethod scanning
4767 
4768 class RegisterNMethodOopClosure: public OopClosure {
4769   G1CollectedHeap* _g1h;
4770   nmethod* _nm;
4771 
do_oop_work(T * p)4772   template <class T> void do_oop_work(T* p) {
4773     T heap_oop = RawAccess<>::oop_load(p);
4774     if (!CompressedOops::is_null(heap_oop)) {
4775       oop obj = CompressedOops::decode_not_null(heap_oop);
4776       HeapRegion* hr = _g1h->heap_region_containing(obj);
4777       assert(!hr->is_continues_humongous(),
4778              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4779              " starting at " HR_FORMAT,
4780              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4781 
4782       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4783       hr->add_strong_code_root_locked(_nm);
4784     }
4785   }
4786 
4787 public:
RegisterNMethodOopClosure(G1CollectedHeap * g1h,nmethod * nm)4788   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4789     _g1h(g1h), _nm(nm) {}
4790 
do_oop(oop * p)4791   void do_oop(oop* p)       { do_oop_work(p); }
do_oop(narrowOop * p)4792   void do_oop(narrowOop* p) { do_oop_work(p); }
4793 };
4794 
4795 class UnregisterNMethodOopClosure: public OopClosure {
4796   G1CollectedHeap* _g1h;
4797   nmethod* _nm;
4798 
do_oop_work(T * p)4799   template <class T> void do_oop_work(T* p) {
4800     T heap_oop = RawAccess<>::oop_load(p);
4801     if (!CompressedOops::is_null(heap_oop)) {
4802       oop obj = CompressedOops::decode_not_null(heap_oop);
4803       HeapRegion* hr = _g1h->heap_region_containing(obj);
4804       assert(!hr->is_continues_humongous(),
4805              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4806              " starting at " HR_FORMAT,
4807              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4808 
4809       hr->remove_strong_code_root(_nm);
4810     }
4811   }
4812 
4813 public:
UnregisterNMethodOopClosure(G1CollectedHeap * g1h,nmethod * nm)4814   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4815     _g1h(g1h), _nm(nm) {}
4816 
do_oop(oop * p)4817   void do_oop(oop* p)       { do_oop_work(p); }
do_oop(narrowOop * p)4818   void do_oop(narrowOop* p) { do_oop_work(p); }
4819 };
4820 
4821 // Returns true if the reference points to an object that
4822 // can move in an incremental collection.
is_scavengable(oop obj)4823 bool G1CollectedHeap::is_scavengable(oop obj) {
4824   HeapRegion* hr = heap_region_containing(obj);
4825   return !hr->is_pinned();
4826 }
4827 
register_nmethod(nmethod * nm)4828 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4829   guarantee(nm != NULL, "sanity");
4830   RegisterNMethodOopClosure reg_cl(this, nm);
4831   nm->oops_do(&reg_cl);
4832 }
4833 
unregister_nmethod(nmethod * nm)4834 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4835   guarantee(nm != NULL, "sanity");
4836   UnregisterNMethodOopClosure reg_cl(this, nm);
4837   nm->oops_do(&reg_cl, true);
4838 }
4839 
purge_code_root_memory()4840 void G1CollectedHeap::purge_code_root_memory() {
4841   double purge_start = os::elapsedTime();
4842   G1CodeRootSet::purge();
4843   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4844   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4845 }
4846 
4847 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4848   G1CollectedHeap* _g1h;
4849 
4850 public:
RebuildStrongCodeRootClosure(G1CollectedHeap * g1h)4851   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4852     _g1h(g1h) {}
4853 
do_code_blob(CodeBlob * cb)4854   void do_code_blob(CodeBlob* cb) {
4855     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4856     if (nm == NULL) {
4857       return;
4858     }
4859 
4860     if (ScavengeRootsInCode) {
4861       _g1h->register_nmethod(nm);
4862     }
4863   }
4864 };
4865 
rebuild_strong_code_roots()4866 void G1CollectedHeap::rebuild_strong_code_roots() {
4867   RebuildStrongCodeRootClosure blob_cl(this);
4868   CodeCache::blobs_do(&blob_cl);
4869 }
4870 
initialize_serviceability()4871 void G1CollectedHeap::initialize_serviceability() {
4872   _g1mm->initialize_serviceability();
4873 }
4874 
memory_usage()4875 MemoryUsage G1CollectedHeap::memory_usage() {
4876   return _g1mm->memory_usage();
4877 }
4878 
memory_managers()4879 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4880   return _g1mm->memory_managers();
4881 }
4882 
memory_pools()4883 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4884   return _g1mm->memory_pools();
4885 }
4886