1 /* 2 * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP 26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP 27 28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp" 29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp" 30 #include "gc/g1/g1HeapVerifier.hpp" 31 #include "gc/g1/g1RegionMarkStatsCache.hpp" 32 #include "gc/g1/heapRegionSet.hpp" 33 #include "gc/shared/taskqueue.hpp" 34 #include "memory/allocation.hpp" 35 36 class ConcurrentGCTimer; 37 class G1ConcurrentMarkThread; 38 class G1CollectedHeap; 39 class G1CMOopClosure; 40 class G1CMTask; 41 class G1ConcurrentMark; 42 class G1OldTracer; 43 class G1RegionToSpaceMapper; 44 class G1SurvivorRegions; 45 46 #ifdef _MSC_VER 47 #pragma warning(push) 48 // warning C4522: multiple assignment operators specified 49 #pragma warning(disable:4522) 50 #endif 51 52 // This is a container class for either an oop or a continuation address for 53 // mark stack entries. Both are pushed onto the mark stack. 54 class G1TaskQueueEntry { 55 private: 56 void* _holder; 57 58 static const uintptr_t ArraySliceBit = 1; 59 G1TaskQueueEntry(oop obj)60 G1TaskQueueEntry(oop obj) : _holder(obj) { 61 assert(_holder != NULL, "Not allowed to set NULL task queue element"); 62 } G1TaskQueueEntry(HeapWord * addr)63 G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { } 64 public: G1TaskQueueEntry(const G1TaskQueueEntry & other)65 G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; } G1TaskQueueEntry()66 G1TaskQueueEntry() : _holder(NULL) { } 67 from_slice(HeapWord * what)68 static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); } from_oop(oop obj)69 static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); } 70 operator =(const G1TaskQueueEntry & t)71 G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) { 72 _holder = t._holder; 73 return *this; 74 } 75 operator =(const volatile G1TaskQueueEntry & t)76 volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile { 77 _holder = t._holder; 78 return *this; 79 } 80 obj() const81 oop obj() const { 82 assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder)); 83 return (oop)_holder; 84 } 85 slice() const86 HeapWord* slice() const { 87 assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder)); 88 return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit); 89 } 90 is_oop() const91 bool is_oop() const { return !is_array_slice(); } is_array_slice() const92 bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; } is_null() const93 bool is_null() const { return _holder == NULL; } 94 }; 95 96 #ifdef _MSC_VER 97 #pragma warning(pop) 98 #endif 99 100 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue; 101 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet; 102 103 // Closure used by CM during concurrent reference discovery 104 // and reference processing (during remarking) to determine 105 // if a particular object is alive. It is primarily used 106 // to determine if referents of discovered reference objects 107 // are alive. An instance is also embedded into the 108 // reference processor as the _is_alive_non_header field 109 class G1CMIsAliveClosure : public BoolObjectClosure { 110 G1CollectedHeap* _g1h; 111 public: G1CMIsAliveClosure(G1CollectedHeap * g1h)112 G1CMIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { } 113 bool do_object_b(oop obj); 114 }; 115 116 class G1CMSubjectToDiscoveryClosure : public BoolObjectClosure { 117 G1CollectedHeap* _g1h; 118 public: G1CMSubjectToDiscoveryClosure(G1CollectedHeap * g1h)119 G1CMSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) { } 120 bool do_object_b(oop obj); 121 }; 122 123 // Represents the overflow mark stack used by concurrent marking. 124 // 125 // Stores oops in a huge buffer in virtual memory that is always fully committed. 126 // Resizing may only happen during a STW pause when the stack is empty. 127 // 128 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark 129 // stack memory is split into evenly sized chunks of oops. Users can only 130 // add or remove entries on that basis. 131 // Chunks are filled in increasing address order. Not completely filled chunks 132 // have a NULL element as a terminating element. 133 // 134 // Every chunk has a header containing a single pointer element used for memory 135 // management. This wastes some space, but is negligible (< .1% with current sizing). 136 // 137 // Memory management is done using a mix of tracking a high water-mark indicating 138 // that all chunks at a lower address are valid chunks, and a singly linked free 139 // list connecting all empty chunks. 140 class G1CMMarkStack { 141 public: 142 // Number of TaskQueueEntries that can fit in a single chunk. 143 static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */; 144 private: 145 struct TaskQueueEntryChunk { 146 TaskQueueEntryChunk* next; 147 G1TaskQueueEntry data[EntriesPerChunk]; 148 }; 149 150 size_t _max_chunk_capacity; // Maximum number of TaskQueueEntryChunk elements on the stack. 151 152 TaskQueueEntryChunk* _base; // Bottom address of allocated memory area. 153 size_t _chunk_capacity; // Current maximum number of TaskQueueEntryChunk elements. 154 155 char _pad0[DEFAULT_CACHE_LINE_SIZE]; 156 TaskQueueEntryChunk* volatile _free_list; // Linked list of free chunks that can be allocated by users. 157 char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)]; 158 TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data. 159 volatile size_t _chunks_in_chunk_list; 160 char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)]; 161 162 volatile size_t _hwm; // High water mark within the reserved space. 163 char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)]; 164 165 // Allocate a new chunk from the reserved memory, using the high water mark. Returns 166 // NULL if out of memory. 167 TaskQueueEntryChunk* allocate_new_chunk(); 168 169 // Atomically add the given chunk to the list. 170 void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem); 171 // Atomically remove and return a chunk from the given list. Returns NULL if the 172 // list is empty. 173 TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list); 174 175 void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem); 176 void add_chunk_to_free_list(TaskQueueEntryChunk* elem); 177 178 TaskQueueEntryChunk* remove_chunk_from_chunk_list(); 179 TaskQueueEntryChunk* remove_chunk_from_free_list(); 180 181 // Resizes the mark stack to the given new capacity. Releases any previous 182 // memory if successful. 183 bool resize(size_t new_capacity); 184 185 public: 186 G1CMMarkStack(); 187 ~G1CMMarkStack(); 188 189 // Alignment and minimum capacity of this mark stack in number of oops. 190 static size_t capacity_alignment(); 191 192 // Allocate and initialize the mark stack with the given number of oops. 193 bool initialize(size_t initial_capacity, size_t max_capacity); 194 195 // Pushes the given buffer containing at most EntriesPerChunk elements on the mark 196 // stack. If less than EntriesPerChunk elements are to be pushed, the array must 197 // be terminated with a NULL. 198 // Returns whether the buffer contents were successfully pushed to the global mark 199 // stack. 200 bool par_push_chunk(G1TaskQueueEntry* buffer); 201 202 // Pops a chunk from this mark stack, copying them into the given buffer. This 203 // chunk may contain up to EntriesPerChunk elements. If there are less, the last 204 // element in the array is a NULL pointer. 205 bool par_pop_chunk(G1TaskQueueEntry* buffer); 206 207 // Return whether the chunk list is empty. Racy due to unsynchronized access to 208 // _chunk_list. is_empty() const209 bool is_empty() const { return _chunk_list == NULL; } 210 capacity() const211 size_t capacity() const { return _chunk_capacity; } 212 213 // Expand the stack, typically in response to an overflow condition 214 void expand(); 215 216 // Return the approximate number of oops on this mark stack. Racy due to 217 // unsynchronized access to _chunks_in_chunk_list. size() const218 size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; } 219 220 void set_empty(); 221 222 // Apply Fn to every oop on the mark stack. The mark stack must not 223 // be modified while iterating. 224 template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN; 225 }; 226 227 // Root Regions are regions that contain objects from nTAMS to top. These are roots 228 // for marking, i.e. their referenced objects must be kept alive to maintain the 229 // SATB invariant. 230 // We could scan and mark them through during the initial-mark pause, but for 231 // pause time reasons we move this work to the concurrent phase. 232 // We need to complete this procedure before the next GC because it might determine 233 // that some of these "root objects" are dead, potentially dropping some required 234 // references. 235 // Root regions comprise of the complete contents of survivor regions, and any 236 // objects copied into old gen during GC. 237 class G1CMRootRegions { 238 HeapRegion** _root_regions; 239 size_t const _max_regions; 240 241 volatile size_t _num_root_regions; // Actual number of root regions. 242 243 volatile size_t _claimed_root_regions; // Number of root regions currently claimed. 244 245 volatile bool _scan_in_progress; 246 volatile bool _should_abort; 247 248 void notify_scan_done(); 249 250 public: 251 G1CMRootRegions(uint const max_regions); 252 ~G1CMRootRegions(); 253 254 // Reset the data structure to allow addition of new root regions. 255 void reset(); 256 257 void add(HeapRegion* hr); 258 259 // Reset the claiming / scanning of the root regions. 260 void prepare_for_scan(); 261 262 // Forces get_next() to return NULL so that the iteration aborts early. abort()263 void abort() { _should_abort = true; } 264 265 // Return true if the CM thread are actively scanning root regions, 266 // false otherwise. scan_in_progress()267 bool scan_in_progress() { return _scan_in_progress; } 268 269 // Claim the next root region to scan atomically, or return NULL if 270 // all have been claimed. 271 HeapRegion* claim_next(); 272 273 // The number of root regions to scan. 274 uint num_root_regions() const; 275 276 void cancel_scan(); 277 278 // Flag that we're done with root region scanning and notify anyone 279 // who's waiting on it. If aborted is false, assume that all regions 280 // have been claimed. 281 void scan_finished(); 282 283 // If CM threads are still scanning root regions, wait until they 284 // are done. Return true if we had to wait, false otherwise. 285 bool wait_until_scan_finished(); 286 }; 287 288 // This class manages data structures and methods for doing liveness analysis in 289 // G1's concurrent cycle. 290 class G1ConcurrentMark : public CHeapObj<mtGC> { 291 friend class G1ConcurrentMarkThread; 292 friend class G1CMRefProcTaskProxy; 293 friend class G1CMRefProcTaskExecutor; 294 friend class G1CMKeepAliveAndDrainClosure; 295 friend class G1CMDrainMarkingStackClosure; 296 friend class G1CMBitMapClosure; 297 friend class G1CMConcurrentMarkingTask; 298 friend class G1CMRemarkTask; 299 friend class G1CMTask; 300 301 G1ConcurrentMarkThread* _cm_thread; // The thread doing the work 302 G1CollectedHeap* _g1h; // The heap 303 bool _completed_initialization; // Set to true when initialization is complete 304 305 // Concurrent marking support structures 306 G1CMBitMap _mark_bitmap_1; 307 G1CMBitMap _mark_bitmap_2; 308 G1CMBitMap* _prev_mark_bitmap; // Completed mark bitmap 309 G1CMBitMap* _next_mark_bitmap; // Under-construction mark bitmap 310 311 // Heap bounds 312 MemRegion const _heap; 313 314 // Root region tracking and claiming 315 G1CMRootRegions _root_regions; 316 317 // For grey objects 318 G1CMMarkStack _global_mark_stack; // Grey objects behind global finger 319 HeapWord* volatile _finger; // The global finger, region aligned, 320 // always pointing to the end of the 321 // last claimed region 322 323 uint _worker_id_offset; 324 uint _max_num_tasks; // Maximum number of marking tasks 325 uint _num_active_tasks; // Number of tasks currently active 326 G1CMTask** _tasks; // Task queue array (max_worker_id length) 327 328 G1CMTaskQueueSet* _task_queues; // Task queue set 329 TaskTerminator _terminator; // For termination 330 331 // Two sync barriers that are used to synchronize tasks when an 332 // overflow occurs. The algorithm is the following. All tasks enter 333 // the first one to ensure that they have all stopped manipulating 334 // the global data structures. After they exit it, they re-initialize 335 // their data structures and task 0 re-initializes the global data 336 // structures. Then, they enter the second sync barrier. This 337 // ensure, that no task starts doing work before all data 338 // structures (local and global) have been re-initialized. When they 339 // exit it, they are free to start working again. 340 WorkGangBarrierSync _first_overflow_barrier_sync; 341 WorkGangBarrierSync _second_overflow_barrier_sync; 342 343 // This is set by any task, when an overflow on the global data 344 // structures is detected 345 volatile bool _has_overflown; 346 // True: marking is concurrent, false: we're in remark 347 volatile bool _concurrent; 348 // Set at the end of a Full GC so that marking aborts 349 volatile bool _has_aborted; 350 351 // Used when remark aborts due to an overflow to indicate that 352 // another concurrent marking phase should start 353 volatile bool _restart_for_overflow; 354 355 ConcurrentGCTimer* _gc_timer_cm; 356 357 G1OldTracer* _gc_tracer_cm; 358 359 // Timing statistics. All of them are in ms 360 NumberSeq _init_times; 361 NumberSeq _remark_times; 362 NumberSeq _remark_mark_times; 363 NumberSeq _remark_weak_ref_times; 364 NumberSeq _cleanup_times; 365 double _total_cleanup_time; 366 367 double* _accum_task_vtime; // Accumulated task vtime 368 369 WorkGang* _concurrent_workers; 370 uint _num_concurrent_workers; // The number of marking worker threads we're using 371 uint _max_concurrent_workers; // Maximum number of marking worker threads 372 373 void verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller); 374 375 void finalize_marking(); 376 377 void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes); 378 void weak_refs_work(bool clear_all_soft_refs); 379 380 void report_object_count(bool mark_completed); 381 382 void swap_mark_bitmaps(); 383 384 void reclaim_empty_regions(); 385 386 // After reclaiming empty regions, update heap sizes. 387 void compute_new_sizes(); 388 389 // Clear statistics gathered during the concurrent cycle for the given region after 390 // it has been reclaimed. 391 void clear_statistics(HeapRegion* r); 392 393 // Resets the global marking data structures, as well as the 394 // task local ones; should be called during initial mark. 395 void reset(); 396 397 // Resets all the marking data structures. Called when we have to restart 398 // marking or when marking completes (via set_non_marking_state below). 399 void reset_marking_for_restart(); 400 401 // We do this after we're done with marking so that the marking data 402 // structures are initialized to a sensible and predictable state. 403 void reset_at_marking_complete(); 404 405 // Called to indicate how many threads are currently active. 406 void set_concurrency(uint active_tasks); 407 408 // Should be called to indicate which phase we're in (concurrent 409 // mark or remark) and how many threads are currently active. 410 void set_concurrency_and_phase(uint active_tasks, bool concurrent); 411 412 // Prints all gathered CM-related statistics 413 void print_stats(); 414 finger()415 HeapWord* finger() { return _finger; } concurrent()416 bool concurrent() { return _concurrent; } active_tasks()417 uint active_tasks() { return _num_active_tasks; } terminator() const418 ParallelTaskTerminator* terminator() const { return _terminator.terminator(); } 419 420 // Claims the next available region to be scanned by a marking 421 // task/thread. It might return NULL if the next region is empty or 422 // we have run out of regions. In the latter case, out_of_regions() 423 // determines whether we've really run out of regions or the task 424 // should call claim_region() again. This might seem a bit 425 // awkward. Originally, the code was written so that claim_region() 426 // either successfully returned with a non-empty region or there 427 // were no more regions to be claimed. The problem with this was 428 // that, in certain circumstances, it iterated over large chunks of 429 // the heap finding only empty regions and, while it was working, it 430 // was preventing the calling task to call its regular clock 431 // method. So, this way, each task will spend very little time in 432 // claim_region() and is allowed to call the regular clock method 433 // frequently. 434 HeapRegion* claim_region(uint worker_id); 435 436 // Determines whether we've run out of regions to scan. Note that 437 // the finger can point past the heap end in case the heap was expanded 438 // to satisfy an allocation without doing a GC. This is fine, because all 439 // objects in those regions will be considered live anyway because of 440 // SATB guarantees (i.e. their TAMS will be equal to bottom). out_of_regions()441 bool out_of_regions() { return _finger >= _heap.end(); } 442 443 // Returns the task with the given id task(uint id)444 G1CMTask* task(uint id) { 445 // During initial mark we use the parallel gc threads to do some work, so 446 // we can only compare against _max_num_tasks. 447 assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks); 448 return _tasks[id]; 449 } 450 451 // Access / manipulation of the overflow flag which is set to 452 // indicate that the global stack has overflown has_overflown()453 bool has_overflown() { return _has_overflown; } set_has_overflown()454 void set_has_overflown() { _has_overflown = true; } clear_has_overflown()455 void clear_has_overflown() { _has_overflown = false; } restart_for_overflow()456 bool restart_for_overflow() { return _restart_for_overflow; } 457 458 // Methods to enter the two overflow sync barriers 459 void enter_first_sync_barrier(uint worker_id); 460 void enter_second_sync_barrier(uint worker_id); 461 462 // Clear the given bitmap in parallel using the given WorkGang. If may_yield is 463 // true, periodically insert checks to see if this method should exit prematurely. 464 void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield); 465 466 // Region statistics gathered during marking. 467 G1RegionMarkStats* _region_mark_stats; 468 // Top pointer for each region at the start of the rebuild remembered set process 469 // for regions which remembered sets need to be rebuilt. A NULL for a given region 470 // means that this region does not be scanned during the rebuilding remembered 471 // set phase at all. 472 HeapWord* volatile* _top_at_rebuild_starts; 473 public: 474 void add_to_liveness(uint worker_id, oop const obj, size_t size); 475 // Liveness of the given region as determined by concurrent marking, i.e. the amount of 476 // live words between bottom and nTAMS. liveness(uint region) const477 size_t liveness(uint region) const { return _region_mark_stats[region]._live_words; } 478 479 // Sets the internal top_at_region_start for the given region to current top of the region. 480 inline void update_top_at_rebuild_start(HeapRegion* r); 481 // TARS for the given region during remembered set rebuilding. 482 inline HeapWord* top_at_rebuild_start(uint region) const; 483 484 // Clear statistics gathered during the concurrent cycle for the given region after 485 // it has been reclaimed. 486 void clear_statistics_in_region(uint region_idx); 487 // Notification for eagerly reclaimed regions to clean up. 488 void humongous_object_eagerly_reclaimed(HeapRegion* r); 489 // Manipulation of the global mark stack. 490 // The push and pop operations are used by tasks for transfers 491 // between task-local queues and the global mark stack. mark_stack_push(G1TaskQueueEntry * arr)492 bool mark_stack_push(G1TaskQueueEntry* arr) { 493 if (!_global_mark_stack.par_push_chunk(arr)) { 494 set_has_overflown(); 495 return false; 496 } 497 return true; 498 } mark_stack_pop(G1TaskQueueEntry * arr)499 bool mark_stack_pop(G1TaskQueueEntry* arr) { 500 return _global_mark_stack.par_pop_chunk(arr); 501 } mark_stack_size() const502 size_t mark_stack_size() const { return _global_mark_stack.size(); } partial_mark_stack_size_target() const503 size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; } mark_stack_empty() const504 bool mark_stack_empty() const { return _global_mark_stack.is_empty(); } 505 root_regions()506 G1CMRootRegions* root_regions() { return &_root_regions; } 507 508 void concurrent_cycle_start(); 509 // Abandon current marking iteration due to a Full GC. 510 void concurrent_cycle_abort(); 511 void concurrent_cycle_end(); 512 update_accum_task_vtime(int i,double vtime)513 void update_accum_task_vtime(int i, double vtime) { 514 _accum_task_vtime[i] += vtime; 515 } 516 all_task_accum_vtime()517 double all_task_accum_vtime() { 518 double ret = 0.0; 519 for (uint i = 0; i < _max_num_tasks; ++i) 520 ret += _accum_task_vtime[i]; 521 return ret; 522 } 523 524 // Attempts to steal an object from the task queues of other tasks 525 bool try_stealing(uint worker_id, G1TaskQueueEntry& task_entry); 526 527 G1ConcurrentMark(G1CollectedHeap* g1h, 528 G1RegionToSpaceMapper* prev_bitmap_storage, 529 G1RegionToSpaceMapper* next_bitmap_storage); 530 ~G1ConcurrentMark(); 531 cm_thread()532 G1ConcurrentMarkThread* cm_thread() { return _cm_thread; } 533 prev_mark_bitmap() const534 const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; } next_mark_bitmap() const535 G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; } 536 537 // Calculates the number of concurrent GC threads to be used in the marking phase. 538 uint calc_active_marking_workers(); 539 540 // Moves all per-task cached data into global state. 541 void flush_all_task_caches(); 542 // Prepare internal data structures for the next mark cycle. This includes clearing 543 // the next mark bitmap and some internal data structures. This method is intended 544 // to be called concurrently to the mutator. It will yield to safepoint requests. 545 void cleanup_for_next_mark(); 546 547 // Clear the previous marking bitmap during safepoint. 548 void clear_prev_bitmap(WorkGang* workers); 549 550 // These two methods do the work that needs to be done at the start and end of the 551 // initial mark pause. 552 void pre_initial_mark(); 553 void post_initial_mark(); 554 555 // Scan all the root regions and mark everything reachable from 556 // them. 557 void scan_root_regions(); 558 559 // Scan a single root region from nTAMS to top and mark everything reachable from it. 560 void scan_root_region(HeapRegion* hr, uint worker_id); 561 562 // Do concurrent phase of marking, to a tentative transitive closure. 563 void mark_from_roots(); 564 565 // Do concurrent preclean work. 566 void preclean(); 567 568 void remark(); 569 570 void cleanup(); 571 // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use 572 // this carefully. 573 inline void mark_in_prev_bitmap(oop p); 574 575 // Clears marks for all objects in the given range, for the prev or 576 // next bitmaps. Caution: the previous bitmap is usually 577 // read-only, so use this carefully! 578 void clear_range_in_prev_bitmap(MemRegion mr); 579 580 inline bool is_marked_in_prev_bitmap(oop p) const; 581 582 // Verify that there are no collection set oops on the stacks (taskqueues / 583 // global mark stack) and fingers (global / per-task). 584 // If marking is not in progress, it's a no-op. 585 void verify_no_cset_oops() PRODUCT_RETURN; 586 587 inline bool do_yield_check(); 588 has_aborted()589 bool has_aborted() { return _has_aborted; } 590 591 void print_summary_info(); 592 593 void print_worker_threads_on(outputStream* st) const; 594 void threads_do(ThreadClosure* tc) const; 595 596 void print_on_error(outputStream* st) const; 597 598 // Mark the given object on the next bitmap if it is below nTAMS. 599 inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj); 600 inline bool mark_in_next_bitmap(uint worker_id, oop const obj); 601 602 inline bool is_marked_in_next_bitmap(oop p) const; 603 604 // Returns true if initialization was successfully completed. completed_initialization() const605 bool completed_initialization() const { 606 return _completed_initialization; 607 } 608 gc_timer_cm() const609 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; } gc_tracer_cm() const610 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; } 611 612 private: 613 // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application. 614 void rebuild_rem_set_concurrently(); 615 }; 616 617 // A class representing a marking task. 618 class G1CMTask : public TerminatorTerminator { 619 private: 620 enum PrivateConstants { 621 // The regular clock call is called once the scanned words reaches 622 // this limit 623 words_scanned_period = 12*1024, 624 // The regular clock call is called once the number of visited 625 // references reaches this limit 626 refs_reached_period = 1024, 627 // Initial value for the hash seed, used in the work stealing code 628 init_hash_seed = 17 629 }; 630 631 // Number of entries in the per-task stats entry. This seems enough to have a very 632 // low cache miss rate. 633 static const uint RegionMarkStatsCacheSize = 1024; 634 635 G1CMObjArrayProcessor _objArray_processor; 636 637 uint _worker_id; 638 G1CollectedHeap* _g1h; 639 G1ConcurrentMark* _cm; 640 G1CMBitMap* _next_mark_bitmap; 641 // the task queue of this task 642 G1CMTaskQueue* _task_queue; 643 644 G1RegionMarkStatsCache _mark_stats_cache; 645 // Number of calls to this task 646 uint _calls; 647 648 // When the virtual timer reaches this time, the marking step should exit 649 double _time_target_ms; 650 // Start time of the current marking step 651 double _start_time_ms; 652 653 // Oop closure used for iterations over oops 654 G1CMOopClosure* _cm_oop_closure; 655 656 // Region this task is scanning, NULL if we're not scanning any 657 HeapRegion* _curr_region; 658 // Local finger of this task, NULL if we're not scanning a region 659 HeapWord* _finger; 660 // Limit of the region this task is scanning, NULL if we're not scanning one 661 HeapWord* _region_limit; 662 663 // Number of words this task has scanned 664 size_t _words_scanned; 665 // When _words_scanned reaches this limit, the regular clock is 666 // called. Notice that this might be decreased under certain 667 // circumstances (i.e. when we believe that we did an expensive 668 // operation). 669 size_t _words_scanned_limit; 670 // Initial value of _words_scanned_limit (i.e. what it was 671 // before it was decreased). 672 size_t _real_words_scanned_limit; 673 674 // Number of references this task has visited 675 size_t _refs_reached; 676 // When _refs_reached reaches this limit, the regular clock is 677 // called. Notice this this might be decreased under certain 678 // circumstances (i.e. when we believe that we did an expensive 679 // operation). 680 size_t _refs_reached_limit; 681 // Initial value of _refs_reached_limit (i.e. what it was before 682 // it was decreased). 683 size_t _real_refs_reached_limit; 684 685 // If true, then the task has aborted for some reason 686 bool _has_aborted; 687 // Set when the task aborts because it has met its time quota 688 bool _has_timed_out; 689 // True when we're draining SATB buffers; this avoids the task 690 // aborting due to SATB buffers being available (as we're already 691 // dealing with them) 692 bool _draining_satb_buffers; 693 694 // Number sequence of past step times 695 NumberSeq _step_times_ms; 696 // Elapsed time of this task 697 double _elapsed_time_ms; 698 // Termination time of this task 699 double _termination_time_ms; 700 // When this task got into the termination protocol 701 double _termination_start_time_ms; 702 703 TruncatedSeq _marking_step_diffs_ms; 704 705 // Updates the local fields after this task has claimed 706 // a new region to scan 707 void setup_for_region(HeapRegion* hr); 708 // Makes the limit of the region up-to-date 709 void update_region_limit(); 710 711 // Called when either the words scanned or the refs visited limit 712 // has been reached 713 void reached_limit(); 714 // Recalculates the words scanned and refs visited limits 715 void recalculate_limits(); 716 // Decreases the words scanned and refs visited limits when we reach 717 // an expensive operation 718 void decrease_limits(); 719 // Checks whether the words scanned or refs visited reached their 720 // respective limit and calls reached_limit() if they have check_limits()721 void check_limits() { 722 if (_words_scanned >= _words_scanned_limit || 723 _refs_reached >= _refs_reached_limit) { 724 reached_limit(); 725 } 726 } 727 // Supposed to be called regularly during a marking step as 728 // it checks a bunch of conditions that might cause the marking step 729 // to abort 730 // Return true if the marking step should continue. Otherwise, return false to abort 731 bool regular_clock_call(); 732 733 // Set abort flag if regular_clock_call() check fails 734 inline void abort_marking_if_regular_check_fail(); 735 736 // Test whether obj might have already been passed over by the 737 // mark bitmap scan, and so needs to be pushed onto the mark stack. 738 bool is_below_finger(oop obj, HeapWord* global_finger) const; 739 740 template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry); 741 public: 742 // Apply the closure on the given area of the objArray. Return the number of words 743 // scanned. 744 inline size_t scan_objArray(objArrayOop obj, MemRegion mr); 745 // Resets the task; should be called right at the beginning of a marking phase. 746 void reset(G1CMBitMap* next_mark_bitmap); 747 // Clears all the fields that correspond to a claimed region. 748 void clear_region_fields(); 749 750 // The main method of this class which performs a marking step 751 // trying not to exceed the given duration. However, it might exit 752 // prematurely, according to some conditions (i.e. SATB buffers are 753 // available for processing). 754 void do_marking_step(double target_ms, 755 bool do_termination, 756 bool is_serial); 757 758 // These two calls start and stop the timer record_start_time()759 void record_start_time() { 760 _elapsed_time_ms = os::elapsedTime() * 1000.0; 761 } record_end_time()762 void record_end_time() { 763 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms; 764 } 765 766 // Returns the worker ID associated with this task. worker_id()767 uint worker_id() { return _worker_id; } 768 769 // From TerminatorTerminator. It determines whether this task should 770 // exit the termination protocol after it's entered it. 771 virtual bool should_exit_termination(); 772 773 // Resets the local region fields after a task has finished scanning a 774 // region; or when they have become stale as a result of the region 775 // being evacuated. 776 void giveup_current_region(); 777 finger()778 HeapWord* finger() { return _finger; } 779 has_aborted()780 bool has_aborted() { return _has_aborted; } set_has_aborted()781 void set_has_aborted() { _has_aborted = true; } clear_has_aborted()782 void clear_has_aborted() { _has_aborted = false; } 783 784 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure); 785 786 // Increment the number of references this task has visited. increment_refs_reached()787 void increment_refs_reached() { ++_refs_reached; } 788 789 // Grey the object by marking it. If not already marked, push it on 790 // the local queue if below the finger. obj is required to be below its region's NTAMS. 791 // Returns whether there has been a mark to the bitmap. 792 inline bool make_reference_grey(oop obj); 793 794 // Grey the object (by calling make_grey_reference) if required, 795 // e.g. obj is below its containing region's NTAMS. 796 // Precondition: obj is a valid heap object. 797 // Returns true if the reference caused a mark to be set in the next bitmap. 798 template <class T> 799 inline bool deal_with_reference(T* p); 800 801 // Scans an object and visits its children. 802 inline void scan_task_entry(G1TaskQueueEntry task_entry); 803 804 // Pushes an object on the local queue. 805 inline void push(G1TaskQueueEntry task_entry); 806 807 // Move entries to the global stack. 808 void move_entries_to_global_stack(); 809 // Move entries from the global stack, return true if we were successful to do so. 810 bool get_entries_from_global_stack(); 811 812 // Pops and scans objects from the local queue. If partially is 813 // true, then it stops when the queue size is of a given limit. If 814 // partially is false, then it stops when the queue is empty. 815 void drain_local_queue(bool partially); 816 // Moves entries from the global stack to the local queue and 817 // drains the local queue. If partially is true, then it stops when 818 // both the global stack and the local queue reach a given size. If 819 // partially if false, it tries to empty them totally. 820 void drain_global_stack(bool partially); 821 // Keeps picking SATB buffers and processing them until no SATB 822 // buffers are available. 823 void drain_satb_buffers(); 824 825 // Moves the local finger to a new location move_finger_to(HeapWord * new_finger)826 inline void move_finger_to(HeapWord* new_finger) { 827 assert(new_finger >= _finger && new_finger < _region_limit, "invariant"); 828 _finger = new_finger; 829 } 830 831 G1CMTask(uint worker_id, 832 G1ConcurrentMark *cm, 833 G1CMTaskQueue* task_queue, 834 G1RegionMarkStats* mark_stats, 835 uint max_regions); 836 837 inline void update_liveness(oop const obj, size_t const obj_size); 838 839 // Clear (without flushing) the mark cache entry for the given region. 840 void clear_mark_stats_cache(uint region_idx); 841 // Evict the whole statistics cache into the global statistics. Returns the 842 // number of cache hits and misses so far. 843 Pair<size_t, size_t> flush_mark_stats_cache(); 844 // Prints statistics associated with this task 845 void print_stats(); 846 }; 847 848 // Class that's used to to print out per-region liveness 849 // information. It's currently used at the end of marking and also 850 // after we sort the old regions at the end of the cleanup operation. 851 class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure { 852 // Accumulators for these values. 853 size_t _total_used_bytes; 854 size_t _total_capacity_bytes; 855 size_t _total_prev_live_bytes; 856 size_t _total_next_live_bytes; 857 858 // Accumulator for the remembered set size 859 size_t _total_remset_bytes; 860 861 // Accumulator for strong code roots memory size 862 size_t _total_strong_code_roots_bytes; 863 bytes_to_mb(size_t val)864 static double bytes_to_mb(size_t val) { 865 return (double) val / (double) M; 866 } 867 868 public: 869 // The header and footer are printed in the constructor and 870 // destructor respectively. 871 G1PrintRegionLivenessInfoClosure(const char* phase_name); 872 virtual bool do_heap_region(HeapRegion* r); 873 ~G1PrintRegionLivenessInfoClosure(); 874 }; 875 876 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP 877