1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
27 
28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp"
29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
30 #include "gc/g1/g1HeapVerifier.hpp"
31 #include "gc/g1/g1RegionMarkStatsCache.hpp"
32 #include "gc/g1/heapRegionSet.hpp"
33 #include "gc/shared/taskqueue.hpp"
34 #include "memory/allocation.hpp"
35 
36 class ConcurrentGCTimer;
37 class G1ConcurrentMarkThread;
38 class G1CollectedHeap;
39 class G1CMOopClosure;
40 class G1CMTask;
41 class G1ConcurrentMark;
42 class G1OldTracer;
43 class G1RegionToSpaceMapper;
44 class G1SurvivorRegions;
45 
46 #ifdef _MSC_VER
47 #pragma warning(push)
48 // warning C4522: multiple assignment operators specified
49 #pragma warning(disable:4522)
50 #endif
51 
52 // This is a container class for either an oop or a continuation address for
53 // mark stack entries. Both are pushed onto the mark stack.
54 class G1TaskQueueEntry {
55 private:
56   void* _holder;
57 
58   static const uintptr_t ArraySliceBit = 1;
59 
G1TaskQueueEntry(oop obj)60   G1TaskQueueEntry(oop obj) : _holder(obj) {
61     assert(_holder != NULL, "Not allowed to set NULL task queue element");
62   }
G1TaskQueueEntry(HeapWord * addr)63   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
64 public:
G1TaskQueueEntry(const G1TaskQueueEntry & other)65   G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
G1TaskQueueEntry()66   G1TaskQueueEntry() : _holder(NULL) { }
67 
from_slice(HeapWord * what)68   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
from_oop(oop obj)69   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
70 
operator =(const G1TaskQueueEntry & t)71   G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
72     _holder = t._holder;
73     return *this;
74   }
75 
operator =(const volatile G1TaskQueueEntry & t)76   volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
77     _holder = t._holder;
78     return *this;
79   }
80 
obj() const81   oop obj() const {
82     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
83     return (oop)_holder;
84   }
85 
slice() const86   HeapWord* slice() const {
87     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
88     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
89   }
90 
is_oop() const91   bool is_oop() const { return !is_array_slice(); }
is_array_slice() const92   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
is_null() const93   bool is_null() const { return _holder == NULL; }
94 };
95 
96 #ifdef _MSC_VER
97 #pragma warning(pop)
98 #endif
99 
100 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
101 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
102 
103 // Closure used by CM during concurrent reference discovery
104 // and reference processing (during remarking) to determine
105 // if a particular object is alive. It is primarily used
106 // to determine if referents of discovered reference objects
107 // are alive. An instance is also embedded into the
108 // reference processor as the _is_alive_non_header field
109 class G1CMIsAliveClosure : public BoolObjectClosure {
110   G1CollectedHeap* _g1h;
111 public:
G1CMIsAliveClosure(G1CollectedHeap * g1h)112   G1CMIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
113   bool do_object_b(oop obj);
114 };
115 
116 class G1CMSubjectToDiscoveryClosure : public BoolObjectClosure {
117   G1CollectedHeap* _g1h;
118 public:
G1CMSubjectToDiscoveryClosure(G1CollectedHeap * g1h)119   G1CMSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
120   bool do_object_b(oop obj);
121 };
122 
123 // Represents the overflow mark stack used by concurrent marking.
124 //
125 // Stores oops in a huge buffer in virtual memory that is always fully committed.
126 // Resizing may only happen during a STW pause when the stack is empty.
127 //
128 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
129 // stack memory is split into evenly sized chunks of oops. Users can only
130 // add or remove entries on that basis.
131 // Chunks are filled in increasing address order. Not completely filled chunks
132 // have a NULL element as a terminating element.
133 //
134 // Every chunk has a header containing a single pointer element used for memory
135 // management. This wastes some space, but is negligible (< .1% with current sizing).
136 //
137 // Memory management is done using a mix of tracking a high water-mark indicating
138 // that all chunks at a lower address are valid chunks, and a singly linked free
139 // list connecting all empty chunks.
140 class G1CMMarkStack {
141 public:
142   // Number of TaskQueueEntries that can fit in a single chunk.
143   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
144 private:
145   struct TaskQueueEntryChunk {
146     TaskQueueEntryChunk* next;
147     G1TaskQueueEntry data[EntriesPerChunk];
148   };
149 
150   size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
151 
152   TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
153   size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
154 
155   char _pad0[DEFAULT_CACHE_LINE_SIZE];
156   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
157   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
158   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
159   volatile size_t _chunks_in_chunk_list;
160   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
161 
162   volatile size_t _hwm;          // High water mark within the reserved space.
163   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
164 
165   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
166   // NULL if out of memory.
167   TaskQueueEntryChunk* allocate_new_chunk();
168 
169   // Atomically add the given chunk to the list.
170   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
171   // Atomically remove and return a chunk from the given list. Returns NULL if the
172   // list is empty.
173   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
174 
175   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
176   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
177 
178   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
179   TaskQueueEntryChunk* remove_chunk_from_free_list();
180 
181   // Resizes the mark stack to the given new capacity. Releases any previous
182   // memory if successful.
183   bool resize(size_t new_capacity);
184 
185  public:
186   G1CMMarkStack();
187   ~G1CMMarkStack();
188 
189   // Alignment and minimum capacity of this mark stack in number of oops.
190   static size_t capacity_alignment();
191 
192   // Allocate and initialize the mark stack with the given number of oops.
193   bool initialize(size_t initial_capacity, size_t max_capacity);
194 
195   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
196   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
197   // be terminated with a NULL.
198   // Returns whether the buffer contents were successfully pushed to the global mark
199   // stack.
200   bool par_push_chunk(G1TaskQueueEntry* buffer);
201 
202   // Pops a chunk from this mark stack, copying them into the given buffer. This
203   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
204   // element in the array is a NULL pointer.
205   bool par_pop_chunk(G1TaskQueueEntry* buffer);
206 
207   // Return whether the chunk list is empty. Racy due to unsynchronized access to
208   // _chunk_list.
is_empty() const209   bool is_empty() const { return _chunk_list == NULL; }
210 
capacity() const211   size_t capacity() const  { return _chunk_capacity; }
212 
213   // Expand the stack, typically in response to an overflow condition
214   void expand();
215 
216   // Return the approximate number of oops on this mark stack. Racy due to
217   // unsynchronized access to _chunks_in_chunk_list.
size() const218   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
219 
220   void set_empty();
221 
222   // Apply Fn to every oop on the mark stack. The mark stack must not
223   // be modified while iterating.
224   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
225 };
226 
227 // Root Regions are regions that contain objects from nTAMS to top. These are roots
228 // for marking, i.e. their referenced objects must be kept alive to maintain the
229 // SATB invariant.
230 // We could scan and mark them through during the initial-mark pause, but for
231 // pause time reasons we move this work to the concurrent phase.
232 // We need to complete this procedure before the next GC because it might determine
233 // that some of these "root objects" are dead, potentially dropping some required
234 // references.
235 // Root regions comprise of the complete contents of survivor regions, and any
236 // objects copied into old gen during GC.
237 class G1CMRootRegions {
238   HeapRegion** _root_regions;
239   size_t const _max_regions;
240 
241   volatile size_t _num_root_regions; // Actual number of root regions.
242 
243   volatile size_t _claimed_root_regions; // Number of root regions currently claimed.
244 
245   volatile bool _scan_in_progress;
246   volatile bool _should_abort;
247 
248   void notify_scan_done();
249 
250 public:
251   G1CMRootRegions(uint const max_regions);
252   ~G1CMRootRegions();
253 
254   // Reset the data structure to allow addition of new root regions.
255   void reset();
256 
257   void add(HeapRegion* hr);
258 
259   // Reset the claiming / scanning of the root regions.
260   void prepare_for_scan();
261 
262   // Forces get_next() to return NULL so that the iteration aborts early.
abort()263   void abort() { _should_abort = true; }
264 
265   // Return true if the CM thread are actively scanning root regions,
266   // false otherwise.
scan_in_progress()267   bool scan_in_progress() { return _scan_in_progress; }
268 
269   // Claim the next root region to scan atomically, or return NULL if
270   // all have been claimed.
271   HeapRegion* claim_next();
272 
273   // The number of root regions to scan.
274   uint num_root_regions() const;
275 
276   void cancel_scan();
277 
278   // Flag that we're done with root region scanning and notify anyone
279   // who's waiting on it. If aborted is false, assume that all regions
280   // have been claimed.
281   void scan_finished();
282 
283   // If CM threads are still scanning root regions, wait until they
284   // are done. Return true if we had to wait, false otherwise.
285   bool wait_until_scan_finished();
286 };
287 
288 // This class manages data structures and methods for doing liveness analysis in
289 // G1's concurrent cycle.
290 class G1ConcurrentMark : public CHeapObj<mtGC> {
291   friend class G1ConcurrentMarkThread;
292   friend class G1CMRefProcTaskProxy;
293   friend class G1CMRefProcTaskExecutor;
294   friend class G1CMKeepAliveAndDrainClosure;
295   friend class G1CMDrainMarkingStackClosure;
296   friend class G1CMBitMapClosure;
297   friend class G1CMConcurrentMarkingTask;
298   friend class G1CMRemarkTask;
299   friend class G1CMTask;
300 
301   G1ConcurrentMarkThread* _cm_thread;     // The thread doing the work
302   G1CollectedHeap*        _g1h;           // The heap
303   bool                    _completed_initialization; // Set to true when initialization is complete
304 
305   // Concurrent marking support structures
306   G1CMBitMap              _mark_bitmap_1;
307   G1CMBitMap              _mark_bitmap_2;
308   G1CMBitMap*             _prev_mark_bitmap; // Completed mark bitmap
309   G1CMBitMap*             _next_mark_bitmap; // Under-construction mark bitmap
310 
311   // Heap bounds
312   MemRegion const         _heap;
313 
314   // Root region tracking and claiming
315   G1CMRootRegions         _root_regions;
316 
317   // For grey objects
318   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
319   HeapWord* volatile      _finger;            // The global finger, region aligned,
320                                               // always pointing to the end of the
321                                               // last claimed region
322 
323   uint                    _worker_id_offset;
324   uint                    _max_num_tasks;    // Maximum number of marking tasks
325   uint                    _num_active_tasks; // Number of tasks currently active
326   G1CMTask**              _tasks;            // Task queue array (max_worker_id length)
327 
328   G1CMTaskQueueSet*       _task_queues; // Task queue set
329   TaskTerminator          _terminator;  // For termination
330 
331   // Two sync barriers that are used to synchronize tasks when an
332   // overflow occurs. The algorithm is the following. All tasks enter
333   // the first one to ensure that they have all stopped manipulating
334   // the global data structures. After they exit it, they re-initialize
335   // their data structures and task 0 re-initializes the global data
336   // structures. Then, they enter the second sync barrier. This
337   // ensure, that no task starts doing work before all data
338   // structures (local and global) have been re-initialized. When they
339   // exit it, they are free to start working again.
340   WorkGangBarrierSync     _first_overflow_barrier_sync;
341   WorkGangBarrierSync     _second_overflow_barrier_sync;
342 
343   // This is set by any task, when an overflow on the global data
344   // structures is detected
345   volatile bool           _has_overflown;
346   // True: marking is concurrent, false: we're in remark
347   volatile bool           _concurrent;
348   // Set at the end of a Full GC so that marking aborts
349   volatile bool           _has_aborted;
350 
351   // Used when remark aborts due to an overflow to indicate that
352   // another concurrent marking phase should start
353   volatile bool           _restart_for_overflow;
354 
355   ConcurrentGCTimer*      _gc_timer_cm;
356 
357   G1OldTracer*            _gc_tracer_cm;
358 
359   // Timing statistics. All of them are in ms
360   NumberSeq _init_times;
361   NumberSeq _remark_times;
362   NumberSeq _remark_mark_times;
363   NumberSeq _remark_weak_ref_times;
364   NumberSeq _cleanup_times;
365   double    _total_cleanup_time;
366 
367   double*   _accum_task_vtime;   // Accumulated task vtime
368 
369   WorkGang* _concurrent_workers;
370   uint      _num_concurrent_workers; // The number of marking worker threads we're using
371   uint      _max_concurrent_workers; // Maximum number of marking worker threads
372 
373   void verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller);
374 
375   void finalize_marking();
376 
377   void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes);
378   void weak_refs_work(bool clear_all_soft_refs);
379 
380   void report_object_count(bool mark_completed);
381 
382   void swap_mark_bitmaps();
383 
384   void reclaim_empty_regions();
385 
386   // After reclaiming empty regions, update heap sizes.
387   void compute_new_sizes();
388 
389   // Clear statistics gathered during the concurrent cycle for the given region after
390   // it has been reclaimed.
391   void clear_statistics(HeapRegion* r);
392 
393   // Resets the global marking data structures, as well as the
394   // task local ones; should be called during initial mark.
395   void reset();
396 
397   // Resets all the marking data structures. Called when we have to restart
398   // marking or when marking completes (via set_non_marking_state below).
399   void reset_marking_for_restart();
400 
401   // We do this after we're done with marking so that the marking data
402   // structures are initialized to a sensible and predictable state.
403   void reset_at_marking_complete();
404 
405   // Called to indicate how many threads are currently active.
406   void set_concurrency(uint active_tasks);
407 
408   // Should be called to indicate which phase we're in (concurrent
409   // mark or remark) and how many threads are currently active.
410   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
411 
412   // Prints all gathered CM-related statistics
413   void print_stats();
414 
finger()415   HeapWord*               finger()           { return _finger;   }
concurrent()416   bool                    concurrent()       { return _concurrent; }
active_tasks()417   uint                    active_tasks()     { return _num_active_tasks; }
terminator() const418   ParallelTaskTerminator* terminator() const { return _terminator.terminator(); }
419 
420   // Claims the next available region to be scanned by a marking
421   // task/thread. It might return NULL if the next region is empty or
422   // we have run out of regions. In the latter case, out_of_regions()
423   // determines whether we've really run out of regions or the task
424   // should call claim_region() again. This might seem a bit
425   // awkward. Originally, the code was written so that claim_region()
426   // either successfully returned with a non-empty region or there
427   // were no more regions to be claimed. The problem with this was
428   // that, in certain circumstances, it iterated over large chunks of
429   // the heap finding only empty regions and, while it was working, it
430   // was preventing the calling task to call its regular clock
431   // method. So, this way, each task will spend very little time in
432   // claim_region() and is allowed to call the regular clock method
433   // frequently.
434   HeapRegion* claim_region(uint worker_id);
435 
436   // Determines whether we've run out of regions to scan. Note that
437   // the finger can point past the heap end in case the heap was expanded
438   // to satisfy an allocation without doing a GC. This is fine, because all
439   // objects in those regions will be considered live anyway because of
440   // SATB guarantees (i.e. their TAMS will be equal to bottom).
out_of_regions()441   bool out_of_regions() { return _finger >= _heap.end(); }
442 
443   // Returns the task with the given id
task(uint id)444   G1CMTask* task(uint id) {
445     // During initial mark we use the parallel gc threads to do some work, so
446     // we can only compare against _max_num_tasks.
447     assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks);
448     return _tasks[id];
449   }
450 
451   // Access / manipulation of the overflow flag which is set to
452   // indicate that the global stack has overflown
has_overflown()453   bool has_overflown()           { return _has_overflown; }
set_has_overflown()454   void set_has_overflown()       { _has_overflown = true; }
clear_has_overflown()455   void clear_has_overflown()     { _has_overflown = false; }
restart_for_overflow()456   bool restart_for_overflow()    { return _restart_for_overflow; }
457 
458   // Methods to enter the two overflow sync barriers
459   void enter_first_sync_barrier(uint worker_id);
460   void enter_second_sync_barrier(uint worker_id);
461 
462   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
463   // true, periodically insert checks to see if this method should exit prematurely.
464   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
465 
466   // Region statistics gathered during marking.
467   G1RegionMarkStats* _region_mark_stats;
468   // Top pointer for each region at the start of the rebuild remembered set process
469   // for regions which remembered sets need to be rebuilt. A NULL for a given region
470   // means that this region does not be scanned during the rebuilding remembered
471   // set phase at all.
472   HeapWord* volatile* _top_at_rebuild_starts;
473 public:
474   void add_to_liveness(uint worker_id, oop const obj, size_t size);
475   // Liveness of the given region as determined by concurrent marking, i.e. the amount of
476   // live words between bottom and nTAMS.
liveness(uint region) const477   size_t liveness(uint region) const { return _region_mark_stats[region]._live_words; }
478 
479   // Sets the internal top_at_region_start for the given region to current top of the region.
480   inline void update_top_at_rebuild_start(HeapRegion* r);
481   // TARS for the given region during remembered set rebuilding.
482   inline HeapWord* top_at_rebuild_start(uint region) const;
483 
484   // Clear statistics gathered during the concurrent cycle for the given region after
485   // it has been reclaimed.
486   void clear_statistics_in_region(uint region_idx);
487   // Notification for eagerly reclaimed regions to clean up.
488   void humongous_object_eagerly_reclaimed(HeapRegion* r);
489   // Manipulation of the global mark stack.
490   // The push and pop operations are used by tasks for transfers
491   // between task-local queues and the global mark stack.
mark_stack_push(G1TaskQueueEntry * arr)492   bool mark_stack_push(G1TaskQueueEntry* arr) {
493     if (!_global_mark_stack.par_push_chunk(arr)) {
494       set_has_overflown();
495       return false;
496     }
497     return true;
498   }
mark_stack_pop(G1TaskQueueEntry * arr)499   bool mark_stack_pop(G1TaskQueueEntry* arr) {
500     return _global_mark_stack.par_pop_chunk(arr);
501   }
mark_stack_size() const502   size_t mark_stack_size() const                { return _global_mark_stack.size(); }
partial_mark_stack_size_target() const503   size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; }
mark_stack_empty() const504   bool mark_stack_empty() const                 { return _global_mark_stack.is_empty(); }
505 
root_regions()506   G1CMRootRegions* root_regions() { return &_root_regions; }
507 
508   void concurrent_cycle_start();
509   // Abandon current marking iteration due to a Full GC.
510   void concurrent_cycle_abort();
511   void concurrent_cycle_end();
512 
update_accum_task_vtime(int i,double vtime)513   void update_accum_task_vtime(int i, double vtime) {
514     _accum_task_vtime[i] += vtime;
515   }
516 
all_task_accum_vtime()517   double all_task_accum_vtime() {
518     double ret = 0.0;
519     for (uint i = 0; i < _max_num_tasks; ++i)
520       ret += _accum_task_vtime[i];
521     return ret;
522   }
523 
524   // Attempts to steal an object from the task queues of other tasks
525   bool try_stealing(uint worker_id, G1TaskQueueEntry& task_entry);
526 
527   G1ConcurrentMark(G1CollectedHeap* g1h,
528                    G1RegionToSpaceMapper* prev_bitmap_storage,
529                    G1RegionToSpaceMapper* next_bitmap_storage);
530   ~G1ConcurrentMark();
531 
cm_thread()532   G1ConcurrentMarkThread* cm_thread() { return _cm_thread; }
533 
prev_mark_bitmap() const534   const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; }
next_mark_bitmap() const535   G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; }
536 
537   // Calculates the number of concurrent GC threads to be used in the marking phase.
538   uint calc_active_marking_workers();
539 
540   // Moves all per-task cached data into global state.
541   void flush_all_task_caches();
542   // Prepare internal data structures for the next mark cycle. This includes clearing
543   // the next mark bitmap and some internal data structures. This method is intended
544   // to be called concurrently to the mutator. It will yield to safepoint requests.
545   void cleanup_for_next_mark();
546 
547   // Clear the previous marking bitmap during safepoint.
548   void clear_prev_bitmap(WorkGang* workers);
549 
550   // These two methods do the work that needs to be done at the start and end of the
551   // initial mark pause.
552   void pre_initial_mark();
553   void post_initial_mark();
554 
555   // Scan all the root regions and mark everything reachable from
556   // them.
557   void scan_root_regions();
558 
559   // Scan a single root region from nTAMS to top and mark everything reachable from it.
560   void scan_root_region(HeapRegion* hr, uint worker_id);
561 
562   // Do concurrent phase of marking, to a tentative transitive closure.
563   void mark_from_roots();
564 
565   // Do concurrent preclean work.
566   void preclean();
567 
568   void remark();
569 
570   void cleanup();
571   // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use
572   // this carefully.
573   inline void mark_in_prev_bitmap(oop p);
574 
575   // Clears marks for all objects in the given range, for the prev or
576   // next bitmaps.  Caution: the previous bitmap is usually
577   // read-only, so use this carefully!
578   void clear_range_in_prev_bitmap(MemRegion mr);
579 
580   inline bool is_marked_in_prev_bitmap(oop p) const;
581 
582   // Verify that there are no collection set oops on the stacks (taskqueues /
583   // global mark stack) and fingers (global / per-task).
584   // If marking is not in progress, it's a no-op.
585   void verify_no_cset_oops() PRODUCT_RETURN;
586 
587   inline bool do_yield_check();
588 
has_aborted()589   bool has_aborted()      { return _has_aborted; }
590 
591   void print_summary_info();
592 
593   void print_worker_threads_on(outputStream* st) const;
594   void threads_do(ThreadClosure* tc) const;
595 
596   void print_on_error(outputStream* st) const;
597 
598   // Mark the given object on the next bitmap if it is below nTAMS.
599   inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj);
600   inline bool mark_in_next_bitmap(uint worker_id, oop const obj);
601 
602   inline bool is_marked_in_next_bitmap(oop p) const;
603 
604   // Returns true if initialization was successfully completed.
completed_initialization() const605   bool completed_initialization() const {
606     return _completed_initialization;
607   }
608 
gc_timer_cm() const609   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
gc_tracer_cm() const610   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
611 
612 private:
613   // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application.
614   void rebuild_rem_set_concurrently();
615 };
616 
617 // A class representing a marking task.
618 class G1CMTask : public TerminatorTerminator {
619 private:
620   enum PrivateConstants {
621     // The regular clock call is called once the scanned words reaches
622     // this limit
623     words_scanned_period          = 12*1024,
624     // The regular clock call is called once the number of visited
625     // references reaches this limit
626     refs_reached_period           = 1024,
627     // Initial value for the hash seed, used in the work stealing code
628     init_hash_seed                = 17
629   };
630 
631   // Number of entries in the per-task stats entry. This seems enough to have a very
632   // low cache miss rate.
633   static const uint RegionMarkStatsCacheSize = 1024;
634 
635   G1CMObjArrayProcessor       _objArray_processor;
636 
637   uint                        _worker_id;
638   G1CollectedHeap*            _g1h;
639   G1ConcurrentMark*           _cm;
640   G1CMBitMap*                 _next_mark_bitmap;
641   // the task queue of this task
642   G1CMTaskQueue*              _task_queue;
643 
644   G1RegionMarkStatsCache      _mark_stats_cache;
645   // Number of calls to this task
646   uint                        _calls;
647 
648   // When the virtual timer reaches this time, the marking step should exit
649   double                      _time_target_ms;
650   // Start time of the current marking step
651   double                      _start_time_ms;
652 
653   // Oop closure used for iterations over oops
654   G1CMOopClosure*             _cm_oop_closure;
655 
656   // Region this task is scanning, NULL if we're not scanning any
657   HeapRegion*                 _curr_region;
658   // Local finger of this task, NULL if we're not scanning a region
659   HeapWord*                   _finger;
660   // Limit of the region this task is scanning, NULL if we're not scanning one
661   HeapWord*                   _region_limit;
662 
663   // Number of words this task has scanned
664   size_t                      _words_scanned;
665   // When _words_scanned reaches this limit, the regular clock is
666   // called. Notice that this might be decreased under certain
667   // circumstances (i.e. when we believe that we did an expensive
668   // operation).
669   size_t                      _words_scanned_limit;
670   // Initial value of _words_scanned_limit (i.e. what it was
671   // before it was decreased).
672   size_t                      _real_words_scanned_limit;
673 
674   // Number of references this task has visited
675   size_t                      _refs_reached;
676   // When _refs_reached reaches this limit, the regular clock is
677   // called. Notice this this might be decreased under certain
678   // circumstances (i.e. when we believe that we did an expensive
679   // operation).
680   size_t                      _refs_reached_limit;
681   // Initial value of _refs_reached_limit (i.e. what it was before
682   // it was decreased).
683   size_t                      _real_refs_reached_limit;
684 
685   // If true, then the task has aborted for some reason
686   bool                        _has_aborted;
687   // Set when the task aborts because it has met its time quota
688   bool                        _has_timed_out;
689   // True when we're draining SATB buffers; this avoids the task
690   // aborting due to SATB buffers being available (as we're already
691   // dealing with them)
692   bool                        _draining_satb_buffers;
693 
694   // Number sequence of past step times
695   NumberSeq                   _step_times_ms;
696   // Elapsed time of this task
697   double                      _elapsed_time_ms;
698   // Termination time of this task
699   double                      _termination_time_ms;
700   // When this task got into the termination protocol
701   double                      _termination_start_time_ms;
702 
703   TruncatedSeq                _marking_step_diffs_ms;
704 
705   // Updates the local fields after this task has claimed
706   // a new region to scan
707   void setup_for_region(HeapRegion* hr);
708   // Makes the limit of the region up-to-date
709   void update_region_limit();
710 
711   // Called when either the words scanned or the refs visited limit
712   // has been reached
713   void reached_limit();
714   // Recalculates the words scanned and refs visited limits
715   void recalculate_limits();
716   // Decreases the words scanned and refs visited limits when we reach
717   // an expensive operation
718   void decrease_limits();
719   // Checks whether the words scanned or refs visited reached their
720   // respective limit and calls reached_limit() if they have
check_limits()721   void check_limits() {
722     if (_words_scanned >= _words_scanned_limit ||
723         _refs_reached >= _refs_reached_limit) {
724       reached_limit();
725     }
726   }
727   // Supposed to be called regularly during a marking step as
728   // it checks a bunch of conditions that might cause the marking step
729   // to abort
730   // Return true if the marking step should continue. Otherwise, return false to abort
731   bool regular_clock_call();
732 
733   // Set abort flag if regular_clock_call() check fails
734   inline void abort_marking_if_regular_check_fail();
735 
736   // Test whether obj might have already been passed over by the
737   // mark bitmap scan, and so needs to be pushed onto the mark stack.
738   bool is_below_finger(oop obj, HeapWord* global_finger) const;
739 
740   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
741 public:
742   // Apply the closure on the given area of the objArray. Return the number of words
743   // scanned.
744   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
745   // Resets the task; should be called right at the beginning of a marking phase.
746   void reset(G1CMBitMap* next_mark_bitmap);
747   // Clears all the fields that correspond to a claimed region.
748   void clear_region_fields();
749 
750   // The main method of this class which performs a marking step
751   // trying not to exceed the given duration. However, it might exit
752   // prematurely, according to some conditions (i.e. SATB buffers are
753   // available for processing).
754   void do_marking_step(double target_ms,
755                        bool do_termination,
756                        bool is_serial);
757 
758   // These two calls start and stop the timer
record_start_time()759   void record_start_time() {
760     _elapsed_time_ms = os::elapsedTime() * 1000.0;
761   }
record_end_time()762   void record_end_time() {
763     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
764   }
765 
766   // Returns the worker ID associated with this task.
worker_id()767   uint worker_id() { return _worker_id; }
768 
769   // From TerminatorTerminator. It determines whether this task should
770   // exit the termination protocol after it's entered it.
771   virtual bool should_exit_termination();
772 
773   // Resets the local region fields after a task has finished scanning a
774   // region; or when they have become stale as a result of the region
775   // being evacuated.
776   void giveup_current_region();
777 
finger()778   HeapWord* finger()            { return _finger; }
779 
has_aborted()780   bool has_aborted()            { return _has_aborted; }
set_has_aborted()781   void set_has_aborted()        { _has_aborted = true; }
clear_has_aborted()782   void clear_has_aborted()      { _has_aborted = false; }
783 
784   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
785 
786   // Increment the number of references this task has visited.
increment_refs_reached()787   void increment_refs_reached() { ++_refs_reached; }
788 
789   // Grey the object by marking it.  If not already marked, push it on
790   // the local queue if below the finger. obj is required to be below its region's NTAMS.
791   // Returns whether there has been a mark to the bitmap.
792   inline bool make_reference_grey(oop obj);
793 
794   // Grey the object (by calling make_grey_reference) if required,
795   // e.g. obj is below its containing region's NTAMS.
796   // Precondition: obj is a valid heap object.
797   // Returns true if the reference caused a mark to be set in the next bitmap.
798   template <class T>
799   inline bool deal_with_reference(T* p);
800 
801   // Scans an object and visits its children.
802   inline void scan_task_entry(G1TaskQueueEntry task_entry);
803 
804   // Pushes an object on the local queue.
805   inline void push(G1TaskQueueEntry task_entry);
806 
807   // Move entries to the global stack.
808   void move_entries_to_global_stack();
809   // Move entries from the global stack, return true if we were successful to do so.
810   bool get_entries_from_global_stack();
811 
812   // Pops and scans objects from the local queue. If partially is
813   // true, then it stops when the queue size is of a given limit. If
814   // partially is false, then it stops when the queue is empty.
815   void drain_local_queue(bool partially);
816   // Moves entries from the global stack to the local queue and
817   // drains the local queue. If partially is true, then it stops when
818   // both the global stack and the local queue reach a given size. If
819   // partially if false, it tries to empty them totally.
820   void drain_global_stack(bool partially);
821   // Keeps picking SATB buffers and processing them until no SATB
822   // buffers are available.
823   void drain_satb_buffers();
824 
825   // Moves the local finger to a new location
move_finger_to(HeapWord * new_finger)826   inline void move_finger_to(HeapWord* new_finger) {
827     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
828     _finger = new_finger;
829   }
830 
831   G1CMTask(uint worker_id,
832            G1ConcurrentMark *cm,
833            G1CMTaskQueue* task_queue,
834            G1RegionMarkStats* mark_stats,
835            uint max_regions);
836 
837   inline void update_liveness(oop const obj, size_t const obj_size);
838 
839   // Clear (without flushing) the mark cache entry for the given region.
840   void clear_mark_stats_cache(uint region_idx);
841   // Evict the whole statistics cache into the global statistics. Returns the
842   // number of cache hits and misses so far.
843   Pair<size_t, size_t> flush_mark_stats_cache();
844   // Prints statistics associated with this task
845   void print_stats();
846 };
847 
848 // Class that's used to to print out per-region liveness
849 // information. It's currently used at the end of marking and also
850 // after we sort the old regions at the end of the cleanup operation.
851 class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure {
852   // Accumulators for these values.
853   size_t _total_used_bytes;
854   size_t _total_capacity_bytes;
855   size_t _total_prev_live_bytes;
856   size_t _total_next_live_bytes;
857 
858   // Accumulator for the remembered set size
859   size_t _total_remset_bytes;
860 
861   // Accumulator for strong code roots memory size
862   size_t _total_strong_code_roots_bytes;
863 
bytes_to_mb(size_t val)864   static double bytes_to_mb(size_t val) {
865     return (double) val / (double) M;
866   }
867 
868 public:
869   // The header and footer are printed in the constructor and
870   // destructor respectively.
871   G1PrintRegionLivenessInfoClosure(const char* phase_name);
872   virtual bool do_heap_region(HeapRegion* r);
873   ~G1PrintRegionLivenessInfoClosure();
874 };
875 
876 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
877