1 /*
2  * Copyright (c) 2004, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/adaptiveSizePolicy.hpp"
27 #include "gc/shared/gcCause.hpp"
28 #include "gc/shared/gcUtil.inline.hpp"
29 #include "gc/shared/softRefPolicy.hpp"
30 #include "logging/log.hpp"
31 #include "runtime/timer.hpp"
32 
33 elapsedTimer AdaptiveSizePolicy::_minor_timer;
34 elapsedTimer AdaptiveSizePolicy::_major_timer;
35 
36 // The throughput goal is implemented as
37 //      _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
38 // gc_cost_ratio is the ratio
39 //      application cost / gc cost
40 // For example a gc_cost_ratio of 4 translates into a
41 // throughput goal of .80
42 
AdaptiveSizePolicy(size_t init_eden_size,size_t init_promo_size,size_t init_survivor_size,double gc_pause_goal_sec,uint gc_cost_ratio)43 AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
44                                        size_t init_promo_size,
45                                        size_t init_survivor_size,
46                                        double gc_pause_goal_sec,
47                                        uint gc_cost_ratio) :
48     _throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
49     _eden_size(init_eden_size),
50     _promo_size(init_promo_size),
51     _survivor_size(init_survivor_size),
52     _gc_overhead_limit_exceeded(false),
53     _print_gc_overhead_limit_would_be_exceeded(false),
54     _gc_overhead_limit_count(0),
55     _latest_minor_mutator_interval_seconds(0),
56     _threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
57     _gc_pause_goal_sec(gc_pause_goal_sec),
58     _young_gen_change_for_minor_throughput(0),
59     _old_gen_change_for_major_throughput(0) {
60   assert(AdaptiveSizePolicyGCTimeLimitThreshold > 0,
61     "No opportunity to clear SoftReferences before GC overhead limit");
62   _avg_minor_pause    =
63     new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
64   _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
65   _avg_minor_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
66   _avg_major_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
67 
68   _avg_young_live     = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
69   _avg_old_live       = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
70   _avg_eden_live      = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
71 
72   _avg_survived       = new AdaptivePaddedAverage(AdaptiveSizePolicyWeight,
73                                                   SurvivorPadding);
74   _avg_pretenured     = new AdaptivePaddedNoZeroDevAverage(
75                                                   AdaptiveSizePolicyWeight,
76                                                   SurvivorPadding);
77 
78   _minor_pause_old_estimator =
79     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
80   _minor_pause_young_estimator =
81     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
82   _minor_collection_estimator =
83     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
84   _major_collection_estimator =
85     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
86 
87   // Start the timers
88   _minor_timer.start();
89 
90   _young_gen_policy_is_ready = false;
91 }
92 
tenuring_threshold_change() const93 bool AdaptiveSizePolicy::tenuring_threshold_change() const {
94   return decrement_tenuring_threshold_for_gc_cost() ||
95          increment_tenuring_threshold_for_gc_cost() ||
96          decrement_tenuring_threshold_for_survivor_limit();
97 }
98 
minor_collection_begin()99 void AdaptiveSizePolicy::minor_collection_begin() {
100   // Update the interval time
101   _minor_timer.stop();
102   // Save most recent collection time
103   _latest_minor_mutator_interval_seconds = _minor_timer.seconds();
104   _minor_timer.reset();
105   _minor_timer.start();
106 }
107 
update_minor_pause_young_estimator(double minor_pause_in_ms)108 void AdaptiveSizePolicy::update_minor_pause_young_estimator(
109     double minor_pause_in_ms) {
110   double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
111   _minor_pause_young_estimator->update(eden_size_in_mbytes,
112     minor_pause_in_ms);
113 }
114 
minor_collection_end(GCCause::Cause gc_cause)115 void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
116   // Update the pause time.
117   _minor_timer.stop();
118 
119   if (!GCCause::is_user_requested_gc(gc_cause) ||
120       UseAdaptiveSizePolicyWithSystemGC) {
121     double minor_pause_in_seconds = _minor_timer.seconds();
122     double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;
123 
124     // Sample for performance counter
125     _avg_minor_pause->sample(minor_pause_in_seconds);
126 
127     // Cost of collection (unit-less)
128     double collection_cost = 0.0;
129     if ((_latest_minor_mutator_interval_seconds > 0.0) &&
130         (minor_pause_in_seconds > 0.0)) {
131       double interval_in_seconds =
132         _latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
133       collection_cost =
134         minor_pause_in_seconds / interval_in_seconds;
135       _avg_minor_gc_cost->sample(collection_cost);
136       // Sample for performance counter
137       _avg_minor_interval->sample(interval_in_seconds);
138     }
139 
140     // The policy does not have enough data until at least some
141     // young collections have been done.
142     _young_gen_policy_is_ready =
143       (_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);
144 
145     // Calculate variables used to estimate pause time vs. gen sizes
146     double eden_size_in_mbytes = ((double)_eden_size) / ((double)M);
147     update_minor_pause_young_estimator(minor_pause_in_ms);
148     update_minor_pause_old_estimator(minor_pause_in_ms);
149 
150     log_trace(gc, ergo)("AdaptiveSizePolicy::minor_collection_end: minor gc cost: %f  average: %f",
151                         collection_cost, _avg_minor_gc_cost->average());
152     log_trace(gc, ergo)("  minor pause: %f minor period %f",
153                         minor_pause_in_ms, _latest_minor_mutator_interval_seconds * MILLIUNITS);
154 
155     // Calculate variable used to estimate collection cost vs. gen sizes
156     assert(collection_cost >= 0.0, "Expected to be non-negative");
157     _minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
158   }
159 
160   // Interval times use this timer to measure the mutator time.
161   // Reset the timer after the GC pause.
162   _minor_timer.reset();
163   _minor_timer.start();
164 }
165 
eden_increment(size_t cur_eden,uint percent_change)166 size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden, uint percent_change) {
167   size_t eden_heap_delta;
168   eden_heap_delta = cur_eden / 100 * percent_change;
169   return eden_heap_delta;
170 }
171 
eden_increment(size_t cur_eden)172 size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
173   return eden_increment(cur_eden, YoungGenerationSizeIncrement);
174 }
175 
eden_decrement(size_t cur_eden)176 size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
177   size_t eden_heap_delta = eden_increment(cur_eden) /
178     AdaptiveSizeDecrementScaleFactor;
179   return eden_heap_delta;
180 }
181 
promo_increment(size_t cur_promo,uint percent_change)182 size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo, uint percent_change) {
183   size_t promo_heap_delta;
184   promo_heap_delta = cur_promo / 100 * percent_change;
185   return promo_heap_delta;
186 }
187 
promo_increment(size_t cur_promo)188 size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
189   return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
190 }
191 
promo_decrement(size_t cur_promo)192 size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
193   size_t promo_heap_delta = promo_increment(cur_promo);
194   promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
195   return promo_heap_delta;
196 }
197 
time_since_major_gc() const198 double AdaptiveSizePolicy::time_since_major_gc() const {
199   _major_timer.stop();
200   double result = _major_timer.seconds();
201   _major_timer.start();
202   return result;
203 }
204 
205 // Linear decay of major gc cost
decaying_major_gc_cost() const206 double AdaptiveSizePolicy::decaying_major_gc_cost() const {
207   double major_interval = major_gc_interval_average_for_decay();
208   double major_gc_cost_average = major_gc_cost();
209   double decayed_major_gc_cost = major_gc_cost_average;
210   if(time_since_major_gc() > 0.0) {
211     decayed_major_gc_cost = major_gc_cost() *
212       (((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
213       / time_since_major_gc();
214   }
215 
216   // The decayed cost should always be smaller than the
217   // average cost but the vagaries of finite arithmetic could
218   // produce a larger value in decayed_major_gc_cost so protect
219   // against that.
220   return MIN2(major_gc_cost_average, decayed_major_gc_cost);
221 }
222 
223 // Use a value of the major gc cost that has been decayed
224 // by the factor
225 //
226 //      average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
227 //        time-since-last-major-gc
228 //
229 // if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
230 // is less than time-since-last-major-gc.
231 //
232 // In cases where there are initial major gc's that
233 // are of a relatively high cost but no later major
234 // gc's, the total gc cost can remain high because
235 // the major gc cost remains unchanged (since there are no major
236 // gc's).  In such a situation the value of the unchanging
237 // major gc cost can keep the mutator throughput below
238 // the goal when in fact the major gc cost is becoming diminishingly
239 // small.  Use the decaying gc cost only to decide whether to
240 // adjust for throughput.  Using it also to determine the adjustment
241 // to be made for throughput also seems reasonable but there is
242 // no test case to use to decide if it is the right thing to do
243 // don't do it yet.
244 
decaying_gc_cost() const245 double AdaptiveSizePolicy::decaying_gc_cost() const {
246   double decayed_major_gc_cost = major_gc_cost();
247   double avg_major_interval = major_gc_interval_average_for_decay();
248   if (UseAdaptiveSizeDecayMajorGCCost &&
249       (AdaptiveSizeMajorGCDecayTimeScale > 0) &&
250       (avg_major_interval > 0.00)) {
251     double time_since_last_major_gc = time_since_major_gc();
252 
253     // Decay the major gc cost?
254     if (time_since_last_major_gc >
255         ((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {
256 
257       // Decay using the time-since-last-major-gc
258       decayed_major_gc_cost = decaying_major_gc_cost();
259       log_trace(gc, ergo)("decaying_gc_cost: major interval average: %f  time since last major gc: %f",
260                     avg_major_interval, time_since_last_major_gc);
261       log_trace(gc, ergo)("  major gc cost: %f  decayed major gc cost: %f",
262                     major_gc_cost(), decayed_major_gc_cost);
263     }
264   }
265   double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
266   return result;
267 }
268 
269 
clear_generation_free_space_flags()270 void AdaptiveSizePolicy::clear_generation_free_space_flags() {
271   set_change_young_gen_for_min_pauses(0);
272   set_change_old_gen_for_maj_pauses(0);
273 
274   set_change_old_gen_for_throughput(0);
275   set_change_young_gen_for_throughput(0);
276   set_decrease_for_footprint(0);
277   set_decide_at_full_gc(0);
278 }
279 
check_gc_overhead_limit(size_t young_live,size_t eden_live,size_t max_old_gen_size,size_t max_eden_size,bool is_full_gc,GCCause::Cause gc_cause,SoftRefPolicy * soft_ref_policy)280 void AdaptiveSizePolicy::check_gc_overhead_limit(
281                                           size_t young_live,
282                                           size_t eden_live,
283                                           size_t max_old_gen_size,
284                                           size_t max_eden_size,
285                                           bool   is_full_gc,
286                                           GCCause::Cause gc_cause,
287                                           SoftRefPolicy* soft_ref_policy) {
288 
289   // Ignore explicit GC's.  Exiting here does not set the flag and
290   // does not reset the count.  Updating of the averages for system
291   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
292   if (GCCause::is_user_requested_gc(gc_cause) ||
293       GCCause::is_serviceability_requested_gc(gc_cause)) {
294     return;
295   }
296   // eden_limit is the upper limit on the size of eden based on
297   // the maximum size of the young generation and the sizes
298   // of the survivor space.
299   // The question being asked is whether the gc costs are high
300   // and the space being recovered by a collection is low.
301   // free_in_young_gen is the free space in the young generation
302   // after a collection and promo_live is the free space in the old
303   // generation after a collection.
304   //
305   // Use the minimum of the current value of the live in the
306   // young gen or the average of the live in the young gen.
307   // If the current value drops quickly, that should be taken
308   // into account (i.e., don't trigger if the amount of free
309   // space has suddenly jumped up).  If the current is much
310   // higher than the average, use the average since it represents
311   // the longer term behavior.
312   const size_t live_in_eden =
313     MIN2(eden_live, (size_t) avg_eden_live()->average());
314   const size_t free_in_eden = max_eden_size > live_in_eden ?
315     max_eden_size - live_in_eden : 0;
316   const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
317   const size_t total_free_limit = free_in_old_gen + free_in_eden;
318   const size_t total_mem = max_old_gen_size + max_eden_size;
319   const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
320   const double mem_free_old_limit = max_old_gen_size * (GCHeapFreeLimit/100.0);
321   const double mem_free_eden_limit = max_eden_size * (GCHeapFreeLimit/100.0);
322   const double gc_cost_limit = GCTimeLimit/100.0;
323   size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
324   // But don't force a promo size below the current promo size. Otherwise,
325   // the promo size will shrink for no good reason.
326   promo_limit = MAX2(promo_limit, _promo_size);
327 
328 
329   log_trace(gc, ergo)(
330         "PSAdaptiveSizePolicy::check_gc_overhead_limit:"
331         " promo_limit: " SIZE_FORMAT
332         " max_eden_size: " SIZE_FORMAT
333         " total_free_limit: " SIZE_FORMAT
334         " max_old_gen_size: " SIZE_FORMAT
335         " max_eden_size: " SIZE_FORMAT
336         " mem_free_limit: " SIZE_FORMAT,
337         promo_limit, max_eden_size, total_free_limit,
338         max_old_gen_size, max_eden_size,
339         (size_t) mem_free_limit);
340 
341   bool print_gc_overhead_limit_would_be_exceeded = false;
342   if (is_full_gc) {
343     if (gc_cost() > gc_cost_limit &&
344       free_in_old_gen < (size_t) mem_free_old_limit &&
345       free_in_eden < (size_t) mem_free_eden_limit) {
346       // Collections, on average, are taking too much time, and
347       //      gc_cost() > gc_cost_limit
348       // we have too little space available after a full gc.
349       //      total_free_limit < mem_free_limit
350       // where
351       //   total_free_limit is the free space available in
352       //     both generations
353       //   total_mem is the total space available for allocation
354       //     in both generations (survivor spaces are not included
355       //     just as they are not included in eden_limit).
356       //   mem_free_limit is a fraction of total_mem judged to be an
357       //     acceptable amount that is still unused.
358       // The heap can ask for the value of this variable when deciding
359       // whether to thrown an OutOfMemory error.
360       // Note that the gc time limit test only works for the collections
361       // of the young gen + tenured gen and not for collections of the
362       // permanent gen.  That is because the calculation of the space
363       // freed by the collection is the free space in the young gen +
364       // tenured gen.
365       // At this point the GC overhead limit is being exceeded.
366       inc_gc_overhead_limit_count();
367       if (UseGCOverheadLimit) {
368         if (gc_overhead_limit_count() >=
369             AdaptiveSizePolicyGCTimeLimitThreshold){
370           // All conditions have been met for throwing an out-of-memory
371           set_gc_overhead_limit_exceeded(true);
372           // Avoid consecutive OOM due to the gc time limit by resetting
373           // the counter.
374           reset_gc_overhead_limit_count();
375         } else {
376           // The required consecutive collections which exceed the
377           // GC time limit may or may not have been reached. We
378           // are approaching that condition and so as not to
379           // throw an out-of-memory before all SoftRef's have been
380           // cleared, set _should_clear_all_soft_refs in CollectorPolicy.
381           // The clearing will be done on the next GC.
382           bool near_limit = gc_overhead_limit_near();
383           if (near_limit) {
384             soft_ref_policy->set_should_clear_all_soft_refs(true);
385             log_trace(gc, ergo)("Nearing GC overhead limit, will be clearing all SoftReference");
386           }
387         }
388       }
389       // Set this even when the overhead limit will not
390       // cause an out-of-memory.  Diagnostic message indicating
391       // that the overhead limit is being exceeded is sometimes
392       // printed.
393       print_gc_overhead_limit_would_be_exceeded = true;
394 
395     } else {
396       // Did not exceed overhead limits
397       reset_gc_overhead_limit_count();
398     }
399   }
400 
401   if (UseGCOverheadLimit) {
402     if (gc_overhead_limit_exceeded()) {
403       log_trace(gc, ergo)("GC is exceeding overhead limit of " UINTX_FORMAT "%%", GCTimeLimit);
404       reset_gc_overhead_limit_count();
405     } else if (print_gc_overhead_limit_would_be_exceeded) {
406       assert(gc_overhead_limit_count() > 0, "Should not be printing");
407       log_trace(gc, ergo)("GC would exceed overhead limit of " UINTX_FORMAT "%% %d consecutive time(s)",
408                           GCTimeLimit, gc_overhead_limit_count());
409     }
410   }
411 }
412 // Printing
413 
print() const414 bool AdaptiveSizePolicy::print() const {
415   assert(UseAdaptiveSizePolicy, "UseAdaptiveSizePolicy need to be enabled.");
416 
417   if (!log_is_enabled(Debug, gc, ergo)) {
418     return false;
419   }
420 
421   // Print goal for which action is needed.
422   char* action = NULL;
423   bool change_for_pause = false;
424   if ((change_old_gen_for_maj_pauses() ==
425          decrease_old_gen_for_maj_pauses_true) ||
426       (change_young_gen_for_min_pauses() ==
427          decrease_young_gen_for_min_pauses_true)) {
428     action = (char*) " *** pause time goal ***";
429     change_for_pause = true;
430   } else if ((change_old_gen_for_throughput() ==
431                increase_old_gen_for_throughput_true) ||
432             (change_young_gen_for_throughput() ==
433                increase_young_gen_for_througput_true)) {
434     action = (char*) " *** throughput goal ***";
435   } else if (decrease_for_footprint()) {
436     action = (char*) " *** reduced footprint ***";
437   } else {
438     // No actions were taken.  This can legitimately be the
439     // situation if not enough data has been gathered to make
440     // decisions.
441     return false;
442   }
443 
444   // Pauses
445   // Currently the size of the old gen is only adjusted to
446   // change the major pause times.
447   char* young_gen_action = NULL;
448   char* tenured_gen_action = NULL;
449 
450   char* shrink_msg = (char*) "(attempted to shrink)";
451   char* grow_msg = (char*) "(attempted to grow)";
452   char* no_change_msg = (char*) "(no change)";
453   if (change_young_gen_for_min_pauses() ==
454       decrease_young_gen_for_min_pauses_true) {
455     young_gen_action = shrink_msg;
456   } else if (change_for_pause) {
457     young_gen_action = no_change_msg;
458   }
459 
460   if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
461     tenured_gen_action = shrink_msg;
462   } else if (change_for_pause) {
463     tenured_gen_action = no_change_msg;
464   }
465 
466   // Throughput
467   if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
468     assert(change_young_gen_for_throughput() ==
469            increase_young_gen_for_througput_true,
470            "Both generations should be growing");
471     young_gen_action = grow_msg;
472     tenured_gen_action = grow_msg;
473   } else if (change_young_gen_for_throughput() ==
474              increase_young_gen_for_througput_true) {
475     // Only the young generation may grow at start up (before
476     // enough full collections have been done to grow the old generation).
477     young_gen_action = grow_msg;
478     tenured_gen_action = no_change_msg;
479   }
480 
481   // Minimum footprint
482   if (decrease_for_footprint() != 0) {
483     young_gen_action = shrink_msg;
484     tenured_gen_action = shrink_msg;
485   }
486 
487   log_debug(gc, ergo)("UseAdaptiveSizePolicy actions to meet %s", action);
488   log_debug(gc, ergo)("                       GC overhead (%%)");
489   log_debug(gc, ergo)("    Young generation:     %7.2f\t  %s",
490                       100.0 * avg_minor_gc_cost()->average(), young_gen_action);
491   log_debug(gc, ergo)("    Tenured generation:   %7.2f\t  %s",
492                       100.0 * avg_major_gc_cost()->average(), tenured_gen_action);
493   return true;
494 }
495 
print_tenuring_threshold(uint new_tenuring_threshold_arg) const496 void AdaptiveSizePolicy::print_tenuring_threshold( uint new_tenuring_threshold_arg) const {
497   // Tenuring threshold
498   if (decrement_tenuring_threshold_for_survivor_limit()) {
499     log_debug(gc, ergo)("Tenuring threshold: (attempted to decrease to avoid survivor space overflow) = %u", new_tenuring_threshold_arg);
500   } else if (decrement_tenuring_threshold_for_gc_cost()) {
501     log_debug(gc, ergo)("Tenuring threshold: (attempted to decrease to balance GC costs) = %u", new_tenuring_threshold_arg);
502   } else if (increment_tenuring_threshold_for_gc_cost()) {
503     log_debug(gc, ergo)("Tenuring threshold: (attempted to increase to balance GC costs) = %u", new_tenuring_threshold_arg);
504   } else {
505     assert(!tenuring_threshold_change(), "(no change was attempted)");
506   }
507 }
508