1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/gcId.hpp"
27 #include "gc/shared/workgroup.hpp"
28 #include "gc/shared/workerManager.hpp"
29 #include "memory/allocation.hpp"
30 #include "memory/allocation.inline.hpp"
31 #include "runtime/atomic.hpp"
32 #include "runtime/os.hpp"
33 #include "runtime/semaphore.hpp"
34 #include "runtime/thread.inline.hpp"
35 
36 // Definitions of WorkGang methods.
37 
38 // The current implementation will exit if the allocation
39 // of any worker fails.
initialize_workers()40 void  AbstractWorkGang::initialize_workers() {
41   log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers());
42   _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal);
43   if (_workers == NULL) {
44     vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array.");
45   }
46 
47   add_workers(true);
48 }
49 
50 
install_worker(uint worker_id)51 AbstractGangWorker* AbstractWorkGang::install_worker(uint worker_id) {
52   AbstractGangWorker* new_worker = allocate_worker(worker_id);
53   set_thread(worker_id, new_worker);
54   return new_worker;
55 }
56 
add_workers(bool initializing)57 void AbstractWorkGang::add_workers(bool initializing) {
58   add_workers(_active_workers, initializing);
59 }
60 
add_workers(uint active_workers,bool initializing)61 void AbstractWorkGang::add_workers(uint active_workers, bool initializing) {
62 
63   os::ThreadType worker_type;
64   if (are_ConcurrentGC_threads()) {
65     worker_type = os::cgc_thread;
66   } else {
67     worker_type = os::pgc_thread;
68   }
69   uint previous_created_workers = _created_workers;
70 
71   _created_workers = WorkerManager::add_workers(this,
72                                                 active_workers,
73                                                 _total_workers,
74                                                 _created_workers,
75                                                 worker_type,
76                                                 initializing);
77   _active_workers = MIN2(_created_workers, _active_workers);
78 
79   WorkerManager::log_worker_creation(this, previous_created_workers, _active_workers, _created_workers, initializing);
80 }
81 
worker(uint i) const82 AbstractGangWorker* AbstractWorkGang::worker(uint i) const {
83   // Array index bounds checking.
84   AbstractGangWorker* result = NULL;
85   assert(_workers != NULL, "No workers for indexing");
86   assert(i < total_workers(), "Worker index out of bounds");
87   result = _workers[i];
88   assert(result != NULL, "Indexing to null worker");
89   return result;
90 }
91 
print_worker_threads_on(outputStream * st) const92 void AbstractWorkGang::print_worker_threads_on(outputStream* st) const {
93   uint workers = created_workers();
94   for (uint i = 0; i < workers; i++) {
95     worker(i)->print_on(st);
96     st->cr();
97   }
98 }
99 
threads_do(ThreadClosure * tc) const100 void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
101   assert(tc != NULL, "Null ThreadClosure");
102   uint workers = created_workers();
103   for (uint i = 0; i < workers; i++) {
104     tc->do_thread(worker(i));
105   }
106 }
107 
108 // WorkGang dispatcher implemented with semaphores.
109 //
110 // Semaphores don't require the worker threads to re-claim the lock when they wake up.
111 // This helps lowering the latency when starting and stopping the worker threads.
112 class SemaphoreGangTaskDispatcher : public GangTaskDispatcher {
113   // The task currently being dispatched to the GangWorkers.
114   AbstractGangTask* _task;
115 
116   volatile uint _started;
117   volatile uint _not_finished;
118 
119   // Semaphore used to start the GangWorkers.
120   Semaphore* _start_semaphore;
121   // Semaphore used to notify the coordinator that all workers are done.
122   Semaphore* _end_semaphore;
123 
124 public:
SemaphoreGangTaskDispatcher()125   SemaphoreGangTaskDispatcher() :
126       _task(NULL),
127       _started(0),
128       _not_finished(0),
129       _start_semaphore(new Semaphore()),
130       _end_semaphore(new Semaphore())
131 { }
132 
~SemaphoreGangTaskDispatcher()133   ~SemaphoreGangTaskDispatcher() {
134     delete _start_semaphore;
135     delete _end_semaphore;
136   }
137 
coordinator_execute_on_workers(AbstractGangTask * task,uint num_workers)138   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
139     // No workers are allowed to read the state variables until they have been signaled.
140     _task         = task;
141     _not_finished = num_workers;
142 
143     // Dispatch 'num_workers' number of tasks.
144     _start_semaphore->signal(num_workers);
145 
146     // Wait for the last worker to signal the coordinator.
147     _end_semaphore->wait();
148 
149     // No workers are allowed to read the state variables after the coordinator has been signaled.
150     assert(_not_finished == 0, "%d not finished workers?", _not_finished);
151     _task    = NULL;
152     _started = 0;
153 
154   }
155 
worker_wait_for_task()156   WorkData worker_wait_for_task() {
157     // Wait for the coordinator to dispatch a task.
158     _start_semaphore->wait();
159 
160     uint num_started = Atomic::add(1u, &_started);
161 
162     // Subtract one to get a zero-indexed worker id.
163     uint worker_id = num_started - 1;
164 
165     return WorkData(_task, worker_id);
166   }
167 
worker_done_with_task()168   void worker_done_with_task() {
169     // Mark that the worker is done with the task.
170     // The worker is not allowed to read the state variables after this line.
171     uint not_finished = Atomic::sub(1u, &_not_finished);
172 
173     // The last worker signals to the coordinator that all work is completed.
174     if (not_finished == 0) {
175       _end_semaphore->signal();
176     }
177   }
178 };
179 
180 class MutexGangTaskDispatcher : public GangTaskDispatcher {
181   AbstractGangTask* _task;
182 
183   volatile uint _started;
184   volatile uint _finished;
185   volatile uint _num_workers;
186 
187   Monitor* _monitor;
188 
189  public:
MutexGangTaskDispatcher()190   MutexGangTaskDispatcher() :
191     _task(NULL),
192     _started(0),
193     _finished(0),
194     _num_workers(0),
195     _monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)) {
196   }
197 
~MutexGangTaskDispatcher()198   ~MutexGangTaskDispatcher() {
199     delete _monitor;
200   }
201 
coordinator_execute_on_workers(AbstractGangTask * task,uint num_workers)202   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
203     MutexLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
204 
205     _task        = task;
206     _num_workers = num_workers;
207 
208     // Tell the workers to get to work.
209     _monitor->notify_all();
210 
211     // Wait for them to finish.
212     while (_finished < _num_workers) {
213       _monitor->wait(/* no_safepoint_check */ true);
214     }
215 
216     _task        = NULL;
217     _num_workers = 0;
218     _started     = 0;
219     _finished    = 0;
220   }
221 
worker_wait_for_task()222   WorkData worker_wait_for_task() {
223     MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
224 
225     while (_num_workers == 0 || _started == _num_workers) {
226       _monitor->wait(/* no_safepoint_check */ true);
227     }
228 
229     _started++;
230 
231     // Subtract one to get a zero-indexed worker id.
232     uint worker_id = _started - 1;
233 
234     return WorkData(_task, worker_id);
235   }
236 
worker_done_with_task()237   void worker_done_with_task() {
238     MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
239 
240     _finished++;
241 
242     if (_finished == _num_workers) {
243       // This will wake up all workers and not only the coordinator.
244       _monitor->notify_all();
245     }
246   }
247 };
248 
create_dispatcher()249 static GangTaskDispatcher* create_dispatcher() {
250   if (UseSemaphoreGCThreadsSynchronization) {
251     return new SemaphoreGangTaskDispatcher();
252   }
253 
254   return new MutexGangTaskDispatcher();
255 }
256 
WorkGang(const char * name,uint workers,bool are_GC_task_threads,bool are_ConcurrentGC_threads)257 WorkGang::WorkGang(const char* name,
258                    uint  workers,
259                    bool  are_GC_task_threads,
260                    bool  are_ConcurrentGC_threads) :
261     AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
262     _dispatcher(create_dispatcher())
263 { }
264 
~WorkGang()265 WorkGang::~WorkGang() {
266   delete _dispatcher;
267 }
268 
allocate_worker(uint worker_id)269 AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) {
270   return new GangWorker(this, worker_id);
271 }
272 
run_task(AbstractGangTask * task)273 void WorkGang::run_task(AbstractGangTask* task) {
274   run_task(task, active_workers());
275 }
276 
run_task(AbstractGangTask * task,uint num_workers)277 void WorkGang::run_task(AbstractGangTask* task, uint num_workers) {
278   guarantee(num_workers <= total_workers(),
279             "Trying to execute task %s with %u workers which is more than the amount of total workers %u.",
280             task->name(), num_workers, total_workers());
281   guarantee(num_workers > 0, "Trying to execute task %s with zero workers", task->name());
282   uint old_num_workers = _active_workers;
283   update_active_workers(num_workers);
284   _dispatcher->coordinator_execute_on_workers(task, num_workers);
285   update_active_workers(old_num_workers);
286 }
287 
AbstractGangWorker(AbstractWorkGang * gang,uint id)288 AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) {
289   _gang = gang;
290   set_id(id);
291   set_name("%s#%d", gang->name(), id);
292 }
293 
run()294 void AbstractGangWorker::run() {
295   initialize();
296   loop();
297 }
298 
initialize()299 void AbstractGangWorker::initialize() {
300   this->initialize_named_thread();
301   assert(_gang != NULL, "No gang to run in");
302   os::set_priority(this, NearMaxPriority);
303   log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id());
304   // The VM thread should not execute here because MutexLocker's are used
305   // as (opposed to MutexLockerEx's).
306   assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
307          " of a work gang");
308 }
309 
is_GC_task_thread() const310 bool AbstractGangWorker::is_GC_task_thread() const {
311   return gang()->are_GC_task_threads();
312 }
313 
is_ConcurrentGC_thread() const314 bool AbstractGangWorker::is_ConcurrentGC_thread() const {
315   return gang()->are_ConcurrentGC_threads();
316 }
317 
print_on(outputStream * st) const318 void AbstractGangWorker::print_on(outputStream* st) const {
319   st->print("\"%s\" ", name());
320   Thread::print_on(st);
321   st->cr();
322 }
323 
wait_for_task()324 WorkData GangWorker::wait_for_task() {
325   return gang()->dispatcher()->worker_wait_for_task();
326 }
327 
signal_task_done()328 void GangWorker::signal_task_done() {
329   gang()->dispatcher()->worker_done_with_task();
330 }
331 
run_task(WorkData data)332 void GangWorker::run_task(WorkData data) {
333   GCIdMark gc_id_mark(data._task->gc_id());
334   log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id);
335 
336   data._task->work(data._worker_id);
337 
338   log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT,
339                                   name(), data._task->name(), data._worker_id, p2i(Thread::current()));
340 }
341 
loop()342 void GangWorker::loop() {
343   while (true) {
344     WorkData data = wait_for_task();
345 
346     run_task(data);
347 
348     signal_task_done();
349   }
350 }
351 
352 // *** WorkGangBarrierSync
353 
WorkGangBarrierSync()354 WorkGangBarrierSync::WorkGangBarrierSync()
355   : _monitor(Mutex::safepoint, "work gang barrier sync", true,
356              Monitor::_safepoint_check_never),
357     _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
358 }
359 
WorkGangBarrierSync(uint n_workers,const char * name)360 WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
361   : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
362     _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
363 }
364 
set_n_workers(uint n_workers)365 void WorkGangBarrierSync::set_n_workers(uint n_workers) {
366   _n_workers    = n_workers;
367   _n_completed  = 0;
368   _should_reset = false;
369   _aborted      = false;
370 }
371 
enter()372 bool WorkGangBarrierSync::enter() {
373   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
374   if (should_reset()) {
375     // The should_reset() was set and we are the first worker to enter
376     // the sync barrier. We will zero the n_completed() count which
377     // effectively resets the barrier.
378     zero_completed();
379     set_should_reset(false);
380   }
381   inc_completed();
382   if (n_completed() == n_workers()) {
383     // At this point we would like to reset the barrier to be ready in
384     // case it is used again. However, we cannot set n_completed() to
385     // 0, even after the notify_all(), given that some other workers
386     // might still be waiting for n_completed() to become ==
387     // n_workers(). So, if we set n_completed() to 0, those workers
388     // will get stuck (as they will wake up, see that n_completed() !=
389     // n_workers() and go back to sleep). Instead, we raise the
390     // should_reset() flag and the barrier will be reset the first
391     // time a worker enters it again.
392     set_should_reset(true);
393     monitor()->notify_all();
394   } else {
395     while (n_completed() != n_workers() && !aborted()) {
396       monitor()->wait(/* no_safepoint_check */ true);
397     }
398   }
399   return !aborted();
400 }
401 
abort()402 void WorkGangBarrierSync::abort() {
403   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
404   set_aborted();
405   monitor()->notify_all();
406 }
407 
408 // SubTasksDone functions.
409 
SubTasksDone(uint n)410 SubTasksDone::SubTasksDone(uint n) :
411   _tasks(NULL), _n_tasks(n), _threads_completed(0) {
412   _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
413   guarantee(_tasks != NULL, "alloc failure");
414   clear();
415 }
416 
valid()417 bool SubTasksDone::valid() {
418   return _tasks != NULL;
419 }
420 
clear()421 void SubTasksDone::clear() {
422   for (uint i = 0; i < _n_tasks; i++) {
423     _tasks[i] = 0;
424   }
425   _threads_completed = 0;
426 #ifdef ASSERT
427   _claimed = 0;
428 #endif
429 }
430 
try_claim_task(uint t)431 bool SubTasksDone::try_claim_task(uint t) {
432   assert(t < _n_tasks, "bad task id.");
433   uint old = _tasks[t];
434   if (old == 0) {
435     old = Atomic::cmpxchg(1u, &_tasks[t], 0u);
436   }
437   assert(_tasks[t] == 1, "What else?");
438   bool res = old == 0;
439 #ifdef ASSERT
440   if (res) {
441     assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
442     Atomic::inc(&_claimed);
443   }
444 #endif
445   return res;
446 }
447 
all_tasks_completed(uint n_threads)448 void SubTasksDone::all_tasks_completed(uint n_threads) {
449   uint observed = _threads_completed;
450   uint old;
451   do {
452     old = observed;
453     observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
454   } while (observed != old);
455   // If this was the last thread checking in, clear the tasks.
456   uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads);
457   if (observed + 1 == adjusted_thread_count) {
458     clear();
459   }
460 }
461 
462 
~SubTasksDone()463 SubTasksDone::~SubTasksDone() {
464   if (_tasks != NULL) FREE_C_HEAP_ARRAY(uint, _tasks);
465 }
466 
467 // *** SequentialSubTasksDone
468 
clear()469 void SequentialSubTasksDone::clear() {
470   _n_tasks   = _n_claimed   = 0;
471   _n_threads = _n_completed = 0;
472 }
473 
valid()474 bool SequentialSubTasksDone::valid() {
475   return _n_threads > 0;
476 }
477 
try_claim_task(uint & t)478 bool SequentialSubTasksDone::try_claim_task(uint& t) {
479   t = _n_claimed;
480   while (t < _n_tasks) {
481     uint res = Atomic::cmpxchg(t+1, &_n_claimed, t);
482     if (res == t) {
483       return true;
484     }
485     t = res;
486   }
487   return false;
488 }
489 
all_tasks_completed()490 bool SequentialSubTasksDone::all_tasks_completed() {
491   uint complete = _n_completed;
492   while (true) {
493     uint res = Atomic::cmpxchg(complete+1, &_n_completed, complete);
494     if (res == complete) {
495       break;
496     }
497     complete = res;
498   }
499   if (complete+1 == _n_threads) {
500     clear();
501     return true;
502   }
503   return false;
504 }
505