1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "ci/ciUtilities.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/c2/barrierSetC2.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "memory/resourceArea.hpp"
32 #include "opto/addnode.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/convertnode.hpp"
35 #include "opto/graphKit.hpp"
36 #include "opto/idealKit.hpp"
37 #include "opto/intrinsicnode.hpp"
38 #include "opto/locknode.hpp"
39 #include "opto/machnode.hpp"
40 #include "opto/opaquenode.hpp"
41 #include "opto/parse.hpp"
42 #include "opto/rootnode.hpp"
43 #include "opto/runtime.hpp"
44 #include "runtime/deoptimization.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 
47 //----------------------------GraphKit-----------------------------------------
48 // Main utility constructor.
GraphKit(JVMState * jvms)49 GraphKit::GraphKit(JVMState* jvms)
50   : Phase(Phase::Parser),
51     _env(C->env()),
52     _gvn(*C->initial_gvn()),
53     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
54 {
55   _exceptions = jvms->map()->next_exception();
56   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
57   set_jvms(jvms);
58 }
59 
60 // Private constructor for parser.
GraphKit()61 GraphKit::GraphKit()
62   : Phase(Phase::Parser),
63     _env(C->env()),
64     _gvn(*C->initial_gvn()),
65     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
66 {
67   _exceptions = NULL;
68   set_map(NULL);
69   debug_only(_sp = -99);
70   debug_only(set_bci(-99));
71 }
72 
73 
74 
75 //---------------------------clean_stack---------------------------------------
76 // Clear away rubbish from the stack area of the JVM state.
77 // This destroys any arguments that may be waiting on the stack.
clean_stack(int from_sp)78 void GraphKit::clean_stack(int from_sp) {
79   SafePointNode* map      = this->map();
80   JVMState*      jvms     = this->jvms();
81   int            stk_size = jvms->stk_size();
82   int            stkoff   = jvms->stkoff();
83   Node*          top      = this->top();
84   for (int i = from_sp; i < stk_size; i++) {
85     if (map->in(stkoff + i) != top) {
86       map->set_req(stkoff + i, top);
87     }
88   }
89 }
90 
91 
92 //--------------------------------sync_jvms-----------------------------------
93 // Make sure our current jvms agrees with our parse state.
sync_jvms() const94 JVMState* GraphKit::sync_jvms() const {
95   JVMState* jvms = this->jvms();
96   jvms->set_bci(bci());       // Record the new bci in the JVMState
97   jvms->set_sp(sp());         // Record the new sp in the JVMState
98   assert(jvms_in_sync(), "jvms is now in sync");
99   return jvms;
100 }
101 
102 //--------------------------------sync_jvms_for_reexecute---------------------
103 // Make sure our current jvms agrees with our parse state.  This version
104 // uses the reexecute_sp for reexecuting bytecodes.
sync_jvms_for_reexecute()105 JVMState* GraphKit::sync_jvms_for_reexecute() {
106   JVMState* jvms = this->jvms();
107   jvms->set_bci(bci());          // Record the new bci in the JVMState
108   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
109   return jvms;
110 }
111 
112 #ifdef ASSERT
jvms_in_sync() const113 bool GraphKit::jvms_in_sync() const {
114   Parse* parse = is_Parse();
115   if (parse == NULL) {
116     if (bci() !=      jvms()->bci())          return false;
117     if (sp()  != (int)jvms()->sp())           return false;
118     return true;
119   }
120   if (jvms()->method() != parse->method())    return false;
121   if (jvms()->bci()    != parse->bci())       return false;
122   int jvms_sp = jvms()->sp();
123   if (jvms_sp          != parse->sp())        return false;
124   int jvms_depth = jvms()->depth();
125   if (jvms_depth       != parse->depth())     return false;
126   return true;
127 }
128 
129 // Local helper checks for special internal merge points
130 // used to accumulate and merge exception states.
131 // They are marked by the region's in(0) edge being the map itself.
132 // Such merge points must never "escape" into the parser at large,
133 // until they have been handed to gvn.transform.
is_hidden_merge(Node * reg)134 static bool is_hidden_merge(Node* reg) {
135   if (reg == NULL)  return false;
136   if (reg->is_Phi()) {
137     reg = reg->in(0);
138     if (reg == NULL)  return false;
139   }
140   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
141 }
142 
verify_map() const143 void GraphKit::verify_map() const {
144   if (map() == NULL)  return;  // null map is OK
145   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
146   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
147   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
148 }
149 
verify_exception_state(SafePointNode * ex_map)150 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
151   assert(ex_map->next_exception() == NULL, "not already part of a chain");
152   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
153 }
154 #endif
155 
156 //---------------------------stop_and_kill_map---------------------------------
157 // Set _map to NULL, signalling a stop to further bytecode execution.
158 // First smash the current map's control to a constant, to mark it dead.
stop_and_kill_map()159 void GraphKit::stop_and_kill_map() {
160   SafePointNode* dead_map = stop();
161   if (dead_map != NULL) {
162     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
163     assert(dead_map->is_killed(), "must be so marked");
164   }
165 }
166 
167 
168 //--------------------------------stopped--------------------------------------
169 // Tell if _map is NULL, or control is top.
stopped()170 bool GraphKit::stopped() {
171   if (map() == NULL)           return true;
172   else if (control() == top()) return true;
173   else                         return false;
174 }
175 
176 
177 //-----------------------------has_ex_handler----------------------------------
178 // Tell if this method or any caller method has exception handlers.
has_ex_handler()179 bool GraphKit::has_ex_handler() {
180   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
181     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
182       return true;
183     }
184   }
185   return false;
186 }
187 
188 //------------------------------save_ex_oop------------------------------------
189 // Save an exception without blowing stack contents or other JVM state.
set_saved_ex_oop(SafePointNode * ex_map,Node * ex_oop)190 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
191   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
192   ex_map->add_req(ex_oop);
193   debug_only(verify_exception_state(ex_map));
194 }
195 
common_saved_ex_oop(SafePointNode * ex_map,bool clear_it)196 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
197   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
198   Node* ex_oop = ex_map->in(ex_map->req()-1);
199   if (clear_it)  ex_map->del_req(ex_map->req()-1);
200   return ex_oop;
201 }
202 
203 //-----------------------------saved_ex_oop------------------------------------
204 // Recover a saved exception from its map.
saved_ex_oop(SafePointNode * ex_map)205 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
206   return common_saved_ex_oop(ex_map, false);
207 }
208 
209 //--------------------------clear_saved_ex_oop---------------------------------
210 // Erase a previously saved exception from its map.
clear_saved_ex_oop(SafePointNode * ex_map)211 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
212   return common_saved_ex_oop(ex_map, true);
213 }
214 
215 #ifdef ASSERT
216 //---------------------------has_saved_ex_oop----------------------------------
217 // Erase a previously saved exception from its map.
has_saved_ex_oop(SafePointNode * ex_map)218 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
219   return ex_map->req() == ex_map->jvms()->endoff()+1;
220 }
221 #endif
222 
223 //-------------------------make_exception_state--------------------------------
224 // Turn the current JVM state into an exception state, appending the ex_oop.
make_exception_state(Node * ex_oop)225 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
226   sync_jvms();
227   SafePointNode* ex_map = stop();  // do not manipulate this map any more
228   set_saved_ex_oop(ex_map, ex_oop);
229   return ex_map;
230 }
231 
232 
233 //--------------------------add_exception_state--------------------------------
234 // Add an exception to my list of exceptions.
add_exception_state(SafePointNode * ex_map)235 void GraphKit::add_exception_state(SafePointNode* ex_map) {
236   if (ex_map == NULL || ex_map->control() == top()) {
237     return;
238   }
239 #ifdef ASSERT
240   verify_exception_state(ex_map);
241   if (has_exceptions()) {
242     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
243   }
244 #endif
245 
246   // If there is already an exception of exactly this type, merge with it.
247   // In particular, null-checks and other low-level exceptions common up here.
248   Node*       ex_oop  = saved_ex_oop(ex_map);
249   const Type* ex_type = _gvn.type(ex_oop);
250   if (ex_oop == top()) {
251     // No action needed.
252     return;
253   }
254   assert(ex_type->isa_instptr(), "exception must be an instance");
255   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
256     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
257     // We check sp also because call bytecodes can generate exceptions
258     // both before and after arguments are popped!
259     if (ex_type2 == ex_type
260         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
261       combine_exception_states(ex_map, e2);
262       return;
263     }
264   }
265 
266   // No pre-existing exception of the same type.  Chain it on the list.
267   push_exception_state(ex_map);
268 }
269 
270 //-----------------------add_exception_states_from-----------------------------
add_exception_states_from(JVMState * jvms)271 void GraphKit::add_exception_states_from(JVMState* jvms) {
272   SafePointNode* ex_map = jvms->map()->next_exception();
273   if (ex_map != NULL) {
274     jvms->map()->set_next_exception(NULL);
275     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
276       next_map = ex_map->next_exception();
277       ex_map->set_next_exception(NULL);
278       add_exception_state(ex_map);
279     }
280   }
281 }
282 
283 //-----------------------transfer_exceptions_into_jvms-------------------------
transfer_exceptions_into_jvms()284 JVMState* GraphKit::transfer_exceptions_into_jvms() {
285   if (map() == NULL) {
286     // We need a JVMS to carry the exceptions, but the map has gone away.
287     // Create a scratch JVMS, cloned from any of the exception states...
288     if (has_exceptions()) {
289       _map = _exceptions;
290       _map = clone_map();
291       _map->set_next_exception(NULL);
292       clear_saved_ex_oop(_map);
293       debug_only(verify_map());
294     } else {
295       // ...or created from scratch
296       JVMState* jvms = new (C) JVMState(_method, NULL);
297       jvms->set_bci(_bci);
298       jvms->set_sp(_sp);
299       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
300       set_jvms(jvms);
301       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
302       set_all_memory(top());
303       while (map()->req() < jvms->endoff())  map()->add_req(top());
304     }
305     // (This is a kludge, in case you didn't notice.)
306     set_control(top());
307   }
308   JVMState* jvms = sync_jvms();
309   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
310   jvms->map()->set_next_exception(_exceptions);
311   _exceptions = NULL;   // done with this set of exceptions
312   return jvms;
313 }
314 
add_n_reqs(Node * dstphi,Node * srcphi)315 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
316   assert(is_hidden_merge(dstphi), "must be a special merge node");
317   assert(is_hidden_merge(srcphi), "must be a special merge node");
318   uint limit = srcphi->req();
319   for (uint i = PhiNode::Input; i < limit; i++) {
320     dstphi->add_req(srcphi->in(i));
321   }
322 }
add_one_req(Node * dstphi,Node * src)323 static inline void add_one_req(Node* dstphi, Node* src) {
324   assert(is_hidden_merge(dstphi), "must be a special merge node");
325   assert(!is_hidden_merge(src), "must not be a special merge node");
326   dstphi->add_req(src);
327 }
328 
329 //-----------------------combine_exception_states------------------------------
330 // This helper function combines exception states by building phis on a
331 // specially marked state-merging region.  These regions and phis are
332 // untransformed, and can build up gradually.  The region is marked by
333 // having a control input of its exception map, rather than NULL.  Such
334 // regions do not appear except in this function, and in use_exception_state.
combine_exception_states(SafePointNode * ex_map,SafePointNode * phi_map)335 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
336   if (failing())  return;  // dying anyway...
337   JVMState* ex_jvms = ex_map->_jvms;
338   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
339   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
340   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
341   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
342   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
343   assert(ex_map->req() == phi_map->req(), "matching maps");
344   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
345   Node*         hidden_merge_mark = root();
346   Node*         region  = phi_map->control();
347   MergeMemNode* phi_mem = phi_map->merged_memory();
348   MergeMemNode* ex_mem  = ex_map->merged_memory();
349   if (region->in(0) != hidden_merge_mark) {
350     // The control input is not (yet) a specially-marked region in phi_map.
351     // Make it so, and build some phis.
352     region = new RegionNode(2);
353     _gvn.set_type(region, Type::CONTROL);
354     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
355     region->init_req(1, phi_map->control());
356     phi_map->set_control(region);
357     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
358     record_for_igvn(io_phi);
359     _gvn.set_type(io_phi, Type::ABIO);
360     phi_map->set_i_o(io_phi);
361     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
362       Node* m = mms.memory();
363       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
364       record_for_igvn(m_phi);
365       _gvn.set_type(m_phi, Type::MEMORY);
366       mms.set_memory(m_phi);
367     }
368   }
369 
370   // Either or both of phi_map and ex_map might already be converted into phis.
371   Node* ex_control = ex_map->control();
372   // if there is special marking on ex_map also, we add multiple edges from src
373   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
374   // how wide was the destination phi_map, originally?
375   uint orig_width = region->req();
376 
377   if (add_multiple) {
378     add_n_reqs(region, ex_control);
379     add_n_reqs(phi_map->i_o(), ex_map->i_o());
380   } else {
381     // ex_map has no merges, so we just add single edges everywhere
382     add_one_req(region, ex_control);
383     add_one_req(phi_map->i_o(), ex_map->i_o());
384   }
385   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
386     if (mms.is_empty()) {
387       // get a copy of the base memory, and patch some inputs into it
388       const TypePtr* adr_type = mms.adr_type(C);
389       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
390       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
391       mms.set_memory(phi);
392       // Prepare to append interesting stuff onto the newly sliced phi:
393       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
394     }
395     // Append stuff from ex_map:
396     if (add_multiple) {
397       add_n_reqs(mms.memory(), mms.memory2());
398     } else {
399       add_one_req(mms.memory(), mms.memory2());
400     }
401   }
402   uint limit = ex_map->req();
403   for (uint i = TypeFunc::Parms; i < limit; i++) {
404     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
405     if (i == tos)  i = ex_jvms->monoff();
406     Node* src = ex_map->in(i);
407     Node* dst = phi_map->in(i);
408     if (src != dst) {
409       PhiNode* phi;
410       if (dst->in(0) != region) {
411         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
412         record_for_igvn(phi);
413         _gvn.set_type(phi, phi->type());
414         phi_map->set_req(i, dst);
415         // Prepare to append interesting stuff onto the new phi:
416         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
417       } else {
418         assert(dst->is_Phi(), "nobody else uses a hidden region");
419         phi = dst->as_Phi();
420       }
421       if (add_multiple && src->in(0) == ex_control) {
422         // Both are phis.
423         add_n_reqs(dst, src);
424       } else {
425         while (dst->req() < region->req())  add_one_req(dst, src);
426       }
427       const Type* srctype = _gvn.type(src);
428       if (phi->type() != srctype) {
429         const Type* dsttype = phi->type()->meet_speculative(srctype);
430         if (phi->type() != dsttype) {
431           phi->set_type(dsttype);
432           _gvn.set_type(phi, dsttype);
433         }
434       }
435     }
436   }
437   phi_map->merge_replaced_nodes_with(ex_map);
438 }
439 
440 //--------------------------use_exception_state--------------------------------
use_exception_state(SafePointNode * phi_map)441 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
442   if (failing()) { stop(); return top(); }
443   Node* region = phi_map->control();
444   Node* hidden_merge_mark = root();
445   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
446   Node* ex_oop = clear_saved_ex_oop(phi_map);
447   if (region->in(0) == hidden_merge_mark) {
448     // Special marking for internal ex-states.  Process the phis now.
449     region->set_req(0, region);  // now it's an ordinary region
450     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
451     // Note: Setting the jvms also sets the bci and sp.
452     set_control(_gvn.transform(region));
453     uint tos = jvms()->stkoff() + sp();
454     for (uint i = 1; i < tos; i++) {
455       Node* x = phi_map->in(i);
456       if (x->in(0) == region) {
457         assert(x->is_Phi(), "expected a special phi");
458         phi_map->set_req(i, _gvn.transform(x));
459       }
460     }
461     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
462       Node* x = mms.memory();
463       if (x->in(0) == region) {
464         assert(x->is_Phi(), "nobody else uses a hidden region");
465         mms.set_memory(_gvn.transform(x));
466       }
467     }
468     if (ex_oop->in(0) == region) {
469       assert(ex_oop->is_Phi(), "expected a special phi");
470       ex_oop = _gvn.transform(ex_oop);
471     }
472   } else {
473     set_jvms(phi_map->jvms());
474   }
475 
476   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
477   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
478   return ex_oop;
479 }
480 
481 //---------------------------------java_bc-------------------------------------
java_bc() const482 Bytecodes::Code GraphKit::java_bc() const {
483   ciMethod* method = this->method();
484   int       bci    = this->bci();
485   if (method != NULL && bci != InvocationEntryBci)
486     return method->java_code_at_bci(bci);
487   else
488     return Bytecodes::_illegal;
489 }
490 
uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,bool must_throw)491 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
492                                                           bool must_throw) {
493     // if the exception capability is set, then we will generate code
494     // to check the JavaThread.should_post_on_exceptions flag to see
495     // if we actually need to report exception events (for this
496     // thread).  If we don't need to report exception events, we will
497     // take the normal fast path provided by add_exception_events.  If
498     // exception event reporting is enabled for this thread, we will
499     // take the uncommon_trap in the BuildCutout below.
500 
501     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
502     Node* jthread = _gvn.transform(new ThreadLocalNode());
503     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
504     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
505 
506     // Test the should_post_on_exceptions_flag vs. 0
507     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
508     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
509 
510     // Branch to slow_path if should_post_on_exceptions_flag was true
511     { BuildCutout unless(this, tst, PROB_MAX);
512       // Do not try anything fancy if we're notifying the VM on every throw.
513       // Cf. case Bytecodes::_athrow in parse2.cpp.
514       uncommon_trap(reason, Deoptimization::Action_none,
515                     (ciKlass*)NULL, (char*)NULL, must_throw);
516     }
517 
518 }
519 
520 //------------------------------builtin_throw----------------------------------
builtin_throw(Deoptimization::DeoptReason reason,Node * arg)521 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
522   bool must_throw = true;
523 
524   if (env()->jvmti_can_post_on_exceptions()) {
525     // check if we must post exception events, take uncommon trap if so
526     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
527     // here if should_post_on_exceptions is false
528     // continue on with the normal codegen
529   }
530 
531   // If this particular condition has not yet happened at this
532   // bytecode, then use the uncommon trap mechanism, and allow for
533   // a future recompilation if several traps occur here.
534   // If the throw is hot, try to use a more complicated inline mechanism
535   // which keeps execution inside the compiled code.
536   bool treat_throw_as_hot = false;
537   ciMethodData* md = method()->method_data();
538 
539   if (ProfileTraps) {
540     if (too_many_traps(reason)) {
541       treat_throw_as_hot = true;
542     }
543     // (If there is no MDO at all, assume it is early in
544     // execution, and that any deopts are part of the
545     // startup transient, and don't need to be remembered.)
546 
547     // Also, if there is a local exception handler, treat all throws
548     // as hot if there has been at least one in this method.
549     if (C->trap_count(reason) != 0
550         && method()->method_data()->trap_count(reason) != 0
551         && has_ex_handler()) {
552         treat_throw_as_hot = true;
553     }
554   }
555 
556   // If this throw happens frequently, an uncommon trap might cause
557   // a performance pothole.  If there is a local exception handler,
558   // and if this particular bytecode appears to be deoptimizing often,
559   // let us handle the throw inline, with a preconstructed instance.
560   // Note:   If the deopt count has blown up, the uncommon trap
561   // runtime is going to flush this nmethod, not matter what.
562   if (treat_throw_as_hot
563       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
564     // If the throw is local, we use a pre-existing instance and
565     // punt on the backtrace.  This would lead to a missing backtrace
566     // (a repeat of 4292742) if the backtrace object is ever asked
567     // for its backtrace.
568     // Fixing this remaining case of 4292742 requires some flavor of
569     // escape analysis.  Leave that for the future.
570     ciInstance* ex_obj = NULL;
571     switch (reason) {
572     case Deoptimization::Reason_null_check:
573       ex_obj = env()->NullPointerException_instance();
574       break;
575     case Deoptimization::Reason_div0_check:
576       ex_obj = env()->ArithmeticException_instance();
577       break;
578     case Deoptimization::Reason_range_check:
579       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
580       break;
581     case Deoptimization::Reason_class_check:
582       if (java_bc() == Bytecodes::_aastore) {
583         ex_obj = env()->ArrayStoreException_instance();
584       } else {
585         ex_obj = env()->ClassCastException_instance();
586       }
587       break;
588     default:
589       break;
590     }
591     if (failing()) { stop(); return; }  // exception allocation might fail
592     if (ex_obj != NULL) {
593       // Cheat with a preallocated exception object.
594       if (C->log() != NULL)
595         C->log()->elem("hot_throw preallocated='1' reason='%s'",
596                        Deoptimization::trap_reason_name(reason));
597       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
598       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
599 
600       // Clear the detail message of the preallocated exception object.
601       // Weblogic sometimes mutates the detail message of exceptions
602       // using reflection.
603       int offset = java_lang_Throwable::get_detailMessage_offset();
604       const TypePtr* adr_typ = ex_con->add_offset(offset);
605 
606       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
607       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
608       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
609 
610       add_exception_state(make_exception_state(ex_node));
611       return;
612     }
613   }
614 
615   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
616   // It won't be much cheaper than bailing to the interp., since we'll
617   // have to pass up all the debug-info, and the runtime will have to
618   // create the stack trace.
619 
620   // Usual case:  Bail to interpreter.
621   // Reserve the right to recompile if we haven't seen anything yet.
622 
623   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
624   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
625   if (treat_throw_as_hot
626       && (method()->method_data()->trap_recompiled_at(bci(), m)
627           || C->too_many_traps(reason))) {
628     // We cannot afford to take more traps here.  Suffer in the interpreter.
629     if (C->log() != NULL)
630       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
631                      Deoptimization::trap_reason_name(reason),
632                      C->trap_count(reason));
633     action = Deoptimization::Action_none;
634   }
635 
636   // "must_throw" prunes the JVM state to include only the stack, if there
637   // are no local exception handlers.  This should cut down on register
638   // allocation time and code size, by drastically reducing the number
639   // of in-edges on the call to the uncommon trap.
640 
641   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
642 }
643 
644 
645 //----------------------------PreserveJVMState---------------------------------
PreserveJVMState(GraphKit * kit,bool clone_map)646 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
647   debug_only(kit->verify_map());
648   _kit    = kit;
649   _map    = kit->map();   // preserve the map
650   _sp     = kit->sp();
651   kit->set_map(clone_map ? kit->clone_map() : NULL);
652 #ifdef ASSERT
653   _bci    = kit->bci();
654   Parse* parser = kit->is_Parse();
655   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
656   _block  = block;
657 #endif
658 }
~PreserveJVMState()659 PreserveJVMState::~PreserveJVMState() {
660   GraphKit* kit = _kit;
661 #ifdef ASSERT
662   assert(kit->bci() == _bci, "bci must not shift");
663   Parse* parser = kit->is_Parse();
664   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
665   assert(block == _block,    "block must not shift");
666 #endif
667   kit->set_map(_map);
668   kit->set_sp(_sp);
669 }
670 
671 
672 //-----------------------------BuildCutout-------------------------------------
BuildCutout(GraphKit * kit,Node * p,float prob,float cnt)673 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
674   : PreserveJVMState(kit)
675 {
676   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
677   SafePointNode* outer_map = _map;   // preserved map is caller's
678   SafePointNode* inner_map = kit->map();
679   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
680   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
681   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
682 }
~BuildCutout()683 BuildCutout::~BuildCutout() {
684   GraphKit* kit = _kit;
685   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
686 }
687 
688 //---------------------------PreserveReexecuteState----------------------------
PreserveReexecuteState(GraphKit * kit)689 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
690   assert(!kit->stopped(), "must call stopped() before");
691   _kit    =    kit;
692   _sp     =    kit->sp();
693   _reexecute = kit->jvms()->_reexecute;
694 }
~PreserveReexecuteState()695 PreserveReexecuteState::~PreserveReexecuteState() {
696   if (_kit->stopped()) return;
697   _kit->jvms()->_reexecute = _reexecute;
698   _kit->set_sp(_sp);
699 }
700 
701 //------------------------------clone_map--------------------------------------
702 // Implementation of PreserveJVMState
703 //
704 // Only clone_map(...) here. If this function is only used in the
705 // PreserveJVMState class we may want to get rid of this extra
706 // function eventually and do it all there.
707 
clone_map()708 SafePointNode* GraphKit::clone_map() {
709   if (map() == NULL)  return NULL;
710 
711   // Clone the memory edge first
712   Node* mem = MergeMemNode::make(map()->memory());
713   gvn().set_type_bottom(mem);
714 
715   SafePointNode *clonemap = (SafePointNode*)map()->clone();
716   JVMState* jvms = this->jvms();
717   JVMState* clonejvms = jvms->clone_shallow(C);
718   clonemap->set_memory(mem);
719   clonemap->set_jvms(clonejvms);
720   clonejvms->set_map(clonemap);
721   record_for_igvn(clonemap);
722   gvn().set_type_bottom(clonemap);
723   return clonemap;
724 }
725 
726 
727 //-----------------------------set_map_clone-----------------------------------
set_map_clone(SafePointNode * m)728 void GraphKit::set_map_clone(SafePointNode* m) {
729   _map = m;
730   _map = clone_map();
731   _map->set_next_exception(NULL);
732   debug_only(verify_map());
733 }
734 
735 
736 //----------------------------kill_dead_locals---------------------------------
737 // Detect any locals which are known to be dead, and force them to top.
kill_dead_locals()738 void GraphKit::kill_dead_locals() {
739   // Consult the liveness information for the locals.  If any
740   // of them are unused, then they can be replaced by top().  This
741   // should help register allocation time and cut down on the size
742   // of the deoptimization information.
743 
744   // This call is made from many of the bytecode handling
745   // subroutines called from the Big Switch in do_one_bytecode.
746   // Every bytecode which might include a slow path is responsible
747   // for killing its dead locals.  The more consistent we
748   // are about killing deads, the fewer useless phis will be
749   // constructed for them at various merge points.
750 
751   // bci can be -1 (InvocationEntryBci).  We return the entry
752   // liveness for the method.
753 
754   if (method() == NULL || method()->code_size() == 0) {
755     // We are building a graph for a call to a native method.
756     // All locals are live.
757     return;
758   }
759 
760   ResourceMark rm;
761 
762   // Consult the liveness information for the locals.  If any
763   // of them are unused, then they can be replaced by top().  This
764   // should help register allocation time and cut down on the size
765   // of the deoptimization information.
766   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
767 
768   int len = (int)live_locals.size();
769   assert(len <= jvms()->loc_size(), "too many live locals");
770   for (int local = 0; local < len; local++) {
771     if (!live_locals.at(local)) {
772       set_local(local, top());
773     }
774   }
775 }
776 
777 #ifdef ASSERT
778 //-------------------------dead_locals_are_killed------------------------------
779 // Return true if all dead locals are set to top in the map.
780 // Used to assert "clean" debug info at various points.
dead_locals_are_killed()781 bool GraphKit::dead_locals_are_killed() {
782   if (method() == NULL || method()->code_size() == 0) {
783     // No locals need to be dead, so all is as it should be.
784     return true;
785   }
786 
787   // Make sure somebody called kill_dead_locals upstream.
788   ResourceMark rm;
789   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
790     if (jvms->loc_size() == 0)  continue;  // no locals to consult
791     SafePointNode* map = jvms->map();
792     ciMethod* method = jvms->method();
793     int       bci    = jvms->bci();
794     if (jvms == this->jvms()) {
795       bci = this->bci();  // it might not yet be synched
796     }
797     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
798     int len = (int)live_locals.size();
799     if (!live_locals.is_valid() || len == 0)
800       // This method is trivial, or is poisoned by a breakpoint.
801       return true;
802     assert(len == jvms->loc_size(), "live map consistent with locals map");
803     for (int local = 0; local < len; local++) {
804       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
805         if (PrintMiscellaneous && (Verbose || WizardMode)) {
806           tty->print_cr("Zombie local %d: ", local);
807           jvms->dump();
808         }
809         return false;
810       }
811     }
812   }
813   return true;
814 }
815 
816 #endif //ASSERT
817 
818 // Helper function for enforcing certain bytecodes to reexecute if
819 // deoptimization happens
should_reexecute_implied_by_bytecode(JVMState * jvms,bool is_anewarray)820 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
821   ciMethod* cur_method = jvms->method();
822   int       cur_bci   = jvms->bci();
823   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
824     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
825     return Interpreter::bytecode_should_reexecute(code) ||
826            (is_anewarray && code == Bytecodes::_multianewarray);
827     // Reexecute _multianewarray bytecode which was replaced with
828     // sequence of [a]newarray. See Parse::do_multianewarray().
829     //
830     // Note: interpreter should not have it set since this optimization
831     // is limited by dimensions and guarded by flag so in some cases
832     // multianewarray() runtime calls will be generated and
833     // the bytecode should not be reexecutes (stack will not be reset).
834   } else
835     return false;
836 }
837 
838 // Helper function for adding JVMState and debug information to node
add_safepoint_edges(SafePointNode * call,bool must_throw)839 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
840   // Add the safepoint edges to the call (or other safepoint).
841 
842   // Make sure dead locals are set to top.  This
843   // should help register allocation time and cut down on the size
844   // of the deoptimization information.
845   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
846 
847   // Walk the inline list to fill in the correct set of JVMState's
848   // Also fill in the associated edges for each JVMState.
849 
850   // If the bytecode needs to be reexecuted we need to put
851   // the arguments back on the stack.
852   const bool should_reexecute = jvms()->should_reexecute();
853   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
854 
855   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
856   // undefined if the bci is different.  This is normal for Parse but it
857   // should not happen for LibraryCallKit because only one bci is processed.
858   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
859          "in LibraryCallKit the reexecute bit should not change");
860 
861   // If we are guaranteed to throw, we can prune everything but the
862   // input to the current bytecode.
863   bool can_prune_locals = false;
864   uint stack_slots_not_pruned = 0;
865   int inputs = 0, depth = 0;
866   if (must_throw) {
867     assert(method() == youngest_jvms->method(), "sanity");
868     if (compute_stack_effects(inputs, depth)) {
869       can_prune_locals = true;
870       stack_slots_not_pruned = inputs;
871     }
872   }
873 
874   if (env()->should_retain_local_variables()) {
875     // At any safepoint, this method can get breakpointed, which would
876     // then require an immediate deoptimization.
877     can_prune_locals = false;  // do not prune locals
878     stack_slots_not_pruned = 0;
879   }
880 
881   // do not scribble on the input jvms
882   JVMState* out_jvms = youngest_jvms->clone_deep(C);
883   call->set_jvms(out_jvms); // Start jvms list for call node
884 
885   // For a known set of bytecodes, the interpreter should reexecute them if
886   // deoptimization happens. We set the reexecute state for them here
887   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
888       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
889     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
890   }
891 
892   // Presize the call:
893   DEBUG_ONLY(uint non_debug_edges = call->req());
894   call->add_req_batch(top(), youngest_jvms->debug_depth());
895   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
896 
897   // Set up edges so that the call looks like this:
898   //  Call [state:] ctl io mem fptr retadr
899   //       [parms:] parm0 ... parmN
900   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
901   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
902   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
903   // Note that caller debug info precedes callee debug info.
904 
905   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
906   uint debug_ptr = call->req();
907 
908   // Loop over the map input edges associated with jvms, add them
909   // to the call node, & reset all offsets to match call node array.
910   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
911     uint debug_end   = debug_ptr;
912     uint debug_start = debug_ptr - in_jvms->debug_size();
913     debug_ptr = debug_start;  // back up the ptr
914 
915     uint p = debug_start;  // walks forward in [debug_start, debug_end)
916     uint j, k, l;
917     SafePointNode* in_map = in_jvms->map();
918     out_jvms->set_map(call);
919 
920     if (can_prune_locals) {
921       assert(in_jvms->method() == out_jvms->method(), "sanity");
922       // If the current throw can reach an exception handler in this JVMS,
923       // then we must keep everything live that can reach that handler.
924       // As a quick and dirty approximation, we look for any handlers at all.
925       if (in_jvms->method()->has_exception_handlers()) {
926         can_prune_locals = false;
927       }
928     }
929 
930     // Add the Locals
931     k = in_jvms->locoff();
932     l = in_jvms->loc_size();
933     out_jvms->set_locoff(p);
934     if (!can_prune_locals) {
935       for (j = 0; j < l; j++)
936         call->set_req(p++, in_map->in(k+j));
937     } else {
938       p += l;  // already set to top above by add_req_batch
939     }
940 
941     // Add the Expression Stack
942     k = in_jvms->stkoff();
943     l = in_jvms->sp();
944     out_jvms->set_stkoff(p);
945     if (!can_prune_locals) {
946       for (j = 0; j < l; j++)
947         call->set_req(p++, in_map->in(k+j));
948     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
949       // Divide stack into {S0,...,S1}, where S0 is set to top.
950       uint s1 = stack_slots_not_pruned;
951       stack_slots_not_pruned = 0;  // for next iteration
952       if (s1 > l)  s1 = l;
953       uint s0 = l - s1;
954       p += s0;  // skip the tops preinstalled by add_req_batch
955       for (j = s0; j < l; j++)
956         call->set_req(p++, in_map->in(k+j));
957     } else {
958       p += l;  // already set to top above by add_req_batch
959     }
960 
961     // Add the Monitors
962     k = in_jvms->monoff();
963     l = in_jvms->mon_size();
964     out_jvms->set_monoff(p);
965     for (j = 0; j < l; j++)
966       call->set_req(p++, in_map->in(k+j));
967 
968     // Copy any scalar object fields.
969     k = in_jvms->scloff();
970     l = in_jvms->scl_size();
971     out_jvms->set_scloff(p);
972     for (j = 0; j < l; j++)
973       call->set_req(p++, in_map->in(k+j));
974 
975     // Finish the new jvms.
976     out_jvms->set_endoff(p);
977 
978     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
979     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
980     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
981     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
982     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
983     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
984 
985     // Update the two tail pointers in parallel.
986     out_jvms = out_jvms->caller();
987     in_jvms  = in_jvms->caller();
988   }
989 
990   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
991 
992   // Test the correctness of JVMState::debug_xxx accessors:
993   assert(call->jvms()->debug_start() == non_debug_edges, "");
994   assert(call->jvms()->debug_end()   == call->req(), "");
995   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
996 }
997 
compute_stack_effects(int & inputs,int & depth)998 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
999   Bytecodes::Code code = java_bc();
1000   if (code == Bytecodes::_wide) {
1001     code = method()->java_code_at_bci(bci() + 1);
1002   }
1003 
1004   BasicType rtype = T_ILLEGAL;
1005   int       rsize = 0;
1006 
1007   if (code != Bytecodes::_illegal) {
1008     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1009     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1010     if (rtype < T_CONFLICT)
1011       rsize = type2size[rtype];
1012   }
1013 
1014   switch (code) {
1015   case Bytecodes::_illegal:
1016     return false;
1017 
1018   case Bytecodes::_ldc:
1019   case Bytecodes::_ldc_w:
1020   case Bytecodes::_ldc2_w:
1021     inputs = 0;
1022     break;
1023 
1024   case Bytecodes::_dup:         inputs = 1;  break;
1025   case Bytecodes::_dup_x1:      inputs = 2;  break;
1026   case Bytecodes::_dup_x2:      inputs = 3;  break;
1027   case Bytecodes::_dup2:        inputs = 2;  break;
1028   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1029   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1030   case Bytecodes::_swap:        inputs = 2;  break;
1031   case Bytecodes::_arraylength: inputs = 1;  break;
1032 
1033   case Bytecodes::_getstatic:
1034   case Bytecodes::_putstatic:
1035   case Bytecodes::_getfield:
1036   case Bytecodes::_putfield:
1037     {
1038       bool ignored_will_link;
1039       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1040       int      size  = field->type()->size();
1041       bool is_get = (depth >= 0), is_static = (depth & 1);
1042       inputs = (is_static ? 0 : 1);
1043       if (is_get) {
1044         depth = size - inputs;
1045       } else {
1046         inputs += size;        // putxxx pops the value from the stack
1047         depth = - inputs;
1048       }
1049     }
1050     break;
1051 
1052   case Bytecodes::_invokevirtual:
1053   case Bytecodes::_invokespecial:
1054   case Bytecodes::_invokestatic:
1055   case Bytecodes::_invokedynamic:
1056   case Bytecodes::_invokeinterface:
1057     {
1058       bool ignored_will_link;
1059       ciSignature* declared_signature = NULL;
1060       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1061       assert(declared_signature != NULL, "cannot be null");
1062       inputs   = declared_signature->arg_size_for_bc(code);
1063       int size = declared_signature->return_type()->size();
1064       depth = size - inputs;
1065     }
1066     break;
1067 
1068   case Bytecodes::_multianewarray:
1069     {
1070       ciBytecodeStream iter(method());
1071       iter.reset_to_bci(bci());
1072       iter.next();
1073       inputs = iter.get_dimensions();
1074       assert(rsize == 1, "");
1075       depth = rsize - inputs;
1076     }
1077     break;
1078 
1079   case Bytecodes::_ireturn:
1080   case Bytecodes::_lreturn:
1081   case Bytecodes::_freturn:
1082   case Bytecodes::_dreturn:
1083   case Bytecodes::_areturn:
1084     assert(rsize == -depth, "");
1085     inputs = rsize;
1086     break;
1087 
1088   case Bytecodes::_jsr:
1089   case Bytecodes::_jsr_w:
1090     inputs = 0;
1091     depth  = 1;                  // S.B. depth=1, not zero
1092     break;
1093 
1094   default:
1095     // bytecode produces a typed result
1096     inputs = rsize - depth;
1097     assert(inputs >= 0, "");
1098     break;
1099   }
1100 
1101 #ifdef ASSERT
1102   // spot check
1103   int outputs = depth + inputs;
1104   assert(outputs >= 0, "sanity");
1105   switch (code) {
1106   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1107   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1108   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1109   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1110   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1111   default:                    break;
1112   }
1113 #endif //ASSERT
1114 
1115   return true;
1116 }
1117 
1118 
1119 
1120 //------------------------------basic_plus_adr---------------------------------
basic_plus_adr(Node * base,Node * ptr,Node * offset)1121 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1122   // short-circuit a common case
1123   if (offset == intcon(0))  return ptr;
1124   return _gvn.transform( new AddPNode(base, ptr, offset) );
1125 }
1126 
ConvI2L(Node * offset)1127 Node* GraphKit::ConvI2L(Node* offset) {
1128   // short-circuit a common case
1129   jint offset_con = find_int_con(offset, Type::OffsetBot);
1130   if (offset_con != Type::OffsetBot) {
1131     return longcon((jlong) offset_con);
1132   }
1133   return _gvn.transform( new ConvI2LNode(offset));
1134 }
1135 
ConvI2UL(Node * offset)1136 Node* GraphKit::ConvI2UL(Node* offset) {
1137   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1138   if (offset_con != (juint) Type::OffsetBot) {
1139     return longcon((julong) offset_con);
1140   }
1141   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1142   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1143   return _gvn.transform( new AndLNode(conv, mask) );
1144 }
1145 
ConvL2I(Node * offset)1146 Node* GraphKit::ConvL2I(Node* offset) {
1147   // short-circuit a common case
1148   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1149   if (offset_con != (jlong)Type::OffsetBot) {
1150     return intcon((int) offset_con);
1151   }
1152   return _gvn.transform( new ConvL2INode(offset));
1153 }
1154 
1155 //-------------------------load_object_klass-----------------------------------
load_object_klass(Node * obj)1156 Node* GraphKit::load_object_klass(Node* obj) {
1157   // Special-case a fresh allocation to avoid building nodes:
1158   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1159   if (akls != NULL)  return akls;
1160   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1161   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1162 }
1163 
1164 //-------------------------load_array_length-----------------------------------
load_array_length(Node * array)1165 Node* GraphKit::load_array_length(Node* array) {
1166   // Special-case a fresh allocation to avoid building nodes:
1167   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1168   Node *alen;
1169   if (alloc == NULL) {
1170     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1171     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1172   } else {
1173     alen = alloc->Ideal_length();
1174     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1175     if (ccast != alen) {
1176       alen = _gvn.transform(ccast);
1177     }
1178   }
1179   return alen;
1180 }
1181 
1182 //------------------------------do_null_check----------------------------------
1183 // Helper function to do a NULL pointer check.  Returned value is
1184 // the incoming address with NULL casted away.  You are allowed to use the
1185 // not-null value only if you are control dependent on the test.
1186 #ifndef PRODUCT
1187 extern int explicit_null_checks_inserted,
1188            explicit_null_checks_elided;
1189 #endif
null_check_common(Node * value,BasicType type,bool assert_null,Node ** null_control,bool speculative)1190 Node* GraphKit::null_check_common(Node* value, BasicType type,
1191                                   // optional arguments for variations:
1192                                   bool assert_null,
1193                                   Node* *null_control,
1194                                   bool speculative) {
1195   assert(!assert_null || null_control == NULL, "not both at once");
1196   if (stopped())  return top();
1197   NOT_PRODUCT(explicit_null_checks_inserted++);
1198 
1199   // Construct NULL check
1200   Node *chk = NULL;
1201   switch(type) {
1202     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1203     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1204     case T_ARRAY  : // fall through
1205       type = T_OBJECT;  // simplify further tests
1206     case T_OBJECT : {
1207       const Type *t = _gvn.type( value );
1208 
1209       const TypeOopPtr* tp = t->isa_oopptr();
1210       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1211           // Only for do_null_check, not any of its siblings:
1212           && !assert_null && null_control == NULL) {
1213         // Usually, any field access or invocation on an unloaded oop type
1214         // will simply fail to link, since the statically linked class is
1215         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1216         // the static class is loaded but the sharper oop type is not.
1217         // Rather than checking for this obscure case in lots of places,
1218         // we simply observe that a null check on an unloaded class
1219         // will always be followed by a nonsense operation, so we
1220         // can just issue the uncommon trap here.
1221         // Our access to the unloaded class will only be correct
1222         // after it has been loaded and initialized, which requires
1223         // a trip through the interpreter.
1224 #ifndef PRODUCT
1225         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1226 #endif
1227         uncommon_trap(Deoptimization::Reason_unloaded,
1228                       Deoptimization::Action_reinterpret,
1229                       tp->klass(), "!loaded");
1230         return top();
1231       }
1232 
1233       if (assert_null) {
1234         // See if the type is contained in NULL_PTR.
1235         // If so, then the value is already null.
1236         if (t->higher_equal(TypePtr::NULL_PTR)) {
1237           NOT_PRODUCT(explicit_null_checks_elided++);
1238           return value;           // Elided null assert quickly!
1239         }
1240       } else {
1241         // See if mixing in the NULL pointer changes type.
1242         // If so, then the NULL pointer was not allowed in the original
1243         // type.  In other words, "value" was not-null.
1244         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1245           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1246           NOT_PRODUCT(explicit_null_checks_elided++);
1247           return value;           // Elided null check quickly!
1248         }
1249       }
1250       chk = new CmpPNode( value, null() );
1251       break;
1252     }
1253 
1254     default:
1255       fatal("unexpected type: %s", type2name(type));
1256   }
1257   assert(chk != NULL, "sanity check");
1258   chk = _gvn.transform(chk);
1259 
1260   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1261   BoolNode *btst = new BoolNode( chk, btest);
1262   Node   *tst = _gvn.transform( btst );
1263 
1264   //-----------
1265   // if peephole optimizations occurred, a prior test existed.
1266   // If a prior test existed, maybe it dominates as we can avoid this test.
1267   if (tst != btst && type == T_OBJECT) {
1268     // At this point we want to scan up the CFG to see if we can
1269     // find an identical test (and so avoid this test altogether).
1270     Node *cfg = control();
1271     int depth = 0;
1272     while( depth < 16 ) {       // Limit search depth for speed
1273       if( cfg->Opcode() == Op_IfTrue &&
1274           cfg->in(0)->in(1) == tst ) {
1275         // Found prior test.  Use "cast_not_null" to construct an identical
1276         // CastPP (and hence hash to) as already exists for the prior test.
1277         // Return that casted value.
1278         if (assert_null) {
1279           replace_in_map(value, null());
1280           return null();  // do not issue the redundant test
1281         }
1282         Node *oldcontrol = control();
1283         set_control(cfg);
1284         Node *res = cast_not_null(value);
1285         set_control(oldcontrol);
1286         NOT_PRODUCT(explicit_null_checks_elided++);
1287         return res;
1288       }
1289       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1290       if (cfg == NULL)  break;  // Quit at region nodes
1291       depth++;
1292     }
1293   }
1294 
1295   //-----------
1296   // Branch to failure if null
1297   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1298   Deoptimization::DeoptReason reason;
1299   if (assert_null) {
1300     reason = Deoptimization::reason_null_assert(speculative);
1301   } else if (type == T_OBJECT) {
1302     reason = Deoptimization::reason_null_check(speculative);
1303   } else {
1304     reason = Deoptimization::Reason_div0_check;
1305   }
1306   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1307   // ciMethodData::has_trap_at will return a conservative -1 if any
1308   // must-be-null assertion has failed.  This could cause performance
1309   // problems for a method after its first do_null_assert failure.
1310   // Consider using 'Reason_class_check' instead?
1311 
1312   // To cause an implicit null check, we set the not-null probability
1313   // to the maximum (PROB_MAX).  For an explicit check the probability
1314   // is set to a smaller value.
1315   if (null_control != NULL || too_many_traps(reason)) {
1316     // probability is less likely
1317     ok_prob =  PROB_LIKELY_MAG(3);
1318   } else if (!assert_null &&
1319              (ImplicitNullCheckThreshold > 0) &&
1320              method() != NULL &&
1321              (method()->method_data()->trap_count(reason)
1322               >= (uint)ImplicitNullCheckThreshold)) {
1323     ok_prob =  PROB_LIKELY_MAG(3);
1324   }
1325 
1326   if (null_control != NULL) {
1327     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1328     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1329     set_control(      _gvn.transform( new IfTrueNode(iff)));
1330 #ifndef PRODUCT
1331     if (null_true == top()) {
1332       explicit_null_checks_elided++;
1333     }
1334 #endif
1335     (*null_control) = null_true;
1336   } else {
1337     BuildCutout unless(this, tst, ok_prob);
1338     // Check for optimizer eliding test at parse time
1339     if (stopped()) {
1340       // Failure not possible; do not bother making uncommon trap.
1341       NOT_PRODUCT(explicit_null_checks_elided++);
1342     } else if (assert_null) {
1343       uncommon_trap(reason,
1344                     Deoptimization::Action_make_not_entrant,
1345                     NULL, "assert_null");
1346     } else {
1347       replace_in_map(value, zerocon(type));
1348       builtin_throw(reason);
1349     }
1350   }
1351 
1352   // Must throw exception, fall-thru not possible?
1353   if (stopped()) {
1354     return top();               // No result
1355   }
1356 
1357   if (assert_null) {
1358     // Cast obj to null on this path.
1359     replace_in_map(value, zerocon(type));
1360     return zerocon(type);
1361   }
1362 
1363   // Cast obj to not-null on this path, if there is no null_control.
1364   // (If there is a null_control, a non-null value may come back to haunt us.)
1365   if (type == T_OBJECT) {
1366     Node* cast = cast_not_null(value, false);
1367     if (null_control == NULL || (*null_control) == top())
1368       replace_in_map(value, cast);
1369     value = cast;
1370   }
1371 
1372   return value;
1373 }
1374 
1375 
1376 //------------------------------cast_not_null----------------------------------
1377 // Cast obj to not-null on this path
cast_not_null(Node * obj,bool do_replace_in_map)1378 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1379   const Type *t = _gvn.type(obj);
1380   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1381   // Object is already not-null?
1382   if( t == t_not_null ) return obj;
1383 
1384   Node *cast = new CastPPNode(obj,t_not_null);
1385   cast->init_req(0, control());
1386   cast = _gvn.transform( cast );
1387 
1388   // Scan for instances of 'obj' in the current JVM mapping.
1389   // These instances are known to be not-null after the test.
1390   if (do_replace_in_map)
1391     replace_in_map(obj, cast);
1392 
1393   return cast;                  // Return casted value
1394 }
1395 
1396 // Sometimes in intrinsics, we implicitly know an object is not null
1397 // (there's no actual null check) so we can cast it to not null. In
1398 // the course of optimizations, the input to the cast can become null.
1399 // In that case that data path will die and we need the control path
1400 // to become dead as well to keep the graph consistent. So we have to
1401 // add a check for null for which one branch can't be taken. It uses
1402 // an Opaque4 node that will cause the check to be removed after loop
1403 // opts so the test goes away and the compiled code doesn't execute a
1404 // useless check.
must_be_not_null(Node * value,bool do_replace_in_map)1405 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1406   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1407   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1408   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1409   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1410   _gvn.set_type(iff, iff->Value(&_gvn));
1411   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1412   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1413   Node *halt = _gvn.transform(new HaltNode(if_f, frame));
1414   C->root()->add_req(halt);
1415   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1416   set_control(if_t);
1417   return cast_not_null(value, do_replace_in_map);
1418 }
1419 
1420 
1421 //--------------------------replace_in_map-------------------------------------
replace_in_map(Node * old,Node * neww)1422 void GraphKit::replace_in_map(Node* old, Node* neww) {
1423   if (old == neww) {
1424     return;
1425   }
1426 
1427   map()->replace_edge(old, neww);
1428 
1429   // Note: This operation potentially replaces any edge
1430   // on the map.  This includes locals, stack, and monitors
1431   // of the current (innermost) JVM state.
1432 
1433   // don't let inconsistent types from profiling escape this
1434   // method
1435 
1436   const Type* told = _gvn.type(old);
1437   const Type* tnew = _gvn.type(neww);
1438 
1439   if (!tnew->higher_equal(told)) {
1440     return;
1441   }
1442 
1443   map()->record_replaced_node(old, neww);
1444 }
1445 
1446 
1447 //=============================================================================
1448 //--------------------------------memory---------------------------------------
memory(uint alias_idx)1449 Node* GraphKit::memory(uint alias_idx) {
1450   MergeMemNode* mem = merged_memory();
1451   Node* p = mem->memory_at(alias_idx);
1452   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1453   return p;
1454 }
1455 
1456 //-----------------------------reset_memory------------------------------------
reset_memory()1457 Node* GraphKit::reset_memory() {
1458   Node* mem = map()->memory();
1459   // do not use this node for any more parsing!
1460   debug_only( map()->set_memory((Node*)NULL) );
1461   return _gvn.transform( mem );
1462 }
1463 
1464 //------------------------------set_all_memory---------------------------------
set_all_memory(Node * newmem)1465 void GraphKit::set_all_memory(Node* newmem) {
1466   Node* mergemem = MergeMemNode::make(newmem);
1467   gvn().set_type_bottom(mergemem);
1468   map()->set_memory(mergemem);
1469 }
1470 
1471 //------------------------------set_all_memory_call----------------------------
set_all_memory_call(Node * call,bool separate_io_proj)1472 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1473   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1474   set_all_memory(newmem);
1475 }
1476 
1477 //=============================================================================
1478 //
1479 // parser factory methods for MemNodes
1480 //
1481 // These are layered on top of the factory methods in LoadNode and StoreNode,
1482 // and integrate with the parser's memory state and _gvn engine.
1483 //
1484 
1485 // factory methods in "int adr_idx"
make_load(Node * ctl,Node * adr,const Type * t,BasicType bt,int adr_idx,MemNode::MemOrd mo,LoadNode::ControlDependency control_dependency,bool require_atomic_access,bool unaligned,bool mismatched)1486 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1487                           int adr_idx,
1488                           MemNode::MemOrd mo,
1489                           LoadNode::ControlDependency control_dependency,
1490                           bool require_atomic_access,
1491                           bool unaligned,
1492                           bool mismatched) {
1493   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1494   const TypePtr* adr_type = NULL; // debug-mode-only argument
1495   debug_only(adr_type = C->get_adr_type(adr_idx));
1496   Node* mem = memory(adr_idx);
1497   Node* ld;
1498   if (require_atomic_access && bt == T_LONG) {
1499     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1500   } else if (require_atomic_access && bt == T_DOUBLE) {
1501     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1502   } else {
1503     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1504   }
1505   ld = _gvn.transform(ld);
1506   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1507     // Improve graph before escape analysis and boxing elimination.
1508     record_for_igvn(ld);
1509   }
1510   return ld;
1511 }
1512 
store_to_memory(Node * ctl,Node * adr,Node * val,BasicType bt,int adr_idx,MemNode::MemOrd mo,bool require_atomic_access,bool unaligned,bool mismatched)1513 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1514                                 int adr_idx,
1515                                 MemNode::MemOrd mo,
1516                                 bool require_atomic_access,
1517                                 bool unaligned,
1518                                 bool mismatched) {
1519   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1520   const TypePtr* adr_type = NULL;
1521   debug_only(adr_type = C->get_adr_type(adr_idx));
1522   Node *mem = memory(adr_idx);
1523   Node* st;
1524   if (require_atomic_access && bt == T_LONG) {
1525     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1526   } else if (require_atomic_access && bt == T_DOUBLE) {
1527     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1528   } else {
1529     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1530   }
1531   if (unaligned) {
1532     st->as_Store()->set_unaligned_access();
1533   }
1534   if (mismatched) {
1535     st->as_Store()->set_mismatched_access();
1536   }
1537   st = _gvn.transform(st);
1538   set_memory(st, adr_idx);
1539   // Back-to-back stores can only remove intermediate store with DU info
1540   // so push on worklist for optimizer.
1541   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1542     record_for_igvn(st);
1543 
1544   return st;
1545 }
1546 
access_store_at(Node * obj,Node * adr,const TypePtr * adr_type,Node * val,const Type * val_type,BasicType bt,DecoratorSet decorators)1547 Node* GraphKit::access_store_at(Node* obj,
1548                                 Node* adr,
1549                                 const TypePtr* adr_type,
1550                                 Node* val,
1551                                 const Type* val_type,
1552                                 BasicType bt,
1553                                 DecoratorSet decorators) {
1554   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1555   // could be delayed during Parse (for example, in adjust_map_after_if()).
1556   // Execute transformation here to avoid barrier generation in such case.
1557   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1558     val = _gvn.makecon(TypePtr::NULL_PTR);
1559   }
1560 
1561   if (stopped()) {
1562     return top(); // Dead path ?
1563   }
1564 
1565   assert(val != NULL, "not dead path");
1566 
1567   C2AccessValuePtr addr(adr, adr_type);
1568   C2AccessValue value(val, val_type);
1569   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1570   if (access.is_raw()) {
1571     return _barrier_set->BarrierSetC2::store_at(access, value);
1572   } else {
1573     return _barrier_set->store_at(access, value);
1574   }
1575 }
1576 
access_load_at(Node * obj,Node * adr,const TypePtr * adr_type,const Type * val_type,BasicType bt,DecoratorSet decorators)1577 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1578                                Node* adr,   // actual adress to store val at
1579                                const TypePtr* adr_type,
1580                                const Type* val_type,
1581                                BasicType bt,
1582                                DecoratorSet decorators) {
1583   if (stopped()) {
1584     return top(); // Dead path ?
1585   }
1586 
1587   C2AccessValuePtr addr(adr, adr_type);
1588   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1589   if (access.is_raw()) {
1590     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1591   } else {
1592     return _barrier_set->load_at(access, val_type);
1593   }
1594 }
1595 
access_load(Node * adr,const Type * val_type,BasicType bt,DecoratorSet decorators)1596 Node* GraphKit::access_load(Node* adr,   // actual adress to load val at
1597                             const Type* val_type,
1598                             BasicType bt,
1599                             DecoratorSet decorators) {
1600   if (stopped()) {
1601     return top(); // Dead path ?
1602   }
1603 
1604   C2AccessValuePtr addr(adr, NULL);
1605   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, NULL, addr);
1606   if (access.is_raw()) {
1607     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1608   } else {
1609     return _barrier_set->load_at(access, val_type);
1610   }
1611 }
1612 
access_atomic_cmpxchg_val_at(Node * obj,Node * adr,const TypePtr * adr_type,int alias_idx,Node * expected_val,Node * new_val,const Type * value_type,BasicType bt,DecoratorSet decorators)1613 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1614                                              Node* adr,
1615                                              const TypePtr* adr_type,
1616                                              int alias_idx,
1617                                              Node* expected_val,
1618                                              Node* new_val,
1619                                              const Type* value_type,
1620                                              BasicType bt,
1621                                              DecoratorSet decorators) {
1622   C2AccessValuePtr addr(adr, adr_type);
1623   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1624                         bt, obj, addr, alias_idx);
1625   if (access.is_raw()) {
1626     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1627   } else {
1628     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1629   }
1630 }
1631 
access_atomic_cmpxchg_bool_at(Node * obj,Node * adr,const TypePtr * adr_type,int alias_idx,Node * expected_val,Node * new_val,const Type * value_type,BasicType bt,DecoratorSet decorators)1632 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1633                                               Node* adr,
1634                                               const TypePtr* adr_type,
1635                                               int alias_idx,
1636                                               Node* expected_val,
1637                                               Node* new_val,
1638                                               const Type* value_type,
1639                                               BasicType bt,
1640                                               DecoratorSet decorators) {
1641   C2AccessValuePtr addr(adr, adr_type);
1642   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1643                         bt, obj, addr, alias_idx);
1644   if (access.is_raw()) {
1645     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1646   } else {
1647     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1648   }
1649 }
1650 
access_atomic_xchg_at(Node * obj,Node * adr,const TypePtr * adr_type,int alias_idx,Node * new_val,const Type * value_type,BasicType bt,DecoratorSet decorators)1651 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1652                                       Node* adr,
1653                                       const TypePtr* adr_type,
1654                                       int alias_idx,
1655                                       Node* new_val,
1656                                       const Type* value_type,
1657                                       BasicType bt,
1658                                       DecoratorSet decorators) {
1659   C2AccessValuePtr addr(adr, adr_type);
1660   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1661                         bt, obj, addr, alias_idx);
1662   if (access.is_raw()) {
1663     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1664   } else {
1665     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1666   }
1667 }
1668 
access_atomic_add_at(Node * obj,Node * adr,const TypePtr * adr_type,int alias_idx,Node * new_val,const Type * value_type,BasicType bt,DecoratorSet decorators)1669 Node* GraphKit::access_atomic_add_at(Node* obj,
1670                                      Node* adr,
1671                                      const TypePtr* adr_type,
1672                                      int alias_idx,
1673                                      Node* new_val,
1674                                      const Type* value_type,
1675                                      BasicType bt,
1676                                      DecoratorSet decorators) {
1677   C2AccessValuePtr addr(adr, adr_type);
1678   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1679   if (access.is_raw()) {
1680     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1681   } else {
1682     return _barrier_set->atomic_add_at(access, new_val, value_type);
1683   }
1684 }
1685 
access_clone(Node * src,Node * dst,Node * size,bool is_array)1686 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1687   return _barrier_set->clone(this, src, dst, size, is_array);
1688 }
1689 
access_resolve(Node * n,DecoratorSet decorators)1690 Node* GraphKit::access_resolve(Node* n, DecoratorSet decorators) {
1691   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1692   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1693     decorators |= ACCESS_READ | ACCESS_WRITE;
1694   }
1695   return _barrier_set->resolve(this, n, decorators);
1696 }
1697 
1698 //-------------------------array_element_address-------------------------
array_element_address(Node * ary,Node * idx,BasicType elembt,const TypeInt * sizetype,Node * ctrl)1699 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1700                                       const TypeInt* sizetype, Node* ctrl) {
1701   uint shift  = exact_log2(type2aelembytes(elembt));
1702   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1703 
1704   // short-circuit a common case (saves lots of confusing waste motion)
1705   jint idx_con = find_int_con(idx, -1);
1706   if (idx_con >= 0) {
1707     intptr_t offset = header + ((intptr_t)idx_con << shift);
1708     return basic_plus_adr(ary, offset);
1709   }
1710 
1711   // must be correct type for alignment purposes
1712   Node* base  = basic_plus_adr(ary, header);
1713   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1714   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1715   return basic_plus_adr(ary, base, scale);
1716 }
1717 
1718 //-------------------------load_array_element-------------------------
load_array_element(Node * ctl,Node * ary,Node * idx,const TypeAryPtr * arytype)1719 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1720   const Type* elemtype = arytype->elem();
1721   BasicType elembt = elemtype->array_element_basic_type();
1722   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1723   if (elembt == T_NARROWOOP) {
1724     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1725   }
1726   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1727   return ld;
1728 }
1729 
1730 //-------------------------set_arguments_for_java_call-------------------------
1731 // Arguments (pre-popped from the stack) are taken from the JVMS.
set_arguments_for_java_call(CallJavaNode * call)1732 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1733   // Add the call arguments:
1734   uint nargs = call->method()->arg_size();
1735   for (uint i = 0; i < nargs; i++) {
1736     Node* arg = argument(i);
1737     call->init_req(i + TypeFunc::Parms, arg);
1738   }
1739 }
1740 
1741 //---------------------------set_edges_for_java_call---------------------------
1742 // Connect a newly created call into the current JVMS.
1743 // A return value node (if any) is returned from set_edges_for_java_call.
set_edges_for_java_call(CallJavaNode * call,bool must_throw,bool separate_io_proj)1744 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1745 
1746   // Add the predefined inputs:
1747   call->init_req( TypeFunc::Control, control() );
1748   call->init_req( TypeFunc::I_O    , i_o() );
1749   call->init_req( TypeFunc::Memory , reset_memory() );
1750   call->init_req( TypeFunc::FramePtr, frameptr() );
1751   call->init_req( TypeFunc::ReturnAdr, top() );
1752 
1753   add_safepoint_edges(call, must_throw);
1754 
1755   Node* xcall = _gvn.transform(call);
1756 
1757   if (xcall == top()) {
1758     set_control(top());
1759     return;
1760   }
1761   assert(xcall == call, "call identity is stable");
1762 
1763   // Re-use the current map to produce the result.
1764 
1765   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1766   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1767   set_all_memory_call(xcall, separate_io_proj);
1768 
1769   //return xcall;   // no need, caller already has it
1770 }
1771 
set_results_for_java_call(CallJavaNode * call,bool separate_io_proj,bool deoptimize)1772 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1773   if (stopped())  return top();  // maybe the call folded up?
1774 
1775   // Capture the return value, if any.
1776   Node* ret;
1777   if (call->method() == NULL ||
1778       call->method()->return_type()->basic_type() == T_VOID)
1779         ret = top();
1780   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1781 
1782   // Note:  Since any out-of-line call can produce an exception,
1783   // we always insert an I_O projection from the call into the result.
1784 
1785   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1786 
1787   if (separate_io_proj) {
1788     // The caller requested separate projections be used by the fall
1789     // through and exceptional paths, so replace the projections for
1790     // the fall through path.
1791     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1792     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1793   }
1794   return ret;
1795 }
1796 
1797 //--------------------set_predefined_input_for_runtime_call--------------------
1798 // Reading and setting the memory state is way conservative here.
1799 // The real problem is that I am not doing real Type analysis on memory,
1800 // so I cannot distinguish card mark stores from other stores.  Across a GC
1801 // point the Store Barrier and the card mark memory has to agree.  I cannot
1802 // have a card mark store and its barrier split across the GC point from
1803 // either above or below.  Here I get that to happen by reading ALL of memory.
1804 // A better answer would be to separate out card marks from other memory.
1805 // For now, return the input memory state, so that it can be reused
1806 // after the call, if this call has restricted memory effects.
set_predefined_input_for_runtime_call(SafePointNode * call,Node * narrow_mem)1807 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1808   // Set fixed predefined input arguments
1809   Node* memory = reset_memory();
1810   Node* m = narrow_mem == NULL ? memory : narrow_mem;
1811   call->init_req( TypeFunc::Control,   control()  );
1812   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1813   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
1814   call->init_req( TypeFunc::FramePtr,  frameptr() );
1815   call->init_req( TypeFunc::ReturnAdr, top()      );
1816   return memory;
1817 }
1818 
1819 //-------------------set_predefined_output_for_runtime_call--------------------
1820 // Set control and memory (not i_o) from the call.
1821 // If keep_mem is not NULL, use it for the output state,
1822 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1823 // If hook_mem is NULL, this call produces no memory effects at all.
1824 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1825 // then only that memory slice is taken from the call.
1826 // In the last case, we must put an appropriate memory barrier before
1827 // the call, so as to create the correct anti-dependencies on loads
1828 // preceding the call.
set_predefined_output_for_runtime_call(Node * call,Node * keep_mem,const TypePtr * hook_mem)1829 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1830                                                       Node* keep_mem,
1831                                                       const TypePtr* hook_mem) {
1832   // no i/o
1833   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1834   if (keep_mem) {
1835     // First clone the existing memory state
1836     set_all_memory(keep_mem);
1837     if (hook_mem != NULL) {
1838       // Make memory for the call
1839       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1840       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1841       // We also use hook_mem to extract specific effects from arraycopy stubs.
1842       set_memory(mem, hook_mem);
1843     }
1844     // ...else the call has NO memory effects.
1845 
1846     // Make sure the call advertises its memory effects precisely.
1847     // This lets us build accurate anti-dependences in gcm.cpp.
1848     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1849            "call node must be constructed correctly");
1850   } else {
1851     assert(hook_mem == NULL, "");
1852     // This is not a "slow path" call; all memory comes from the call.
1853     set_all_memory_call(call);
1854   }
1855 }
1856 
1857 
1858 // Replace the call with the current state of the kit.
replace_call(CallNode * call,Node * result,bool do_replaced_nodes)1859 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1860   JVMState* ejvms = NULL;
1861   if (has_exceptions()) {
1862     ejvms = transfer_exceptions_into_jvms();
1863   }
1864 
1865   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1866   ReplacedNodes replaced_nodes_exception;
1867   Node* ex_ctl = top();
1868 
1869   SafePointNode* final_state = stop();
1870 
1871   // Find all the needed outputs of this call
1872   CallProjections callprojs;
1873   call->extract_projections(&callprojs, true);
1874 
1875   Node* init_mem = call->in(TypeFunc::Memory);
1876   Node* final_mem = final_state->in(TypeFunc::Memory);
1877   Node* final_ctl = final_state->in(TypeFunc::Control);
1878   Node* final_io = final_state->in(TypeFunc::I_O);
1879 
1880   // Replace all the old call edges with the edges from the inlining result
1881   if (callprojs.fallthrough_catchproj != NULL) {
1882     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1883   }
1884   if (callprojs.fallthrough_memproj != NULL) {
1885     if (final_mem->is_MergeMem()) {
1886       // Parser's exits MergeMem was not transformed but may be optimized
1887       final_mem = _gvn.transform(final_mem);
1888     }
1889     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1890   }
1891   if (callprojs.fallthrough_ioproj != NULL) {
1892     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1893   }
1894 
1895   // Replace the result with the new result if it exists and is used
1896   if (callprojs.resproj != NULL && result != NULL) {
1897     C->gvn_replace_by(callprojs.resproj, result);
1898   }
1899 
1900   if (ejvms == NULL) {
1901     // No exception edges to simply kill off those paths
1902     if (callprojs.catchall_catchproj != NULL) {
1903       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1904     }
1905     if (callprojs.catchall_memproj != NULL) {
1906       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1907     }
1908     if (callprojs.catchall_ioproj != NULL) {
1909       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1910     }
1911     // Replace the old exception object with top
1912     if (callprojs.exobj != NULL) {
1913       C->gvn_replace_by(callprojs.exobj, C->top());
1914     }
1915   } else {
1916     GraphKit ekit(ejvms);
1917 
1918     // Load my combined exception state into the kit, with all phis transformed:
1919     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1920     replaced_nodes_exception = ex_map->replaced_nodes();
1921 
1922     Node* ex_oop = ekit.use_exception_state(ex_map);
1923 
1924     if (callprojs.catchall_catchproj != NULL) {
1925       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1926       ex_ctl = ekit.control();
1927     }
1928     if (callprojs.catchall_memproj != NULL) {
1929       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1930     }
1931     if (callprojs.catchall_ioproj != NULL) {
1932       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1933     }
1934 
1935     // Replace the old exception object with the newly created one
1936     if (callprojs.exobj != NULL) {
1937       C->gvn_replace_by(callprojs.exobj, ex_oop);
1938     }
1939   }
1940 
1941   // Disconnect the call from the graph
1942   call->disconnect_inputs(NULL, C);
1943   C->gvn_replace_by(call, C->top());
1944 
1945   // Clean up any MergeMems that feed other MergeMems since the
1946   // optimizer doesn't like that.
1947   if (final_mem->is_MergeMem()) {
1948     Node_List wl;
1949     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1950       Node* m = i.get();
1951       if (m->is_MergeMem() && !wl.contains(m)) {
1952         wl.push(m);
1953       }
1954     }
1955     while (wl.size()  > 0) {
1956       _gvn.transform(wl.pop());
1957     }
1958   }
1959 
1960   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1961     replaced_nodes.apply(C, final_ctl);
1962   }
1963   if (!ex_ctl->is_top() && do_replaced_nodes) {
1964     replaced_nodes_exception.apply(C, ex_ctl);
1965   }
1966 }
1967 
1968 
1969 //------------------------------increment_counter------------------------------
1970 // for statistics: increment a VM counter by 1
1971 
increment_counter(address counter_addr)1972 void GraphKit::increment_counter(address counter_addr) {
1973   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1974   increment_counter(adr1);
1975 }
1976 
increment_counter(Node * counter_addr)1977 void GraphKit::increment_counter(Node* counter_addr) {
1978   int adr_type = Compile::AliasIdxRaw;
1979   Node* ctrl = control();
1980   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1981   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1982   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1983 }
1984 
1985 
1986 //------------------------------uncommon_trap----------------------------------
1987 // Bail out to the interpreter in mid-method.  Implemented by calling the
1988 // uncommon_trap blob.  This helper function inserts a runtime call with the
1989 // right debug info.
uncommon_trap(int trap_request,ciKlass * klass,const char * comment,bool must_throw,bool keep_exact_action)1990 void GraphKit::uncommon_trap(int trap_request,
1991                              ciKlass* klass, const char* comment,
1992                              bool must_throw,
1993                              bool keep_exact_action) {
1994   if (failing())  stop();
1995   if (stopped())  return; // trap reachable?
1996 
1997   // Note:  If ProfileTraps is true, and if a deopt. actually
1998   // occurs here, the runtime will make sure an MDO exists.  There is
1999   // no need to call method()->ensure_method_data() at this point.
2000 
2001   // Set the stack pointer to the right value for reexecution:
2002   set_sp(reexecute_sp());
2003 
2004 #ifdef ASSERT
2005   if (!must_throw) {
2006     // Make sure the stack has at least enough depth to execute
2007     // the current bytecode.
2008     int inputs, ignored_depth;
2009     if (compute_stack_effects(inputs, ignored_depth)) {
2010       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2011              Bytecodes::name(java_bc()), sp(), inputs);
2012     }
2013   }
2014 #endif
2015 
2016   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2017   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2018 
2019   switch (action) {
2020   case Deoptimization::Action_maybe_recompile:
2021   case Deoptimization::Action_reinterpret:
2022     // Temporary fix for 6529811 to allow virtual calls to be sure they
2023     // get the chance to go from mono->bi->mega
2024     if (!keep_exact_action &&
2025         Deoptimization::trap_request_index(trap_request) < 0 &&
2026         too_many_recompiles(reason)) {
2027       // This BCI is causing too many recompilations.
2028       if (C->log() != NULL) {
2029         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2030                 Deoptimization::trap_reason_name(reason),
2031                 Deoptimization::trap_action_name(action));
2032       }
2033       action = Deoptimization::Action_none;
2034       trap_request = Deoptimization::make_trap_request(reason, action);
2035     } else {
2036       C->set_trap_can_recompile(true);
2037     }
2038     break;
2039   case Deoptimization::Action_make_not_entrant:
2040     C->set_trap_can_recompile(true);
2041     break;
2042   case Deoptimization::Action_none:
2043   case Deoptimization::Action_make_not_compilable:
2044     break;
2045   default:
2046 #ifdef ASSERT
2047     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2048 #endif
2049     break;
2050   }
2051 
2052   if (TraceOptoParse) {
2053     char buf[100];
2054     tty->print_cr("Uncommon trap %s at bci:%d",
2055                   Deoptimization::format_trap_request(buf, sizeof(buf),
2056                                                       trap_request), bci());
2057   }
2058 
2059   CompileLog* log = C->log();
2060   if (log != NULL) {
2061     int kid = (klass == NULL)? -1: log->identify(klass);
2062     log->begin_elem("uncommon_trap bci='%d'", bci());
2063     char buf[100];
2064     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2065                                                           trap_request));
2066     if (kid >= 0)         log->print(" klass='%d'", kid);
2067     if (comment != NULL)  log->print(" comment='%s'", comment);
2068     log->end_elem();
2069   }
2070 
2071   // Make sure any guarding test views this path as very unlikely
2072   Node *i0 = control()->in(0);
2073   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2074     IfNode *iff = i0->as_If();
2075     float f = iff->_prob;   // Get prob
2076     if (control()->Opcode() == Op_IfTrue) {
2077       if (f > PROB_UNLIKELY_MAG(4))
2078         iff->_prob = PROB_MIN;
2079     } else {
2080       if (f < PROB_LIKELY_MAG(4))
2081         iff->_prob = PROB_MAX;
2082     }
2083   }
2084 
2085   // Clear out dead values from the debug info.
2086   kill_dead_locals();
2087 
2088   // Now insert the uncommon trap subroutine call
2089   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2090   const TypePtr* no_memory_effects = NULL;
2091   // Pass the index of the class to be loaded
2092   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2093                                  (must_throw ? RC_MUST_THROW : 0),
2094                                  OptoRuntime::uncommon_trap_Type(),
2095                                  call_addr, "uncommon_trap", no_memory_effects,
2096                                  intcon(trap_request));
2097   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2098          "must extract request correctly from the graph");
2099   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2100 
2101   call->set_req(TypeFunc::ReturnAdr, returnadr());
2102   // The debug info is the only real input to this call.
2103 
2104   // Halt-and-catch fire here.  The above call should never return!
2105   HaltNode* halt = new HaltNode(control(), frameptr());
2106   _gvn.set_type_bottom(halt);
2107   root()->add_req(halt);
2108 
2109   stop_and_kill_map();
2110 }
2111 
2112 
2113 //--------------------------just_allocated_object------------------------------
2114 // Report the object that was just allocated.
2115 // It must be the case that there are no intervening safepoints.
2116 // We use this to determine if an object is so "fresh" that
2117 // it does not require card marks.
just_allocated_object(Node * current_control)2118 Node* GraphKit::just_allocated_object(Node* current_control) {
2119   Node* ctrl = current_control;
2120   // Object::<init> is invoked after allocation, most of invoke nodes
2121   // will be reduced, but a region node is kept in parse time, we check
2122   // the pattern and skip the region node if it degraded to a copy.
2123   if (ctrl != NULL && ctrl->is_Region() && ctrl->req() == 2 &&
2124       ctrl->as_Region()->is_copy()) {
2125     ctrl = ctrl->as_Region()->is_copy();
2126   }
2127   if (C->recent_alloc_ctl() == ctrl) {
2128    return C->recent_alloc_obj();
2129   }
2130   return NULL;
2131 }
2132 
2133 
round_double_arguments(ciMethod * dest_method)2134 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2135   // (Note:  TypeFunc::make has a cache that makes this fast.)
2136   const TypeFunc* tf    = TypeFunc::make(dest_method);
2137   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2138   for (int j = 0; j < nargs; j++) {
2139     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2140     if( targ->basic_type() == T_DOUBLE ) {
2141       // If any parameters are doubles, they must be rounded before
2142       // the call, dstore_rounding does gvn.transform
2143       Node *arg = argument(j);
2144       arg = dstore_rounding(arg);
2145       set_argument(j, arg);
2146     }
2147   }
2148 }
2149 
2150 /**
2151  * Record profiling data exact_kls for Node n with the type system so
2152  * that it can propagate it (speculation)
2153  *
2154  * @param n          node that the type applies to
2155  * @param exact_kls  type from profiling
2156  * @param maybe_null did profiling see null?
2157  *
2158  * @return           node with improved type
2159  */
record_profile_for_speculation(Node * n,ciKlass * exact_kls,ProfilePtrKind ptr_kind)2160 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2161   const Type* current_type = _gvn.type(n);
2162   assert(UseTypeSpeculation, "type speculation must be on");
2163 
2164   const TypePtr* speculative = current_type->speculative();
2165 
2166   // Should the klass from the profile be recorded in the speculative type?
2167   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2168     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2169     const TypeOopPtr* xtype = tklass->as_instance_type();
2170     assert(xtype->klass_is_exact(), "Should be exact");
2171     // Any reason to believe n is not null (from this profiling or a previous one)?
2172     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2173     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2174     // record the new speculative type's depth
2175     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2176     speculative = speculative->with_inline_depth(jvms()->depth());
2177   } else if (current_type->would_improve_ptr(ptr_kind)) {
2178     // Profiling report that null was never seen so we can change the
2179     // speculative type to non null ptr.
2180     if (ptr_kind == ProfileAlwaysNull) {
2181       speculative = TypePtr::NULL_PTR;
2182     } else {
2183       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2184       const TypePtr* ptr = TypePtr::NOTNULL;
2185       if (speculative != NULL) {
2186         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2187       } else {
2188         speculative = ptr;
2189       }
2190     }
2191   }
2192 
2193   if (speculative != current_type->speculative()) {
2194     // Build a type with a speculative type (what we think we know
2195     // about the type but will need a guard when we use it)
2196     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2197     // We're changing the type, we need a new CheckCast node to carry
2198     // the new type. The new type depends on the control: what
2199     // profiling tells us is only valid from here as far as we can
2200     // tell.
2201     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2202     cast = _gvn.transform(cast);
2203     replace_in_map(n, cast);
2204     n = cast;
2205   }
2206 
2207   return n;
2208 }
2209 
2210 /**
2211  * Record profiling data from receiver profiling at an invoke with the
2212  * type system so that it can propagate it (speculation)
2213  *
2214  * @param n  receiver node
2215  *
2216  * @return   node with improved type
2217  */
record_profiled_receiver_for_speculation(Node * n)2218 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2219   if (!UseTypeSpeculation) {
2220     return n;
2221   }
2222   ciKlass* exact_kls = profile_has_unique_klass();
2223   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2224   if ((java_bc() == Bytecodes::_checkcast ||
2225        java_bc() == Bytecodes::_instanceof ||
2226        java_bc() == Bytecodes::_aastore) &&
2227       method()->method_data()->is_mature()) {
2228     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2229     if (data != NULL) {
2230       if (!data->as_BitData()->null_seen()) {
2231         ptr_kind = ProfileNeverNull;
2232       } else {
2233         assert(data->is_ReceiverTypeData(), "bad profile data type");
2234         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2235         uint i = 0;
2236         for (; i < call->row_limit(); i++) {
2237           ciKlass* receiver = call->receiver(i);
2238           if (receiver != NULL) {
2239             break;
2240           }
2241         }
2242         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2243       }
2244     }
2245   }
2246   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2247 }
2248 
2249 /**
2250  * Record profiling data from argument profiling at an invoke with the
2251  * type system so that it can propagate it (speculation)
2252  *
2253  * @param dest_method  target method for the call
2254  * @param bc           what invoke bytecode is this?
2255  */
record_profiled_arguments_for_speculation(ciMethod * dest_method,Bytecodes::Code bc)2256 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2257   if (!UseTypeSpeculation) {
2258     return;
2259   }
2260   const TypeFunc* tf    = TypeFunc::make(dest_method);
2261   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2262   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2263   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2264     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2265     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2266       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2267       ciKlass* better_type = NULL;
2268       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2269         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2270       }
2271       i++;
2272     }
2273   }
2274 }
2275 
2276 /**
2277  * Record profiling data from parameter profiling at an invoke with
2278  * the type system so that it can propagate it (speculation)
2279  */
record_profiled_parameters_for_speculation()2280 void GraphKit::record_profiled_parameters_for_speculation() {
2281   if (!UseTypeSpeculation) {
2282     return;
2283   }
2284   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2285     if (_gvn.type(local(i))->isa_oopptr()) {
2286       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2287       ciKlass* better_type = NULL;
2288       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2289         record_profile_for_speculation(local(i), better_type, ptr_kind);
2290       }
2291       j++;
2292     }
2293   }
2294 }
2295 
2296 /**
2297  * Record profiling data from return value profiling at an invoke with
2298  * the type system so that it can propagate it (speculation)
2299  */
record_profiled_return_for_speculation()2300 void GraphKit::record_profiled_return_for_speculation() {
2301   if (!UseTypeSpeculation) {
2302     return;
2303   }
2304   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2305   ciKlass* better_type = NULL;
2306   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2307     // If profiling reports a single type for the return value,
2308     // feed it to the type system so it can propagate it as a
2309     // speculative type
2310     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2311   }
2312 }
2313 
round_double_result(ciMethod * dest_method)2314 void GraphKit::round_double_result(ciMethod* dest_method) {
2315   // A non-strict method may return a double value which has an extended
2316   // exponent, but this must not be visible in a caller which is 'strict'
2317   // If a strict caller invokes a non-strict callee, round a double result
2318 
2319   BasicType result_type = dest_method->return_type()->basic_type();
2320   assert( method() != NULL, "must have caller context");
2321   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2322     // Destination method's return value is on top of stack
2323     // dstore_rounding() does gvn.transform
2324     Node *result = pop_pair();
2325     result = dstore_rounding(result);
2326     push_pair(result);
2327   }
2328 }
2329 
2330 // rounding for strict float precision conformance
precision_rounding(Node * n)2331 Node* GraphKit::precision_rounding(Node* n) {
2332   return UseStrictFP && _method->flags().is_strict()
2333     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2334     ? _gvn.transform( new RoundFloatNode(0, n) )
2335     : n;
2336 }
2337 
2338 // rounding for strict double precision conformance
dprecision_rounding(Node * n)2339 Node* GraphKit::dprecision_rounding(Node *n) {
2340   return UseStrictFP && _method->flags().is_strict()
2341     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2342     ? _gvn.transform( new RoundDoubleNode(0, n) )
2343     : n;
2344 }
2345 
2346 // rounding for non-strict double stores
dstore_rounding(Node * n)2347 Node* GraphKit::dstore_rounding(Node* n) {
2348   return Matcher::strict_fp_requires_explicit_rounding
2349     && UseSSE <= 1
2350     ? _gvn.transform( new RoundDoubleNode(0, n) )
2351     : n;
2352 }
2353 
2354 //=============================================================================
2355 // Generate a fast path/slow path idiom.  Graph looks like:
2356 // [foo] indicates that 'foo' is a parameter
2357 //
2358 //              [in]     NULL
2359 //                 \    /
2360 //                  CmpP
2361 //                  Bool ne
2362 //                   If
2363 //                  /  \
2364 //              True    False-<2>
2365 //              / |
2366 //             /  cast_not_null
2367 //           Load  |    |   ^
2368 //        [fast_test]   |   |
2369 // gvn to   opt_test    |   |
2370 //          /    \      |  <1>
2371 //      True     False  |
2372 //        |         \\  |
2373 //   [slow_call]     \[fast_result]
2374 //    Ctl   Val       \      \
2375 //     |               \      \
2376 //    Catch       <1>   \      \
2377 //   /    \        ^     \      \
2378 //  Ex    No_Ex    |      \      \
2379 //  |       \   \  |       \ <2>  \
2380 //  ...      \  [slow_res] |  |    \   [null_result]
2381 //            \         \--+--+---  |  |
2382 //             \           | /    \ | /
2383 //              --------Region     Phi
2384 //
2385 //=============================================================================
2386 // Code is structured as a series of driver functions all called 'do_XXX' that
2387 // call a set of helper functions.  Helper functions first, then drivers.
2388 
2389 //------------------------------null_check_oop---------------------------------
2390 // Null check oop.  Set null-path control into Region in slot 3.
2391 // Make a cast-not-nullness use the other not-null control.  Return cast.
null_check_oop(Node * value,Node ** null_control,bool never_see_null,bool safe_for_replace,bool speculative)2392 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2393                                bool never_see_null,
2394                                bool safe_for_replace,
2395                                bool speculative) {
2396   // Initial NULL check taken path
2397   (*null_control) = top();
2398   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2399 
2400   // Generate uncommon_trap:
2401   if (never_see_null && (*null_control) != top()) {
2402     // If we see an unexpected null at a check-cast we record it and force a
2403     // recompile; the offending check-cast will be compiled to handle NULLs.
2404     // If we see more than one offending BCI, then all checkcasts in the
2405     // method will be compiled to handle NULLs.
2406     PreserveJVMState pjvms(this);
2407     set_control(*null_control);
2408     replace_in_map(value, null());
2409     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2410     uncommon_trap(reason,
2411                   Deoptimization::Action_make_not_entrant);
2412     (*null_control) = top();    // NULL path is dead
2413   }
2414   if ((*null_control) == top() && safe_for_replace) {
2415     replace_in_map(value, cast);
2416   }
2417 
2418   // Cast away null-ness on the result
2419   return cast;
2420 }
2421 
2422 //------------------------------opt_iff----------------------------------------
2423 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2424 // Return slow-path control.
opt_iff(Node * region,Node * iff)2425 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2426   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2427 
2428   // Fast path taken; set region slot 2
2429   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2430   region->init_req(2,fast_taken); // Capture fast-control
2431 
2432   // Fast path not-taken, i.e. slow path
2433   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2434   return slow_taken;
2435 }
2436 
2437 //-----------------------------make_runtime_call-------------------------------
make_runtime_call(int flags,const TypeFunc * call_type,address call_addr,const char * call_name,const TypePtr * adr_type,Node * parm0,Node * parm1,Node * parm2,Node * parm3,Node * parm4,Node * parm5,Node * parm6,Node * parm7)2438 Node* GraphKit::make_runtime_call(int flags,
2439                                   const TypeFunc* call_type, address call_addr,
2440                                   const char* call_name,
2441                                   const TypePtr* adr_type,
2442                                   // The following parms are all optional.
2443                                   // The first NULL ends the list.
2444                                   Node* parm0, Node* parm1,
2445                                   Node* parm2, Node* parm3,
2446                                   Node* parm4, Node* parm5,
2447                                   Node* parm6, Node* parm7) {
2448   assert(call_addr != NULL, "must not call NULL targets");
2449 
2450   // Slow-path call
2451   bool is_leaf = !(flags & RC_NO_LEAF);
2452   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2453   if (call_name == NULL) {
2454     assert(!is_leaf, "must supply name for leaf");
2455     call_name = OptoRuntime::stub_name(call_addr);
2456   }
2457   CallNode* call;
2458   if (!is_leaf) {
2459     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2460                                            bci(), adr_type);
2461   } else if (flags & RC_NO_FP) {
2462     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2463   } else {
2464     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2465   }
2466 
2467   // The following is similar to set_edges_for_java_call,
2468   // except that the memory effects of the call are restricted to AliasIdxRaw.
2469 
2470   // Slow path call has no side-effects, uses few values
2471   bool wide_in  = !(flags & RC_NARROW_MEM);
2472   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2473 
2474   Node* prev_mem = NULL;
2475   if (wide_in) {
2476     prev_mem = set_predefined_input_for_runtime_call(call);
2477   } else {
2478     assert(!wide_out, "narrow in => narrow out");
2479     Node* narrow_mem = memory(adr_type);
2480     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2481   }
2482 
2483   // Hook each parm in order.  Stop looking at the first NULL.
2484   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2485   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2486   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2487   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2488   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2489   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2490   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2491   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2492     /* close each nested if ===> */  } } } } } } } }
2493   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2494 
2495   if (!is_leaf) {
2496     // Non-leaves can block and take safepoints:
2497     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2498   }
2499   // Non-leaves can throw exceptions:
2500   if (has_io) {
2501     call->set_req(TypeFunc::I_O, i_o());
2502   }
2503 
2504   if (flags & RC_UNCOMMON) {
2505     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2506     // (An "if" probability corresponds roughly to an unconditional count.
2507     // Sort of.)
2508     call->set_cnt(PROB_UNLIKELY_MAG(4));
2509   }
2510 
2511   Node* c = _gvn.transform(call);
2512   assert(c == call, "cannot disappear");
2513 
2514   if (wide_out) {
2515     // Slow path call has full side-effects.
2516     set_predefined_output_for_runtime_call(call);
2517   } else {
2518     // Slow path call has few side-effects, and/or sets few values.
2519     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2520   }
2521 
2522   if (has_io) {
2523     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2524   }
2525   return call;
2526 
2527 }
2528 
2529 //------------------------------merge_memory-----------------------------------
2530 // Merge memory from one path into the current memory state.
merge_memory(Node * new_mem,Node * region,int new_path)2531 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2532   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2533     Node* old_slice = mms.force_memory();
2534     Node* new_slice = mms.memory2();
2535     if (old_slice != new_slice) {
2536       PhiNode* phi;
2537       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2538         if (mms.is_empty()) {
2539           // clone base memory Phi's inputs for this memory slice
2540           assert(old_slice == mms.base_memory(), "sanity");
2541           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2542           _gvn.set_type(phi, Type::MEMORY);
2543           for (uint i = 1; i < phi->req(); i++) {
2544             phi->init_req(i, old_slice->in(i));
2545           }
2546         } else {
2547           phi = old_slice->as_Phi(); // Phi was generated already
2548         }
2549       } else {
2550         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2551         _gvn.set_type(phi, Type::MEMORY);
2552       }
2553       phi->set_req(new_path, new_slice);
2554       mms.set_memory(phi);
2555     }
2556   }
2557 }
2558 
2559 //------------------------------make_slow_call_ex------------------------------
2560 // Make the exception handler hookups for the slow call
make_slow_call_ex(Node * call,ciInstanceKlass * ex_klass,bool separate_io_proj,bool deoptimize)2561 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2562   if (stopped())  return;
2563 
2564   // Make a catch node with just two handlers:  fall-through and catch-all
2565   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2566   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2567   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2568   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2569 
2570   { PreserveJVMState pjvms(this);
2571     set_control(excp);
2572     set_i_o(i_o);
2573 
2574     if (excp != top()) {
2575       if (deoptimize) {
2576         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2577         uncommon_trap(Deoptimization::Reason_unhandled,
2578                       Deoptimization::Action_none);
2579       } else {
2580         // Create an exception state also.
2581         // Use an exact type if the caller has a specific exception.
2582         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2583         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2584         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2585       }
2586     }
2587   }
2588 
2589   // Get the no-exception control from the CatchNode.
2590   set_control(norm);
2591 }
2592 
gen_subtype_check_compare(Node * ctrl,Node * in1,Node * in2,BoolTest::mask test,float p,PhaseGVN * gvn,BasicType bt)2593 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2594   Node* cmp = NULL;
2595   switch(bt) {
2596   case T_INT: cmp = new CmpINode(in1, in2); break;
2597   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2598   default: fatal("unexpected comparison type %s", type2name(bt));
2599   }
2600   gvn->transform(cmp);
2601   Node* bol = gvn->transform(new BoolNode(cmp, test));
2602   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2603   gvn->transform(iff);
2604   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2605   return iff;
2606 }
2607 
2608 
2609 //-------------------------------gen_subtype_check-----------------------------
2610 // Generate a subtyping check.  Takes as input the subtype and supertype.
2611 // Returns 2 values: sets the default control() to the true path and returns
2612 // the false path.  Only reads invariant memory; sets no (visible) memory.
2613 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2614 // but that's not exposed to the optimizer.  This call also doesn't take in an
2615 // Object; if you wish to check an Object you need to load the Object's class
2616 // prior to coming here.
gen_subtype_check(Node * subklass,Node * superklass,Node ** ctrl,MergeMemNode * mem,PhaseGVN * gvn)2617 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2618   Compile* C = gvn->C;
2619 
2620   if ((*ctrl)->is_top()) {
2621     return C->top();
2622   }
2623 
2624   // Fast check for identical types, perhaps identical constants.
2625   // The types can even be identical non-constants, in cases
2626   // involving Array.newInstance, Object.clone, etc.
2627   if (subklass == superklass)
2628     return C->top();             // false path is dead; no test needed.
2629 
2630   if (gvn->type(superklass)->singleton()) {
2631     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2632     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2633 
2634     // In the common case of an exact superklass, try to fold up the
2635     // test before generating code.  You may ask, why not just generate
2636     // the code and then let it fold up?  The answer is that the generated
2637     // code will necessarily include null checks, which do not always
2638     // completely fold away.  If they are also needless, then they turn
2639     // into a performance loss.  Example:
2640     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2641     // Here, the type of 'fa' is often exact, so the store check
2642     // of fa[1]=x will fold up, without testing the nullness of x.
2643     switch (C->static_subtype_check(superk, subk)) {
2644     case Compile::SSC_always_false:
2645       {
2646         Node* always_fail = *ctrl;
2647         *ctrl = gvn->C->top();
2648         return always_fail;
2649       }
2650     case Compile::SSC_always_true:
2651       return C->top();
2652     case Compile::SSC_easy_test:
2653       {
2654         // Just do a direct pointer compare and be done.
2655         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2656         *ctrl = gvn->transform(new IfTrueNode(iff));
2657         return gvn->transform(new IfFalseNode(iff));
2658       }
2659     case Compile::SSC_full_test:
2660       break;
2661     default:
2662       ShouldNotReachHere();
2663     }
2664   }
2665 
2666   // %%% Possible further optimization:  Even if the superklass is not exact,
2667   // if the subklass is the unique subtype of the superklass, the check
2668   // will always succeed.  We could leave a dependency behind to ensure this.
2669 
2670   // First load the super-klass's check-offset
2671   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2672   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2673   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2674   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2675   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2676 
2677   // Load from the sub-klass's super-class display list, or a 1-word cache of
2678   // the secondary superclass list, or a failing value with a sentinel offset
2679   // if the super-klass is an interface or exceptionally deep in the Java
2680   // hierarchy and we have to scan the secondary superclass list the hard way.
2681   // Worst-case type is a little odd: NULL is allowed as a result (usually
2682   // klass loads can never produce a NULL).
2683   Node *chk_off_X = chk_off;
2684 #ifdef _LP64
2685   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2686 #endif
2687   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2688   // For some types like interfaces the following loadKlass is from a 1-word
2689   // cache which is mutable so can't use immutable memory.  Other
2690   // types load from the super-class display table which is immutable.
2691   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2692   Node *kmem = might_be_cache ? m : C->immutable_memory();
2693   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2694 
2695   // Compile speed common case: ARE a subtype and we canNOT fail
2696   if( superklass == nkls )
2697     return C->top();             // false path is dead; no test needed.
2698 
2699   // See if we get an immediate positive hit.  Happens roughly 83% of the
2700   // time.  Test to see if the value loaded just previously from the subklass
2701   // is exactly the superklass.
2702   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2703   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2704   *ctrl = gvn->transform(new IfFalseNode(iff1));
2705 
2706   // Compile speed common case: Check for being deterministic right now.  If
2707   // chk_off is a constant and not equal to cacheoff then we are NOT a
2708   // subklass.  In this case we need exactly the 1 test above and we can
2709   // return those results immediately.
2710   if (!might_be_cache) {
2711     Node* not_subtype_ctrl = *ctrl;
2712     *ctrl = iftrue1; // We need exactly the 1 test above
2713     return not_subtype_ctrl;
2714   }
2715 
2716   // Gather the various success & failures here
2717   RegionNode *r_ok_subtype = new RegionNode(4);
2718   gvn->record_for_igvn(r_ok_subtype);
2719   RegionNode *r_not_subtype = new RegionNode(3);
2720   gvn->record_for_igvn(r_not_subtype);
2721 
2722   r_ok_subtype->init_req(1, iftrue1);
2723 
2724   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2725   // is roughly 63% of the remaining cases).  Test to see if the loaded
2726   // check-offset points into the subklass display list or the 1-element
2727   // cache.  If it points to the display (and NOT the cache) and the display
2728   // missed then it's not a subtype.
2729   Node *cacheoff = gvn->intcon(cacheoff_con);
2730   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2731   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2732   *ctrl = gvn->transform(new IfFalseNode(iff2));
2733 
2734   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2735   // No performance impact (too rare) but allows sharing of secondary arrays
2736   // which has some footprint reduction.
2737   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2738   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2739   *ctrl = gvn->transform(new IfFalseNode(iff3));
2740 
2741   // -- Roads not taken here: --
2742   // We could also have chosen to perform the self-check at the beginning
2743   // of this code sequence, as the assembler does.  This would not pay off
2744   // the same way, since the optimizer, unlike the assembler, can perform
2745   // static type analysis to fold away many successful self-checks.
2746   // Non-foldable self checks work better here in second position, because
2747   // the initial primary superclass check subsumes a self-check for most
2748   // types.  An exception would be a secondary type like array-of-interface,
2749   // which does not appear in its own primary supertype display.
2750   // Finally, we could have chosen to move the self-check into the
2751   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2752   // dependent manner.  But it is worthwhile to have the check here,
2753   // where it can be perhaps be optimized.  The cost in code space is
2754   // small (register compare, branch).
2755 
2756   // Now do a linear scan of the secondary super-klass array.  Again, no real
2757   // performance impact (too rare) but it's gotta be done.
2758   // Since the code is rarely used, there is no penalty for moving it
2759   // out of line, and it can only improve I-cache density.
2760   // The decision to inline or out-of-line this final check is platform
2761   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2762   Node* psc = gvn->transform(
2763     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2764 
2765   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2766   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2767   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2768 
2769   // Return false path; set default control to true path.
2770   *ctrl = gvn->transform(r_ok_subtype);
2771   return gvn->transform(r_not_subtype);
2772 }
2773 
2774 // Profile-driven exact type check:
type_check_receiver(Node * receiver,ciKlass * klass,float prob,Node ** casted_receiver)2775 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2776                                     float prob,
2777                                     Node* *casted_receiver) {
2778   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2779   Node* recv_klass = load_object_klass(receiver);
2780   Node* want_klass = makecon(tklass);
2781   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2782   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2783   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2784   set_control( _gvn.transform( new IfTrueNode (iff) ));
2785   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2786 
2787   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2788   assert(recv_xtype->klass_is_exact(), "");
2789 
2790   // Subsume downstream occurrences of receiver with a cast to
2791   // recv_xtype, since now we know what the type will be.
2792   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2793   (*casted_receiver) = _gvn.transform(cast);
2794   // (User must make the replace_in_map call.)
2795 
2796   return fail;
2797 }
2798 
2799 
2800 //------------------------------seems_never_null-------------------------------
2801 // Use null_seen information if it is available from the profile.
2802 // If we see an unexpected null at a type check we record it and force a
2803 // recompile; the offending check will be recompiled to handle NULLs.
2804 // If we see several offending BCIs, then all checks in the
2805 // method will be recompiled.
seems_never_null(Node * obj,ciProfileData * data,bool & speculating)2806 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2807   speculating = !_gvn.type(obj)->speculative_maybe_null();
2808   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2809   if (UncommonNullCast               // Cutout for this technique
2810       && obj != null()               // And not the -Xcomp stupid case?
2811       && !too_many_traps(reason)
2812       ) {
2813     if (speculating) {
2814       return true;
2815     }
2816     if (data == NULL)
2817       // Edge case:  no mature data.  Be optimistic here.
2818       return true;
2819     // If the profile has not seen a null, assume it won't happen.
2820     assert(java_bc() == Bytecodes::_checkcast ||
2821            java_bc() == Bytecodes::_instanceof ||
2822            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2823     return !data->as_BitData()->null_seen();
2824   }
2825   speculating = false;
2826   return false;
2827 }
2828 
2829 //------------------------maybe_cast_profiled_receiver-------------------------
2830 // If the profile has seen exactly one type, narrow to exactly that type.
2831 // Subsequent type checks will always fold up.
maybe_cast_profiled_receiver(Node * not_null_obj,ciKlass * require_klass,ciKlass * spec_klass,bool safe_for_replace)2832 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2833                                              ciKlass* require_klass,
2834                                              ciKlass* spec_klass,
2835                                              bool safe_for_replace) {
2836   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2837 
2838   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2839 
2840   // Make sure we haven't already deoptimized from this tactic.
2841   if (too_many_traps(reason) || too_many_recompiles(reason))
2842     return NULL;
2843 
2844   // (No, this isn't a call, but it's enough like a virtual call
2845   // to use the same ciMethod accessor to get the profile info...)
2846   // If we have a speculative type use it instead of profiling (which
2847   // may not help us)
2848   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2849   if (exact_kls != NULL) {// no cast failures here
2850     if (require_klass == NULL ||
2851         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2852       // If we narrow the type to match what the type profile sees or
2853       // the speculative type, we can then remove the rest of the
2854       // cast.
2855       // This is a win, even if the exact_kls is very specific,
2856       // because downstream operations, such as method calls,
2857       // will often benefit from the sharper type.
2858       Node* exact_obj = not_null_obj; // will get updated in place...
2859       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2860                                             &exact_obj);
2861       { PreserveJVMState pjvms(this);
2862         set_control(slow_ctl);
2863         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2864       }
2865       if (safe_for_replace) {
2866         replace_in_map(not_null_obj, exact_obj);
2867       }
2868       return exact_obj;
2869     }
2870     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2871   }
2872 
2873   return NULL;
2874 }
2875 
2876 /**
2877  * Cast obj to type and emit guard unless we had too many traps here
2878  * already
2879  *
2880  * @param obj       node being casted
2881  * @param type      type to cast the node to
2882  * @param not_null  true if we know node cannot be null
2883  */
maybe_cast_profiled_obj(Node * obj,ciKlass * type,bool not_null)2884 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2885                                         ciKlass* type,
2886                                         bool not_null) {
2887   if (stopped()) {
2888     return obj;
2889   }
2890 
2891   // type == NULL if profiling tells us this object is always null
2892   if (type != NULL) {
2893     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2894     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2895 
2896     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2897         !too_many_traps(class_reason) &&
2898         !too_many_recompiles(class_reason)) {
2899       Node* not_null_obj = NULL;
2900       // not_null is true if we know the object is not null and
2901       // there's no need for a null check
2902       if (!not_null) {
2903         Node* null_ctl = top();
2904         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2905         assert(null_ctl->is_top(), "no null control here");
2906       } else {
2907         not_null_obj = obj;
2908       }
2909 
2910       Node* exact_obj = not_null_obj;
2911       ciKlass* exact_kls = type;
2912       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2913                                             &exact_obj);
2914       {
2915         PreserveJVMState pjvms(this);
2916         set_control(slow_ctl);
2917         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2918       }
2919       replace_in_map(not_null_obj, exact_obj);
2920       obj = exact_obj;
2921     }
2922   } else {
2923     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2924         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2925       Node* exact_obj = null_assert(obj);
2926       replace_in_map(obj, exact_obj);
2927       obj = exact_obj;
2928     }
2929   }
2930   return obj;
2931 }
2932 
2933 //-------------------------------gen_instanceof--------------------------------
2934 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2935 // and the reflective instance-of call.
gen_instanceof(Node * obj,Node * superklass,bool safe_for_replace)2936 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2937   kill_dead_locals();           // Benefit all the uncommon traps
2938   assert( !stopped(), "dead parse path should be checked in callers" );
2939   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2940          "must check for not-null not-dead klass in callers");
2941 
2942   // Make the merge point
2943   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2944   RegionNode* region = new RegionNode(PATH_LIMIT);
2945   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2946   C->set_has_split_ifs(true); // Has chance for split-if optimization
2947 
2948   ciProfileData* data = NULL;
2949   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2950     data = method()->method_data()->bci_to_data(bci());
2951   }
2952   bool speculative_not_null = false;
2953   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2954                          && seems_never_null(obj, data, speculative_not_null));
2955 
2956   // Null check; get casted pointer; set region slot 3
2957   Node* null_ctl = top();
2958   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2959 
2960   // If not_null_obj is dead, only null-path is taken
2961   if (stopped()) {              // Doing instance-of on a NULL?
2962     set_control(null_ctl);
2963     return intcon(0);
2964   }
2965   region->init_req(_null_path, null_ctl);
2966   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2967   if (null_ctl == top()) {
2968     // Do this eagerly, so that pattern matches like is_diamond_phi
2969     // will work even during parsing.
2970     assert(_null_path == PATH_LIMIT-1, "delete last");
2971     region->del_req(_null_path);
2972     phi   ->del_req(_null_path);
2973   }
2974 
2975   // Do we know the type check always succeed?
2976   bool known_statically = false;
2977   if (_gvn.type(superklass)->singleton()) {
2978     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2979     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2980     if (subk != NULL && subk->is_loaded()) {
2981       int static_res = C->static_subtype_check(superk, subk);
2982       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2983     }
2984   }
2985 
2986   if (!known_statically) {
2987     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2988     // We may not have profiling here or it may not help us. If we
2989     // have a speculative type use it to perform an exact cast.
2990     ciKlass* spec_obj_type = obj_type->speculative_type();
2991     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2992       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2993       if (stopped()) {            // Profile disagrees with this path.
2994         set_control(null_ctl);    // Null is the only remaining possibility.
2995         return intcon(0);
2996       }
2997       if (cast_obj != NULL) {
2998         not_null_obj = cast_obj;
2999       }
3000     }
3001   }
3002 
3003   // Load the object's klass
3004   Node* obj_klass = load_object_klass(not_null_obj);
3005 
3006   // Generate the subtype check
3007   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
3008 
3009   // Plug in the success path to the general merge in slot 1.
3010   region->init_req(_obj_path, control());
3011   phi   ->init_req(_obj_path, intcon(1));
3012 
3013   // Plug in the failing path to the general merge in slot 2.
3014   region->init_req(_fail_path, not_subtype_ctrl);
3015   phi   ->init_req(_fail_path, intcon(0));
3016 
3017   // Return final merged results
3018   set_control( _gvn.transform(region) );
3019   record_for_igvn(region);
3020 
3021   // If we know the type check always succeeds then we don't use the
3022   // profiling data at this bytecode. Don't lose it, feed it to the
3023   // type system as a speculative type.
3024   if (safe_for_replace) {
3025     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3026     replace_in_map(obj, casted_obj);
3027   }
3028 
3029   return _gvn.transform(phi);
3030 }
3031 
3032 //-------------------------------gen_checkcast---------------------------------
3033 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3034 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3035 // uncommon-trap paths work.  Adjust stack after this call.
3036 // If failure_control is supplied and not null, it is filled in with
3037 // the control edge for the cast failure.  Otherwise, an appropriate
3038 // uncommon trap or exception is thrown.
gen_checkcast(Node * obj,Node * superklass,Node ** failure_control)3039 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3040                               Node* *failure_control) {
3041   kill_dead_locals();           // Benefit all the uncommon traps
3042   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3043   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3044 
3045   // Fast cutout:  Check the case that the cast is vacuously true.
3046   // This detects the common cases where the test will short-circuit
3047   // away completely.  We do this before we perform the null check,
3048   // because if the test is going to turn into zero code, we don't
3049   // want a residual null check left around.  (Causes a slowdown,
3050   // for example, in some objArray manipulations, such as a[i]=a[j].)
3051   if (tk->singleton()) {
3052     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3053     if (objtp != NULL && objtp->klass() != NULL) {
3054       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3055       case Compile::SSC_always_true:
3056         // If we know the type check always succeed then we don't use
3057         // the profiling data at this bytecode. Don't lose it, feed it
3058         // to the type system as a speculative type.
3059         return record_profiled_receiver_for_speculation(obj);
3060       case Compile::SSC_always_false:
3061         // It needs a null check because a null will *pass* the cast check.
3062         // A non-null value will always produce an exception.
3063         return null_assert(obj);
3064       }
3065     }
3066   }
3067 
3068   ciProfileData* data = NULL;
3069   bool safe_for_replace = false;
3070   if (failure_control == NULL) {        // use MDO in regular case only
3071     assert(java_bc() == Bytecodes::_aastore ||
3072            java_bc() == Bytecodes::_checkcast,
3073            "interpreter profiles type checks only for these BCs");
3074     data = method()->method_data()->bci_to_data(bci());
3075     safe_for_replace = true;
3076   }
3077 
3078   // Make the merge point
3079   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3080   RegionNode* region = new RegionNode(PATH_LIMIT);
3081   Node*       phi    = new PhiNode(region, toop);
3082   C->set_has_split_ifs(true); // Has chance for split-if optimization
3083 
3084   // Use null-cast information if it is available
3085   bool speculative_not_null = false;
3086   bool never_see_null = ((failure_control == NULL)  // regular case only
3087                          && seems_never_null(obj, data, speculative_not_null));
3088 
3089   // Null check; get casted pointer; set region slot 3
3090   Node* null_ctl = top();
3091   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3092 
3093   // If not_null_obj is dead, only null-path is taken
3094   if (stopped()) {              // Doing instance-of on a NULL?
3095     set_control(null_ctl);
3096     return null();
3097   }
3098   region->init_req(_null_path, null_ctl);
3099   phi   ->init_req(_null_path, null());  // Set null path value
3100   if (null_ctl == top()) {
3101     // Do this eagerly, so that pattern matches like is_diamond_phi
3102     // will work even during parsing.
3103     assert(_null_path == PATH_LIMIT-1, "delete last");
3104     region->del_req(_null_path);
3105     phi   ->del_req(_null_path);
3106   }
3107 
3108   Node* cast_obj = NULL;
3109   if (tk->klass_is_exact()) {
3110     // The following optimization tries to statically cast the speculative type of the object
3111     // (for example obtained during profiling) to the type of the superklass and then do a
3112     // dynamic check that the type of the object is what we expect. To work correctly
3113     // for checkcast and aastore the type of superklass should be exact.
3114     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3115     // We may not have profiling here or it may not help us. If we have
3116     // a speculative type use it to perform an exact cast.
3117     ciKlass* spec_obj_type = obj_type->speculative_type();
3118     if (spec_obj_type != NULL || data != NULL) {
3119       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3120       if (cast_obj != NULL) {
3121         if (failure_control != NULL) // failure is now impossible
3122           (*failure_control) = top();
3123         // adjust the type of the phi to the exact klass:
3124         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3125       }
3126     }
3127   }
3128 
3129   if (cast_obj == NULL) {
3130     // Load the object's klass
3131     Node* obj_klass = load_object_klass(not_null_obj);
3132 
3133     // Generate the subtype check
3134     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3135 
3136     // Plug in success path into the merge
3137     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3138     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3139     if (failure_control == NULL) {
3140       if (not_subtype_ctrl != top()) { // If failure is possible
3141         PreserveJVMState pjvms(this);
3142         set_control(not_subtype_ctrl);
3143         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3144       }
3145     } else {
3146       (*failure_control) = not_subtype_ctrl;
3147     }
3148   }
3149 
3150   region->init_req(_obj_path, control());
3151   phi   ->init_req(_obj_path, cast_obj);
3152 
3153   // A merge of NULL or Casted-NotNull obj
3154   Node* res = _gvn.transform(phi);
3155 
3156   // Note I do NOT always 'replace_in_map(obj,result)' here.
3157   //  if( tk->klass()->can_be_primary_super()  )
3158     // This means that if I successfully store an Object into an array-of-String
3159     // I 'forget' that the Object is really now known to be a String.  I have to
3160     // do this because we don't have true union types for interfaces - if I store
3161     // a Baz into an array-of-Interface and then tell the optimizer it's an
3162     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3163     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3164   //  replace_in_map( obj, res );
3165 
3166   // Return final merged results
3167   set_control( _gvn.transform(region) );
3168   record_for_igvn(region);
3169 
3170   return record_profiled_receiver_for_speculation(res);
3171 }
3172 
3173 //------------------------------next_monitor-----------------------------------
3174 // What number should be given to the next monitor?
next_monitor()3175 int GraphKit::next_monitor() {
3176   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3177   int next = current + C->sync_stack_slots();
3178   // Keep the toplevel high water mark current:
3179   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3180   return current;
3181 }
3182 
3183 //------------------------------insert_mem_bar---------------------------------
3184 // Memory barrier to avoid floating things around
3185 // The membar serves as a pinch point between both control and all memory slices.
insert_mem_bar(int opcode,Node * precedent)3186 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3187   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3188   mb->init_req(TypeFunc::Control, control());
3189   mb->init_req(TypeFunc::Memory,  reset_memory());
3190   Node* membar = _gvn.transform(mb);
3191   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3192   set_all_memory_call(membar);
3193   return membar;
3194 }
3195 
3196 //-------------------------insert_mem_bar_volatile----------------------------
3197 // Memory barrier to avoid floating things around
3198 // The membar serves as a pinch point between both control and memory(alias_idx).
3199 // If you want to make a pinch point on all memory slices, do not use this
3200 // function (even with AliasIdxBot); use insert_mem_bar() instead.
insert_mem_bar_volatile(int opcode,int alias_idx,Node * precedent)3201 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3202   // When Parse::do_put_xxx updates a volatile field, it appends a series
3203   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3204   // The first membar is on the same memory slice as the field store opcode.
3205   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3206   // All the other membars (for other volatile slices, including AliasIdxBot,
3207   // which stands for all unknown volatile slices) are control-dependent
3208   // on the first membar.  This prevents later volatile loads or stores
3209   // from sliding up past the just-emitted store.
3210 
3211   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3212   mb->set_req(TypeFunc::Control,control());
3213   if (alias_idx == Compile::AliasIdxBot) {
3214     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3215   } else {
3216     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3217     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3218   }
3219   Node* membar = _gvn.transform(mb);
3220   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3221   if (alias_idx == Compile::AliasIdxBot) {
3222     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3223   } else {
3224     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3225   }
3226   return membar;
3227 }
3228 
3229 //------------------------------shared_lock------------------------------------
3230 // Emit locking code.
shared_lock(Node * obj)3231 FastLockNode* GraphKit::shared_lock(Node* obj) {
3232   // bci is either a monitorenter bc or InvocationEntryBci
3233   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3234   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3235 
3236   if( !GenerateSynchronizationCode )
3237     return NULL;                // Not locking things?
3238   if (stopped())                // Dead monitor?
3239     return NULL;
3240 
3241   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3242 
3243   obj = access_resolve(obj, ACCESS_READ | ACCESS_WRITE);
3244 
3245   // Box the stack location
3246   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3247   Node* mem = reset_memory();
3248 
3249   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3250   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3251     // Create the counters for this fast lock.
3252     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3253   }
3254 
3255   // Create the rtm counters for this fast lock if needed.
3256   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3257 
3258   // Add monitor to debug info for the slow path.  If we block inside the
3259   // slow path and de-opt, we need the monitor hanging around
3260   map()->push_monitor( flock );
3261 
3262   const TypeFunc *tf = LockNode::lock_type();
3263   LockNode *lock = new LockNode(C, tf);
3264 
3265   lock->init_req( TypeFunc::Control, control() );
3266   lock->init_req( TypeFunc::Memory , mem );
3267   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3268   lock->init_req( TypeFunc::FramePtr, frameptr() );
3269   lock->init_req( TypeFunc::ReturnAdr, top() );
3270 
3271   lock->init_req(TypeFunc::Parms + 0, obj);
3272   lock->init_req(TypeFunc::Parms + 1, box);
3273   lock->init_req(TypeFunc::Parms + 2, flock);
3274   add_safepoint_edges(lock);
3275 
3276   lock = _gvn.transform( lock )->as_Lock();
3277 
3278   // lock has no side-effects, sets few values
3279   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3280 
3281   insert_mem_bar(Op_MemBarAcquireLock);
3282 
3283   // Add this to the worklist so that the lock can be eliminated
3284   record_for_igvn(lock);
3285 
3286 #ifndef PRODUCT
3287   if (PrintLockStatistics) {
3288     // Update the counter for this lock.  Don't bother using an atomic
3289     // operation since we don't require absolute accuracy.
3290     lock->create_lock_counter(map()->jvms());
3291     increment_counter(lock->counter()->addr());
3292   }
3293 #endif
3294 
3295   return flock;
3296 }
3297 
3298 
3299 //------------------------------shared_unlock----------------------------------
3300 // Emit unlocking code.
shared_unlock(Node * box,Node * obj)3301 void GraphKit::shared_unlock(Node* box, Node* obj) {
3302   // bci is either a monitorenter bc or InvocationEntryBci
3303   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3304   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3305 
3306   if( !GenerateSynchronizationCode )
3307     return;
3308   if (stopped()) {               // Dead monitor?
3309     map()->pop_monitor();        // Kill monitor from debug info
3310     return;
3311   }
3312 
3313   // Memory barrier to avoid floating things down past the locked region
3314   insert_mem_bar(Op_MemBarReleaseLock);
3315 
3316   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3317   UnlockNode *unlock = new UnlockNode(C, tf);
3318 #ifdef ASSERT
3319   unlock->set_dbg_jvms(sync_jvms());
3320 #endif
3321   uint raw_idx = Compile::AliasIdxRaw;
3322   unlock->init_req( TypeFunc::Control, control() );
3323   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3324   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3325   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3326   unlock->init_req( TypeFunc::ReturnAdr, top() );
3327 
3328   unlock->init_req(TypeFunc::Parms + 0, obj);
3329   unlock->init_req(TypeFunc::Parms + 1, box);
3330   unlock = _gvn.transform(unlock)->as_Unlock();
3331 
3332   Node* mem = reset_memory();
3333 
3334   // unlock has no side-effects, sets few values
3335   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3336 
3337   // Kill monitor from debug info
3338   map()->pop_monitor( );
3339 }
3340 
3341 //-------------------------------get_layout_helper-----------------------------
3342 // If the given klass is a constant or known to be an array,
3343 // fetch the constant layout helper value into constant_value
3344 // and return (Node*)NULL.  Otherwise, load the non-constant
3345 // layout helper value, and return the node which represents it.
3346 // This two-faced routine is useful because allocation sites
3347 // almost always feature constant types.
get_layout_helper(Node * klass_node,jint & constant_value)3348 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3349   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3350   if (!StressReflectiveCode && inst_klass != NULL) {
3351     ciKlass* klass = inst_klass->klass();
3352     bool    xklass = inst_klass->klass_is_exact();
3353     if (xklass || klass->is_array_klass()) {
3354       jint lhelper = klass->layout_helper();
3355       if (lhelper != Klass::_lh_neutral_value) {
3356         constant_value = lhelper;
3357         return (Node*) NULL;
3358       }
3359     }
3360   }
3361   constant_value = Klass::_lh_neutral_value;  // put in a known value
3362   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3363   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3364 }
3365 
3366 // We just put in an allocate/initialize with a big raw-memory effect.
3367 // Hook selected additional alias categories on the initialization.
hook_memory_on_init(GraphKit & kit,int alias_idx,MergeMemNode * init_in_merge,Node * init_out_raw)3368 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3369                                 MergeMemNode* init_in_merge,
3370                                 Node* init_out_raw) {
3371   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3372   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3373 
3374   Node* prevmem = kit.memory(alias_idx);
3375   init_in_merge->set_memory_at(alias_idx, prevmem);
3376   kit.set_memory(init_out_raw, alias_idx);
3377 }
3378 
3379 //---------------------------set_output_for_allocation-------------------------
set_output_for_allocation(AllocateNode * alloc,const TypeOopPtr * oop_type,bool deoptimize_on_exception)3380 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3381                                           const TypeOopPtr* oop_type,
3382                                           bool deoptimize_on_exception) {
3383   int rawidx = Compile::AliasIdxRaw;
3384   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3385   add_safepoint_edges(alloc);
3386   Node* allocx = _gvn.transform(alloc);
3387   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3388   // create memory projection for i_o
3389   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3390   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3391 
3392   // create a memory projection as for the normal control path
3393   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3394   set_memory(malloc, rawidx);
3395 
3396   // a normal slow-call doesn't change i_o, but an allocation does
3397   // we create a separate i_o projection for the normal control path
3398   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3399   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3400 
3401   // put in an initialization barrier
3402   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3403                                                  rawoop)->as_Initialize();
3404   assert(alloc->initialization() == init,  "2-way macro link must work");
3405   assert(init ->allocation()     == alloc, "2-way macro link must work");
3406   {
3407     // Extract memory strands which may participate in the new object's
3408     // initialization, and source them from the new InitializeNode.
3409     // This will allow us to observe initializations when they occur,
3410     // and link them properly (as a group) to the InitializeNode.
3411     assert(init->in(InitializeNode::Memory) == malloc, "");
3412     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3413     init->set_req(InitializeNode::Memory, minit_in);
3414     record_for_igvn(minit_in); // fold it up later, if possible
3415     Node* minit_out = memory(rawidx);
3416     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3417     if (oop_type->isa_aryptr()) {
3418       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3419       int            elemidx  = C->get_alias_index(telemref);
3420       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3421     } else if (oop_type->isa_instptr()) {
3422       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3423       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3424         ciField* field = ik->nonstatic_field_at(i);
3425         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3426           continue;  // do not bother to track really large numbers of fields
3427         // Find (or create) the alias category for this field:
3428         int fieldidx = C->alias_type(field)->index();
3429         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3430       }
3431     }
3432   }
3433 
3434   // Cast raw oop to the real thing...
3435   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3436   javaoop = _gvn.transform(javaoop);
3437   C->set_recent_alloc(control(), javaoop);
3438   assert(just_allocated_object(control()) == javaoop, "just allocated");
3439 
3440 #ifdef ASSERT
3441   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3442     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3443            "Ideal_allocation works");
3444     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3445            "Ideal_allocation works");
3446     if (alloc->is_AllocateArray()) {
3447       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3448              "Ideal_allocation works");
3449       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3450              "Ideal_allocation works");
3451     } else {
3452       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3453     }
3454   }
3455 #endif //ASSERT
3456 
3457   return javaoop;
3458 }
3459 
3460 //---------------------------new_instance--------------------------------------
3461 // This routine takes a klass_node which may be constant (for a static type)
3462 // or may be non-constant (for reflective code).  It will work equally well
3463 // for either, and the graph will fold nicely if the optimizer later reduces
3464 // the type to a constant.
3465 // The optional arguments are for specialized use by intrinsics:
3466 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3467 //  - If 'return_size_val', report the the total object size to the caller.
3468 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
new_instance(Node * klass_node,Node * extra_slow_test,Node ** return_size_val,bool deoptimize_on_exception)3469 Node* GraphKit::new_instance(Node* klass_node,
3470                              Node* extra_slow_test,
3471                              Node* *return_size_val,
3472                              bool deoptimize_on_exception) {
3473   // Compute size in doublewords
3474   // The size is always an integral number of doublewords, represented
3475   // as a positive bytewise size stored in the klass's layout_helper.
3476   // The layout_helper also encodes (in a low bit) the need for a slow path.
3477   jint  layout_con = Klass::_lh_neutral_value;
3478   Node* layout_val = get_layout_helper(klass_node, layout_con);
3479   int   layout_is_con = (layout_val == NULL);
3480 
3481   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3482   // Generate the initial go-slow test.  It's either ALWAYS (return a
3483   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3484   // case) a computed value derived from the layout_helper.
3485   Node* initial_slow_test = NULL;
3486   if (layout_is_con) {
3487     assert(!StressReflectiveCode, "stress mode does not use these paths");
3488     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3489     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3490   } else {   // reflective case
3491     // This reflective path is used by Unsafe.allocateInstance.
3492     // (It may be stress-tested by specifying StressReflectiveCode.)
3493     // Basically, we want to get into the VM is there's an illegal argument.
3494     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3495     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3496     if (extra_slow_test != intcon(0)) {
3497       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3498     }
3499     // (Macro-expander will further convert this to a Bool, if necessary.)
3500   }
3501 
3502   // Find the size in bytes.  This is easy; it's the layout_helper.
3503   // The size value must be valid even if the slow path is taken.
3504   Node* size = NULL;
3505   if (layout_is_con) {
3506     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3507   } else {   // reflective case
3508     // This reflective path is used by clone and Unsafe.allocateInstance.
3509     size = ConvI2X(layout_val);
3510 
3511     // Clear the low bits to extract layout_helper_size_in_bytes:
3512     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3513     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3514     size = _gvn.transform( new AndXNode(size, mask) );
3515   }
3516   if (return_size_val != NULL) {
3517     (*return_size_val) = size;
3518   }
3519 
3520   // This is a precise notnull oop of the klass.
3521   // (Actually, it need not be precise if this is a reflective allocation.)
3522   // It's what we cast the result to.
3523   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3524   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3525   const TypeOopPtr* oop_type = tklass->as_instance_type();
3526 
3527   // Now generate allocation code
3528 
3529   // The entire memory state is needed for slow path of the allocation
3530   // since GC and deoptimization can happened.
3531   Node *mem = reset_memory();
3532   set_all_memory(mem); // Create new memory state
3533 
3534   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3535                                          control(), mem, i_o(),
3536                                          size, klass_node,
3537                                          initial_slow_test);
3538 
3539   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3540 }
3541 
3542 //-------------------------------new_array-------------------------------------
3543 // helper for both newarray and anewarray
3544 // The 'length' parameter is (obviously) the length of the array.
3545 // See comments on new_instance for the meaning of the other arguments.
new_array(Node * klass_node,Node * length,int nargs,Node ** return_size_val,bool deoptimize_on_exception)3546 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3547                           Node* length,         // number of array elements
3548                           int   nargs,          // number of arguments to push back for uncommon trap
3549                           Node* *return_size_val,
3550                           bool deoptimize_on_exception) {
3551   jint  layout_con = Klass::_lh_neutral_value;
3552   Node* layout_val = get_layout_helper(klass_node, layout_con);
3553   int   layout_is_con = (layout_val == NULL);
3554 
3555   if (!layout_is_con && !StressReflectiveCode &&
3556       !too_many_traps(Deoptimization::Reason_class_check)) {
3557     // This is a reflective array creation site.
3558     // Optimistically assume that it is a subtype of Object[],
3559     // so that we can fold up all the address arithmetic.
3560     layout_con = Klass::array_layout_helper(T_OBJECT);
3561     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3562     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3563     { BuildCutout unless(this, bol_lh, PROB_MAX);
3564       inc_sp(nargs);
3565       uncommon_trap(Deoptimization::Reason_class_check,
3566                     Deoptimization::Action_maybe_recompile);
3567     }
3568     layout_val = NULL;
3569     layout_is_con = true;
3570   }
3571 
3572   // Generate the initial go-slow test.  Make sure we do not overflow
3573   // if length is huge (near 2Gig) or negative!  We do not need
3574   // exact double-words here, just a close approximation of needed
3575   // double-words.  We can't add any offset or rounding bits, lest we
3576   // take a size -1 of bytes and make it positive.  Use an unsigned
3577   // compare, so negative sizes look hugely positive.
3578   int fast_size_limit = FastAllocateSizeLimit;
3579   if (layout_is_con) {
3580     assert(!StressReflectiveCode, "stress mode does not use these paths");
3581     // Increase the size limit if we have exact knowledge of array type.
3582     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3583     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3584   }
3585 
3586   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3587   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3588 
3589   // --- Size Computation ---
3590   // array_size = round_to_heap(array_header + (length << elem_shift));
3591   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3592   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3593   // The rounding mask is strength-reduced, if possible.
3594   int round_mask = MinObjAlignmentInBytes - 1;
3595   Node* header_size = NULL;
3596   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3597   // (T_BYTE has the weakest alignment and size restrictions...)
3598   if (layout_is_con) {
3599     int       hsize  = Klass::layout_helper_header_size(layout_con);
3600     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3601     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3602     if ((round_mask & ~right_n_bits(eshift)) == 0)
3603       round_mask = 0;  // strength-reduce it if it goes away completely
3604     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3605     assert(header_size_min <= hsize, "generic minimum is smallest");
3606     header_size_min = hsize;
3607     header_size = intcon(hsize + round_mask);
3608   } else {
3609     Node* hss   = intcon(Klass::_lh_header_size_shift);
3610     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3611     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3612     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3613     Node* mask  = intcon(round_mask);
3614     header_size = _gvn.transform( new AddINode(hsize, mask) );
3615   }
3616 
3617   Node* elem_shift = NULL;
3618   if (layout_is_con) {
3619     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3620     if (eshift != 0)
3621       elem_shift = intcon(eshift);
3622   } else {
3623     // There is no need to mask or shift this value.
3624     // The semantics of LShiftINode include an implicit mask to 0x1F.
3625     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3626     elem_shift = layout_val;
3627   }
3628 
3629   // Transition to native address size for all offset calculations:
3630   Node* lengthx = ConvI2X(length);
3631   Node* headerx = ConvI2X(header_size);
3632 #ifdef _LP64
3633   { const TypeInt* tilen = _gvn.find_int_type(length);
3634     if (tilen != NULL && tilen->_lo < 0) {
3635       // Add a manual constraint to a positive range.  Cf. array_element_address.
3636       jint size_max = fast_size_limit;
3637       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3638       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3639 
3640       // Only do a narrow I2L conversion if the range check passed.
3641       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3642       _gvn.transform(iff);
3643       RegionNode* region = new RegionNode(3);
3644       _gvn.set_type(region, Type::CONTROL);
3645       lengthx = new PhiNode(region, TypeLong::LONG);
3646       _gvn.set_type(lengthx, TypeLong::LONG);
3647 
3648       // Range check passed. Use ConvI2L node with narrow type.
3649       Node* passed = IfFalse(iff);
3650       region->init_req(1, passed);
3651       // Make I2L conversion control dependent to prevent it from
3652       // floating above the range check during loop optimizations.
3653       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3654 
3655       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3656       region->init_req(2, IfTrue(iff));
3657       lengthx->init_req(2, ConvI2X(length));
3658 
3659       set_control(region);
3660       record_for_igvn(region);
3661       record_for_igvn(lengthx);
3662     }
3663   }
3664 #endif
3665 
3666   // Combine header size (plus rounding) and body size.  Then round down.
3667   // This computation cannot overflow, because it is used only in two
3668   // places, one where the length is sharply limited, and the other
3669   // after a successful allocation.
3670   Node* abody = lengthx;
3671   if (elem_shift != NULL)
3672     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3673   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3674   if (round_mask != 0) {
3675     Node* mask = MakeConX(~round_mask);
3676     size       = _gvn.transform( new AndXNode(size, mask) );
3677   }
3678   // else if round_mask == 0, the size computation is self-rounding
3679 
3680   if (return_size_val != NULL) {
3681     // This is the size
3682     (*return_size_val) = size;
3683   }
3684 
3685   // Now generate allocation code
3686 
3687   // The entire memory state is needed for slow path of the allocation
3688   // since GC and deoptimization can happened.
3689   Node *mem = reset_memory();
3690   set_all_memory(mem); // Create new memory state
3691 
3692   if (initial_slow_test->is_Bool()) {
3693     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3694     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3695   }
3696 
3697   // Create the AllocateArrayNode and its result projections
3698   AllocateArrayNode* alloc
3699     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3700                             control(), mem, i_o(),
3701                             size, klass_node,
3702                             initial_slow_test,
3703                             length);
3704 
3705   // Cast to correct type.  Note that the klass_node may be constant or not,
3706   // and in the latter case the actual array type will be inexact also.
3707   // (This happens via a non-constant argument to inline_native_newArray.)
3708   // In any case, the value of klass_node provides the desired array type.
3709   const TypeInt* length_type = _gvn.find_int_type(length);
3710   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3711   if (ary_type->isa_aryptr() && length_type != NULL) {
3712     // Try to get a better type than POS for the size
3713     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3714   }
3715 
3716   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3717 
3718   // Cast length on remaining path to be as narrow as possible
3719   if (map()->find_edge(length) >= 0) {
3720     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3721     if (ccast != length) {
3722       _gvn.set_type_bottom(ccast);
3723       record_for_igvn(ccast);
3724       replace_in_map(length, ccast);
3725     }
3726   }
3727 
3728   return javaoop;
3729 }
3730 
3731 // The following "Ideal_foo" functions are placed here because they recognize
3732 // the graph shapes created by the functions immediately above.
3733 
3734 //---------------------------Ideal_allocation----------------------------------
3735 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
Ideal_allocation(Node * ptr,PhaseTransform * phase)3736 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3737   if (ptr == NULL) {     // reduce dumb test in callers
3738     return NULL;
3739   }
3740 
3741   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
3742   ptr = bs->step_over_gc_barrier(ptr);
3743 
3744   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3745     ptr = ptr->in(1);
3746     if (ptr == NULL) return NULL;
3747   }
3748   // Return NULL for allocations with several casts:
3749   //   j.l.reflect.Array.newInstance(jobject, jint)
3750   //   Object.clone()
3751   // to keep more precise type from last cast.
3752   if (ptr->is_Proj()) {
3753     Node* allo = ptr->in(0);
3754     if (allo != NULL && allo->is_Allocate()) {
3755       return allo->as_Allocate();
3756     }
3757   }
3758   // Report failure to match.
3759   return NULL;
3760 }
3761 
3762 // Fancy version which also strips off an offset (and reports it to caller).
Ideal_allocation(Node * ptr,PhaseTransform * phase,intptr_t & offset)3763 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3764                                              intptr_t& offset) {
3765   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3766   if (base == NULL)  return NULL;
3767   return Ideal_allocation(base, phase);
3768 }
3769 
3770 // Trace Initialize <- Proj[Parm] <- Allocate
allocation()3771 AllocateNode* InitializeNode::allocation() {
3772   Node* rawoop = in(InitializeNode::RawAddress);
3773   if (rawoop->is_Proj()) {
3774     Node* alloc = rawoop->in(0);
3775     if (alloc->is_Allocate()) {
3776       return alloc->as_Allocate();
3777     }
3778   }
3779   return NULL;
3780 }
3781 
3782 // Trace Allocate -> Proj[Parm] -> Initialize
initialization()3783 InitializeNode* AllocateNode::initialization() {
3784   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
3785   if (rawoop == NULL)  return NULL;
3786   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3787     Node* init = rawoop->fast_out(i);
3788     if (init->is_Initialize()) {
3789       assert(init->as_Initialize()->allocation() == this, "2-way link");
3790       return init->as_Initialize();
3791     }
3792   }
3793   return NULL;
3794 }
3795 
3796 //----------------------------- loop predicates ---------------------------
3797 
3798 //------------------------------add_predicate_impl----------------------------
add_predicate_impl(Deoptimization::DeoptReason reason,int nargs)3799 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3800   // Too many traps seen?
3801   if (too_many_traps(reason)) {
3802 #ifdef ASSERT
3803     if (TraceLoopPredicate) {
3804       int tc = C->trap_count(reason);
3805       tty->print("too many traps=%s tcount=%d in ",
3806                     Deoptimization::trap_reason_name(reason), tc);
3807       method()->print(); // which method has too many predicate traps
3808       tty->cr();
3809     }
3810 #endif
3811     // We cannot afford to take more traps here,
3812     // do not generate predicate.
3813     return;
3814   }
3815 
3816   Node *cont    = _gvn.intcon(1);
3817   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3818   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3819   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3820   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3821   C->add_predicate_opaq(opq);
3822   {
3823     PreserveJVMState pjvms(this);
3824     set_control(iffalse);
3825     inc_sp(nargs);
3826     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3827   }
3828   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3829   set_control(iftrue);
3830 }
3831 
3832 //------------------------------add_predicate---------------------------------
add_predicate(int nargs)3833 void GraphKit::add_predicate(int nargs) {
3834   if (UseLoopPredicate) {
3835     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3836   }
3837   if (UseProfiledLoopPredicate) {
3838     add_predicate_impl(Deoptimization::Reason_profile_predicate, nargs);
3839   }
3840   // loop's limit check predicate should be near the loop.
3841   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3842 }
3843 
sync_kit(IdealKit & ideal)3844 void GraphKit::sync_kit(IdealKit& ideal) {
3845   set_all_memory(ideal.merged_memory());
3846   set_i_o(ideal.i_o());
3847   set_control(ideal.ctrl());
3848 }
3849 
final_sync(IdealKit & ideal)3850 void GraphKit::final_sync(IdealKit& ideal) {
3851   // Final sync IdealKit and graphKit.
3852   sync_kit(ideal);
3853 }
3854 
load_String_length(Node * str,bool set_ctrl)3855 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
3856   Node* len = load_array_length(load_String_value(str, set_ctrl));
3857   Node* coder = load_String_coder(str, set_ctrl);
3858   // Divide length by 2 if coder is UTF16
3859   return _gvn.transform(new RShiftINode(len, coder));
3860 }
3861 
load_String_value(Node * str,bool set_ctrl)3862 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
3863   int value_offset = java_lang_String::value_offset_in_bytes();
3864   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3865                                                      false, NULL, 0);
3866   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3867   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
3868                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
3869                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
3870   Node* p = basic_plus_adr(str, str, value_offset);
3871   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
3872                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
3873   // String.value field is known to be @Stable.
3874   if (UseImplicitStableValues) {
3875     load = cast_array_to_stable(load, value_type);
3876   }
3877   return load;
3878 }
3879 
load_String_coder(Node * str,bool set_ctrl)3880 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
3881   if (!CompactStrings) {
3882     return intcon(java_lang_String::CODER_UTF16);
3883   }
3884   int coder_offset = java_lang_String::coder_offset_in_bytes();
3885   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3886                                                      false, NULL, 0);
3887   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3888   int coder_field_idx = C->get_alias_index(coder_field_type);
3889 
3890   Node* p = basic_plus_adr(str, str, coder_offset);
3891   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
3892                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
3893   return load;
3894 }
3895 
store_String_value(Node * str,Node * value)3896 void GraphKit::store_String_value(Node* str, Node* value) {
3897   int value_offset = java_lang_String::value_offset_in_bytes();
3898   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3899                                                      false, NULL, 0);
3900   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3901 
3902   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
3903                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
3904 }
3905 
store_String_coder(Node * str,Node * value)3906 void GraphKit::store_String_coder(Node* str, Node* value) {
3907   int coder_offset = java_lang_String::coder_offset_in_bytes();
3908   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3909                                                      false, NULL, 0);
3910   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3911 
3912   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
3913                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
3914 }
3915 
3916 // Capture src and dst memory state with a MergeMemNode
capture_memory(const TypePtr * src_type,const TypePtr * dst_type)3917 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
3918   if (src_type == dst_type) {
3919     // Types are equal, we don't need a MergeMemNode
3920     return memory(src_type);
3921   }
3922   MergeMemNode* merge = MergeMemNode::make(map()->memory());
3923   record_for_igvn(merge); // fold it up later, if possible
3924   int src_idx = C->get_alias_index(src_type);
3925   int dst_idx = C->get_alias_index(dst_type);
3926   merge->set_memory_at(src_idx, memory(src_idx));
3927   merge->set_memory_at(dst_idx, memory(dst_idx));
3928   return merge;
3929 }
3930 
compress_string(Node * src,const TypeAryPtr * src_type,Node * dst,Node * count)3931 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
3932   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
3933   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
3934   // If input and output memory types differ, capture both states to preserve
3935   // the dependency between preceding and subsequent loads/stores.
3936   // For example, the following program:
3937   //  StoreB
3938   //  compress_string
3939   //  LoadB
3940   // has this memory graph (use->def):
3941   //  LoadB -> compress_string -> CharMem
3942   //             ... -> StoreB -> ByteMem
3943   // The intrinsic hides the dependency between LoadB and StoreB, causing
3944   // the load to read from memory not containing the result of the StoreB.
3945   // The correct memory graph should look like this:
3946   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
3947   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
3948   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
3949   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
3950   set_memory(res_mem, TypeAryPtr::BYTES);
3951   return str;
3952 }
3953 
inflate_string(Node * src,Node * dst,const TypeAryPtr * dst_type,Node * count)3954 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
3955   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
3956   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
3957   // Capture src and dst memory (see comment in 'compress_string').
3958   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
3959   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
3960   set_memory(_gvn.transform(str), dst_type);
3961 }
3962 
inflate_string_slow(Node * src,Node * dst,Node * start,Node * count)3963 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
3964   /**
3965    * int i_char = start;
3966    * for (int i_byte = 0; i_byte < count; i_byte++) {
3967    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
3968    * }
3969    */
3970   src = access_resolve(src, ACCESS_READ);
3971   dst = access_resolve(dst, ACCESS_WRITE);
3972   add_predicate();
3973   RegionNode* head = new RegionNode(3);
3974   head->init_req(1, control());
3975   gvn().set_type(head, Type::CONTROL);
3976   record_for_igvn(head);
3977 
3978   Node* i_byte = new PhiNode(head, TypeInt::INT);
3979   i_byte->init_req(1, intcon(0));
3980   gvn().set_type(i_byte, TypeInt::INT);
3981   record_for_igvn(i_byte);
3982 
3983   Node* i_char = new PhiNode(head, TypeInt::INT);
3984   i_char->init_req(1, start);
3985   gvn().set_type(i_char, TypeInt::INT);
3986   record_for_igvn(i_char);
3987 
3988   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
3989   gvn().set_type(mem, Type::MEMORY);
3990   record_for_igvn(mem);
3991   set_control(head);
3992   set_memory(mem, TypeAryPtr::BYTES);
3993   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
3994   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
3995                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
3996                              false, false, true /* mismatched */);
3997 
3998   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
3999   head->init_req(2, IfTrue(iff));
4000   mem->init_req(2, st);
4001   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4002   i_char->init_req(2, AddI(i_char, intcon(2)));
4003 
4004   set_control(IfFalse(iff));
4005   set_memory(st, TypeAryPtr::BYTES);
4006 }
4007 
make_constant_from_field(ciField * field,Node * obj)4008 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4009   if (!field->is_constant()) {
4010     return NULL; // Field not marked as constant.
4011   }
4012   ciInstance* holder = NULL;
4013   if (!field->is_static()) {
4014     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4015     if (const_oop != NULL && const_oop->is_instance()) {
4016       holder = const_oop->as_instance();
4017     }
4018   }
4019   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4020                                                         /*is_unsigned_load=*/false);
4021   if (con_type != NULL) {
4022     return makecon(con_type);
4023   }
4024   return NULL;
4025 }
4026 
cast_array_to_stable(Node * ary,const TypeAryPtr * ary_type)4027 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4028   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4029   // assumption of CCP analysis.
4030   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4031 }
4032