1 /*
2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/vmSymbols.hpp"
27 #include "jfr/jfrEvents.hpp"
28 #include "jfr/support/jfrThreadId.hpp"
29 #include "memory/allocation.inline.hpp"
30 #include "memory/resourceArea.hpp"
31 #include "oops/markOop.hpp"
32 #include "oops/oop.inline.hpp"
33 #include "runtime/atomic.hpp"
34 #include "runtime/handles.inline.hpp"
35 #include "runtime/interfaceSupport.inline.hpp"
36 #include "runtime/mutexLocker.hpp"
37 #include "runtime/objectMonitor.hpp"
38 #include "runtime/objectMonitor.inline.hpp"
39 #include "runtime/orderAccess.hpp"
40 #include "runtime/osThread.hpp"
41 #include "runtime/safepointMechanism.inline.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/thread.inline.hpp"
45 #include "services/threadService.hpp"
46 #include "utilities/dtrace.hpp"
47 #include "utilities/macros.hpp"
48 #include "utilities/preserveException.hpp"
49 #if INCLUDE_JFR
50 #include "jfr/support/jfrFlush.hpp"
51 #endif
52 
53 #ifdef DTRACE_ENABLED
54 
55 // Only bother with this argument setup if dtrace is available
56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
57 
58 
59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
60   char* bytes = NULL;                                                      \
61   int len = 0;                                                             \
62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
64   if (klassname != NULL) {                                                 \
65     bytes = (char*)klassname->bytes();                                     \
66     len = klassname->utf8_length();                                        \
67   }
68 
69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
70   {                                                                        \
71     if (DTraceMonitorProbes) {                                             \
72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
74                            (monitor), bytes, len, (millis));               \
75     }                                                                      \
76   }
77 
78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
83 
84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
85   {                                                                        \
86     if (DTraceMonitorProbes) {                                             \
87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
88       HOTSPOT_MONITOR_##probe(jtid,                                        \
89                               (uintptr_t)(monitor), bytes, len);           \
90     }                                                                      \
91   }
92 
93 #else //  ndef DTRACE_ENABLED
94 
95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
97 
98 #endif // ndef DTRACE_ENABLED
99 
100 // Tunables ...
101 // The knob* variables are effectively final.  Once set they should
102 // never be modified hence.  Consider using __read_mostly with GCC.
103 
104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
105 
106 static int Knob_Bonus               = 100;     // spin success bonus
107 static int Knob_BonusB              = 100;     // spin success bonus
108 static int Knob_Penalty             = 200;     // spin failure penalty
109 static int Knob_Poverty             = 1000;
110 static int Knob_FixedSpin           = 0;
111 static int Knob_PreSpin             = 10;      // 20-100 likely better
112 
DEBUG_ONLY(static volatile bool InitDone=false;)113 DEBUG_ONLY(static volatile bool InitDone = false;)
114 
115 // -----------------------------------------------------------------------------
116 // Theory of operations -- Monitors lists, thread residency, etc:
117 //
118 // * A thread acquires ownership of a monitor by successfully
119 //   CAS()ing the _owner field from null to non-null.
120 //
121 // * Invariant: A thread appears on at most one monitor list --
122 //   cxq, EntryList or WaitSet -- at any one time.
123 //
124 // * Contending threads "push" themselves onto the cxq with CAS
125 //   and then spin/park.
126 //
127 // * After a contending thread eventually acquires the lock it must
128 //   dequeue itself from either the EntryList or the cxq.
129 //
130 // * The exiting thread identifies and unparks an "heir presumptive"
131 //   tentative successor thread on the EntryList.  Critically, the
132 //   exiting thread doesn't unlink the successor thread from the EntryList.
133 //   After having been unparked, the wakee will recontend for ownership of
134 //   the monitor.   The successor (wakee) will either acquire the lock or
135 //   re-park itself.
136 //
137 //   Succession is provided for by a policy of competitive handoff.
138 //   The exiting thread does _not_ grant or pass ownership to the
139 //   successor thread.  (This is also referred to as "handoff" succession").
140 //   Instead the exiting thread releases ownership and possibly wakes
141 //   a successor, so the successor can (re)compete for ownership of the lock.
142 //   If the EntryList is empty but the cxq is populated the exiting
143 //   thread will drain the cxq into the EntryList.  It does so by
144 //   by detaching the cxq (installing null with CAS) and folding
145 //   the threads from the cxq into the EntryList.  The EntryList is
146 //   doubly linked, while the cxq is singly linked because of the
147 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
148 //
149 // * Concurrency invariants:
150 //
151 //   -- only the monitor owner may access or mutate the EntryList.
152 //      The mutex property of the monitor itself protects the EntryList
153 //      from concurrent interference.
154 //   -- Only the monitor owner may detach the cxq.
155 //
156 // * The monitor entry list operations avoid locks, but strictly speaking
157 //   they're not lock-free.  Enter is lock-free, exit is not.
158 //   For a description of 'Methods and apparatus providing non-blocking access
159 //   to a resource,' see U.S. Pat. No. 7844973.
160 //
161 // * The cxq can have multiple concurrent "pushers" but only one concurrent
162 //   detaching thread.  This mechanism is immune from the ABA corruption.
163 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
164 //
165 // * Taken together, the cxq and the EntryList constitute or form a
166 //   single logical queue of threads stalled trying to acquire the lock.
167 //   We use two distinct lists to improve the odds of a constant-time
168 //   dequeue operation after acquisition (in the ::enter() epilogue) and
169 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
170 //   A key desideratum is to minimize queue & monitor metadata manipulation
171 //   that occurs while holding the monitor lock -- that is, we want to
172 //   minimize monitor lock holds times.  Note that even a small amount of
173 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
174 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
175 //   locks and monitor metadata.
176 //
177 //   Cxq points to the set of Recently Arrived Threads attempting entry.
178 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
179 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
180 //   the unlocking thread notices that EntryList is null but _cxq is != null.
181 //
182 //   The EntryList is ordered by the prevailing queue discipline and
183 //   can be organized in any convenient fashion, such as a doubly-linked list or
184 //   a circular doubly-linked list.  Critically, we want insert and delete operations
185 //   to operate in constant-time.  If we need a priority queue then something akin
186 //   to Solaris' sleepq would work nicely.  Viz.,
187 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
188 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
189 //   drains the cxq into the EntryList, and orders or reorders the threads on the
190 //   EntryList accordingly.
191 //
192 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
193 //   somewhat similar to an elevator-scan.
194 //
195 // * The monitor synchronization subsystem avoids the use of native
196 //   synchronization primitives except for the narrow platform-specific
197 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
198 //   the semantics of park-unpark.  Put another way, this monitor implementation
199 //   depends only on atomic operations and park-unpark.  The monitor subsystem
200 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
201 //   underlying OS manages the READY<->RUN transitions.
202 //
203 // * Waiting threads reside on the WaitSet list -- wait() puts
204 //   the caller onto the WaitSet.
205 //
206 // * notify() or notifyAll() simply transfers threads from the WaitSet to
207 //   either the EntryList or cxq.  Subsequent exit() operations will
208 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
209 //   it's likely the notifyee would simply impale itself on the lock held
210 //   by the notifier.
211 //
212 // * An interesting alternative is to encode cxq as (List,LockByte) where
213 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
214 //   variable, like _recursions, in the scheme.  The threads or Events that form
215 //   the list would have to be aligned in 256-byte addresses.  A thread would
216 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
217 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
218 //   Note that is is *not* word-tearing, but it does presume that full-word
219 //   CAS operations are coherent with intermix with STB operations.  That's true
220 //   on most common processors.
221 //
222 // * See also http://blogs.sun.com/dave
223 
224 
225 void* ObjectMonitor::operator new (size_t size) throw() {
226   return AllocateHeap(size, mtInternal);
227 }
operator new[](size_t size)228 void* ObjectMonitor::operator new[] (size_t size) throw() {
229   return operator new (size);
230 }
operator delete(void * p)231 void ObjectMonitor::operator delete(void* p) {
232   FreeHeap(p);
233 }
operator delete[](void * p)234 void ObjectMonitor::operator delete[] (void *p) {
235   operator delete(p);
236 }
237 
238 // -----------------------------------------------------------------------------
239 // Enter support
240 
enter(TRAPS)241 void ObjectMonitor::enter(TRAPS) {
242   // The following code is ordered to check the most common cases first
243   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
244   Thread * const Self = THREAD;
245 
246   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
247   if (cur == NULL) {
248     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
249     assert(_recursions == 0, "invariant");
250     assert(_owner == Self, "invariant");
251     return;
252   }
253 
254   if (cur == Self) {
255     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
256     _recursions++;
257     return;
258   }
259 
260   if (Self->is_lock_owned ((address)cur)) {
261     assert(_recursions == 0, "internal state error");
262     _recursions = 1;
263     // Commute owner from a thread-specific on-stack BasicLockObject address to
264     // a full-fledged "Thread *".
265     _owner = Self;
266     return;
267   }
268 
269   // We've encountered genuine contention.
270   assert(Self->_Stalled == 0, "invariant");
271   Self->_Stalled = intptr_t(this);
272 
273   // Try one round of spinning *before* enqueueing Self
274   // and before going through the awkward and expensive state
275   // transitions.  The following spin is strictly optional ...
276   // Note that if we acquire the monitor from an initial spin
277   // we forgo posting JVMTI events and firing DTRACE probes.
278   if (TrySpin(Self) > 0) {
279     assert(_owner == Self, "invariant");
280     assert(_recursions == 0, "invariant");
281     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
282     Self->_Stalled = 0;
283     return;
284   }
285 
286   assert(_owner != Self, "invariant");
287   assert(_succ != Self, "invariant");
288   assert(Self->is_Java_thread(), "invariant");
289   JavaThread * jt = (JavaThread *) Self;
290   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
291   assert(jt->thread_state() != _thread_blocked, "invariant");
292   assert(this->object() != NULL, "invariant");
293   assert(_count >= 0, "invariant");
294 
295   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
296   // Ensure the object-monitor relationship remains stable while there's contention.
297   Atomic::inc(&_count);
298 
299   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
300   EventJavaMonitorEnter event;
301   if (event.should_commit()) {
302     event.set_monitorClass(((oop)this->object())->klass());
303     event.set_address((uintptr_t)(this->object_addr()));
304   }
305 
306   { // Change java thread status to indicate blocked on monitor enter.
307     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
308 
309     Self->set_current_pending_monitor(this);
310 
311     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
312     if (JvmtiExport::should_post_monitor_contended_enter()) {
313       JvmtiExport::post_monitor_contended_enter(jt, this);
314 
315       // The current thread does not yet own the monitor and does not
316       // yet appear on any queues that would get it made the successor.
317       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
318       // handler cannot accidentally consume an unpark() meant for the
319       // ParkEvent associated with this ObjectMonitor.
320     }
321 
322     OSThreadContendState osts(Self->osthread());
323     ThreadBlockInVM tbivm(jt);
324 
325     // TODO-FIXME: change the following for(;;) loop to straight-line code.
326     for (;;) {
327       jt->set_suspend_equivalent();
328       // cleared by handle_special_suspend_equivalent_condition()
329       // or java_suspend_self()
330 
331       EnterI(THREAD);
332 
333       if (!ExitSuspendEquivalent(jt)) break;
334 
335       // We have acquired the contended monitor, but while we were
336       // waiting another thread suspended us. We don't want to enter
337       // the monitor while suspended because that would surprise the
338       // thread that suspended us.
339       //
340       _recursions = 0;
341       _succ = NULL;
342       exit(false, Self);
343 
344       jt->java_suspend_self();
345     }
346     Self->set_current_pending_monitor(NULL);
347 
348     // We cleared the pending monitor info since we've just gotten past
349     // the enter-check-for-suspend dance and we now own the monitor free
350     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
351     // destructor can go to a safepoint at the end of this block. If we
352     // do a thread dump during that safepoint, then this thread will show
353     // as having "-locked" the monitor, but the OS and java.lang.Thread
354     // states will still report that the thread is blocked trying to
355     // acquire it.
356   }
357 
358   Atomic::dec(&_count);
359   assert(_count >= 0, "invariant");
360   Self->_Stalled = 0;
361 
362   // Must either set _recursions = 0 or ASSERT _recursions == 0.
363   assert(_recursions == 0, "invariant");
364   assert(_owner == Self, "invariant");
365   assert(_succ != Self, "invariant");
366   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
367 
368   // The thread -- now the owner -- is back in vm mode.
369   // Report the glorious news via TI,DTrace and jvmstat.
370   // The probe effect is non-trivial.  All the reportage occurs
371   // while we hold the monitor, increasing the length of the critical
372   // section.  Amdahl's parallel speedup law comes vividly into play.
373   //
374   // Another option might be to aggregate the events (thread local or
375   // per-monitor aggregation) and defer reporting until a more opportune
376   // time -- such as next time some thread encounters contention but has
377   // yet to acquire the lock.  While spinning that thread could
378   // spinning we could increment JVMStat counters, etc.
379 
380   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
381   if (JvmtiExport::should_post_monitor_contended_entered()) {
382     JvmtiExport::post_monitor_contended_entered(jt, this);
383 
384     // The current thread already owns the monitor and is not going to
385     // call park() for the remainder of the monitor enter protocol. So
386     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
387     // event handler consumed an unpark() issued by the thread that
388     // just exited the monitor.
389   }
390   if (event.should_commit()) {
391     event.set_previousOwner((uintptr_t)_previous_owner_tid);
392     event.commit();
393   }
394   OM_PERFDATA_OP(ContendedLockAttempts, inc());
395 }
396 
397 // Caveat: TryLock() is not necessarily serializing if it returns failure.
398 // Callers must compensate as needed.
399 
TryLock(Thread * Self)400 int ObjectMonitor::TryLock(Thread * Self) {
401   void * own = _owner;
402   if (own != NULL) return 0;
403   if (Atomic::replace_if_null(Self, &_owner)) {
404     // Either guarantee _recursions == 0 or set _recursions = 0.
405     assert(_recursions == 0, "invariant");
406     assert(_owner == Self, "invariant");
407     return 1;
408   }
409   // The lock had been free momentarily, but we lost the race to the lock.
410   // Interference -- the CAS failed.
411   // We can either return -1 or retry.
412   // Retry doesn't make as much sense because the lock was just acquired.
413   return -1;
414 }
415 
416 #define MAX_RECHECK_INTERVAL 1000
417 
EnterI(TRAPS)418 void ObjectMonitor::EnterI(TRAPS) {
419   Thread * const Self = THREAD;
420   assert(Self->is_Java_thread(), "invariant");
421   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
422 
423   // Try the lock - TATAS
424   if (TryLock (Self) > 0) {
425     assert(_succ != Self, "invariant");
426     assert(_owner == Self, "invariant");
427     assert(_Responsible != Self, "invariant");
428     return;
429   }
430 
431   assert(InitDone, "Unexpectedly not initialized");
432 
433   // We try one round of spinning *before* enqueueing Self.
434   //
435   // If the _owner is ready but OFFPROC we could use a YieldTo()
436   // operation to donate the remainder of this thread's quantum
437   // to the owner.  This has subtle but beneficial affinity
438   // effects.
439 
440   if (TrySpin(Self) > 0) {
441     assert(_owner == Self, "invariant");
442     assert(_succ != Self, "invariant");
443     assert(_Responsible != Self, "invariant");
444     return;
445   }
446 
447   // The Spin failed -- Enqueue and park the thread ...
448   assert(_succ != Self, "invariant");
449   assert(_owner != Self, "invariant");
450   assert(_Responsible != Self, "invariant");
451 
452   // Enqueue "Self" on ObjectMonitor's _cxq.
453   //
454   // Node acts as a proxy for Self.
455   // As an aside, if were to ever rewrite the synchronization code mostly
456   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
457   // Java objects.  This would avoid awkward lifecycle and liveness issues,
458   // as well as eliminate a subset of ABA issues.
459   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
460 
461   ObjectWaiter node(Self);
462   Self->_ParkEvent->reset();
463   node._prev   = (ObjectWaiter *) 0xBAD;
464   node.TState  = ObjectWaiter::TS_CXQ;
465 
466   // Push "Self" onto the front of the _cxq.
467   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
468   // Note that spinning tends to reduce the rate at which threads
469   // enqueue and dequeue on EntryList|cxq.
470   ObjectWaiter * nxt;
471   for (;;) {
472     node._next = nxt = _cxq;
473     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
474 
475     // Interference - the CAS failed because _cxq changed.  Just retry.
476     // As an optional optimization we retry the lock.
477     if (TryLock (Self) > 0) {
478       assert(_succ != Self, "invariant");
479       assert(_owner == Self, "invariant");
480       assert(_Responsible != Self, "invariant");
481       return;
482     }
483   }
484 
485   // Check for cxq|EntryList edge transition to non-null.  This indicates
486   // the onset of contention.  While contention persists exiting threads
487   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
488   // operations revert to the faster 1-0 mode.  This enter operation may interleave
489   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
490   // arrange for one of the contending thread to use a timed park() operations
491   // to detect and recover from the race.  (Stranding is form of progress failure
492   // where the monitor is unlocked but all the contending threads remain parked).
493   // That is, at least one of the contended threads will periodically poll _owner.
494   // One of the contending threads will become the designated "Responsible" thread.
495   // The Responsible thread uses a timed park instead of a normal indefinite park
496   // operation -- it periodically wakes and checks for and recovers from potential
497   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
498   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
499   // be responsible for a monitor.
500   //
501   // Currently, one of the contended threads takes on the added role of "Responsible".
502   // A viable alternative would be to use a dedicated "stranding checker" thread
503   // that periodically iterated over all the threads (or active monitors) and unparked
504   // successors where there was risk of stranding.  This would help eliminate the
505   // timer scalability issues we see on some platforms as we'd only have one thread
506   // -- the checker -- parked on a timer.
507 
508   if (nxt == NULL && _EntryList == NULL) {
509     // Try to assume the role of responsible thread for the monitor.
510     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
511     Atomic::replace_if_null(Self, &_Responsible);
512   }
513 
514   // The lock might have been released while this thread was occupied queueing
515   // itself onto _cxq.  To close the race and avoid "stranding" and
516   // progress-liveness failure we must resample-retry _owner before parking.
517   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
518   // In this case the ST-MEMBAR is accomplished with CAS().
519   //
520   // TODO: Defer all thread state transitions until park-time.
521   // Since state transitions are heavy and inefficient we'd like
522   // to defer the state transitions until absolutely necessary,
523   // and in doing so avoid some transitions ...
524 
525   int nWakeups = 0;
526   int recheckInterval = 1;
527 
528   for (;;) {
529 
530     if (TryLock(Self) > 0) break;
531     assert(_owner != Self, "invariant");
532 
533     // park self
534     if (_Responsible == Self) {
535       Self->_ParkEvent->park((jlong) recheckInterval);
536       // Increase the recheckInterval, but clamp the value.
537       recheckInterval *= 8;
538       if (recheckInterval > MAX_RECHECK_INTERVAL) {
539         recheckInterval = MAX_RECHECK_INTERVAL;
540       }
541     } else {
542       Self->_ParkEvent->park();
543     }
544 
545     if (TryLock(Self) > 0) break;
546 
547     // The lock is still contested.
548     // Keep a tally of the # of futile wakeups.
549     // Note that the counter is not protected by a lock or updated by atomics.
550     // That is by design - we trade "lossy" counters which are exposed to
551     // races during updates for a lower probe effect.
552 
553     // This PerfData object can be used in parallel with a safepoint.
554     // See the work around in PerfDataManager::destroy().
555     OM_PERFDATA_OP(FutileWakeups, inc());
556     ++nWakeups;
557 
558     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
559     // We can defer clearing _succ until after the spin completes
560     // TrySpin() must tolerate being called with _succ == Self.
561     // Try yet another round of adaptive spinning.
562     if (TrySpin(Self) > 0) break;
563 
564     // We can find that we were unpark()ed and redesignated _succ while
565     // we were spinning.  That's harmless.  If we iterate and call park(),
566     // park() will consume the event and return immediately and we'll
567     // just spin again.  This pattern can repeat, leaving _succ to simply
568     // spin on a CPU.
569 
570     if (_succ == Self) _succ = NULL;
571 
572     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
573     OrderAccess::fence();
574   }
575 
576   // Egress :
577   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
578   // Normally we'll find Self on the EntryList .
579   // From the perspective of the lock owner (this thread), the
580   // EntryList is stable and cxq is prepend-only.
581   // The head of cxq is volatile but the interior is stable.
582   // In addition, Self.TState is stable.
583 
584   assert(_owner == Self, "invariant");
585   assert(object() != NULL, "invariant");
586   // I'd like to write:
587   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
588   // but as we're at a safepoint that's not safe.
589 
590   UnlinkAfterAcquire(Self, &node);
591   if (_succ == Self) _succ = NULL;
592 
593   assert(_succ != Self, "invariant");
594   if (_Responsible == Self) {
595     _Responsible = NULL;
596     OrderAccess::fence(); // Dekker pivot-point
597 
598     // We may leave threads on cxq|EntryList without a designated
599     // "Responsible" thread.  This is benign.  When this thread subsequently
600     // exits the monitor it can "see" such preexisting "old" threads --
601     // threads that arrived on the cxq|EntryList before the fence, above --
602     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
603     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
604     // non-null and elect a new "Responsible" timer thread.
605     //
606     // This thread executes:
607     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
608     //    LD cxq|EntryList               (in subsequent exit)
609     //
610     // Entering threads in the slow/contended path execute:
611     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
612     //    The (ST cxq; MEMBAR) is accomplished with CAS().
613     //
614     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
615     // exit operation from floating above the ST Responsible=null.
616   }
617 
618   // We've acquired ownership with CAS().
619   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
620   // But since the CAS() this thread may have also stored into _succ,
621   // EntryList, cxq or Responsible.  These meta-data updates must be
622   // visible __before this thread subsequently drops the lock.
623   // Consider what could occur if we didn't enforce this constraint --
624   // STs to monitor meta-data and user-data could reorder with (become
625   // visible after) the ST in exit that drops ownership of the lock.
626   // Some other thread could then acquire the lock, but observe inconsistent
627   // or old monitor meta-data and heap data.  That violates the JMM.
628   // To that end, the 1-0 exit() operation must have at least STST|LDST
629   // "release" barrier semantics.  Specifically, there must be at least a
630   // STST|LDST barrier in exit() before the ST of null into _owner that drops
631   // the lock.   The barrier ensures that changes to monitor meta-data and data
632   // protected by the lock will be visible before we release the lock, and
633   // therefore before some other thread (CPU) has a chance to acquire the lock.
634   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
635   //
636   // Critically, any prior STs to _succ or EntryList must be visible before
637   // the ST of null into _owner in the *subsequent* (following) corresponding
638   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
639   // execute a serializing instruction.
640 
641   return;
642 }
643 
644 // ReenterI() is a specialized inline form of the latter half of the
645 // contended slow-path from EnterI().  We use ReenterI() only for
646 // monitor reentry in wait().
647 //
648 // In the future we should reconcile EnterI() and ReenterI().
649 
ReenterI(Thread * Self,ObjectWaiter * SelfNode)650 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
651   assert(Self != NULL, "invariant");
652   assert(SelfNode != NULL, "invariant");
653   assert(SelfNode->_thread == Self, "invariant");
654   assert(_waiters > 0, "invariant");
655   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
656   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
657   JavaThread * jt = (JavaThread *) Self;
658 
659   int nWakeups = 0;
660   for (;;) {
661     ObjectWaiter::TStates v = SelfNode->TState;
662     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
663     assert(_owner != Self, "invariant");
664 
665     if (TryLock(Self) > 0) break;
666     if (TrySpin(Self) > 0) break;
667 
668     // State transition wrappers around park() ...
669     // ReenterI() wisely defers state transitions until
670     // it's clear we must park the thread.
671     {
672       OSThreadContendState osts(Self->osthread());
673       ThreadBlockInVM tbivm(jt);
674 
675       // cleared by handle_special_suspend_equivalent_condition()
676       // or java_suspend_self()
677       jt->set_suspend_equivalent();
678       Self->_ParkEvent->park();
679 
680       // were we externally suspended while we were waiting?
681       for (;;) {
682         if (!ExitSuspendEquivalent(jt)) break;
683         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
684         jt->java_suspend_self();
685         jt->set_suspend_equivalent();
686       }
687     }
688 
689     // Try again, but just so we distinguish between futile wakeups and
690     // successful wakeups.  The following test isn't algorithmically
691     // necessary, but it helps us maintain sensible statistics.
692     if (TryLock(Self) > 0) break;
693 
694     // The lock is still contested.
695     // Keep a tally of the # of futile wakeups.
696     // Note that the counter is not protected by a lock or updated by atomics.
697     // That is by design - we trade "lossy" counters which are exposed to
698     // races during updates for a lower probe effect.
699     ++nWakeups;
700 
701     // Assuming this is not a spurious wakeup we'll normally
702     // find that _succ == Self.
703     if (_succ == Self) _succ = NULL;
704 
705     // Invariant: after clearing _succ a contending thread
706     // *must* retry  _owner before parking.
707     OrderAccess::fence();
708 
709     // This PerfData object can be used in parallel with a safepoint.
710     // See the work around in PerfDataManager::destroy().
711     OM_PERFDATA_OP(FutileWakeups, inc());
712   }
713 
714   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
715   // Normally we'll find Self on the EntryList.
716   // Unlinking from the EntryList is constant-time and atomic-free.
717   // From the perspective of the lock owner (this thread), the
718   // EntryList is stable and cxq is prepend-only.
719   // The head of cxq is volatile but the interior is stable.
720   // In addition, Self.TState is stable.
721 
722   assert(_owner == Self, "invariant");
723   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
724   UnlinkAfterAcquire(Self, SelfNode);
725   if (_succ == Self) _succ = NULL;
726   assert(_succ != Self, "invariant");
727   SelfNode->TState = ObjectWaiter::TS_RUN;
728   OrderAccess::fence();      // see comments at the end of EnterI()
729 }
730 
731 // By convention we unlink a contending thread from EntryList|cxq immediately
732 // after the thread acquires the lock in ::enter().  Equally, we could defer
733 // unlinking the thread until ::exit()-time.
734 
UnlinkAfterAcquire(Thread * Self,ObjectWaiter * SelfNode)735 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
736   assert(_owner == Self, "invariant");
737   assert(SelfNode->_thread == Self, "invariant");
738 
739   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
740     // Normal case: remove Self from the DLL EntryList .
741     // This is a constant-time operation.
742     ObjectWaiter * nxt = SelfNode->_next;
743     ObjectWaiter * prv = SelfNode->_prev;
744     if (nxt != NULL) nxt->_prev = prv;
745     if (prv != NULL) prv->_next = nxt;
746     if (SelfNode == _EntryList) _EntryList = nxt;
747     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
748     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
749   } else {
750     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
751     // Inopportune interleaving -- Self is still on the cxq.
752     // This usually means the enqueue of self raced an exiting thread.
753     // Normally we'll find Self near the front of the cxq, so
754     // dequeueing is typically fast.  If needbe we can accelerate
755     // this with some MCS/CHL-like bidirectional list hints and advisory
756     // back-links so dequeueing from the interior will normally operate
757     // in constant-time.
758     // Dequeue Self from either the head (with CAS) or from the interior
759     // with a linear-time scan and normal non-atomic memory operations.
760     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
761     // and then unlink Self from EntryList.  We have to drain eventually,
762     // so it might as well be now.
763 
764     ObjectWaiter * v = _cxq;
765     assert(v != NULL, "invariant");
766     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
767       // The CAS above can fail from interference IFF a "RAT" arrived.
768       // In that case Self must be in the interior and can no longer be
769       // at the head of cxq.
770       if (v == SelfNode) {
771         assert(_cxq != v, "invariant");
772         v = _cxq;          // CAS above failed - start scan at head of list
773       }
774       ObjectWaiter * p;
775       ObjectWaiter * q = NULL;
776       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
777         q = p;
778         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
779       }
780       assert(v != SelfNode, "invariant");
781       assert(p == SelfNode, "Node not found on cxq");
782       assert(p != _cxq, "invariant");
783       assert(q != NULL, "invariant");
784       assert(q->_next == p, "invariant");
785       q->_next = p->_next;
786     }
787   }
788 
789 #ifdef ASSERT
790   // Diagnostic hygiene ...
791   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
792   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
793   SelfNode->TState = ObjectWaiter::TS_RUN;
794 #endif
795 }
796 
797 // -----------------------------------------------------------------------------
798 // Exit support
799 //
800 // exit()
801 // ~~~~~~
802 // Note that the collector can't reclaim the objectMonitor or deflate
803 // the object out from underneath the thread calling ::exit() as the
804 // thread calling ::exit() never transitions to a stable state.
805 // This inhibits GC, which in turn inhibits asynchronous (and
806 // inopportune) reclamation of "this".
807 //
808 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
809 // There's one exception to the claim above, however.  EnterI() can call
810 // exit() to drop a lock if the acquirer has been externally suspended.
811 // In that case exit() is called with _thread_state as _thread_blocked,
812 // but the monitor's _count field is > 0, which inhibits reclamation.
813 //
814 // 1-0 exit
815 // ~~~~~~~~
816 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
817 // the fast-path operators have been optimized so the common ::exit()
818 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
819 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
820 // greatly improves latency -- MEMBAR and CAS having considerable local
821 // latency on modern processors -- but at the cost of "stranding".  Absent the
822 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
823 // ::enter() path, resulting in the entering thread being stranding
824 // and a progress-liveness failure.   Stranding is extremely rare.
825 // We use timers (timed park operations) & periodic polling to detect
826 // and recover from stranding.  Potentially stranded threads periodically
827 // wake up and poll the lock.  See the usage of the _Responsible variable.
828 //
829 // The CAS() in enter provides for safety and exclusion, while the CAS or
830 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
831 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
832 // We detect and recover from stranding with timers.
833 //
834 // If a thread transiently strands it'll park until (a) another
835 // thread acquires the lock and then drops the lock, at which time the
836 // exiting thread will notice and unpark the stranded thread, or, (b)
837 // the timer expires.  If the lock is high traffic then the stranding latency
838 // will be low due to (a).  If the lock is low traffic then the odds of
839 // stranding are lower, although the worst-case stranding latency
840 // is longer.  Critically, we don't want to put excessive load in the
841 // platform's timer subsystem.  We want to minimize both the timer injection
842 // rate (timers created/sec) as well as the number of timers active at
843 // any one time.  (more precisely, we want to minimize timer-seconds, which is
844 // the integral of the # of active timers at any instant over time).
845 // Both impinge on OS scalability.  Given that, at most one thread parked on
846 // a monitor will use a timer.
847 //
848 // There is also the risk of a futile wake-up. If we drop the lock
849 // another thread can reacquire the lock immediately, and we can
850 // then wake a thread unnecessarily. This is benign, and we've
851 // structured the code so the windows are short and the frequency
852 // of such futile wakups is low.
853 
exit(bool not_suspended,TRAPS)854 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
855   Thread * const Self = THREAD;
856   if (THREAD != _owner) {
857     if (THREAD->is_lock_owned((address) _owner)) {
858       // Transmute _owner from a BasicLock pointer to a Thread address.
859       // We don't need to hold _mutex for this transition.
860       // Non-null to Non-null is safe as long as all readers can
861       // tolerate either flavor.
862       assert(_recursions == 0, "invariant");
863       _owner = THREAD;
864       _recursions = 0;
865     } else {
866       // Apparent unbalanced locking ...
867       // Naively we'd like to throw IllegalMonitorStateException.
868       // As a practical matter we can neither allocate nor throw an
869       // exception as ::exit() can be called from leaf routines.
870       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
871       // Upon deeper reflection, however, in a properly run JVM the only
872       // way we should encounter this situation is in the presence of
873       // unbalanced JNI locking. TODO: CheckJNICalls.
874       // See also: CR4414101
875       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
876       return;
877     }
878   }
879 
880   if (_recursions != 0) {
881     _recursions--;        // this is simple recursive enter
882     return;
883   }
884 
885   // Invariant: after setting Responsible=null an thread must execute
886   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
887   _Responsible = NULL;
888 
889 #if INCLUDE_JFR
890   // get the owner's thread id for the MonitorEnter event
891   // if it is enabled and the thread isn't suspended
892   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
893     _previous_owner_tid = JFR_THREAD_ID(Self);
894   }
895 #endif
896 
897   for (;;) {
898     assert(THREAD == _owner, "invariant");
899 
900     // release semantics: prior loads and stores from within the critical section
901     // must not float (reorder) past the following store that drops the lock.
902     // On SPARC that requires MEMBAR #loadstore|#storestore.
903     // But of course in TSO #loadstore|#storestore is not required.
904     OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
905     OrderAccess::storeload();                        // See if we need to wake a successor
906     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
907       return;
908     }
909     // Other threads are blocked trying to acquire the lock.
910 
911     // Normally the exiting thread is responsible for ensuring succession,
912     // but if other successors are ready or other entering threads are spinning
913     // then this thread can simply store NULL into _owner and exit without
914     // waking a successor.  The existence of spinners or ready successors
915     // guarantees proper succession (liveness).  Responsibility passes to the
916     // ready or running successors.  The exiting thread delegates the duty.
917     // More precisely, if a successor already exists this thread is absolved
918     // of the responsibility of waking (unparking) one.
919     //
920     // The _succ variable is critical to reducing futile wakeup frequency.
921     // _succ identifies the "heir presumptive" thread that has been made
922     // ready (unparked) but that has not yet run.  We need only one such
923     // successor thread to guarantee progress.
924     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
925     // section 3.3 "Futile Wakeup Throttling" for details.
926     //
927     // Note that spinners in Enter() also set _succ non-null.
928     // In the current implementation spinners opportunistically set
929     // _succ so that exiting threads might avoid waking a successor.
930     // Another less appealing alternative would be for the exiting thread
931     // to drop the lock and then spin briefly to see if a spinner managed
932     // to acquire the lock.  If so, the exiting thread could exit
933     // immediately without waking a successor, otherwise the exiting
934     // thread would need to dequeue and wake a successor.
935     // (Note that we'd need to make the post-drop spin short, but no
936     // shorter than the worst-case round-trip cache-line migration time.
937     // The dropped lock needs to become visible to the spinner, and then
938     // the acquisition of the lock by the spinner must become visible to
939     // the exiting thread).
940 
941     // It appears that an heir-presumptive (successor) must be made ready.
942     // Only the current lock owner can manipulate the EntryList or
943     // drain _cxq, so we need to reacquire the lock.  If we fail
944     // to reacquire the lock the responsibility for ensuring succession
945     // falls to the new owner.
946     //
947     if (!Atomic::replace_if_null(THREAD, &_owner)) {
948       return;
949     }
950 
951     guarantee(_owner == THREAD, "invariant");
952 
953     ObjectWaiter * w = NULL;
954 
955     w = _EntryList;
956     if (w != NULL) {
957       // I'd like to write: guarantee (w->_thread != Self).
958       // But in practice an exiting thread may find itself on the EntryList.
959       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
960       // then calls exit().  Exit release the lock by setting O._owner to NULL.
961       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
962       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
963       // release the lock "O".  T2 resumes immediately after the ST of null into
964       // _owner, above.  T2 notices that the EntryList is populated, so it
965       // reacquires the lock and then finds itself on the EntryList.
966       // Given all that, we have to tolerate the circumstance where "w" is
967       // associated with Self.
968       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
969       ExitEpilog(Self, w);
970       return;
971     }
972 
973     // If we find that both _cxq and EntryList are null then just
974     // re-run the exit protocol from the top.
975     w = _cxq;
976     if (w == NULL) continue;
977 
978     // Drain _cxq into EntryList - bulk transfer.
979     // First, detach _cxq.
980     // The following loop is tantamount to: w = swap(&cxq, NULL)
981     for (;;) {
982       assert(w != NULL, "Invariant");
983       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
984       if (u == w) break;
985       w = u;
986     }
987 
988     assert(w != NULL, "invariant");
989     assert(_EntryList == NULL, "invariant");
990 
991     // Convert the LIFO SLL anchored by _cxq into a DLL.
992     // The list reorganization step operates in O(LENGTH(w)) time.
993     // It's critical that this step operate quickly as
994     // "Self" still holds the outer-lock, restricting parallelism
995     // and effectively lengthening the critical section.
996     // Invariant: s chases t chases u.
997     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
998     // we have faster access to the tail.
999 
1000     _EntryList = w;
1001     ObjectWaiter * q = NULL;
1002     ObjectWaiter * p;
1003     for (p = w; p != NULL; p = p->_next) {
1004       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1005       p->TState = ObjectWaiter::TS_ENTER;
1006       p->_prev = q;
1007       q = p;
1008     }
1009 
1010     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1011     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1012 
1013     // See if we can abdicate to a spinner instead of waking a thread.
1014     // A primary goal of the implementation is to reduce the
1015     // context-switch rate.
1016     if (_succ != NULL) continue;
1017 
1018     w = _EntryList;
1019     if (w != NULL) {
1020       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1021       ExitEpilog(Self, w);
1022       return;
1023     }
1024   }
1025 }
1026 
1027 // ExitSuspendEquivalent:
1028 // A faster alternate to handle_special_suspend_equivalent_condition()
1029 //
1030 // handle_special_suspend_equivalent_condition() unconditionally
1031 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1032 // operations have high latency.  Note that in ::enter() we call HSSEC
1033 // while holding the monitor, so we effectively lengthen the critical sections.
1034 //
1035 // There are a number of possible solutions:
1036 //
1037 // A.  To ameliorate the problem we might also defer state transitions
1038 //     to as late as possible -- just prior to parking.
1039 //     Given that, we'd call HSSEC after having returned from park(),
1040 //     but before attempting to acquire the monitor.  This is only a
1041 //     partial solution.  It avoids calling HSSEC while holding the
1042 //     monitor (good), but it still increases successor reacquisition latency --
1043 //     the interval between unparking a successor and the time the successor
1044 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1045 //     If we use this technique we can also avoid EnterI()-exit() loop
1046 //     in ::enter() where we iteratively drop the lock and then attempt
1047 //     to reacquire it after suspending.
1048 //
1049 // B.  In the future we might fold all the suspend bits into a
1050 //     composite per-thread suspend flag and then update it with CAS().
1051 //     Alternately, a Dekker-like mechanism with multiple variables
1052 //     would suffice:
1053 //       ST Self->_suspend_equivalent = false
1054 //       MEMBAR
1055 //       LD Self_>_suspend_flags
1056 
ExitSuspendEquivalent(JavaThread * jSelf)1057 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1058   return jSelf->handle_special_suspend_equivalent_condition();
1059 }
1060 
1061 
ExitEpilog(Thread * Self,ObjectWaiter * Wakee)1062 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1063   assert(_owner == Self, "invariant");
1064 
1065   // Exit protocol:
1066   // 1. ST _succ = wakee
1067   // 2. membar #loadstore|#storestore;
1068   // 2. ST _owner = NULL
1069   // 3. unpark(wakee)
1070 
1071   _succ = Wakee->_thread;
1072   ParkEvent * Trigger = Wakee->_event;
1073 
1074   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1075   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1076   // out-of-scope (non-extant).
1077   Wakee  = NULL;
1078 
1079   // Drop the lock
1080   OrderAccess::release_store(&_owner, (void*)NULL);
1081   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1082 
1083   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1084   Trigger->unpark();
1085 
1086   // Maintain stats and report events to JVMTI
1087   OM_PERFDATA_OP(Parks, inc());
1088 }
1089 
1090 
1091 // -----------------------------------------------------------------------------
1092 // Class Loader deadlock handling.
1093 //
1094 // complete_exit exits a lock returning recursion count
1095 // complete_exit/reenter operate as a wait without waiting
1096 // complete_exit requires an inflated monitor
1097 // The _owner field is not always the Thread addr even with an
1098 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1099 // thread due to contention.
complete_exit(TRAPS)1100 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1101   Thread * const Self = THREAD;
1102   assert(Self->is_Java_thread(), "Must be Java thread!");
1103   JavaThread *jt = (JavaThread *)THREAD;
1104 
1105   assert(InitDone, "Unexpectedly not initialized");
1106 
1107   if (THREAD != _owner) {
1108     if (THREAD->is_lock_owned ((address)_owner)) {
1109       assert(_recursions == 0, "internal state error");
1110       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1111       _recursions = 0;
1112     }
1113   }
1114 
1115   guarantee(Self == _owner, "complete_exit not owner");
1116   intptr_t save = _recursions; // record the old recursion count
1117   _recursions = 0;        // set the recursion level to be 0
1118   exit(true, Self);           // exit the monitor
1119   guarantee(_owner != Self, "invariant");
1120   return save;
1121 }
1122 
1123 // reenter() enters a lock and sets recursion count
1124 // complete_exit/reenter operate as a wait without waiting
reenter(intptr_t recursions,TRAPS)1125 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1126   Thread * const Self = THREAD;
1127   assert(Self->is_Java_thread(), "Must be Java thread!");
1128   JavaThread *jt = (JavaThread *)THREAD;
1129 
1130   guarantee(_owner != Self, "reenter already owner");
1131   enter(THREAD);       // enter the monitor
1132   guarantee(_recursions == 0, "reenter recursion");
1133   _recursions = recursions;
1134   return;
1135 }
1136 
1137 
1138 // -----------------------------------------------------------------------------
1139 // A macro is used below because there may already be a pending
1140 // exception which should not abort the execution of the routines
1141 // which use this (which is why we don't put this into check_slow and
1142 // call it with a CHECK argument).
1143 
1144 #define CHECK_OWNER()                                                       \
1145   do {                                                                      \
1146     if (THREAD != _owner) {                                                 \
1147       if (THREAD->is_lock_owned((address) _owner)) {                        \
1148         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1149         _recursions = 0;                                                    \
1150       } else {                                                              \
1151         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1152       }                                                                     \
1153     }                                                                       \
1154   } while (false)
1155 
1156 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1157 // TODO-FIXME: remove check_slow() -- it's likely dead.
1158 
check_slow(TRAPS)1159 void ObjectMonitor::check_slow(TRAPS) {
1160   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1161   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1162 }
1163 
post_monitor_wait_event(EventJavaMonitorWait * event,ObjectMonitor * monitor,jlong notifier_tid,jlong timeout,bool timedout)1164 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1165                                     ObjectMonitor* monitor,
1166                                     jlong notifier_tid,
1167                                     jlong timeout,
1168                                     bool timedout) {
1169   assert(event != NULL, "invariant");
1170   assert(monitor != NULL, "invariant");
1171   event->set_monitorClass(((oop)monitor->object())->klass());
1172   event->set_timeout(timeout);
1173   event->set_address((uintptr_t)monitor->object_addr());
1174   event->set_notifier(notifier_tid);
1175   event->set_timedOut(timedout);
1176   event->commit();
1177 }
1178 
1179 // -----------------------------------------------------------------------------
1180 // Wait/Notify/NotifyAll
1181 //
1182 // Note: a subset of changes to ObjectMonitor::wait()
1183 // will need to be replicated in complete_exit
wait(jlong millis,bool interruptible,TRAPS)1184 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1185   Thread * const Self = THREAD;
1186   assert(Self->is_Java_thread(), "Must be Java thread!");
1187   JavaThread *jt = (JavaThread *)THREAD;
1188 
1189   assert(InitDone, "Unexpectedly not initialized");
1190 
1191   // Throw IMSX or IEX.
1192   CHECK_OWNER();
1193 
1194   EventJavaMonitorWait event;
1195 
1196   // check for a pending interrupt
1197   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1198     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1199     if (JvmtiExport::should_post_monitor_waited()) {
1200       // Note: 'false' parameter is passed here because the
1201       // wait was not timed out due to thread interrupt.
1202       JvmtiExport::post_monitor_waited(jt, this, false);
1203 
1204       // In this short circuit of the monitor wait protocol, the
1205       // current thread never drops ownership of the monitor and
1206       // never gets added to the wait queue so the current thread
1207       // cannot be made the successor. This means that the
1208       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1209       // consume an unpark() meant for the ParkEvent associated with
1210       // this ObjectMonitor.
1211     }
1212     if (event.should_commit()) {
1213       post_monitor_wait_event(&event, this, 0, millis, false);
1214     }
1215     THROW(vmSymbols::java_lang_InterruptedException());
1216     return;
1217   }
1218 
1219   assert(Self->_Stalled == 0, "invariant");
1220   Self->_Stalled = intptr_t(this);
1221   jt->set_current_waiting_monitor(this);
1222 
1223   // create a node to be put into the queue
1224   // Critically, after we reset() the event but prior to park(), we must check
1225   // for a pending interrupt.
1226   ObjectWaiter node(Self);
1227   node.TState = ObjectWaiter::TS_WAIT;
1228   Self->_ParkEvent->reset();
1229   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1230 
1231   // Enter the waiting queue, which is a circular doubly linked list in this case
1232   // but it could be a priority queue or any data structure.
1233   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1234   // by the the owner of the monitor *except* in the case where park()
1235   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1236   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1237 
1238   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1239   AddWaiter(&node);
1240   Thread::SpinRelease(&_WaitSetLock);
1241 
1242   _Responsible = NULL;
1243 
1244   intptr_t save = _recursions; // record the old recursion count
1245   _waiters++;                  // increment the number of waiters
1246   _recursions = 0;             // set the recursion level to be 1
1247   exit(true, Self);                    // exit the monitor
1248   guarantee(_owner != Self, "invariant");
1249 
1250   // The thread is on the WaitSet list - now park() it.
1251   // On MP systems it's conceivable that a brief spin before we park
1252   // could be profitable.
1253   //
1254   // TODO-FIXME: change the following logic to a loop of the form
1255   //   while (!timeout && !interrupted && _notified == 0) park()
1256 
1257   int ret = OS_OK;
1258   int WasNotified = 0;
1259   { // State transition wrappers
1260     OSThread* osthread = Self->osthread();
1261     OSThreadWaitState osts(osthread, true);
1262     {
1263       ThreadBlockInVM tbivm(jt);
1264       // Thread is in thread_blocked state and oop access is unsafe.
1265       jt->set_suspend_equivalent();
1266 
1267       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1268         // Intentionally empty
1269       } else if (node._notified == 0) {
1270         if (millis <= 0) {
1271           Self->_ParkEvent->park();
1272         } else {
1273           ret = Self->_ParkEvent->park(millis);
1274         }
1275       }
1276 
1277       // were we externally suspended while we were waiting?
1278       if (ExitSuspendEquivalent (jt)) {
1279         // TODO-FIXME: add -- if succ == Self then succ = null.
1280         jt->java_suspend_self();
1281       }
1282 
1283     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1284 
1285     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1286     // from the WaitSet to the EntryList.
1287     // See if we need to remove Node from the WaitSet.
1288     // We use double-checked locking to avoid grabbing _WaitSetLock
1289     // if the thread is not on the wait queue.
1290     //
1291     // Note that we don't need a fence before the fetch of TState.
1292     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1293     // written by the is thread. (perhaps the fetch might even be satisfied
1294     // by a look-aside into the processor's own store buffer, although given
1295     // the length of the code path between the prior ST and this load that's
1296     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1297     // then we'll acquire the lock and then re-fetch a fresh TState value.
1298     // That is, we fail toward safety.
1299 
1300     if (node.TState == ObjectWaiter::TS_WAIT) {
1301       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1302       if (node.TState == ObjectWaiter::TS_WAIT) {
1303         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1304         assert(node._notified == 0, "invariant");
1305         node.TState = ObjectWaiter::TS_RUN;
1306       }
1307       Thread::SpinRelease(&_WaitSetLock);
1308     }
1309 
1310     // The thread is now either on off-list (TS_RUN),
1311     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1312     // The Node's TState variable is stable from the perspective of this thread.
1313     // No other threads will asynchronously modify TState.
1314     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1315     OrderAccess::loadload();
1316     if (_succ == Self) _succ = NULL;
1317     WasNotified = node._notified;
1318 
1319     // Reentry phase -- reacquire the monitor.
1320     // re-enter contended monitor after object.wait().
1321     // retain OBJECT_WAIT state until re-enter successfully completes
1322     // Thread state is thread_in_vm and oop access is again safe,
1323     // although the raw address of the object may have changed.
1324     // (Don't cache naked oops over safepoints, of course).
1325 
1326     // post monitor waited event. Note that this is past-tense, we are done waiting.
1327     if (JvmtiExport::should_post_monitor_waited()) {
1328       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1329 
1330       if (node._notified != 0 && _succ == Self) {
1331         // In this part of the monitor wait-notify-reenter protocol it
1332         // is possible (and normal) for another thread to do a fastpath
1333         // monitor enter-exit while this thread is still trying to get
1334         // to the reenter portion of the protocol.
1335         //
1336         // The ObjectMonitor was notified and the current thread is
1337         // the successor which also means that an unpark() has already
1338         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1339         // consume the unpark() that was done when the successor was
1340         // set because the same ParkEvent is shared between Java
1341         // monitors and JVM/TI RawMonitors (for now).
1342         //
1343         // We redo the unpark() to ensure forward progress, i.e., we
1344         // don't want all pending threads hanging (parked) with none
1345         // entering the unlocked monitor.
1346         node._event->unpark();
1347       }
1348     }
1349 
1350     if (event.should_commit()) {
1351       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1352     }
1353 
1354     OrderAccess::fence();
1355 
1356     assert(Self->_Stalled != 0, "invariant");
1357     Self->_Stalled = 0;
1358 
1359     assert(_owner != Self, "invariant");
1360     ObjectWaiter::TStates v = node.TState;
1361     if (v == ObjectWaiter::TS_RUN) {
1362       enter(Self);
1363     } else {
1364       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1365       ReenterI(Self, &node);
1366       node.wait_reenter_end(this);
1367     }
1368 
1369     // Self has reacquired the lock.
1370     // Lifecycle - the node representing Self must not appear on any queues.
1371     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1372     // want residual elements associated with this thread left on any lists.
1373     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1374     assert(_owner == Self, "invariant");
1375     assert(_succ != Self, "invariant");
1376   } // OSThreadWaitState()
1377 
1378   jt->set_current_waiting_monitor(NULL);
1379 
1380   guarantee(_recursions == 0, "invariant");
1381   _recursions = save;     // restore the old recursion count
1382   _waiters--;             // decrement the number of waiters
1383 
1384   // Verify a few postconditions
1385   assert(_owner == Self, "invariant");
1386   assert(_succ != Self, "invariant");
1387   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1388 
1389   // check if the notification happened
1390   if (!WasNotified) {
1391     // no, it could be timeout or Thread.interrupt() or both
1392     // check for interrupt event, otherwise it is timeout
1393     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1394       THROW(vmSymbols::java_lang_InterruptedException());
1395     }
1396   }
1397 
1398   // NOTE: Spurious wake up will be consider as timeout.
1399   // Monitor notify has precedence over thread interrupt.
1400 }
1401 
1402 
1403 // Consider:
1404 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1405 // then instead of transferring a thread from the WaitSet to the EntryList
1406 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1407 
INotify(Thread * Self)1408 void ObjectMonitor::INotify(Thread * Self) {
1409   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1410   ObjectWaiter * iterator = DequeueWaiter();
1411   if (iterator != NULL) {
1412     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1413     guarantee(iterator->_notified == 0, "invariant");
1414     // Disposition - what might we do with iterator ?
1415     // a.  add it directly to the EntryList - either tail (policy == 1)
1416     //     or head (policy == 0).
1417     // b.  push it onto the front of the _cxq (policy == 2).
1418     // For now we use (b).
1419 
1420     iterator->TState = ObjectWaiter::TS_ENTER;
1421 
1422     iterator->_notified = 1;
1423     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1424 
1425     ObjectWaiter * list = _EntryList;
1426     if (list != NULL) {
1427       assert(list->_prev == NULL, "invariant");
1428       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1429       assert(list != iterator, "invariant");
1430     }
1431 
1432     // prepend to cxq
1433     if (list == NULL) {
1434       iterator->_next = iterator->_prev = NULL;
1435       _EntryList = iterator;
1436     } else {
1437       iterator->TState = ObjectWaiter::TS_CXQ;
1438       for (;;) {
1439         ObjectWaiter * front = _cxq;
1440         iterator->_next = front;
1441         if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1442           break;
1443         }
1444       }
1445     }
1446 
1447     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1448     // move the add-to-EntryList operation, above, outside the critical section
1449     // protected by _WaitSetLock.  In practice that's not useful.  With the
1450     // exception of  wait() timeouts and interrupts the monitor owner
1451     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1452     // on _WaitSetLock so it's not profitable to reduce the length of the
1453     // critical section.
1454 
1455     iterator->wait_reenter_begin(this);
1456   }
1457   Thread::SpinRelease(&_WaitSetLock);
1458 }
1459 
1460 // Consider: a not-uncommon synchronization bug is to use notify() when
1461 // notifyAll() is more appropriate, potentially resulting in stranded
1462 // threads; this is one example of a lost wakeup. A useful diagnostic
1463 // option is to force all notify() operations to behave as notifyAll().
1464 //
1465 // Note: We can also detect many such problems with a "minimum wait".
1466 // When the "minimum wait" is set to a small non-zero timeout value
1467 // and the program does not hang whereas it did absent "minimum wait",
1468 // that suggests a lost wakeup bug.
1469 
notify(TRAPS)1470 void ObjectMonitor::notify(TRAPS) {
1471   CHECK_OWNER();
1472   if (_WaitSet == NULL) {
1473     return;
1474   }
1475   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1476   INotify(THREAD);
1477   OM_PERFDATA_OP(Notifications, inc(1));
1478 }
1479 
1480 
1481 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1482 // from the waitset to the EntryList. This could be done more efficiently with a
1483 // single bulk transfer but in practice it's not time-critical. Beware too,
1484 // that in prepend-mode we invert the order of the waiters. Let's say that the
1485 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1486 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1487 
notifyAll(TRAPS)1488 void ObjectMonitor::notifyAll(TRAPS) {
1489   CHECK_OWNER();
1490   if (_WaitSet == NULL) {
1491     return;
1492   }
1493 
1494   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1495   int tally = 0;
1496   while (_WaitSet != NULL) {
1497     tally++;
1498     INotify(THREAD);
1499   }
1500 
1501   OM_PERFDATA_OP(Notifications, inc(tally));
1502 }
1503 
1504 // -----------------------------------------------------------------------------
1505 // Adaptive Spinning Support
1506 //
1507 // Adaptive spin-then-block - rational spinning
1508 //
1509 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1510 // algorithm.  On high order SMP systems it would be better to start with
1511 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1512 // a contending thread could enqueue itself on the cxq and then spin locally
1513 // on a thread-specific variable such as its ParkEvent._Event flag.
1514 // That's left as an exercise for the reader.  Note that global spinning is
1515 // not problematic on Niagara, as the L2 cache serves the interconnect and
1516 // has both low latency and massive bandwidth.
1517 //
1518 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1519 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1520 // (duration) or we can fix the count at approximately the duration of
1521 // a context switch and vary the frequency.   Of course we could also
1522 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1523 // For a description of 'Adaptive spin-then-block mutual exclusion in
1524 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1525 //
1526 // This implementation varies the duration "D", where D varies with
1527 // the success rate of recent spin attempts. (D is capped at approximately
1528 // length of a round-trip context switch).  The success rate for recent
1529 // spin attempts is a good predictor of the success rate of future spin
1530 // attempts.  The mechanism adapts automatically to varying critical
1531 // section length (lock modality), system load and degree of parallelism.
1532 // D is maintained per-monitor in _SpinDuration and is initialized
1533 // optimistically.  Spin frequency is fixed at 100%.
1534 //
1535 // Note that _SpinDuration is volatile, but we update it without locks
1536 // or atomics.  The code is designed so that _SpinDuration stays within
1537 // a reasonable range even in the presence of races.  The arithmetic
1538 // operations on _SpinDuration are closed over the domain of legal values,
1539 // so at worst a race will install and older but still legal value.
1540 // At the very worst this introduces some apparent non-determinism.
1541 // We might spin when we shouldn't or vice-versa, but since the spin
1542 // count are relatively short, even in the worst case, the effect is harmless.
1543 //
1544 // Care must be taken that a low "D" value does not become an
1545 // an absorbing state.  Transient spinning failures -- when spinning
1546 // is overall profitable -- should not cause the system to converge
1547 // on low "D" values.  We want spinning to be stable and predictable
1548 // and fairly responsive to change and at the same time we don't want
1549 // it to oscillate, become metastable, be "too" non-deterministic,
1550 // or converge on or enter undesirable stable absorbing states.
1551 //
1552 // We implement a feedback-based control system -- using past behavior
1553 // to predict future behavior.  We face two issues: (a) if the
1554 // input signal is random then the spin predictor won't provide optimal
1555 // results, and (b) if the signal frequency is too high then the control
1556 // system, which has some natural response lag, will "chase" the signal.
1557 // (b) can arise from multimodal lock hold times.  Transient preemption
1558 // can also result in apparent bimodal lock hold times.
1559 // Although sub-optimal, neither condition is particularly harmful, as
1560 // in the worst-case we'll spin when we shouldn't or vice-versa.
1561 // The maximum spin duration is rather short so the failure modes aren't bad.
1562 // To be conservative, I've tuned the gain in system to bias toward
1563 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1564 // "rings" or oscillates between spinning and not spinning.  This happens
1565 // when spinning is just on the cusp of profitability, however, so the
1566 // situation is not dire.  The state is benign -- there's no need to add
1567 // hysteresis control to damp the transition rate between spinning and
1568 // not spinning.
1569 
1570 // Spinning: Fixed frequency (100%), vary duration
TrySpin(Thread * Self)1571 int ObjectMonitor::TrySpin(Thread * Self) {
1572   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1573   int ctr = Knob_FixedSpin;
1574   if (ctr != 0) {
1575     while (--ctr >= 0) {
1576       if (TryLock(Self) > 0) return 1;
1577       SpinPause();
1578     }
1579     return 0;
1580   }
1581 
1582   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1583     if (TryLock(Self) > 0) {
1584       // Increase _SpinDuration ...
1585       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1586       // Raising _SpurDuration to the poverty line is key.
1587       int x = _SpinDuration;
1588       if (x < Knob_SpinLimit) {
1589         if (x < Knob_Poverty) x = Knob_Poverty;
1590         _SpinDuration = x + Knob_BonusB;
1591       }
1592       return 1;
1593     }
1594     SpinPause();
1595   }
1596 
1597   // Admission control - verify preconditions for spinning
1598   //
1599   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1600   // becoming an absorbing state.  Put another way, we spin briefly to
1601   // sample, just in case the system load, parallelism, contention, or lock
1602   // modality changed.
1603   //
1604   // Consider the following alternative:
1605   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1606   // spin attempt.  "Periodically" might mean after a tally of
1607   // the # of failed spin attempts (or iterations) reaches some threshold.
1608   // This takes us into the realm of 1-out-of-N spinning, where we
1609   // hold the duration constant but vary the frequency.
1610 
1611   ctr = _SpinDuration;
1612   if (ctr <= 0) return 0;
1613 
1614   if (NotRunnable(Self, (Thread *) _owner)) {
1615     return 0;
1616   }
1617 
1618   // We're good to spin ... spin ingress.
1619   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1620   // when preparing to LD...CAS _owner, etc and the CAS is likely
1621   // to succeed.
1622   if (_succ == NULL) {
1623     _succ = Self;
1624   }
1625   Thread * prv = NULL;
1626 
1627   // There are three ways to exit the following loop:
1628   // 1.  A successful spin where this thread has acquired the lock.
1629   // 2.  Spin failure with prejudice
1630   // 3.  Spin failure without prejudice
1631 
1632   while (--ctr >= 0) {
1633 
1634     // Periodic polling -- Check for pending GC
1635     // Threads may spin while they're unsafe.
1636     // We don't want spinning threads to delay the JVM from reaching
1637     // a stop-the-world safepoint or to steal cycles from GC.
1638     // If we detect a pending safepoint we abort in order that
1639     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1640     // this thread, if safe, doesn't steal cycles from GC.
1641     // This is in keeping with the "no loitering in runtime" rule.
1642     // We periodically check to see if there's a safepoint pending.
1643     if ((ctr & 0xFF) == 0) {
1644       if (SafepointMechanism::should_block(Self)) {
1645         goto Abort;           // abrupt spin egress
1646       }
1647       SpinPause();
1648     }
1649 
1650     // Probe _owner with TATAS
1651     // If this thread observes the monitor transition or flicker
1652     // from locked to unlocked to locked, then the odds that this
1653     // thread will acquire the lock in this spin attempt go down
1654     // considerably.  The same argument applies if the CAS fails
1655     // or if we observe _owner change from one non-null value to
1656     // another non-null value.   In such cases we might abort
1657     // the spin without prejudice or apply a "penalty" to the
1658     // spin count-down variable "ctr", reducing it by 100, say.
1659 
1660     Thread * ox = (Thread *) _owner;
1661     if (ox == NULL) {
1662       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1663       if (ox == NULL) {
1664         // The CAS succeeded -- this thread acquired ownership
1665         // Take care of some bookkeeping to exit spin state.
1666         if (_succ == Self) {
1667           _succ = NULL;
1668         }
1669 
1670         // Increase _SpinDuration :
1671         // The spin was successful (profitable) so we tend toward
1672         // longer spin attempts in the future.
1673         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1674         // If we acquired the lock early in the spin cycle it
1675         // makes sense to increase _SpinDuration proportionally.
1676         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1677         int x = _SpinDuration;
1678         if (x < Knob_SpinLimit) {
1679           if (x < Knob_Poverty) x = Knob_Poverty;
1680           _SpinDuration = x + Knob_Bonus;
1681         }
1682         return 1;
1683       }
1684 
1685       // The CAS failed ... we can take any of the following actions:
1686       // * penalize: ctr -= CASPenalty
1687       // * exit spin with prejudice -- goto Abort;
1688       // * exit spin without prejudice.
1689       // * Since CAS is high-latency, retry again immediately.
1690       prv = ox;
1691       goto Abort;
1692     }
1693 
1694     // Did lock ownership change hands ?
1695     if (ox != prv && prv != NULL) {
1696       goto Abort;
1697     }
1698     prv = ox;
1699 
1700     // Abort the spin if the owner is not executing.
1701     // The owner must be executing in order to drop the lock.
1702     // Spinning while the owner is OFFPROC is idiocy.
1703     // Consider: ctr -= RunnablePenalty ;
1704     if (NotRunnable(Self, ox)) {
1705       goto Abort;
1706     }
1707     if (_succ == NULL) {
1708       _succ = Self;
1709     }
1710   }
1711 
1712   // Spin failed with prejudice -- reduce _SpinDuration.
1713   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1714   // AIMD is globally stable.
1715   {
1716     int x = _SpinDuration;
1717     if (x > 0) {
1718       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1719       // This is globally sample and tends to damp the response.
1720       x -= Knob_Penalty;
1721       if (x < 0) x = 0;
1722       _SpinDuration = x;
1723     }
1724   }
1725 
1726  Abort:
1727   if (_succ == Self) {
1728     _succ = NULL;
1729     // Invariant: after setting succ=null a contending thread
1730     // must recheck-retry _owner before parking.  This usually happens
1731     // in the normal usage of TrySpin(), but it's safest
1732     // to make TrySpin() as foolproof as possible.
1733     OrderAccess::fence();
1734     if (TryLock(Self) > 0) return 1;
1735   }
1736   return 0;
1737 }
1738 
1739 // NotRunnable() -- informed spinning
1740 //
1741 // Don't bother spinning if the owner is not eligible to drop the lock.
1742 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1743 // The thread must be runnable in order to drop the lock in timely fashion.
1744 // If the _owner is not runnable then spinning will not likely be
1745 // successful (profitable).
1746 //
1747 // Beware -- the thread referenced by _owner could have died
1748 // so a simply fetch from _owner->_thread_state might trap.
1749 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1750 // Because of the lifecycle issues, the _thread_state values
1751 // observed by NotRunnable() might be garbage.  NotRunnable must
1752 // tolerate this and consider the observed _thread_state value
1753 // as advisory.
1754 //
1755 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1756 // a thread pointer.
1757 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1758 // with the LSB of _owner.  Another option would be to probabilistically probe
1759 // the putative _owner->TypeTag value.
1760 //
1761 // Checking _thread_state isn't perfect.  Even if the thread is
1762 // in_java it might be blocked on a page-fault or have been preempted
1763 // and sitting on a ready/dispatch queue.
1764 //
1765 // The return value from NotRunnable() is *advisory* -- the
1766 // result is based on sampling and is not necessarily coherent.
1767 // The caller must tolerate false-negative and false-positive errors.
1768 // Spinning, in general, is probabilistic anyway.
1769 
1770 
NotRunnable(Thread * Self,Thread * ox)1771 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1772   // Check ox->TypeTag == 2BAD.
1773   if (ox == NULL) return 0;
1774 
1775   // Avoid transitive spinning ...
1776   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1777   // Immediately after T1 acquires L it's possible that T2, also
1778   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1779   // This occurs transiently after T1 acquired L but before
1780   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1781   // its spin in this circumstance.
1782   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1783 
1784   if (BlockedOn == 1) return 1;
1785   if (BlockedOn != 0) {
1786     return BlockedOn != intptr_t(this) && _owner == ox;
1787   }
1788 
1789   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1790   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1791   // consider also: jst != _thread_in_Java -- but that's overspecific.
1792   return jst == _thread_blocked || jst == _thread_in_native;
1793 }
1794 
1795 
1796 // -----------------------------------------------------------------------------
1797 // WaitSet management ...
1798 
ObjectWaiter(Thread * thread)1799 ObjectWaiter::ObjectWaiter(Thread* thread) {
1800   _next     = NULL;
1801   _prev     = NULL;
1802   _notified = 0;
1803   _notifier_tid = 0;
1804   TState    = TS_RUN;
1805   _thread   = thread;
1806   _event    = thread->_ParkEvent;
1807   _active   = false;
1808   assert(_event != NULL, "invariant");
1809 }
1810 
wait_reenter_begin(ObjectMonitor * const mon)1811 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1812   JavaThread *jt = (JavaThread *)this->_thread;
1813   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1814 }
1815 
wait_reenter_end(ObjectMonitor * const mon)1816 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1817   JavaThread *jt = (JavaThread *)this->_thread;
1818   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1819 }
1820 
AddWaiter(ObjectWaiter * node)1821 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1822   assert(node != NULL, "should not add NULL node");
1823   assert(node->_prev == NULL, "node already in list");
1824   assert(node->_next == NULL, "node already in list");
1825   // put node at end of queue (circular doubly linked list)
1826   if (_WaitSet == NULL) {
1827     _WaitSet = node;
1828     node->_prev = node;
1829     node->_next = node;
1830   } else {
1831     ObjectWaiter* head = _WaitSet;
1832     ObjectWaiter* tail = head->_prev;
1833     assert(tail->_next == head, "invariant check");
1834     tail->_next = node;
1835     head->_prev = node;
1836     node->_next = head;
1837     node->_prev = tail;
1838   }
1839 }
1840 
DequeueWaiter()1841 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1842   // dequeue the very first waiter
1843   ObjectWaiter* waiter = _WaitSet;
1844   if (waiter) {
1845     DequeueSpecificWaiter(waiter);
1846   }
1847   return waiter;
1848 }
1849 
DequeueSpecificWaiter(ObjectWaiter * node)1850 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
1851   assert(node != NULL, "should not dequeue NULL node");
1852   assert(node->_prev != NULL, "node already removed from list");
1853   assert(node->_next != NULL, "node already removed from list");
1854   // when the waiter has woken up because of interrupt,
1855   // timeout or other spurious wake-up, dequeue the
1856   // waiter from waiting list
1857   ObjectWaiter* next = node->_next;
1858   if (next == node) {
1859     assert(node->_prev == node, "invariant check");
1860     _WaitSet = NULL;
1861   } else {
1862     ObjectWaiter* prev = node->_prev;
1863     assert(prev->_next == node, "invariant check");
1864     assert(next->_prev == node, "invariant check");
1865     next->_prev = prev;
1866     prev->_next = next;
1867     if (_WaitSet == node) {
1868       _WaitSet = next;
1869     }
1870   }
1871   node->_next = NULL;
1872   node->_prev = NULL;
1873 }
1874 
1875 // -----------------------------------------------------------------------------
1876 // PerfData support
1877 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
1878 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
1879 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
1880 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
1881 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
1882 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
1883 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
1884 
1885 // One-shot global initialization for the sync subsystem.
1886 // We could also defer initialization and initialize on-demand
1887 // the first time we call inflate().  Initialization would
1888 // be protected - like so many things - by the MonitorCache_lock.
1889 
Initialize()1890 void ObjectMonitor::Initialize() {
1891   assert(!InitDone, "invariant");
1892 
1893   if (!os::is_MP()) {
1894     Knob_SpinLimit = 0;
1895     Knob_PreSpin   = 0;
1896     Knob_FixedSpin = -1;
1897   }
1898 
1899   if (UsePerfData) {
1900     EXCEPTION_MARK;
1901 #define NEWPERFCOUNTER(n)                                                \
1902   {                                                                      \
1903     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
1904                                         CHECK);                          \
1905   }
1906 #define NEWPERFVARIABLE(n)                                                \
1907   {                                                                       \
1908     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
1909                                          CHECK);                          \
1910   }
1911     NEWPERFCOUNTER(_sync_Inflations);
1912     NEWPERFCOUNTER(_sync_Deflations);
1913     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
1914     NEWPERFCOUNTER(_sync_FutileWakeups);
1915     NEWPERFCOUNTER(_sync_Parks);
1916     NEWPERFCOUNTER(_sync_Notifications);
1917     NEWPERFVARIABLE(_sync_MonExtant);
1918 #undef NEWPERFCOUNTER
1919 #undef NEWPERFVARIABLE
1920   }
1921 
1922   DEBUG_ONLY(InitDone = true;)
1923 }
1924