1 /*
2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package com.sun.tools.javac.comp;
27 
28 import java.util.*;
29 
30 import javax.tools.JavaFileManager;
31 
32 import com.sun.tools.javac.code.*;
33 import com.sun.tools.javac.code.Attribute.Compound;
34 import com.sun.tools.javac.code.Directive.ExportsDirective;
35 import com.sun.tools.javac.code.Directive.RequiresDirective;
36 import com.sun.tools.javac.code.Source.Feature;
37 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
38 import com.sun.tools.javac.jvm.*;
39 import com.sun.tools.javac.resources.CompilerProperties.Errors;
40 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
41 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
42 import com.sun.tools.javac.tree.*;
43 import com.sun.tools.javac.util.*;
44 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
45 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
46 import com.sun.tools.javac.util.JCDiagnostic.Error;
47 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
48 import com.sun.tools.javac.util.JCDiagnostic.Warning;
49 import com.sun.tools.javac.util.List;
50 
51 import com.sun.tools.javac.code.Lint;
52 import com.sun.tools.javac.code.Lint.LintCategory;
53 import com.sun.tools.javac.code.Scope.WriteableScope;
54 import com.sun.tools.javac.code.Type.*;
55 import com.sun.tools.javac.code.Symbol.*;
56 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
57 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
58 import com.sun.tools.javac.tree.JCTree.*;
59 
60 import static com.sun.tools.javac.code.Flags.*;
61 import static com.sun.tools.javac.code.Flags.ANNOTATION;
62 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
63 import static com.sun.tools.javac.code.Kinds.*;
64 import static com.sun.tools.javac.code.Kinds.Kind.*;
65 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
66 import static com.sun.tools.javac.code.TypeTag.*;
67 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
68 
69 import static com.sun.tools.javac.tree.JCTree.Tag.*;
70 
71 /** Type checking helper class for the attribution phase.
72  *
73  *  <p><b>This is NOT part of any supported API.
74  *  If you write code that depends on this, you do so at your own risk.
75  *  This code and its internal interfaces are subject to change or
76  *  deletion without notice.</b>
77  */
78 public class Check {
79     protected static final Context.Key<Check> checkKey = new Context.Key<>();
80 
81     private final Names names;
82     private final Log log;
83     private final Resolve rs;
84     private final Symtab syms;
85     private final Enter enter;
86     private final DeferredAttr deferredAttr;
87     private final Infer infer;
88     private final Types types;
89     private final TypeAnnotations typeAnnotations;
90     private final JCDiagnostic.Factory diags;
91     private final JavaFileManager fileManager;
92     private final Source source;
93     private final Target target;
94     private final Profile profile;
95     private final boolean warnOnAnyAccessToMembers;
96 
97     // The set of lint options currently in effect. It is initialized
98     // from the context, and then is set/reset as needed by Attr as it
99     // visits all the various parts of the trees during attribution.
100     private Lint lint;
101 
102     // The method being analyzed in Attr - it is set/reset as needed by
103     // Attr as it visits new method declarations.
104     private MethodSymbol method;
105 
instance(Context context)106     public static Check instance(Context context) {
107         Check instance = context.get(checkKey);
108         if (instance == null)
109             instance = new Check(context);
110         return instance;
111     }
112 
Check(Context context)113     protected Check(Context context) {
114         context.put(checkKey, this);
115 
116         names = Names.instance(context);
117         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
118             names.FIELD, names.METHOD, names.CONSTRUCTOR,
119             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
120         log = Log.instance(context);
121         rs = Resolve.instance(context);
122         syms = Symtab.instance(context);
123         enter = Enter.instance(context);
124         deferredAttr = DeferredAttr.instance(context);
125         infer = Infer.instance(context);
126         types = Types.instance(context);
127         typeAnnotations = TypeAnnotations.instance(context);
128         diags = JCDiagnostic.Factory.instance(context);
129         Options options = Options.instance(context);
130         lint = Lint.instance(context);
131         fileManager = context.get(JavaFileManager.class);
132 
133         source = Source.instance(context);
134         target = Target.instance(context);
135         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
136 
137         Target target = Target.instance(context);
138         syntheticNameChar = target.syntheticNameChar();
139 
140         profile = Profile.instance(context);
141 
142         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
143         boolean verboseRemoval = lint.isEnabled(LintCategory.REMOVAL);
144         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
145         boolean enforceMandatoryWarnings = true;
146 
147         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
148                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
149         removalHandler = new MandatoryWarningHandler(log, verboseRemoval,
150                 enforceMandatoryWarnings, "removal", LintCategory.REMOVAL);
151         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
152                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
153         sunApiHandler = new MandatoryWarningHandler(log, false,
154                 enforceMandatoryWarnings, "sunapi", null);
155 
156         deferredLintHandler = DeferredLintHandler.instance(context);
157     }
158 
159     /** Character for synthetic names
160      */
161     char syntheticNameChar;
162 
163     /** A table mapping flat names of all compiled classes for each module in this run
164      *  to their symbols; maintained from outside.
165      */
166     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
167 
168     /** A handler for messages about deprecated usage.
169      */
170     private MandatoryWarningHandler deprecationHandler;
171 
172     /** A handler for messages about deprecated-for-removal usage.
173      */
174     private MandatoryWarningHandler removalHandler;
175 
176     /** A handler for messages about unchecked or unsafe usage.
177      */
178     private MandatoryWarningHandler uncheckedHandler;
179 
180     /** A handler for messages about using proprietary API.
181      */
182     private MandatoryWarningHandler sunApiHandler;
183 
184     /** A handler for deferred lint warnings.
185      */
186     private DeferredLintHandler deferredLintHandler;
187 
188 /* *************************************************************************
189  * Errors and Warnings
190  **************************************************************************/
191 
setLint(Lint newLint)192     Lint setLint(Lint newLint) {
193         Lint prev = lint;
194         lint = newLint;
195         return prev;
196     }
197 
setMethod(MethodSymbol newMethod)198     MethodSymbol setMethod(MethodSymbol newMethod) {
199         MethodSymbol prev = method;
200         method = newMethod;
201         return prev;
202     }
203 
204     /** Warn about deprecated symbol.
205      *  @param pos        Position to be used for error reporting.
206      *  @param sym        The deprecated symbol.
207      */
warnDeprecated(DiagnosticPosition pos, Symbol sym)208     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
209         if (sym.isDeprecatedForRemoval()) {
210             if (!lint.isSuppressed(LintCategory.REMOVAL)) {
211                 if (sym.kind == MDL) {
212                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemovalModule(sym));
213                 } else {
214                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemoval(sym, sym.location()));
215                 }
216             }
217         } else if (!lint.isSuppressed(LintCategory.DEPRECATION)) {
218             if (sym.kind == MDL) {
219                 deprecationHandler.report(pos, Warnings.HasBeenDeprecatedModule(sym));
220             } else {
221                 deprecationHandler.report(pos, Warnings.HasBeenDeprecated(sym, sym.location()));
222             }
223         }
224     }
225 
226     /** Warn about unchecked operation.
227      *  @param pos        Position to be used for error reporting.
228      *  @param msg        A string describing the problem.
229      */
warnUnchecked(DiagnosticPosition pos, Warning warnKey)230     public void warnUnchecked(DiagnosticPosition pos, Warning warnKey) {
231         if (!lint.isSuppressed(LintCategory.UNCHECKED))
232             uncheckedHandler.report(pos, warnKey);
233     }
234 
235     /** Warn about unsafe vararg method decl.
236      *  @param pos        Position to be used for error reporting.
237      */
warnUnsafeVararg(DiagnosticPosition pos, Warning warnKey)238     void warnUnsafeVararg(DiagnosticPosition pos, Warning warnKey) {
239         if (lint.isEnabled(LintCategory.VARARGS))
240             log.warning(LintCategory.VARARGS, pos, warnKey);
241     }
242 
warnStatic(DiagnosticPosition pos, Warning warnKey)243     public void warnStatic(DiagnosticPosition pos, Warning warnKey) {
244         if (lint.isEnabled(LintCategory.STATIC))
245             log.warning(LintCategory.STATIC, pos, warnKey);
246     }
247 
248     /** Warn about division by integer constant zero.
249      *  @param pos        Position to be used for error reporting.
250      */
warnDivZero(DiagnosticPosition pos)251     void warnDivZero(DiagnosticPosition pos) {
252         if (lint.isEnabled(LintCategory.DIVZERO))
253             log.warning(LintCategory.DIVZERO, pos, Warnings.DivZero);
254     }
255 
256     /**
257      * Report any deferred diagnostics.
258      */
reportDeferredDiagnostics()259     public void reportDeferredDiagnostics() {
260         deprecationHandler.reportDeferredDiagnostic();
261         removalHandler.reportDeferredDiagnostic();
262         uncheckedHandler.reportDeferredDiagnostic();
263         sunApiHandler.reportDeferredDiagnostic();
264     }
265 
266 
267     /** Report a failure to complete a class.
268      *  @param pos        Position to be used for error reporting.
269      *  @param ex         The failure to report.
270      */
completionError(DiagnosticPosition pos, CompletionFailure ex)271     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
272         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
273         return syms.errType;
274     }
275 
276     /** Report an error that wrong type tag was found.
277      *  @param pos        Position to be used for error reporting.
278      *  @param required   An internationalized string describing the type tag
279      *                    required.
280      *  @param found      The type that was found.
281      */
typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found)282     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
283         // this error used to be raised by the parser,
284         // but has been delayed to this point:
285         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
286             log.error(pos, Errors.IllegalStartOfType);
287             return syms.errType;
288         }
289         log.error(pos, Errors.TypeFoundReq(found, required));
290         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
291     }
292 
293     /** Report an error that symbol cannot be referenced before super
294      *  has been called.
295      *  @param pos        Position to be used for error reporting.
296      *  @param sym        The referenced symbol.
297      */
earlyRefError(DiagnosticPosition pos, Symbol sym)298     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
299         log.error(pos, Errors.CantRefBeforeCtorCalled(sym));
300     }
301 
302     /** Report duplicate declaration error.
303      */
duplicateError(DiagnosticPosition pos, Symbol sym)304     void duplicateError(DiagnosticPosition pos, Symbol sym) {
305         if (!sym.type.isErroneous()) {
306             Symbol location = sym.location();
307             if (location.kind == MTH &&
308                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
309                 log.error(pos,
310                           Errors.AlreadyDefinedInClinit(kindName(sym),
311                                                         sym,
312                                                         kindName(sym.location()),
313                                                         kindName(sym.location().enclClass()),
314                                                         sym.location().enclClass()));
315             } else {
316                 log.error(pos,
317                           Errors.AlreadyDefined(kindName(sym),
318                                                 sym,
319                                                 kindName(sym.location()),
320                                                 sym.location()));
321             }
322         }
323     }
324 
325     /** Report array/varargs duplicate declaration
326      */
varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2)327     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
328         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
329             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
330         }
331     }
332 
333 /* ************************************************************************
334  * duplicate declaration checking
335  *************************************************************************/
336 
337     /** Check that variable does not hide variable with same name in
338      *  immediately enclosing local scope.
339      *  @param pos           Position for error reporting.
340      *  @param v             The symbol.
341      *  @param s             The scope.
342      */
checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s)343     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
344         for (Symbol sym : s.getSymbolsByName(v.name)) {
345             if (sym.owner != v.owner) break;
346             if (sym.kind == VAR &&
347                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
348                 v.name != names.error) {
349                 duplicateError(pos, sym);
350                 return;
351             }
352         }
353     }
354 
355     /** Check that a class or interface does not hide a class or
356      *  interface with same name in immediately enclosing local scope.
357      *  @param pos           Position for error reporting.
358      *  @param c             The symbol.
359      *  @param s             The scope.
360      */
checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s)361     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
362         for (Symbol sym : s.getSymbolsByName(c.name)) {
363             if (sym.owner != c.owner) break;
364             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
365                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
366                 c.name != names.error) {
367                 duplicateError(pos, sym);
368                 return;
369             }
370         }
371     }
372 
373     /** Check that class does not have the same name as one of
374      *  its enclosing classes, or as a class defined in its enclosing scope.
375      *  return true if class is unique in its enclosing scope.
376      *  @param pos           Position for error reporting.
377      *  @param name          The class name.
378      *  @param s             The enclosing scope.
379      */
checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s)380     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
381         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
382             if (sym.kind == TYP && sym.name != names.error) {
383                 duplicateError(pos, sym);
384                 return false;
385             }
386         }
387         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
388             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
389                 duplicateError(pos, sym);
390                 return true;
391             }
392         }
393         return true;
394     }
395 
396 /* *************************************************************************
397  * Class name generation
398  **************************************************************************/
399 
400 
401     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
402 
403     /** Return name of local class.
404      *  This is of the form   {@code <enclClass> $ n <classname> }
405      *  where
406      *    enclClass is the flat name of the enclosing class,
407      *    classname is the simple name of the local class
408      */
localClassName(ClassSymbol c)409     Name localClassName(ClassSymbol c) {
410         Name enclFlatname = c.owner.enclClass().flatname;
411         String enclFlatnameStr = enclFlatname.toString();
412         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
413         Integer index = localClassNameIndexes.get(key);
414         for (int i = (index == null) ? 1 : index; ; i++) {
415             Name flatname = names.fromString(enclFlatnameStr
416                     + syntheticNameChar + i + c.name);
417             if (getCompiled(c.packge().modle, flatname) == null) {
418                 localClassNameIndexes.put(key, i + 1);
419                 return flatname;
420             }
421         }
422     }
423 
clearLocalClassNameIndexes(ClassSymbol c)424     void clearLocalClassNameIndexes(ClassSymbol c) {
425         if (c.owner != null && c.owner.kind != NIL) {
426             localClassNameIndexes.remove(new Pair<>(
427                     c.owner.enclClass().flatname, c.name));
428         }
429     }
430 
newRound()431     public void newRound() {
432         compiled.clear();
433         localClassNameIndexes.clear();
434     }
435 
putCompiled(ClassSymbol csym)436     public void putCompiled(ClassSymbol csym) {
437         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
438     }
439 
getCompiled(ClassSymbol csym)440     public ClassSymbol getCompiled(ClassSymbol csym) {
441         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
442     }
443 
getCompiled(ModuleSymbol msym, Name flatname)444     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
445         return compiled.get(Pair.of(msym, flatname));
446     }
447 
removeCompiled(ClassSymbol csym)448     public void removeCompiled(ClassSymbol csym) {
449         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
450     }
451 
452 /* *************************************************************************
453  * Type Checking
454  **************************************************************************/
455 
456     /**
457      * A check context is an object that can be used to perform compatibility
458      * checks - depending on the check context, meaning of 'compatibility' might
459      * vary significantly.
460      */
461     public interface CheckContext {
462         /**
463          * Is type 'found' compatible with type 'req' in given context
464          */
compatible(Type found, Type req, Warner warn)465         boolean compatible(Type found, Type req, Warner warn);
466         /**
467          * Report a check error
468          */
report(DiagnosticPosition pos, JCDiagnostic details)469         void report(DiagnosticPosition pos, JCDiagnostic details);
470         /**
471          * Obtain a warner for this check context
472          */
checkWarner(DiagnosticPosition pos, Type found, Type req)473         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
474 
inferenceContext()475         public InferenceContext inferenceContext();
476 
deferredAttrContext()477         public DeferredAttr.DeferredAttrContext deferredAttrContext();
478     }
479 
480     /**
481      * This class represent a check context that is nested within another check
482      * context - useful to check sub-expressions. The default behavior simply
483      * redirects all method calls to the enclosing check context leveraging
484      * the forwarding pattern.
485      */
486     static class NestedCheckContext implements CheckContext {
487         CheckContext enclosingContext;
488 
NestedCheckContext(CheckContext enclosingContext)489         NestedCheckContext(CheckContext enclosingContext) {
490             this.enclosingContext = enclosingContext;
491         }
492 
compatible(Type found, Type req, Warner warn)493         public boolean compatible(Type found, Type req, Warner warn) {
494             return enclosingContext.compatible(found, req, warn);
495         }
496 
report(DiagnosticPosition pos, JCDiagnostic details)497         public void report(DiagnosticPosition pos, JCDiagnostic details) {
498             enclosingContext.report(pos, details);
499         }
500 
checkWarner(DiagnosticPosition pos, Type found, Type req)501         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
502             return enclosingContext.checkWarner(pos, found, req);
503         }
504 
inferenceContext()505         public InferenceContext inferenceContext() {
506             return enclosingContext.inferenceContext();
507         }
508 
deferredAttrContext()509         public DeferredAttrContext deferredAttrContext() {
510             return enclosingContext.deferredAttrContext();
511         }
512     }
513 
514     /**
515      * Check context to be used when evaluating assignment/return statements
516      */
517     CheckContext basicHandler = new CheckContext() {
518         public void report(DiagnosticPosition pos, JCDiagnostic details) {
519             log.error(pos, Errors.ProbFoundReq(details));
520         }
521         public boolean compatible(Type found, Type req, Warner warn) {
522             return types.isAssignable(found, req, warn);
523         }
524 
525         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
526             return convertWarner(pos, found, req);
527         }
528 
529         public InferenceContext inferenceContext() {
530             return infer.emptyContext;
531         }
532 
533         public DeferredAttrContext deferredAttrContext() {
534             return deferredAttr.emptyDeferredAttrContext;
535         }
536 
537         @Override
538         public String toString() {
539             return "CheckContext: basicHandler";
540         }
541     };
542 
543     /** Check that a given type is assignable to a given proto-type.
544      *  If it is, return the type, otherwise return errType.
545      *  @param pos        Position to be used for error reporting.
546      *  @param found      The type that was found.
547      *  @param req        The type that was required.
548      */
checkType(DiagnosticPosition pos, Type found, Type req)549     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
550         return checkType(pos, found, req, basicHandler);
551     }
552 
checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext)553     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
554         final InferenceContext inferenceContext = checkContext.inferenceContext();
555         if (inferenceContext.free(req) || inferenceContext.free(found)) {
556             inferenceContext.addFreeTypeListener(List.of(req, found),
557                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
558         }
559         if (req.hasTag(ERROR))
560             return req;
561         if (req.hasTag(NONE))
562             return found;
563         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
564             return found;
565         } else {
566             if (found.isNumeric() && req.isNumeric()) {
567                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
568                 return types.createErrorType(found);
569             }
570             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
571             return types.createErrorType(found);
572         }
573     }
574 
575     /** Check that a given type can be cast to a given target type.
576      *  Return the result of the cast.
577      *  @param pos        Position to be used for error reporting.
578      *  @param found      The type that is being cast.
579      *  @param req        The target type of the cast.
580      */
checkCastable(DiagnosticPosition pos, Type found, Type req)581     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
582         return checkCastable(pos, found, req, basicHandler);
583     }
checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext)584     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
585         if (types.isCastable(found, req, castWarner(pos, found, req))) {
586             return req;
587         } else {
588             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
589             return types.createErrorType(found);
590         }
591     }
592 
593     /** Check for redundant casts (i.e. where source type is a subtype of target type)
594      * The problem should only be reported for non-292 cast
595      */
checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree)596     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
597         if (!tree.type.isErroneous()
598                 && types.isSameType(tree.expr.type, tree.clazz.type)
599                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
600                 && !is292targetTypeCast(tree)) {
601             deferredLintHandler.report(() -> {
602                 if (lint.isEnabled(LintCategory.CAST))
603                     log.warning(LintCategory.CAST,
604                             tree.pos(), Warnings.RedundantCast(tree.clazz.type));
605             });
606         }
607     }
608     //where
is292targetTypeCast(JCTypeCast tree)609         private boolean is292targetTypeCast(JCTypeCast tree) {
610             boolean is292targetTypeCast = false;
611             JCExpression expr = TreeInfo.skipParens(tree.expr);
612             if (expr.hasTag(APPLY)) {
613                 JCMethodInvocation apply = (JCMethodInvocation)expr;
614                 Symbol sym = TreeInfo.symbol(apply.meth);
615                 is292targetTypeCast = sym != null &&
616                     sym.kind == MTH &&
617                     (sym.flags() & HYPOTHETICAL) != 0;
618             }
619             return is292targetTypeCast;
620         }
621 
622         private static final boolean ignoreAnnotatedCasts = true;
623 
624     /** Check that a type is within some bounds.
625      *
626      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
627      *  type argument.
628      *  @param a             The type that should be bounded by bs.
629      *  @param bound         The bound.
630      */
checkExtends(Type a, Type bound)631     private boolean checkExtends(Type a, Type bound) {
632          if (a.isUnbound()) {
633              return true;
634          } else if (!a.hasTag(WILDCARD)) {
635              a = types.cvarUpperBound(a);
636              return types.isSubtype(a, bound);
637          } else if (a.isExtendsBound()) {
638              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
639          } else if (a.isSuperBound()) {
640              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
641          }
642          return true;
643      }
644 
645     /** Check that type is different from 'void'.
646      *  @param pos           Position to be used for error reporting.
647      *  @param t             The type to be checked.
648      */
checkNonVoid(DiagnosticPosition pos, Type t)649     Type checkNonVoid(DiagnosticPosition pos, Type t) {
650         if (t.hasTag(VOID)) {
651             log.error(pos, Errors.VoidNotAllowedHere);
652             return types.createErrorType(t);
653         } else {
654             return t;
655         }
656     }
657 
checkClassOrArrayType(DiagnosticPosition pos, Type t)658     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
659         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
660             return typeTagError(pos,
661                                 diags.fragment(Fragments.TypeReqClassArray),
662                                 asTypeParam(t));
663         } else {
664             return t;
665         }
666     }
667 
668     /** Check that type is a class or interface type.
669      *  @param pos           Position to be used for error reporting.
670      *  @param t             The type to be checked.
671      */
checkClassType(DiagnosticPosition pos, Type t)672     Type checkClassType(DiagnosticPosition pos, Type t) {
673         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
674             return typeTagError(pos,
675                                 diags.fragment(Fragments.TypeReqClass),
676                                 asTypeParam(t));
677         } else {
678             return t;
679         }
680     }
681     //where
asTypeParam(Type t)682         private Object asTypeParam(Type t) {
683             return (t.hasTag(TYPEVAR))
684                                     ? diags.fragment(Fragments.TypeParameter(t))
685                                     : t;
686         }
687 
688     /** Check that type is a valid qualifier for a constructor reference expression
689      */
checkConstructorRefType(DiagnosticPosition pos, Type t)690     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
691         t = checkClassOrArrayType(pos, t);
692         if (t.hasTag(CLASS)) {
693             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
694                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
695                 t = types.createErrorType(t);
696             } else if ((t.tsym.flags() & ENUM) != 0) {
697                 log.error(pos, Errors.EnumCantBeInstantiated);
698                 t = types.createErrorType(t);
699             } else {
700                 t = checkClassType(pos, t, true);
701             }
702         } else if (t.hasTag(ARRAY)) {
703             if (!types.isReifiable(((ArrayType)t).elemtype)) {
704                 log.error(pos, Errors.GenericArrayCreation);
705                 t = types.createErrorType(t);
706             }
707         }
708         return t;
709     }
710 
711     /** Check that type is a class or interface type.
712      *  @param pos           Position to be used for error reporting.
713      *  @param t             The type to be checked.
714      *  @param noBounds    True if type bounds are illegal here.
715      */
checkClassType(DiagnosticPosition pos, Type t, boolean noBounds)716     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
717         t = checkClassType(pos, t);
718         if (noBounds && t.isParameterized()) {
719             List<Type> args = t.getTypeArguments();
720             while (args.nonEmpty()) {
721                 if (args.head.hasTag(WILDCARD))
722                     return typeTagError(pos,
723                                         diags.fragment(Fragments.TypeReqExact),
724                                         args.head);
725                 args = args.tail;
726             }
727         }
728         return t;
729     }
730 
731     /** Check that type is a reference type, i.e. a class, interface or array type
732      *  or a type variable.
733      *  @param pos           Position to be used for error reporting.
734      *  @param t             The type to be checked.
735      */
checkRefType(DiagnosticPosition pos, Type t)736     Type checkRefType(DiagnosticPosition pos, Type t) {
737         if (t.isReference())
738             return t;
739         else
740             return typeTagError(pos,
741                                 diags.fragment(Fragments.TypeReqRef),
742                                 t);
743     }
744 
745     /** Check that each type is a reference type, i.e. a class, interface or array type
746      *  or a type variable.
747      *  @param trees         Original trees, used for error reporting.
748      *  @param types         The types to be checked.
749      */
checkRefTypes(List<JCExpression> trees, List<Type> types)750     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
751         List<JCExpression> tl = trees;
752         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
753             l.head = checkRefType(tl.head.pos(), l.head);
754             tl = tl.tail;
755         }
756         return types;
757     }
758 
759     /** Check that type is a null or reference type.
760      *  @param pos           Position to be used for error reporting.
761      *  @param t             The type to be checked.
762      */
checkNullOrRefType(DiagnosticPosition pos, Type t)763     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
764         if (t.isReference() || t.hasTag(BOT))
765             return t;
766         else
767             return typeTagError(pos,
768                                 diags.fragment(Fragments.TypeReqRef),
769                                 t);
770     }
771 
772     /** Check that flag set does not contain elements of two conflicting sets. s
773      *  Return true if it doesn't.
774      *  @param pos           Position to be used for error reporting.
775      *  @param flags         The set of flags to be checked.
776      *  @param set1          Conflicting flags set #1.
777      *  @param set2          Conflicting flags set #2.
778      */
checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2)779     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
780         if ((flags & set1) != 0 && (flags & set2) != 0) {
781             log.error(pos,
782                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
783                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
784             return false;
785         } else
786             return true;
787     }
788 
789     /** Check that usage of diamond operator is correct (i.e. diamond should not
790      * be used with non-generic classes or in anonymous class creation expressions)
791      */
checkDiamond(JCNewClass tree, Type t)792     Type checkDiamond(JCNewClass tree, Type t) {
793         if (!TreeInfo.isDiamond(tree) ||
794                 t.isErroneous()) {
795             return checkClassType(tree.clazz.pos(), t, true);
796         } else {
797             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
798                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
799                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
800             }
801             if (t.tsym.type.getTypeArguments().isEmpty()) {
802                 log.error(tree.clazz.pos(),
803                           Errors.CantApplyDiamond1(t,
804                                                    Fragments.DiamondNonGeneric(t)));
805                 return types.createErrorType(t);
806             } else if (tree.typeargs != null &&
807                     tree.typeargs.nonEmpty()) {
808                 log.error(tree.clazz.pos(),
809                           Errors.CantApplyDiamond1(t,
810                                                    Fragments.DiamondAndExplicitParams(t)));
811                 return types.createErrorType(t);
812             } else {
813                 return t;
814             }
815         }
816     }
817 
818     /** Check that the type inferred using the diamond operator does not contain
819      *  non-denotable types such as captured types or intersection types.
820      *  @param t the type inferred using the diamond operator
821      *  @return  the (possibly empty) list of non-denotable types.
822      */
checkDiamondDenotable(ClassType t)823     List<Type> checkDiamondDenotable(ClassType t) {
824         ListBuffer<Type> buf = new ListBuffer<>();
825         for (Type arg : t.allparams()) {
826             if (!checkDenotable(arg)) {
827                 buf.append(arg);
828             }
829         }
830         return buf.toList();
831     }
832 
checkDenotable(Type t)833     public boolean checkDenotable(Type t) {
834         return denotableChecker.visit(t, null);
835     }
836         // where
837 
838         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
839          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
840          *  otherwise.
841          */
842         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
843             @Override
844             public Boolean visitType(Type t, Void s) {
845                 return true;
846             }
847             @Override
848             public Boolean visitClassType(ClassType t, Void s) {
849                 if (t.isUnion() || t.isIntersection()) {
850                     return false;
851                 }
852                 for (Type targ : t.allparams()) {
853                     if (!visit(targ, s)) {
854                         return false;
855                     }
856                 }
857                 return true;
858             }
859 
860             @Override
861             public Boolean visitTypeVar(TypeVar t, Void s) {
862                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
863                   (i.e cannot have been produced by inference (18.4))
864                 */
865                 return (t.tsym.flags() & SYNTHETIC) == 0;
866             }
867 
868             @Override
869             public Boolean visitCapturedType(CapturedType t, Void s) {
870                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
871                   (i.e cannot have been produced by capture conversion (5.1.10))
872                 */
873                 return false;
874             }
875 
876             @Override
877             public Boolean visitArrayType(ArrayType t, Void s) {
878                 return visit(t.elemtype, s);
879             }
880 
881             @Override
882             public Boolean visitWildcardType(WildcardType t, Void s) {
883                 return visit(t.type, s);
884             }
885         };
886 
checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree)887     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
888         MethodSymbol m = tree.sym;
889         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
890         Type varargElemType = null;
891         if (m.isVarArgs()) {
892             varargElemType = types.elemtype(tree.params.last().type);
893         }
894         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
895             if (varargElemType != null) {
896                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
897                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
898                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
899                 log.error(tree,
900                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
901                                                            msg));
902             } else {
903                 log.error(tree,
904                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
905                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
906             }
907         } else if (hasTrustMeAnno && varargElemType != null &&
908                             types.isReifiable(varargElemType)) {
909             warnUnsafeVararg(tree, Warnings.VarargsRedundantTrustmeAnno(
910                                 syms.trustMeType.tsym,
911                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
912         }
913         else if (!hasTrustMeAnno && varargElemType != null &&
914                 !types.isReifiable(varargElemType)) {
915             warnUnchecked(tree.params.head.pos(), Warnings.UncheckedVarargsNonReifiableType(varargElemType));
916         }
917     }
918     //where
isTrustMeAllowedOnMethod(Symbol s)919         private boolean isTrustMeAllowedOnMethod(Symbol s) {
920             return (s.flags() & VARARGS) != 0 &&
921                 (s.isConstructor() ||
922                     (s.flags() & (STATIC | FINAL |
923                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
924         }
925 
checkLocalVarType(DiagnosticPosition pos, Type t, Name name)926     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
927         //check that resulting type is not the null type
928         if (t.hasTag(BOT)) {
929             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
930             return types.createErrorType(t);
931         } else if (t.hasTag(VOID)) {
932             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
933             return types.createErrorType(t);
934         }
935 
936         //upward project the initializer type
937         return types.upward(t, types.captures(t));
938     }
939 
checkMethod(final Type mtype, final Symbol sym, final Env<AttrContext> env, final List<JCExpression> argtrees, final List<Type> argtypes, final boolean useVarargs, InferenceContext inferenceContext)940     Type checkMethod(final Type mtype,
941             final Symbol sym,
942             final Env<AttrContext> env,
943             final List<JCExpression> argtrees,
944             final List<Type> argtypes,
945             final boolean useVarargs,
946             InferenceContext inferenceContext) {
947         // System.out.println("call   : " + env.tree);
948         // System.out.println("method : " + owntype);
949         // System.out.println("actuals: " + argtypes);
950         if (inferenceContext.free(mtype)) {
951             inferenceContext.addFreeTypeListener(List.of(mtype),
952                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
953             return mtype;
954         }
955         Type owntype = mtype;
956         List<Type> formals = owntype.getParameterTypes();
957         List<Type> nonInferred = sym.type.getParameterTypes();
958         if (nonInferred.length() != formals.length()) nonInferred = formals;
959         Type last = useVarargs ? formals.last() : null;
960         if (sym.name == names.init && sym.owner == syms.enumSym) {
961             formals = formals.tail.tail;
962             nonInferred = nonInferred.tail.tail;
963         }
964         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
965             formals = formals.tail;
966             nonInferred = nonInferred.tail;
967         }
968         List<JCExpression> args = argtrees;
969         if (args != null) {
970             //this is null when type-checking a method reference
971             while (formals.head != last) {
972                 JCTree arg = args.head;
973                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
974                 assertConvertible(arg, arg.type, formals.head, warn);
975                 args = args.tail;
976                 formals = formals.tail;
977                 nonInferred = nonInferred.tail;
978             }
979             if (useVarargs) {
980                 Type varArg = types.elemtype(last);
981                 while (args.tail != null) {
982                     JCTree arg = args.head;
983                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
984                     assertConvertible(arg, arg.type, varArg, warn);
985                     args = args.tail;
986                 }
987             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
988                 // non-varargs call to varargs method
989                 Type varParam = owntype.getParameterTypes().last();
990                 Type lastArg = argtypes.last();
991                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
992                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
993                     log.warning(argtrees.last().pos(),
994                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
995             }
996         }
997         if (useVarargs) {
998             Type argtype = owntype.getParameterTypes().last();
999             if (!types.isReifiable(argtype) &&
1000                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
1001                  !isTrustMeAllowedOnMethod(sym))) {
1002                 warnUnchecked(env.tree.pos(), Warnings.UncheckedGenericArrayCreation(argtype));
1003             }
1004             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
1005          }
1006          return owntype;
1007     }
1008     //where
assertConvertible(JCTree tree, Type actual, Type formal, Warner warn)1009     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
1010         if (types.isConvertible(actual, formal, warn))
1011             return;
1012 
1013         if (formal.isCompound()
1014             && types.isSubtype(actual, types.supertype(formal))
1015             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1016             return;
1017     }
1018 
1019     /**
1020      * Check that type 't' is a valid instantiation of a generic class
1021      * (see JLS 4.5)
1022      *
1023      * @param t class type to be checked
1024      * @return true if 't' is well-formed
1025      */
checkValidGenericType(Type t)1026     public boolean checkValidGenericType(Type t) {
1027         return firstIncompatibleTypeArg(t) == null;
1028     }
1029     //WHERE
firstIncompatibleTypeArg(Type type)1030         private Type firstIncompatibleTypeArg(Type type) {
1031             List<Type> formals = type.tsym.type.allparams();
1032             List<Type> actuals = type.allparams();
1033             List<Type> args = type.getTypeArguments();
1034             List<Type> forms = type.tsym.type.getTypeArguments();
1035             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1036 
1037             // For matching pairs of actual argument types `a' and
1038             // formal type parameters with declared bound `b' ...
1039             while (args.nonEmpty() && forms.nonEmpty()) {
1040                 // exact type arguments needs to know their
1041                 // bounds (for upper and lower bound
1042                 // calculations).  So we create new bounds where
1043                 // type-parameters are replaced with actuals argument types.
1044                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1045                 args = args.tail;
1046                 forms = forms.tail;
1047             }
1048 
1049             args = type.getTypeArguments();
1050             List<Type> tvars_cap = types.substBounds(formals,
1051                                       formals,
1052                                       types.capture(type).allparams());
1053             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1054                 // Let the actual arguments know their bound
1055                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1056                 args = args.tail;
1057                 tvars_cap = tvars_cap.tail;
1058             }
1059 
1060             args = type.getTypeArguments();
1061             List<Type> bounds = bounds_buf.toList();
1062 
1063             while (args.nonEmpty() && bounds.nonEmpty()) {
1064                 Type actual = args.head;
1065                 if (!isTypeArgErroneous(actual) &&
1066                         !bounds.head.isErroneous() &&
1067                         !checkExtends(actual, bounds.head)) {
1068                     return args.head;
1069                 }
1070                 args = args.tail;
1071                 bounds = bounds.tail;
1072             }
1073 
1074             args = type.getTypeArguments();
1075             bounds = bounds_buf.toList();
1076 
1077             for (Type arg : types.capture(type).getTypeArguments()) {
1078                 if (arg.hasTag(TYPEVAR) &&
1079                         arg.getUpperBound().isErroneous() &&
1080                         !bounds.head.isErroneous() &&
1081                         !isTypeArgErroneous(args.head)) {
1082                     return args.head;
1083                 }
1084                 bounds = bounds.tail;
1085                 args = args.tail;
1086             }
1087 
1088             return null;
1089         }
1090         //where
isTypeArgErroneous(Type t)1091         boolean isTypeArgErroneous(Type t) {
1092             return isTypeArgErroneous.visit(t);
1093         }
1094 
1095         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1096             public Boolean visitType(Type t, Void s) {
1097                 return t.isErroneous();
1098             }
1099             @Override
1100             public Boolean visitTypeVar(TypeVar t, Void s) {
1101                 return visit(t.getUpperBound());
1102             }
1103             @Override
1104             public Boolean visitCapturedType(CapturedType t, Void s) {
1105                 return visit(t.getUpperBound()) ||
1106                         visit(t.getLowerBound());
1107             }
1108             @Override
1109             public Boolean visitWildcardType(WildcardType t, Void s) {
1110                 return visit(t.type);
1111             }
1112         };
1113 
1114     /** Check that given modifiers are legal for given symbol and
1115      *  return modifiers together with any implicit modifiers for that symbol.
1116      *  Warning: we can't use flags() here since this method
1117      *  is called during class enter, when flags() would cause a premature
1118      *  completion.
1119      *  @param pos           Position to be used for error reporting.
1120      *  @param flags         The set of modifiers given in a definition.
1121      *  @param sym           The defined symbol.
1122      */
checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree)1123     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1124         long mask;
1125         long implicit = 0;
1126 
1127         switch (sym.kind) {
1128         case VAR:
1129             if (TreeInfo.isReceiverParam(tree))
1130                 mask = ReceiverParamFlags;
1131             else if (sym.owner.kind != TYP)
1132                 mask = LocalVarFlags;
1133             else if ((sym.owner.flags_field & INTERFACE) != 0)
1134                 mask = implicit = InterfaceVarFlags;
1135             else
1136                 mask = VarFlags;
1137             break;
1138         case MTH:
1139             if (sym.name == names.init) {
1140                 if ((sym.owner.flags_field & ENUM) != 0) {
1141                     // enum constructors cannot be declared public or
1142                     // protected and must be implicitly or explicitly
1143                     // private
1144                     implicit = PRIVATE;
1145                     mask = PRIVATE;
1146                 } else
1147                     mask = ConstructorFlags;
1148             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1149                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1150                     mask = AnnotationTypeElementMask;
1151                     implicit = PUBLIC | ABSTRACT;
1152                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1153                     mask = InterfaceMethodMask;
1154                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1155                     if ((flags & DEFAULT) != 0) {
1156                         implicit |= ABSTRACT;
1157                     }
1158                 } else {
1159                     mask = implicit = InterfaceMethodFlags;
1160                 }
1161             } else {
1162                 mask = MethodFlags;
1163             }
1164             // Imply STRICTFP if owner has STRICTFP set.
1165             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1166                 ((flags) & Flags.DEFAULT) != 0)
1167                 implicit |= sym.owner.flags_field & STRICTFP;
1168             break;
1169         case TYP:
1170             if (sym.isLocal()) {
1171                 mask = LocalClassFlags;
1172                 if ((sym.owner.flags_field & STATIC) == 0 &&
1173                     (flags & ENUM) != 0)
1174                     log.error(pos, Errors.EnumsMustBeStatic);
1175             } else if (sym.owner.kind == TYP) {
1176                 mask = MemberClassFlags;
1177                 if (sym.owner.owner.kind == PCK ||
1178                     (sym.owner.flags_field & STATIC) != 0)
1179                     mask |= STATIC;
1180                 else if ((flags & ENUM) != 0)
1181                     log.error(pos, Errors.EnumsMustBeStatic);
1182                 // Nested interfaces and enums are always STATIC (Spec ???)
1183                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1184             } else {
1185                 mask = ClassFlags;
1186             }
1187             // Interfaces are always ABSTRACT
1188             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1189 
1190             if ((flags & ENUM) != 0) {
1191                 // enums can't be declared abstract or final
1192                 mask &= ~(ABSTRACT | FINAL);
1193                 implicit |= implicitEnumFinalFlag(tree);
1194             }
1195             // Imply STRICTFP if owner has STRICTFP set.
1196             implicit |= sym.owner.flags_field & STRICTFP;
1197             break;
1198         default:
1199             throw new AssertionError();
1200         }
1201         long illegal = flags & ExtendedStandardFlags & ~mask;
1202         if (illegal != 0) {
1203             if ((illegal & INTERFACE) != 0) {
1204                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1205                 mask |= INTERFACE;
1206             }
1207             else {
1208                 log.error(pos,
1209                           Errors.ModNotAllowedHere(asFlagSet(illegal)));
1210             }
1211         }
1212         else if ((sym.kind == TYP ||
1213                   // ISSUE: Disallowing abstract&private is no longer appropriate
1214                   // in the presence of inner classes. Should it be deleted here?
1215                   checkDisjoint(pos, flags,
1216                                 ABSTRACT,
1217                                 PRIVATE | STATIC | DEFAULT))
1218                  &&
1219                  checkDisjoint(pos, flags,
1220                                 STATIC | PRIVATE,
1221                                 DEFAULT)
1222                  &&
1223                  checkDisjoint(pos, flags,
1224                                ABSTRACT | INTERFACE,
1225                                FINAL | NATIVE | SYNCHRONIZED)
1226                  &&
1227                  checkDisjoint(pos, flags,
1228                                PUBLIC,
1229                                PRIVATE | PROTECTED)
1230                  &&
1231                  checkDisjoint(pos, flags,
1232                                PRIVATE,
1233                                PUBLIC | PROTECTED)
1234                  &&
1235                  checkDisjoint(pos, flags,
1236                                FINAL,
1237                                VOLATILE)
1238                  &&
1239                  (sym.kind == TYP ||
1240                   checkDisjoint(pos, flags,
1241                                 ABSTRACT | NATIVE,
1242                                 STRICTFP))) {
1243             // skip
1244         }
1245         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1246     }
1247 
1248 
1249     /** Determine if this enum should be implicitly final.
1250      *
1251      *  If the enum has no specialized enum contants, it is final.
1252      *
1253      *  If the enum does have specialized enum contants, it is
1254      *  <i>not</i> final.
1255      */
implicitEnumFinalFlag(JCTree tree)1256     private long implicitEnumFinalFlag(JCTree tree) {
1257         if (!tree.hasTag(CLASSDEF)) return 0;
1258         class SpecialTreeVisitor extends JCTree.Visitor {
1259             boolean specialized;
1260             SpecialTreeVisitor() {
1261                 this.specialized = false;
1262             }
1263 
1264             @Override
1265             public void visitTree(JCTree tree) { /* no-op */ }
1266 
1267             @Override
1268             public void visitVarDef(JCVariableDecl tree) {
1269                 if ((tree.mods.flags & ENUM) != 0) {
1270                     if (tree.init instanceof JCNewClass &&
1271                         ((JCNewClass) tree.init).def != null) {
1272                         specialized = true;
1273                     }
1274                 }
1275             }
1276         }
1277 
1278         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1279         JCClassDecl cdef = (JCClassDecl) tree;
1280         for (JCTree defs: cdef.defs) {
1281             defs.accept(sts);
1282             if (sts.specialized) return 0;
1283         }
1284         return FINAL;
1285     }
1286 
1287 /* *************************************************************************
1288  * Type Validation
1289  **************************************************************************/
1290 
1291     /** Validate a type expression. That is,
1292      *  check that all type arguments of a parametric type are within
1293      *  their bounds. This must be done in a second phase after type attribution
1294      *  since a class might have a subclass as type parameter bound. E.g:
1295      *
1296      *  <pre>{@code
1297      *  class B<A extends C> { ... }
1298      *  class C extends B<C> { ... }
1299      *  }</pre>
1300      *
1301      *  and we can't make sure that the bound is already attributed because
1302      *  of possible cycles.
1303      *
1304      * Visitor method: Validate a type expression, if it is not null, catching
1305      *  and reporting any completion failures.
1306      */
validate(JCTree tree, Env<AttrContext> env)1307     void validate(JCTree tree, Env<AttrContext> env) {
1308         validate(tree, env, true);
1309     }
validate(JCTree tree, Env<AttrContext> env, boolean checkRaw)1310     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1311         new Validator(env).validateTree(tree, checkRaw, true);
1312     }
1313 
1314     /** Visitor method: Validate a list of type expressions.
1315      */
validate(List<? extends JCTree> trees, Env<AttrContext> env)1316     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1317         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1318             validate(l.head, env);
1319     }
1320 
1321     /** A visitor class for type validation.
1322      */
1323     class Validator extends JCTree.Visitor {
1324 
1325         boolean checkRaw;
1326         boolean isOuter;
1327         Env<AttrContext> env;
1328 
Validator(Env<AttrContext> env)1329         Validator(Env<AttrContext> env) {
1330             this.env = env;
1331         }
1332 
1333         @Override
visitTypeArray(JCArrayTypeTree tree)1334         public void visitTypeArray(JCArrayTypeTree tree) {
1335             validateTree(tree.elemtype, checkRaw, isOuter);
1336         }
1337 
1338         @Override
visitTypeApply(JCTypeApply tree)1339         public void visitTypeApply(JCTypeApply tree) {
1340             if (tree.type.hasTag(CLASS)) {
1341                 List<JCExpression> args = tree.arguments;
1342                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1343 
1344                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1345                 if (incompatibleArg != null) {
1346                     for (JCTree arg : tree.arguments) {
1347                         if (arg.type == incompatibleArg) {
1348                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1349                         }
1350                         forms = forms.tail;
1351                      }
1352                  }
1353 
1354                 forms = tree.type.tsym.type.getTypeArguments();
1355 
1356                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1357 
1358                 // For matching pairs of actual argument types `a' and
1359                 // formal type parameters with declared bound `b' ...
1360                 while (args.nonEmpty() && forms.nonEmpty()) {
1361                     validateTree(args.head,
1362                             !(isOuter && is_java_lang_Class),
1363                             false);
1364                     args = args.tail;
1365                     forms = forms.tail;
1366                 }
1367 
1368                 // Check that this type is either fully parameterized, or
1369                 // not parameterized at all.
1370                 if (tree.type.getEnclosingType().isRaw())
1371                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1372                 if (tree.clazz.hasTag(SELECT))
1373                     visitSelectInternal((JCFieldAccess)tree.clazz);
1374             }
1375         }
1376 
1377         @Override
visitTypeParameter(JCTypeParameter tree)1378         public void visitTypeParameter(JCTypeParameter tree) {
1379             validateTrees(tree.bounds, true, isOuter);
1380             checkClassBounds(tree.pos(), tree.type);
1381         }
1382 
1383         @Override
visitWildcard(JCWildcard tree)1384         public void visitWildcard(JCWildcard tree) {
1385             if (tree.inner != null)
1386                 validateTree(tree.inner, true, isOuter);
1387         }
1388 
1389         @Override
visitSelect(JCFieldAccess tree)1390         public void visitSelect(JCFieldAccess tree) {
1391             if (tree.type.hasTag(CLASS)) {
1392                 visitSelectInternal(tree);
1393 
1394                 // Check that this type is either fully parameterized, or
1395                 // not parameterized at all.
1396                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1397                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1398             }
1399         }
1400 
visitSelectInternal(JCFieldAccess tree)1401         public void visitSelectInternal(JCFieldAccess tree) {
1402             if (tree.type.tsym.isStatic() &&
1403                 tree.selected.type.isParameterized()) {
1404                 // The enclosing type is not a class, so we are
1405                 // looking at a static member type.  However, the
1406                 // qualifying expression is parameterized.
1407                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1408             } else {
1409                 // otherwise validate the rest of the expression
1410                 tree.selected.accept(this);
1411             }
1412         }
1413 
1414         @Override
visitAnnotatedType(JCAnnotatedType tree)1415         public void visitAnnotatedType(JCAnnotatedType tree) {
1416             tree.underlyingType.accept(this);
1417         }
1418 
1419         @Override
visitTypeIdent(JCPrimitiveTypeTree that)1420         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1421             if (that.type.hasTag(TypeTag.VOID)) {
1422                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1423             }
1424             super.visitTypeIdent(that);
1425         }
1426 
1427         /** Default visitor method: do nothing.
1428          */
1429         @Override
visitTree(JCTree tree)1430         public void visitTree(JCTree tree) {
1431         }
1432 
validateTree(JCTree tree, boolean checkRaw, boolean isOuter)1433         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1434             if (tree != null) {
1435                 boolean prevCheckRaw = this.checkRaw;
1436                 this.checkRaw = checkRaw;
1437                 this.isOuter = isOuter;
1438 
1439                 try {
1440                     tree.accept(this);
1441                     if (checkRaw)
1442                         checkRaw(tree, env);
1443                 } catch (CompletionFailure ex) {
1444                     completionError(tree.pos(), ex);
1445                 } finally {
1446                     this.checkRaw = prevCheckRaw;
1447                 }
1448             }
1449         }
1450 
validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter)1451         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1452             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1453                 validateTree(l.head, checkRaw, isOuter);
1454         }
1455     }
1456 
checkRaw(JCTree tree, Env<AttrContext> env)1457     void checkRaw(JCTree tree, Env<AttrContext> env) {
1458         if (lint.isEnabled(LintCategory.RAW) &&
1459             tree.type.hasTag(CLASS) &&
1460             !TreeInfo.isDiamond(tree) &&
1461             !withinAnonConstr(env) &&
1462             tree.type.isRaw()) {
1463             log.warning(LintCategory.RAW,
1464                     tree.pos(), Warnings.RawClassUse(tree.type, tree.type.tsym.type));
1465         }
1466     }
1467     //where
withinAnonConstr(Env<AttrContext> env)1468         private boolean withinAnonConstr(Env<AttrContext> env) {
1469             return env.enclClass.name.isEmpty() &&
1470                     env.enclMethod != null && env.enclMethod.name == names.init;
1471         }
1472 
1473 /* *************************************************************************
1474  * Exception checking
1475  **************************************************************************/
1476 
1477     /* The following methods treat classes as sets that contain
1478      * the class itself and all their subclasses
1479      */
1480 
1481     /** Is given type a subtype of some of the types in given list?
1482      */
subset(Type t, List<Type> ts)1483     boolean subset(Type t, List<Type> ts) {
1484         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1485             if (types.isSubtype(t, l.head)) return true;
1486         return false;
1487     }
1488 
1489     /** Is given type a subtype or supertype of
1490      *  some of the types in given list?
1491      */
intersects(Type t, List<Type> ts)1492     boolean intersects(Type t, List<Type> ts) {
1493         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1494             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1495         return false;
1496     }
1497 
1498     /** Add type set to given type list, unless it is a subclass of some class
1499      *  in the list.
1500      */
incl(Type t, List<Type> ts)1501     List<Type> incl(Type t, List<Type> ts) {
1502         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1503     }
1504 
1505     /** Remove type set from type set list.
1506      */
excl(Type t, List<Type> ts)1507     List<Type> excl(Type t, List<Type> ts) {
1508         if (ts.isEmpty()) {
1509             return ts;
1510         } else {
1511             List<Type> ts1 = excl(t, ts.tail);
1512             if (types.isSubtype(ts.head, t)) return ts1;
1513             else if (ts1 == ts.tail) return ts;
1514             else return ts1.prepend(ts.head);
1515         }
1516     }
1517 
1518     /** Form the union of two type set lists.
1519      */
union(List<Type> ts1, List<Type> ts2)1520     List<Type> union(List<Type> ts1, List<Type> ts2) {
1521         List<Type> ts = ts1;
1522         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1523             ts = incl(l.head, ts);
1524         return ts;
1525     }
1526 
1527     /** Form the difference of two type lists.
1528      */
diff(List<Type> ts1, List<Type> ts2)1529     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1530         List<Type> ts = ts1;
1531         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1532             ts = excl(l.head, ts);
1533         return ts;
1534     }
1535 
1536     /** Form the intersection of two type lists.
1537      */
intersect(List<Type> ts1, List<Type> ts2)1538     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1539         List<Type> ts = List.nil();
1540         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1541             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1542         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1543             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1544         return ts;
1545     }
1546 
1547     /** Is exc an exception symbol that need not be declared?
1548      */
isUnchecked(ClassSymbol exc)1549     boolean isUnchecked(ClassSymbol exc) {
1550         return
1551             exc.kind == ERR ||
1552             exc.isSubClass(syms.errorType.tsym, types) ||
1553             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1554     }
1555 
1556     /** Is exc an exception type that need not be declared?
1557      */
isUnchecked(Type exc)1558     boolean isUnchecked(Type exc) {
1559         return
1560             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1561             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1562             exc.hasTag(BOT);
1563     }
1564 
isChecked(Type exc)1565     boolean isChecked(Type exc) {
1566         return !isUnchecked(exc);
1567     }
1568 
1569     /** Same, but handling completion failures.
1570      */
isUnchecked(DiagnosticPosition pos, Type exc)1571     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1572         try {
1573             return isUnchecked(exc);
1574         } catch (CompletionFailure ex) {
1575             completionError(pos, ex);
1576             return true;
1577         }
1578     }
1579 
1580     /** Is exc handled by given exception list?
1581      */
isHandled(Type exc, List<Type> handled)1582     boolean isHandled(Type exc, List<Type> handled) {
1583         return isUnchecked(exc) || subset(exc, handled);
1584     }
1585 
1586     /** Return all exceptions in thrown list that are not in handled list.
1587      *  @param thrown     The list of thrown exceptions.
1588      *  @param handled    The list of handled exceptions.
1589      */
unhandled(List<Type> thrown, List<Type> handled)1590     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1591         List<Type> unhandled = List.nil();
1592         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1593             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1594         return unhandled;
1595     }
1596 
1597 /* *************************************************************************
1598  * Overriding/Implementation checking
1599  **************************************************************************/
1600 
1601     /** The level of access protection given by a flag set,
1602      *  where PRIVATE is highest and PUBLIC is lowest.
1603      */
protection(long flags)1604     static int protection(long flags) {
1605         switch ((short)(flags & AccessFlags)) {
1606         case PRIVATE: return 3;
1607         case PROTECTED: return 1;
1608         default:
1609         case PUBLIC: return 0;
1610         case 0: return 2;
1611         }
1612     }
1613 
1614     /** A customized "cannot override" error message.
1615      *  @param m      The overriding method.
1616      *  @param other  The overridden method.
1617      *  @return       An internationalized string.
1618      */
cannotOverride(MethodSymbol m, MethodSymbol other)1619     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1620         Symbol mloc = m.location();
1621         Symbol oloc = other.location();
1622 
1623         if ((other.owner.flags() & INTERFACE) == 0)
1624             return Fragments.CantOverride(m, mloc, other, oloc);
1625         else if ((m.owner.flags() & INTERFACE) == 0)
1626             return Fragments.CantImplement(m, mloc, other, oloc);
1627         else
1628             return Fragments.ClashesWith(m, mloc, other, oloc);
1629     }
1630 
1631     /** A customized "override" warning message.
1632      *  @param m      The overriding method.
1633      *  @param other  The overridden method.
1634      *  @return       An internationalized string.
1635      */
uncheckedOverrides(MethodSymbol m, MethodSymbol other)1636     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1637         Symbol mloc = m.location();
1638         Symbol oloc = other.location();
1639 
1640         if ((other.owner.flags() & INTERFACE) == 0)
1641             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1642         else if ((m.owner.flags() & INTERFACE) == 0)
1643             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1644         else
1645             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1646     }
1647 
1648     /** A customized "override" warning message.
1649      *  @param m      The overriding method.
1650      *  @param other  The overridden method.
1651      *  @return       An internationalized string.
1652      */
varargsOverrides(MethodSymbol m, MethodSymbol other)1653     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1654         Symbol mloc = m.location();
1655         Symbol oloc = other.location();
1656 
1657         if ((other.owner.flags() & INTERFACE) == 0)
1658             return Fragments.VarargsOverride(m, mloc, other, oloc);
1659         else  if ((m.owner.flags() & INTERFACE) == 0)
1660             return Fragments.VarargsImplement(m, mloc, other, oloc);
1661         else
1662             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1663     }
1664 
1665     /** Check that this method conforms with overridden method 'other'.
1666      *  where `origin' is the class where checking started.
1667      *  Complications:
1668      *  (1) Do not check overriding of synthetic methods
1669      *      (reason: they might be final).
1670      *      todo: check whether this is still necessary.
1671      *  (2) Admit the case where an interface proxy throws fewer exceptions
1672      *      than the method it implements. Augment the proxy methods with the
1673      *      undeclared exceptions in this case.
1674      *  (3) When generics are enabled, admit the case where an interface proxy
1675      *      has a result type
1676      *      extended by the result type of the method it implements.
1677      *      Change the proxies result type to the smaller type in this case.
1678      *
1679      *  @param tree         The tree from which positions
1680      *                      are extracted for errors.
1681      *  @param m            The overriding method.
1682      *  @param other        The overridden method.
1683      *  @param origin       The class of which the overriding method
1684      *                      is a member.
1685      */
checkOverride(JCTree tree, MethodSymbol m, MethodSymbol other, ClassSymbol origin)1686     void checkOverride(JCTree tree,
1687                        MethodSymbol m,
1688                        MethodSymbol other,
1689                        ClassSymbol origin) {
1690         // Don't check overriding of synthetic methods or by bridge methods.
1691         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1692             return;
1693         }
1694 
1695         // Error if static method overrides instance method (JLS 8.4.6.2).
1696         if ((m.flags() & STATIC) != 0 &&
1697                    (other.flags() & STATIC) == 0) {
1698             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1699                       Errors.OverrideStatic(cannotOverride(m, other)));
1700             m.flags_field |= BAD_OVERRIDE;
1701             return;
1702         }
1703 
1704         // Error if instance method overrides static or final
1705         // method (JLS 8.4.6.1).
1706         if ((other.flags() & FINAL) != 0 ||
1707                  (m.flags() & STATIC) == 0 &&
1708                  (other.flags() & STATIC) != 0) {
1709             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1710                       Errors.OverrideMeth(cannotOverride(m, other),
1711                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1712             m.flags_field |= BAD_OVERRIDE;
1713             return;
1714         }
1715 
1716         if ((m.owner.flags() & ANNOTATION) != 0) {
1717             // handled in validateAnnotationMethod
1718             return;
1719         }
1720 
1721         // Error if overriding method has weaker access (JLS 8.4.6.3).
1722         if (protection(m.flags()) > protection(other.flags())) {
1723             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1724                       (other.flags() & AccessFlags) == 0 ?
1725                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1726                                                           "package") :
1727                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1728                                                           asFlagSet(other.flags() & AccessFlags)));
1729             m.flags_field |= BAD_OVERRIDE;
1730             return;
1731         }
1732 
1733         Type mt = types.memberType(origin.type, m);
1734         Type ot = types.memberType(origin.type, other);
1735         // Error if overriding result type is different
1736         // (or, in the case of generics mode, not a subtype) of
1737         // overridden result type. We have to rename any type parameters
1738         // before comparing types.
1739         List<Type> mtvars = mt.getTypeArguments();
1740         List<Type> otvars = ot.getTypeArguments();
1741         Type mtres = mt.getReturnType();
1742         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1743 
1744         overrideWarner.clear();
1745         boolean resultTypesOK =
1746             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1747         if (!resultTypesOK) {
1748             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1749                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1750                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1751                                         other.location()), mtres, otres));
1752                 m.flags_field |= BAD_OVERRIDE;
1753             } else {
1754                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1755                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1756                 m.flags_field |= BAD_OVERRIDE;
1757             }
1758             return;
1759         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1760             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1761                     Warnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1762         }
1763 
1764         // Error if overriding method throws an exception not reported
1765         // by overridden method.
1766         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1767         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1768         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1769         if (unhandledErased.nonEmpty()) {
1770             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1771                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1772             m.flags_field |= BAD_OVERRIDE;
1773             return;
1774         }
1775         else if (unhandledUnerased.nonEmpty()) {
1776             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1777                           Warnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1778             return;
1779         }
1780 
1781         // Optional warning if varargs don't agree
1782         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1783             && lint.isEnabled(LintCategory.OVERRIDES)) {
1784             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1785                         ((m.flags() & Flags.VARARGS) != 0)
1786                         ? Warnings.OverrideVarargsMissing(varargsOverrides(m, other))
1787                         : Warnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1788         }
1789 
1790         // Warn if instance method overrides bridge method (compiler spec ??)
1791         if ((other.flags() & BRIDGE) != 0) {
1792             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1793                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1794         }
1795 
1796         // Warn if a deprecated method overridden by a non-deprecated one.
1797         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1798             Lint prevLint = setLint(lint.augment(m));
1799             try {
1800                 checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1801             } finally {
1802                 setLint(prevLint);
1803             }
1804         }
1805     }
1806     // where
isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin)1807         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1808             // If the method, m, is defined in an interface, then ignore the issue if the method
1809             // is only inherited via a supertype and also implemented in the supertype,
1810             // because in that case, we will rediscover the issue when examining the method
1811             // in the supertype.
1812             // If the method, m, is not defined in an interface, then the only time we need to
1813             // address the issue is when the method is the supertype implemementation: any other
1814             // case, we will have dealt with when examining the supertype classes
1815             ClassSymbol mc = m.enclClass();
1816             Type st = types.supertype(origin.type);
1817             if (!st.hasTag(CLASS))
1818                 return true;
1819             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1820 
1821             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1822                 List<Type> intfs = types.interfaces(origin.type);
1823                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1824             }
1825             else
1826                 return (stimpl != m);
1827         }
1828 
1829 
1830     // used to check if there were any unchecked conversions
1831     Warner overrideWarner = new Warner();
1832 
1833     /** Check that a class does not inherit two concrete methods
1834      *  with the same signature.
1835      *  @param pos          Position to be used for error reporting.
1836      *  @param site         The class type to be checked.
1837      */
checkCompatibleConcretes(DiagnosticPosition pos, Type site)1838     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1839         Type sup = types.supertype(site);
1840         if (!sup.hasTag(CLASS)) return;
1841 
1842         for (Type t1 = sup;
1843              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1844              t1 = types.supertype(t1)) {
1845             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1846                 if (s1.kind != MTH ||
1847                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1848                     !s1.isInheritedIn(site.tsym, types) ||
1849                     ((MethodSymbol)s1).implementation(site.tsym,
1850                                                       types,
1851                                                       true) != s1)
1852                     continue;
1853                 Type st1 = types.memberType(t1, s1);
1854                 int s1ArgsLength = st1.getParameterTypes().length();
1855                 if (st1 == s1.type) continue;
1856 
1857                 for (Type t2 = sup;
1858                      t2.hasTag(CLASS);
1859                      t2 = types.supertype(t2)) {
1860                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1861                         if (s2 == s1 ||
1862                             s2.kind != MTH ||
1863                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1864                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1865                             !s2.isInheritedIn(site.tsym, types) ||
1866                             ((MethodSymbol)s2).implementation(site.tsym,
1867                                                               types,
1868                                                               true) != s2)
1869                             continue;
1870                         Type st2 = types.memberType(t2, s2);
1871                         if (types.overrideEquivalent(st1, st2))
1872                             log.error(pos,
1873                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
1874                     }
1875                 }
1876             }
1877         }
1878     }
1879 
1880     /** Check that classes (or interfaces) do not each define an abstract
1881      *  method with same name and arguments but incompatible return types.
1882      *  @param pos          Position to be used for error reporting.
1883      *  @param t1           The first argument type.
1884      *  @param t2           The second argument type.
1885      */
checkCompatibleAbstracts(DiagnosticPosition pos, Type t1, Type t2, Type site)1886     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1887                                             Type t1,
1888                                             Type t2,
1889                                             Type site) {
1890         if ((site.tsym.flags() & COMPOUND) != 0) {
1891             // special case for intersections: need to eliminate wildcards in supertypes
1892             t1 = types.capture(t1);
1893             t2 = types.capture(t2);
1894         }
1895         return firstIncompatibility(pos, t1, t2, site) == null;
1896     }
1897 
1898     /** Return the first method which is defined with same args
1899      *  but different return types in two given interfaces, or null if none
1900      *  exists.
1901      *  @param t1     The first type.
1902      *  @param t2     The second type.
1903      *  @param site   The most derived type.
1904      *  @returns symbol from t2 that conflicts with one in t1.
1905      */
firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site)1906     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1907         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1908         closure(t1, interfaces1);
1909         Map<TypeSymbol,Type> interfaces2;
1910         if (t1 == t2)
1911             interfaces2 = interfaces1;
1912         else
1913             closure(t2, interfaces1, interfaces2 = new HashMap<>());
1914 
1915         for (Type t3 : interfaces1.values()) {
1916             for (Type t4 : interfaces2.values()) {
1917                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1918                 if (s != null) return s;
1919             }
1920         }
1921         return null;
1922     }
1923 
1924     /** Compute all the supertypes of t, indexed by type symbol. */
closure(Type t, Map<TypeSymbol,Type> typeMap)1925     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1926         if (!t.hasTag(CLASS)) return;
1927         if (typeMap.put(t.tsym, t) == null) {
1928             closure(types.supertype(t), typeMap);
1929             for (Type i : types.interfaces(t))
1930                 closure(i, typeMap);
1931         }
1932     }
1933 
1934     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap)1935     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1936         if (!t.hasTag(CLASS)) return;
1937         if (typesSkip.get(t.tsym) != null) return;
1938         if (typeMap.put(t.tsym, t) == null) {
1939             closure(types.supertype(t), typesSkip, typeMap);
1940             for (Type i : types.interfaces(t))
1941                 closure(i, typesSkip, typeMap);
1942         }
1943     }
1944 
1945     /** Return the first method in t2 that conflicts with a method from t1. */
firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site)1946     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1947         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1948             Type st1 = null;
1949             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1950                     (s1.flags() & SYNTHETIC) != 0) continue;
1951             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1952             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1953             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1954                 if (s1 == s2) continue;
1955                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1956                         (s2.flags() & SYNTHETIC) != 0) continue;
1957                 if (st1 == null) st1 = types.memberType(t1, s1);
1958                 Type st2 = types.memberType(t2, s2);
1959                 if (types.overrideEquivalent(st1, st2)) {
1960                     List<Type> tvars1 = st1.getTypeArguments();
1961                     List<Type> tvars2 = st2.getTypeArguments();
1962                     Type rt1 = st1.getReturnType();
1963                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1964                     boolean compat =
1965                         types.isSameType(rt1, rt2) ||
1966                         !rt1.isPrimitiveOrVoid() &&
1967                         !rt2.isPrimitiveOrVoid() &&
1968                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1969                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1970                          checkCommonOverriderIn(s1,s2,site);
1971                     if (!compat) {
1972                         log.error(pos, Errors.TypesIncompatible(t1, t2,
1973                                 Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
1974                         return s2;
1975                     }
1976                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1977                         !checkCommonOverriderIn(s1, s2, site)) {
1978                     log.error(pos, Errors.NameClashSameErasureNoOverride(
1979                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
1980                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
1981                     return s2;
1982                 }
1983             }
1984         }
1985         return null;
1986     }
1987     //WHERE
checkCommonOverriderIn(Symbol s1, Symbol s2, Type site)1988     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1989         Map<TypeSymbol,Type> supertypes = new HashMap<>();
1990         Type st1 = types.memberType(site, s1);
1991         Type st2 = types.memberType(site, s2);
1992         closure(site, supertypes);
1993         for (Type t : supertypes.values()) {
1994             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1995                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1996                 Type st3 = types.memberType(site,s3);
1997                 if (types.overrideEquivalent(st3, st1) &&
1998                         types.overrideEquivalent(st3, st2) &&
1999                         types.returnTypeSubstitutable(st3, st1) &&
2000                         types.returnTypeSubstitutable(st3, st2)) {
2001                     return true;
2002                 }
2003             }
2004         }
2005         return false;
2006     }
2007 
2008     /** Check that a given method conforms with any method it overrides.
2009      *  @param tree         The tree from which positions are extracted
2010      *                      for errors.
2011      *  @param m            The overriding method.
2012      */
checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m)2013     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2014         ClassSymbol origin = (ClassSymbol)m.owner;
2015         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
2016             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2017                 log.error(tree.pos(), Errors.EnumNoFinalize);
2018                 return;
2019             }
2020         for (Type t = origin.type; t.hasTag(CLASS);
2021              t = types.supertype(t)) {
2022             if (t != origin.type) {
2023                 checkOverride(tree, t, origin, m);
2024             }
2025             for (Type t2 : types.interfaces(t)) {
2026                 checkOverride(tree, t2, origin, m);
2027             }
2028         }
2029 
2030         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2031         // Check if this method must override a super method due to being annotated with @Override
2032         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2033         // be treated "as if as they were annotated" with @Override.
2034         boolean mustOverride = explicitOverride ||
2035                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2036         if (mustOverride && !isOverrider(m)) {
2037             DiagnosticPosition pos = tree.pos();
2038             for (JCAnnotation a : tree.getModifiers().annotations) {
2039                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2040                     pos = a.pos();
2041                     break;
2042                 }
2043             }
2044             log.error(pos,
2045                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride : Errors.MethodDoesNotOverrideSuperclass) :
2046                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2047         }
2048     }
2049 
checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m)2050     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2051         TypeSymbol c = site.tsym;
2052         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2053             if (m.overrides(sym, origin, types, false)) {
2054                 if ((sym.flags() & ABSTRACT) == 0) {
2055                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2056                 }
2057             }
2058         }
2059     }
2060 
2061     private Filter<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.accepts(s) &&
2062             (s.flags() & BAD_OVERRIDE) == 0;
2063 
checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos, ClassSymbol someClass)2064     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2065             ClassSymbol someClass) {
2066         /* At present, annotations cannot possibly have a method that is override
2067          * equivalent with Object.equals(Object) but in any case the condition is
2068          * fine for completeness.
2069          */
2070         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2071             someClass.isInterface() || someClass.isEnum() ||
2072             (someClass.flags() & ANNOTATION) != 0 ||
2073             (someClass.flags() & ABSTRACT) != 0) return;
2074         //anonymous inner classes implementing interfaces need especial treatment
2075         if (someClass.isAnonymous()) {
2076             List<Type> interfaces =  types.interfaces(someClass.type);
2077             if (interfaces != null && !interfaces.isEmpty() &&
2078                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2079         }
2080         checkClassOverrideEqualsAndHash(pos, someClass);
2081     }
2082 
checkClassOverrideEqualsAndHash(DiagnosticPosition pos, ClassSymbol someClass)2083     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2084             ClassSymbol someClass) {
2085         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2086             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2087                     .tsym.members().findFirst(names.equals);
2088             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2089                     .tsym.members().findFirst(names.hashCode);
2090             boolean overridesEquals = types.implementation(equalsAtObject,
2091                 someClass, false, equalsHasCodeFilter).owner == someClass;
2092             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2093                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2094 
2095             if (overridesEquals && !overridesHashCode) {
2096                 log.warning(LintCategory.OVERRIDES, pos,
2097                             Warnings.OverrideEqualsButNotHashcode(someClass));
2098             }
2099         }
2100     }
2101 
checkModuleName(JCModuleDecl tree)2102     public void checkModuleName (JCModuleDecl tree) {
2103         Name moduleName = tree.sym.name;
2104         Assert.checkNonNull(moduleName);
2105         if (lint.isEnabled(LintCategory.MODULE)) {
2106             JCExpression qualId = tree.qualId;
2107             while (qualId != null) {
2108                 Name componentName;
2109                 DiagnosticPosition pos;
2110                 switch (qualId.getTag()) {
2111                     case SELECT:
2112                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2113                         componentName = selectNode.name;
2114                         pos = selectNode.pos();
2115                         qualId = selectNode.selected;
2116                         break;
2117                     case IDENT:
2118                         componentName = ((JCIdent) qualId).name;
2119                         pos = qualId.pos();
2120                         qualId = null;
2121                         break;
2122                     default:
2123                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2124                 }
2125                 if (componentName != null) {
2126                     String moduleNameComponentString = componentName.toString();
2127                     int nameLength = moduleNameComponentString.length();
2128                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2129                         log.warning(Lint.LintCategory.MODULE, pos, Warnings.PoorChoiceForModuleName(componentName));
2130                     }
2131                 }
2132             }
2133         }
2134     }
2135 
checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2)2136     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2137         ClashFilter cf = new ClashFilter(origin.type);
2138         return (cf.accepts(s1) &&
2139                 cf.accepts(s2) &&
2140                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2141     }
2142 
2143 
2144     /** Check that all abstract members of given class have definitions.
2145      *  @param pos          Position to be used for error reporting.
2146      *  @param c            The class.
2147      */
checkAllDefined(DiagnosticPosition pos, ClassSymbol c)2148     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2149         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2150         if (undef != null) {
2151             MethodSymbol undef1 =
2152                 new MethodSymbol(undef.flags(), undef.name,
2153                                  types.memberType(c.type, undef), undef.owner);
2154             log.error(pos,
2155                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2156         }
2157     }
2158 
checkNonCyclicDecl(JCClassDecl tree)2159     void checkNonCyclicDecl(JCClassDecl tree) {
2160         CycleChecker cc = new CycleChecker();
2161         cc.scan(tree);
2162         if (!cc.errorFound && !cc.partialCheck) {
2163             tree.sym.flags_field |= ACYCLIC;
2164         }
2165     }
2166 
2167     class CycleChecker extends TreeScanner {
2168 
2169         List<Symbol> seenClasses = List.nil();
2170         boolean errorFound = false;
2171         boolean partialCheck = false;
2172 
checkSymbol(DiagnosticPosition pos, Symbol sym)2173         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2174             if (sym != null && sym.kind == TYP) {
2175                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2176                 if (classEnv != null) {
2177                     DiagnosticSource prevSource = log.currentSource();
2178                     try {
2179                         log.useSource(classEnv.toplevel.sourcefile);
2180                         scan(classEnv.tree);
2181                     }
2182                     finally {
2183                         log.useSource(prevSource.getFile());
2184                     }
2185                 } else if (sym.kind == TYP) {
2186                     checkClass(pos, sym, List.nil());
2187                 }
2188             } else {
2189                 //not completed yet
2190                 partialCheck = true;
2191             }
2192         }
2193 
2194         @Override
visitSelect(JCFieldAccess tree)2195         public void visitSelect(JCFieldAccess tree) {
2196             super.visitSelect(tree);
2197             checkSymbol(tree.pos(), tree.sym);
2198         }
2199 
2200         @Override
visitIdent(JCIdent tree)2201         public void visitIdent(JCIdent tree) {
2202             checkSymbol(tree.pos(), tree.sym);
2203         }
2204 
2205         @Override
visitTypeApply(JCTypeApply tree)2206         public void visitTypeApply(JCTypeApply tree) {
2207             scan(tree.clazz);
2208         }
2209 
2210         @Override
visitTypeArray(JCArrayTypeTree tree)2211         public void visitTypeArray(JCArrayTypeTree tree) {
2212             scan(tree.elemtype);
2213         }
2214 
2215         @Override
visitClassDef(JCClassDecl tree)2216         public void visitClassDef(JCClassDecl tree) {
2217             List<JCTree> supertypes = List.nil();
2218             if (tree.getExtendsClause() != null) {
2219                 supertypes = supertypes.prepend(tree.getExtendsClause());
2220             }
2221             if (tree.getImplementsClause() != null) {
2222                 for (JCTree intf : tree.getImplementsClause()) {
2223                     supertypes = supertypes.prepend(intf);
2224                 }
2225             }
2226             checkClass(tree.pos(), tree.sym, supertypes);
2227         }
2228 
checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes)2229         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2230             if ((c.flags_field & ACYCLIC) != 0)
2231                 return;
2232             if (seenClasses.contains(c)) {
2233                 errorFound = true;
2234                 noteCyclic(pos, (ClassSymbol)c);
2235             } else if (!c.type.isErroneous()) {
2236                 try {
2237                     seenClasses = seenClasses.prepend(c);
2238                     if (c.type.hasTag(CLASS)) {
2239                         if (supertypes.nonEmpty()) {
2240                             scan(supertypes);
2241                         }
2242                         else {
2243                             ClassType ct = (ClassType)c.type;
2244                             if (ct.supertype_field == null ||
2245                                     ct.interfaces_field == null) {
2246                                 //not completed yet
2247                                 partialCheck = true;
2248                                 return;
2249                             }
2250                             checkSymbol(pos, ct.supertype_field.tsym);
2251                             for (Type intf : ct.interfaces_field) {
2252                                 checkSymbol(pos, intf.tsym);
2253                             }
2254                         }
2255                         if (c.owner.kind == TYP) {
2256                             checkSymbol(pos, c.owner);
2257                         }
2258                     }
2259                 } finally {
2260                     seenClasses = seenClasses.tail;
2261                 }
2262             }
2263         }
2264     }
2265 
2266     /** Check for cyclic references. Issue an error if the
2267      *  symbol of the type referred to has a LOCKED flag set.
2268      *
2269      *  @param pos      Position to be used for error reporting.
2270      *  @param t        The type referred to.
2271      */
checkNonCyclic(DiagnosticPosition pos, Type t)2272     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2273         checkNonCyclicInternal(pos, t);
2274     }
2275 
2276 
checkNonCyclic(DiagnosticPosition pos, TypeVar t)2277     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2278         checkNonCyclic1(pos, t, List.nil());
2279     }
2280 
checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen)2281     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2282         final TypeVar tv;
2283         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2284             return;
2285         if (seen.contains(t)) {
2286             tv = (TypeVar)t;
2287             tv.bound = types.createErrorType(t);
2288             log.error(pos, Errors.CyclicInheritance(t));
2289         } else if (t.hasTag(TYPEVAR)) {
2290             tv = (TypeVar)t;
2291             seen = seen.prepend(tv);
2292             for (Type b : types.getBounds(tv))
2293                 checkNonCyclic1(pos, b, seen);
2294         }
2295     }
2296 
2297     /** Check for cyclic references. Issue an error if the
2298      *  symbol of the type referred to has a LOCKED flag set.
2299      *
2300      *  @param pos      Position to be used for error reporting.
2301      *  @param t        The type referred to.
2302      *  @returns        True if the check completed on all attributed classes
2303      */
checkNonCyclicInternal(DiagnosticPosition pos, Type t)2304     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2305         boolean complete = true; // was the check complete?
2306         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2307         Symbol c = t.tsym;
2308         if ((c.flags_field & ACYCLIC) != 0) return true;
2309 
2310         if ((c.flags_field & LOCKED) != 0) {
2311             noteCyclic(pos, (ClassSymbol)c);
2312         } else if (!c.type.isErroneous()) {
2313             try {
2314                 c.flags_field |= LOCKED;
2315                 if (c.type.hasTag(CLASS)) {
2316                     ClassType clazz = (ClassType)c.type;
2317                     if (clazz.interfaces_field != null)
2318                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2319                             complete &= checkNonCyclicInternal(pos, l.head);
2320                     if (clazz.supertype_field != null) {
2321                         Type st = clazz.supertype_field;
2322                         if (st != null && st.hasTag(CLASS))
2323                             complete &= checkNonCyclicInternal(pos, st);
2324                     }
2325                     if (c.owner.kind == TYP)
2326                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2327                 }
2328             } finally {
2329                 c.flags_field &= ~LOCKED;
2330             }
2331         }
2332         if (complete)
2333             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2334         if (complete) c.flags_field |= ACYCLIC;
2335         return complete;
2336     }
2337 
2338     /** Note that we found an inheritance cycle. */
noteCyclic(DiagnosticPosition pos, ClassSymbol c)2339     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2340         log.error(pos, Errors.CyclicInheritance(c));
2341         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2342             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2343         Type st = types.supertype(c.type);
2344         if (st.hasTag(CLASS))
2345             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2346         c.type = types.createErrorType(c, c.type);
2347         c.flags_field |= ACYCLIC;
2348     }
2349 
2350     /** Check that all methods which implement some
2351      *  method conform to the method they implement.
2352      *  @param tree         The class definition whose members are checked.
2353      */
checkImplementations(JCClassDecl tree)2354     void checkImplementations(JCClassDecl tree) {
2355         checkImplementations(tree, tree.sym, tree.sym);
2356     }
2357     //where
2358         /** Check that all methods which implement some
2359          *  method in `ic' conform to the method they implement.
2360          */
checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic)2361         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2362             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2363                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2364                 if ((lc.flags() & ABSTRACT) != 0) {
2365                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2366                         if (sym.kind == MTH &&
2367                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2368                             MethodSymbol absmeth = (MethodSymbol)sym;
2369                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2370                             if (implmeth != null && implmeth != absmeth &&
2371                                 (implmeth.owner.flags() & INTERFACE) ==
2372                                 (origin.flags() & INTERFACE)) {
2373                                 // don't check if implmeth is in a class, yet
2374                                 // origin is an interface. This case arises only
2375                                 // if implmeth is declared in Object. The reason is
2376                                 // that interfaces really don't inherit from
2377                                 // Object it's just that the compiler represents
2378                                 // things that way.
2379                                 checkOverride(tree, implmeth, absmeth, origin);
2380                             }
2381                         }
2382                     }
2383                 }
2384             }
2385         }
2386 
2387     /** Check that all abstract methods implemented by a class are
2388      *  mutually compatible.
2389      *  @param pos          Position to be used for error reporting.
2390      *  @param c            The class whose interfaces are checked.
2391      */
checkCompatibleSupertypes(DiagnosticPosition pos, Type c)2392     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2393         List<Type> supertypes = types.interfaces(c);
2394         Type supertype = types.supertype(c);
2395         if (supertype.hasTag(CLASS) &&
2396             (supertype.tsym.flags() & ABSTRACT) != 0)
2397             supertypes = supertypes.prepend(supertype);
2398         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2399             if (!l.head.getTypeArguments().isEmpty() &&
2400                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2401                 return;
2402             for (List<Type> m = supertypes; m != l; m = m.tail)
2403                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2404                     return;
2405         }
2406         checkCompatibleConcretes(pos, c);
2407     }
2408 
2409     /** Check that all non-override equivalent methods accessible from 'site'
2410      *  are mutually compatible (JLS 8.4.8/9.4.1).
2411      *
2412      *  @param pos  Position to be used for error reporting.
2413      *  @param site The class whose methods are checked.
2414      *  @param sym  The method symbol to be checked.
2415      */
checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym)2416     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2417          ClashFilter cf = new ClashFilter(site);
2418         //for each method m1 that is overridden (directly or indirectly)
2419         //by method 'sym' in 'site'...
2420 
2421         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2422         boolean overridesAny = false;
2423         for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2424             if (!sym.overrides(m1, site.tsym, types, false)) {
2425                 if (m1 == sym) {
2426                     continue;
2427                 }
2428 
2429                 if (!overridesAny) {
2430                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2431                 }
2432                 continue;
2433             }
2434 
2435             if (m1 != sym) {
2436                 overridesAny = true;
2437                 potentiallyAmbiguousList = List.nil();
2438             }
2439 
2440             //...check each method m2 that is a member of 'site'
2441             for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2442                 if (m2 == m1) continue;
2443                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2444                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2445                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), Feature.STRICT_METHOD_CLASH_CHECK.allowedInSource(source)) &&
2446                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2447                     sym.flags_field |= CLASH;
2448                     if (m1 == sym) {
2449                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2450                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2451                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2452                     } else {
2453                         ClassType ct = (ClassType)site;
2454                         String kind = ct.isInterface() ? "interface" : "class";
2455                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2456                             kind,
2457                             ct.tsym.name,
2458                             m1.name,
2459                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2460                             m1.location(),
2461                             m2.name,
2462                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2463                             m2.location()));
2464                     }
2465                     return;
2466                 }
2467             }
2468         }
2469 
2470         if (!overridesAny) {
2471             for (MethodSymbol m: potentiallyAmbiguousList) {
2472                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2473             }
2474         }
2475     }
2476 
2477     /** Check that all static methods accessible from 'site' are
2478      *  mutually compatible (JLS 8.4.8).
2479      *
2480      *  @param pos  Position to be used for error reporting.
2481      *  @param site The class whose methods are checked.
2482      *  @param sym  The method symbol to be checked.
2483      */
checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym)2484     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2485         ClashFilter cf = new ClashFilter(site);
2486         //for each method m1 that is a member of 'site'...
2487         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2488             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2489             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2490             if (!types.isSubSignature(sym.type, types.memberType(site, s), Feature.STRICT_METHOD_CLASH_CHECK.allowedInSource(source))) {
2491                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2492                     log.error(pos,
2493                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2494                     return;
2495                 } else {
2496                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2497                 }
2498             }
2499          }
2500      }
2501 
2502      //where
2503      private class ClashFilter implements Filter<Symbol> {
2504 
2505          Type site;
2506 
ClashFilter(Type site)2507          ClashFilter(Type site) {
2508              this.site = site;
2509          }
2510 
shouldSkip(Symbol s)2511          boolean shouldSkip(Symbol s) {
2512              return (s.flags() & CLASH) != 0 &&
2513                 s.owner == site.tsym;
2514          }
2515 
accepts(Symbol s)2516          public boolean accepts(Symbol s) {
2517              return s.kind == MTH &&
2518                      (s.flags() & SYNTHETIC) == 0 &&
2519                      !shouldSkip(s) &&
2520                      s.isInheritedIn(site.tsym, types) &&
2521                      !s.isConstructor();
2522          }
2523      }
2524 
checkDefaultMethodClashes(DiagnosticPosition pos, Type site)2525     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2526         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2527         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2528             Assert.check(m.kind == MTH);
2529             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2530             if (prov.size() > 1) {
2531                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2532                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2533                 for (MethodSymbol provSym : prov) {
2534                     if ((provSym.flags() & DEFAULT) != 0) {
2535                         defaults = defaults.append(provSym);
2536                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2537                         abstracts = abstracts.append(provSym);
2538                     }
2539                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2540                         //strong semantics - issue an error if two sibling interfaces
2541                         //have two override-equivalent defaults - or if one is abstract
2542                         //and the other is default
2543                         Fragment diagKey;
2544                         Symbol s1 = defaults.first();
2545                         Symbol s2;
2546                         if (defaults.size() > 1) {
2547                             s2 = defaults.toList().tail.head;
2548                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2549                                     m.name, types.memberType(site, m).getParameterTypes(),
2550                                     s1.location(), s2.location());
2551 
2552                         } else {
2553                             s2 = abstracts.first();
2554                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2555                                     m.name, types.memberType(site, m).getParameterTypes(),
2556                                     s1.location(), s2.location());
2557                         }
2558                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2559                         break;
2560                     }
2561                 }
2562             }
2563         }
2564     }
2565 
2566     //where
2567      private class DefaultMethodClashFilter implements Filter<Symbol> {
2568 
2569          Type site;
2570 
DefaultMethodClashFilter(Type site)2571          DefaultMethodClashFilter(Type site) {
2572              this.site = site;
2573          }
2574 
accepts(Symbol s)2575          public boolean accepts(Symbol s) {
2576              return s.kind == MTH &&
2577                      (s.flags() & DEFAULT) != 0 &&
2578                      s.isInheritedIn(site.tsym, types) &&
2579                      !s.isConstructor();
2580          }
2581      }
2582 
2583     /**
2584       * Report warnings for potentially ambiguous method declarations. Two declarations
2585       * are potentially ambiguous if they feature two unrelated functional interface
2586       * in same argument position (in which case, a call site passing an implicit
2587       * lambda would be ambiguous).
2588       */
checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site, MethodSymbol msym1, MethodSymbol msym2)2589     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2590             MethodSymbol msym1, MethodSymbol msym2) {
2591         if (msym1 != msym2 &&
2592                 Feature.DEFAULT_METHODS.allowedInSource(source) &&
2593                 lint.isEnabled(LintCategory.OVERLOADS) &&
2594                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2595                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2596             Type mt1 = types.memberType(site, msym1);
2597             Type mt2 = types.memberType(site, msym2);
2598             //if both generic methods, adjust type variables
2599             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2600                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2601                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2602             }
2603             //expand varargs methods if needed
2604             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2605             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2606             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2607             //if arities don't match, exit
2608             if (args1.length() != args2.length()) return;
2609             boolean potentiallyAmbiguous = false;
2610             while (args1.nonEmpty() && args2.nonEmpty()) {
2611                 Type s = args1.head;
2612                 Type t = args2.head;
2613                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2614                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2615                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2616                             types.findDescriptorType(s).getParameterTypes().length() ==
2617                             types.findDescriptorType(t).getParameterTypes().length()) {
2618                         potentiallyAmbiguous = true;
2619                     } else {
2620                         break;
2621                     }
2622                 }
2623                 args1 = args1.tail;
2624                 args2 = args2.tail;
2625             }
2626             if (potentiallyAmbiguous) {
2627                 //we found two incompatible functional interfaces with same arity
2628                 //this means a call site passing an implicit lambda would be ambigiuous
2629                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2630                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2631                 log.warning(LintCategory.OVERLOADS, pos,
2632                             Warnings.PotentiallyAmbiguousOverload(msym1, msym1.location(),
2633                                                                   msym2, msym2.location()));
2634                 return;
2635             }
2636         }
2637     }
2638 
checkAccessFromSerializableElement(final JCTree tree, boolean isLambda)2639     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
2640         if (warnOnAnyAccessToMembers ||
2641             (lint.isEnabled(LintCategory.SERIAL) &&
2642             !lint.isSuppressed(LintCategory.SERIAL) &&
2643             isLambda)) {
2644             Symbol sym = TreeInfo.symbol(tree);
2645             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2646                 return;
2647             }
2648 
2649             if (sym.kind == VAR) {
2650                 if ((sym.flags() & PARAMETER) != 0 ||
2651                     sym.isLocal() ||
2652                     sym.name == names._this ||
2653                     sym.name == names._super) {
2654                     return;
2655                 }
2656             }
2657 
2658             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2659                 isEffectivelyNonPublic(sym)) {
2660                 if (isLambda) {
2661                     if (belongsToRestrictedPackage(sym)) {
2662                         log.warning(LintCategory.SERIAL, tree.pos(),
2663                                     Warnings.AccessToMemberFromSerializableLambda(sym));
2664                     }
2665                 } else {
2666                     log.warning(tree.pos(),
2667                                 Warnings.AccessToMemberFromSerializableElement(sym));
2668                 }
2669             }
2670         }
2671     }
2672 
isEffectivelyNonPublic(Symbol sym)2673     private boolean isEffectivelyNonPublic(Symbol sym) {
2674         if (sym.packge() == syms.rootPackage) {
2675             return false;
2676         }
2677 
2678         while (sym.kind != PCK) {
2679             if ((sym.flags() & PUBLIC) == 0) {
2680                 return true;
2681             }
2682             sym = sym.owner;
2683         }
2684         return false;
2685     }
2686 
belongsToRestrictedPackage(Symbol sym)2687     private boolean belongsToRestrictedPackage(Symbol sym) {
2688         String fullName = sym.packge().fullname.toString();
2689         return fullName.startsWith("java.") ||
2690                 fullName.startsWith("javax.") ||
2691                 fullName.startsWith("sun.") ||
2692                 fullName.contains(".internal.");
2693     }
2694 
2695     /** Check that class c does not implement directly or indirectly
2696      *  the same parameterized interface with two different argument lists.
2697      *  @param pos          Position to be used for error reporting.
2698      *  @param type         The type whose interfaces are checked.
2699      */
checkClassBounds(DiagnosticPosition pos, Type type)2700     void checkClassBounds(DiagnosticPosition pos, Type type) {
2701         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2702     }
2703 //where
2704         /** Enter all interfaces of type `type' into the hash table `seensofar'
2705          *  with their class symbol as key and their type as value. Make
2706          *  sure no class is entered with two different types.
2707          */
checkClassBounds(DiagnosticPosition pos, Map<TypeSymbol,Type> seensofar, Type type)2708         void checkClassBounds(DiagnosticPosition pos,
2709                               Map<TypeSymbol,Type> seensofar,
2710                               Type type) {
2711             if (type.isErroneous()) return;
2712             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2713                 Type it = l.head;
2714                 Type oldit = seensofar.put(it.tsym, it);
2715                 if (oldit != null) {
2716                     List<Type> oldparams = oldit.allparams();
2717                     List<Type> newparams = it.allparams();
2718                     if (!types.containsTypeEquivalent(oldparams, newparams))
2719                         log.error(pos,
2720                                   Errors.CantInheritDiffArg(it.tsym,
2721                                                             Type.toString(oldparams),
2722                                                             Type.toString(newparams)));
2723                 }
2724                 checkClassBounds(pos, seensofar, it);
2725             }
2726             Type st = types.supertype(type);
2727             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2728         }
2729 
2730     /** Enter interface into into set.
2731      *  If it existed already, issue a "repeated interface" error.
2732      */
checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its)2733     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2734         if (its.contains(it))
2735             log.error(pos, Errors.RepeatedInterface);
2736         else {
2737             its.add(it);
2738         }
2739     }
2740 
2741 /* *************************************************************************
2742  * Check annotations
2743  **************************************************************************/
2744 
2745     /**
2746      * Recursively validate annotations values
2747      */
validateAnnotationTree(JCTree tree)2748     void validateAnnotationTree(JCTree tree) {
2749         class AnnotationValidator extends TreeScanner {
2750             @Override
2751             public void visitAnnotation(JCAnnotation tree) {
2752                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
2753                     super.visitAnnotation(tree);
2754                     validateAnnotation(tree);
2755                 }
2756             }
2757         }
2758         tree.accept(new AnnotationValidator());
2759     }
2760 
2761     /**
2762      *  {@literal
2763      *  Annotation types are restricted to primitives, String, an
2764      *  enum, an annotation, Class, Class<?>, Class<? extends
2765      *  Anything>, arrays of the preceding.
2766      *  }
2767      */
validateAnnotationType(JCTree restype)2768     void validateAnnotationType(JCTree restype) {
2769         // restype may be null if an error occurred, so don't bother validating it
2770         if (restype != null) {
2771             validateAnnotationType(restype.pos(), restype.type);
2772         }
2773     }
2774 
validateAnnotationType(DiagnosticPosition pos, Type type)2775     void validateAnnotationType(DiagnosticPosition pos, Type type) {
2776         if (type.isPrimitive()) return;
2777         if (types.isSameType(type, syms.stringType)) return;
2778         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2779         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2780         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2781         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2782             validateAnnotationType(pos, types.elemtype(type));
2783             return;
2784         }
2785         log.error(pos, Errors.InvalidAnnotationMemberType);
2786     }
2787 
2788     /**
2789      * "It is also a compile-time error if any method declared in an
2790      * annotation type has a signature that is override-equivalent to
2791      * that of any public or protected method declared in class Object
2792      * or in the interface annotation.Annotation."
2793      *
2794      * @jls 9.6 Annotation Types
2795      */
validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m)2796     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2797         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2798             Scope s = sup.tsym.members();
2799             for (Symbol sym : s.getSymbolsByName(m.name)) {
2800                 if (sym.kind == MTH &&
2801                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2802                     types.overrideEquivalent(m.type, sym.type))
2803                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
2804             }
2805         }
2806     }
2807 
2808     /** Check the annotations of a symbol.
2809      */
validateAnnotations(List<JCAnnotation> annotations, Symbol s)2810     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2811         for (JCAnnotation a : annotations)
2812             validateAnnotation(a, s);
2813     }
2814 
2815     /** Check the type annotations.
2816      */
validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter)2817     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2818         for (JCAnnotation a : annotations)
2819             validateTypeAnnotation(a, isTypeParameter);
2820     }
2821 
2822     /** Check an annotation of a symbol.
2823      */
validateAnnotation(JCAnnotation a, Symbol s)2824     private void validateAnnotation(JCAnnotation a, Symbol s) {
2825         validateAnnotationTree(a);
2826 
2827         if (a.type.tsym.isAnnotationType() && !annotationApplicable(a, s))
2828             log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
2829 
2830         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2831             if (s.kind != TYP) {
2832                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
2833             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2834                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
2835             }
2836         }
2837     }
2838 
validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter)2839     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2840         Assert.checkNonNull(a.type);
2841         validateAnnotationTree(a);
2842 
2843         if (a.hasTag(TYPE_ANNOTATION) &&
2844                 !a.annotationType.type.isErroneous() &&
2845                 !isTypeAnnotation(a, isTypeParameter)) {
2846             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2847         }
2848     }
2849 
2850     /**
2851      * Validate the proposed container 'repeatable' on the
2852      * annotation type symbol 's'. Report errors at position
2853      * 'pos'.
2854      *
2855      * @param s The (annotation)type declaration annotated with a @Repeatable
2856      * @param repeatable the @Repeatable on 's'
2857      * @param pos where to report errors
2858      */
validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos)2859     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2860         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2861 
2862         Type t = null;
2863         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2864         if (!l.isEmpty()) {
2865             Assert.check(l.head.fst.name == names.value);
2866             t = ((Attribute.Class)l.head.snd).getValue();
2867         }
2868 
2869         if (t == null) {
2870             // errors should already have been reported during Annotate
2871             return;
2872         }
2873 
2874         validateValue(t.tsym, s, pos);
2875         validateRetention(t.tsym, s, pos);
2876         validateDocumented(t.tsym, s, pos);
2877         validateInherited(t.tsym, s, pos);
2878         validateTarget(t.tsym, s, pos);
2879         validateDefault(t.tsym, pos);
2880     }
2881 
validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos)2882     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2883         Symbol sym = container.members().findFirst(names.value);
2884         if (sym != null && sym.kind == MTH) {
2885             MethodSymbol m = (MethodSymbol) sym;
2886             Type ret = m.getReturnType();
2887             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2888                 log.error(pos,
2889                           Errors.InvalidRepeatableAnnotationValueReturn(container,
2890                                                                         ret,
2891                                                                         types.makeArrayType(contained.type)));
2892             }
2893         } else {
2894             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
2895         }
2896     }
2897 
validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos)2898     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2899         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2900         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2901 
2902         boolean error = false;
2903         switch (containedRetention) {
2904         case RUNTIME:
2905             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2906                 error = true;
2907             }
2908             break;
2909         case CLASS:
2910             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2911                 error = true;
2912             }
2913         }
2914         if (error ) {
2915             log.error(pos,
2916                       Errors.InvalidRepeatableAnnotationRetention(container,
2917                                                                   containerRetention.name(),
2918                                                                   contained,
2919                                                                   containedRetention.name()));
2920         }
2921     }
2922 
validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos)2923     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2924         if (contained.attribute(syms.documentedType.tsym) != null) {
2925             if (container.attribute(syms.documentedType.tsym) == null) {
2926                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
2927             }
2928         }
2929     }
2930 
validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos)2931     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2932         if (contained.attribute(syms.inheritedType.tsym) != null) {
2933             if (container.attribute(syms.inheritedType.tsym) == null) {
2934                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
2935             }
2936         }
2937     }
2938 
validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos)2939     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2940         // The set of targets the container is applicable to must be a subset
2941         // (with respect to annotation target semantics) of the set of targets
2942         // the contained is applicable to. The target sets may be implicit or
2943         // explicit.
2944 
2945         Set<Name> containerTargets;
2946         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2947         if (containerTarget == null) {
2948             containerTargets = getDefaultTargetSet();
2949         } else {
2950             containerTargets = new HashSet<>();
2951             for (Attribute app : containerTarget.values) {
2952                 if (!(app instanceof Attribute.Enum)) {
2953                     continue; // recovery
2954                 }
2955                 Attribute.Enum e = (Attribute.Enum)app;
2956                 containerTargets.add(e.value.name);
2957             }
2958         }
2959 
2960         Set<Name> containedTargets;
2961         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2962         if (containedTarget == null) {
2963             containedTargets = getDefaultTargetSet();
2964         } else {
2965             containedTargets = new HashSet<>();
2966             for (Attribute app : containedTarget.values) {
2967                 if (!(app instanceof Attribute.Enum)) {
2968                     continue; // recovery
2969                 }
2970                 Attribute.Enum e = (Attribute.Enum)app;
2971                 containedTargets.add(e.value.name);
2972             }
2973         }
2974 
2975         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2976             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
2977         }
2978     }
2979 
2980     /* get a set of names for the default target */
getDefaultTargetSet()2981     private Set<Name> getDefaultTargetSet() {
2982         if (defaultTargets == null) {
2983             Set<Name> targets = new HashSet<>();
2984             targets.add(names.ANNOTATION_TYPE);
2985             targets.add(names.CONSTRUCTOR);
2986             targets.add(names.FIELD);
2987             targets.add(names.LOCAL_VARIABLE);
2988             targets.add(names.METHOD);
2989             targets.add(names.PACKAGE);
2990             targets.add(names.PARAMETER);
2991             targets.add(names.TYPE);
2992 
2993             defaultTargets = java.util.Collections.unmodifiableSet(targets);
2994         }
2995 
2996         return defaultTargets;
2997     }
2998     private Set<Name> defaultTargets;
2999 
3000 
3001     /** Checks that s is a subset of t, with respect to ElementType
3002      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3003      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3004      * TYPE_PARAMETER}.
3005      */
isTargetSubsetOf(Set<Name> s, Set<Name> t)3006     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3007         // Check that all elements in s are present in t
3008         for (Name n2 : s) {
3009             boolean currentElementOk = false;
3010             for (Name n1 : t) {
3011                 if (n1 == n2) {
3012                     currentElementOk = true;
3013                     break;
3014                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3015                     currentElementOk = true;
3016                     break;
3017                 } else if (n1 == names.TYPE_USE &&
3018                         (n2 == names.TYPE ||
3019                          n2 == names.ANNOTATION_TYPE ||
3020                          n2 == names.TYPE_PARAMETER)) {
3021                     currentElementOk = true;
3022                     break;
3023                 }
3024             }
3025             if (!currentElementOk)
3026                 return false;
3027         }
3028         return true;
3029     }
3030 
validateDefault(Symbol container, DiagnosticPosition pos)3031     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3032         // validate that all other elements of containing type has defaults
3033         Scope scope = container.members();
3034         for(Symbol elm : scope.getSymbols()) {
3035             if (elm.name != names.value &&
3036                 elm.kind == MTH &&
3037                 ((MethodSymbol)elm).defaultValue == null) {
3038                 log.error(pos,
3039                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3040             }
3041         }
3042     }
3043 
3044     /** Is s a method symbol that overrides a method in a superclass? */
isOverrider(Symbol s)3045     boolean isOverrider(Symbol s) {
3046         if (s.kind != MTH || s.isStatic())
3047             return false;
3048         MethodSymbol m = (MethodSymbol)s;
3049         TypeSymbol owner = (TypeSymbol)m.owner;
3050         for (Type sup : types.closure(owner.type)) {
3051             if (sup == owner.type)
3052                 continue; // skip "this"
3053             Scope scope = sup.tsym.members();
3054             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3055                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3056                     return true;
3057             }
3058         }
3059         return false;
3060     }
3061 
3062     /** Is the annotation applicable to types? */
isTypeAnnotation(JCAnnotation a, boolean isTypeParameter)3063     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3064         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3065         return (targets == null) ?
3066                 false :
3067                 targets.stream()
3068                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3069     }
3070     //where
isTypeAnnotation(Attribute a, boolean isTypeParameter)3071         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3072             Attribute.Enum e = (Attribute.Enum)a;
3073             return (e.value.name == names.TYPE_USE ||
3074                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3075         }
3076 
3077     /** Is the annotation applicable to the symbol? */
annotationApplicable(JCAnnotation a, Symbol s)3078     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3079         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3080         Name[] targets;
3081 
3082         if (arr == null) {
3083             targets = defaultTargetMetaInfo(a, s);
3084         } else {
3085             // TODO: can we optimize this?
3086             targets = new Name[arr.values.length];
3087             for (int i=0; i<arr.values.length; ++i) {
3088                 Attribute app = arr.values[i];
3089                 if (!(app instanceof Attribute.Enum)) {
3090                     return true; // recovery
3091                 }
3092                 Attribute.Enum e = (Attribute.Enum) app;
3093                 targets[i] = e.value.name;
3094             }
3095         }
3096         for (Name target : targets) {
3097             if (target == names.TYPE) {
3098                 if (s.kind == TYP)
3099                     return true;
3100             } else if (target == names.FIELD) {
3101                 if (s.kind == VAR && s.owner.kind != MTH)
3102                     return true;
3103             } else if (target == names.METHOD) {
3104                 if (s.kind == MTH && !s.isConstructor())
3105                     return true;
3106             } else if (target == names.PARAMETER) {
3107                 if (s.kind == VAR && s.owner.kind == MTH &&
3108                       (s.flags() & PARAMETER) != 0) {
3109                     return true;
3110                 }
3111             } else if (target == names.CONSTRUCTOR) {
3112                 if (s.kind == MTH && s.isConstructor())
3113                     return true;
3114             } else if (target == names.LOCAL_VARIABLE) {
3115                 if (s.kind == VAR && s.owner.kind == MTH &&
3116                       (s.flags() & PARAMETER) == 0) {
3117                     return true;
3118                 }
3119             } else if (target == names.ANNOTATION_TYPE) {
3120                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3121                     return true;
3122                 }
3123             } else if (target == names.PACKAGE) {
3124                 if (s.kind == PCK)
3125                     return true;
3126             } else if (target == names.TYPE_USE) {
3127                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3128                     //cannot type annotate implictly typed locals
3129                     return false;
3130                 } else if (s.kind == TYP || s.kind == VAR ||
3131                         (s.kind == MTH && !s.isConstructor() &&
3132                                 !s.type.getReturnType().hasTag(VOID)) ||
3133                         (s.kind == MTH && s.isConstructor())) {
3134                     return true;
3135                 }
3136             } else if (target == names.TYPE_PARAMETER) {
3137                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3138                     return true;
3139             } else
3140                 return true; // Unknown ElementType. This should be an error at declaration site,
3141                              // assume applicable.
3142         }
3143         return false;
3144     }
3145 
3146 
getAttributeTargetAttribute(TypeSymbol s)3147     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3148         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3149         if (atTarget == null) return null; // ok, is applicable
3150         Attribute atValue = atTarget.member(names.value);
3151         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3152         return (Attribute.Array) atValue;
3153     }
3154 
3155     private final Name[] dfltTargetMeta;
defaultTargetMetaInfo(JCAnnotation a, Symbol s)3156     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3157         return dfltTargetMeta;
3158     }
3159 
3160     /** Check an annotation value.
3161      *
3162      * @param a The annotation tree to check
3163      * @return true if this annotation tree is valid, otherwise false
3164      */
validateAnnotationDeferErrors(JCAnnotation a)3165     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3166         boolean res = false;
3167         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3168         try {
3169             res = validateAnnotation(a);
3170         } finally {
3171             log.popDiagnosticHandler(diagHandler);
3172         }
3173         return res;
3174     }
3175 
validateAnnotation(JCAnnotation a)3176     private boolean validateAnnotation(JCAnnotation a) {
3177         boolean isValid = true;
3178         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3179 
3180         // collect an inventory of the annotation elements
3181         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3182 
3183         // remove the ones that are assigned values
3184         for (JCTree arg : a.args) {
3185             if (!arg.hasTag(ASSIGN)) continue; // recovery
3186             JCAssign assign = (JCAssign)arg;
3187             Symbol m = TreeInfo.symbol(assign.lhs);
3188             if (m == null || m.type.isErroneous()) continue;
3189             if (!elements.remove(m)) {
3190                 isValid = false;
3191                 log.error(assign.lhs.pos(),
3192                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3193             }
3194         }
3195 
3196         // all the remaining ones better have default values
3197         List<Name> missingDefaults = List.nil();
3198         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3199         for (MethodSymbol m : elements) {
3200             if (m.type.isErroneous())
3201                 continue;
3202 
3203             if (!membersWithDefault.contains(m))
3204                 missingDefaults = missingDefaults.append(m.name);
3205         }
3206         missingDefaults = missingDefaults.reverse();
3207         if (missingDefaults.nonEmpty()) {
3208             isValid = false;
3209             Error errorKey = (missingDefaults.size() > 1)
3210                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3211                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3212             log.error(a.pos(), errorKey);
3213         }
3214 
3215         return isValid && validateTargetAnnotationValue(a);
3216     }
3217 
3218     /* Validate the special java.lang.annotation.Target annotation */
validateTargetAnnotationValue(JCAnnotation a)3219     boolean validateTargetAnnotationValue(JCAnnotation a) {
3220         // special case: java.lang.annotation.Target must not have
3221         // repeated values in its value member
3222         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3223                 a.args.tail == null)
3224             return true;
3225 
3226         boolean isValid = true;
3227         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3228         JCAssign assign = (JCAssign) a.args.head;
3229         Symbol m = TreeInfo.symbol(assign.lhs);
3230         if (m.name != names.value) return false;
3231         JCTree rhs = assign.rhs;
3232         if (!rhs.hasTag(NEWARRAY)) return false;
3233         JCNewArray na = (JCNewArray) rhs;
3234         Set<Symbol> targets = new HashSet<>();
3235         for (JCTree elem : na.elems) {
3236             if (!targets.add(TreeInfo.symbol(elem))) {
3237                 isValid = false;
3238                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3239             }
3240         }
3241         return isValid;
3242     }
3243 
checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s)3244     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3245         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3246             (s.flags() & DEPRECATED) != 0 &&
3247             !syms.deprecatedType.isErroneous() &&
3248             s.attribute(syms.deprecatedType.tsym) == null) {
3249             log.warning(LintCategory.DEP_ANN,
3250                     pos, Warnings.MissingDeprecatedAnnotation);
3251         }
3252         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3253         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3254             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3255                 log.warning(LintCategory.DEPRECATION, pos,
3256                             Warnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3257             }
3258         }
3259     }
3260 
checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s)3261     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3262         if ( (s.isDeprecatedForRemoval()
3263                 || s.isDeprecated() && !other.isDeprecated())
3264                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)) {
3265             deferredLintHandler.report(() -> warnDeprecated(pos, s));
3266         }
3267     }
3268 
checkSunAPI(final DiagnosticPosition pos, final Symbol s)3269     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3270         if ((s.flags() & PROPRIETARY) != 0) {
3271             deferredLintHandler.report(() -> {
3272                 log.mandatoryWarning(pos, Warnings.SunProprietary(s));
3273             });
3274         }
3275     }
3276 
checkProfile(final DiagnosticPosition pos, final Symbol s)3277     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3278         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3279             log.error(pos, Errors.NotInProfile(s, profile));
3280         }
3281     }
3282 
3283 /* *************************************************************************
3284  * Check for recursive annotation elements.
3285  **************************************************************************/
3286 
3287     /** Check for cycles in the graph of annotation elements.
3288      */
checkNonCyclicElements(JCClassDecl tree)3289     void checkNonCyclicElements(JCClassDecl tree) {
3290         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3291         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3292         try {
3293             tree.sym.flags_field |= LOCKED;
3294             for (JCTree def : tree.defs) {
3295                 if (!def.hasTag(METHODDEF)) continue;
3296                 JCMethodDecl meth = (JCMethodDecl)def;
3297                 checkAnnotationResType(meth.pos(), meth.restype.type);
3298             }
3299         } finally {
3300             tree.sym.flags_field &= ~LOCKED;
3301             tree.sym.flags_field |= ACYCLIC_ANN;
3302         }
3303     }
3304 
checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym)3305     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3306         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3307             return;
3308         if ((tsym.flags_field & LOCKED) != 0) {
3309             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3310             return;
3311         }
3312         try {
3313             tsym.flags_field |= LOCKED;
3314             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3315                 if (s.kind != MTH)
3316                     continue;
3317                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3318             }
3319         } finally {
3320             tsym.flags_field &= ~LOCKED;
3321             tsym.flags_field |= ACYCLIC_ANN;
3322         }
3323     }
3324 
checkAnnotationResType(DiagnosticPosition pos, Type type)3325     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3326         switch (type.getTag()) {
3327         case CLASS:
3328             if ((type.tsym.flags() & ANNOTATION) != 0)
3329                 checkNonCyclicElementsInternal(pos, type.tsym);
3330             break;
3331         case ARRAY:
3332             checkAnnotationResType(pos, types.elemtype(type));
3333             break;
3334         default:
3335             break; // int etc
3336         }
3337     }
3338 
3339 /* *************************************************************************
3340  * Check for cycles in the constructor call graph.
3341  **************************************************************************/
3342 
3343     /** Check for cycles in the graph of constructors calling other
3344      *  constructors.
3345      */
checkCyclicConstructors(JCClassDecl tree)3346     void checkCyclicConstructors(JCClassDecl tree) {
3347         Map<Symbol,Symbol> callMap = new HashMap<>();
3348 
3349         // enter each constructor this-call into the map
3350         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3351             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3352             if (app == null) continue;
3353             JCMethodDecl meth = (JCMethodDecl) l.head;
3354             if (TreeInfo.name(app.meth) == names._this) {
3355                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3356             } else {
3357                 meth.sym.flags_field |= ACYCLIC;
3358             }
3359         }
3360 
3361         // Check for cycles in the map
3362         Symbol[] ctors = new Symbol[0];
3363         ctors = callMap.keySet().toArray(ctors);
3364         for (Symbol caller : ctors) {
3365             checkCyclicConstructor(tree, caller, callMap);
3366         }
3367     }
3368 
3369     /** Look in the map to see if the given constructor is part of a
3370      *  call cycle.
3371      */
checkCyclicConstructor(JCClassDecl tree, Symbol ctor, Map<Symbol,Symbol> callMap)3372     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3373                                         Map<Symbol,Symbol> callMap) {
3374         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3375             if ((ctor.flags_field & LOCKED) != 0) {
3376                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3377                           Errors.RecursiveCtorInvocation);
3378             } else {
3379                 ctor.flags_field |= LOCKED;
3380                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3381                 ctor.flags_field &= ~LOCKED;
3382             }
3383             ctor.flags_field |= ACYCLIC;
3384         }
3385     }
3386 
3387 /* *************************************************************************
3388  * Miscellaneous
3389  **************************************************************************/
3390 
3391     /**
3392      *  Check for division by integer constant zero
3393      *  @param pos           Position for error reporting.
3394      *  @param operator      The operator for the expression
3395      *  @param operand       The right hand operand for the expression
3396      */
checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand)3397     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3398         if (operand.constValue() != null
3399             && operand.getTag().isSubRangeOf(LONG)
3400             && ((Number) (operand.constValue())).longValue() == 0) {
3401             int opc = ((OperatorSymbol)operator).opcode;
3402             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3403                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3404                 deferredLintHandler.report(() -> warnDivZero(pos));
3405             }
3406         }
3407     }
3408 
3409     /**
3410      * Check for empty statements after if
3411      */
checkEmptyIf(JCIf tree)3412     void checkEmptyIf(JCIf tree) {
3413         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3414                 lint.isEnabled(LintCategory.EMPTY))
3415             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), Warnings.EmptyIf);
3416     }
3417 
3418     /** Check that symbol is unique in given scope.
3419      *  @param pos           Position for error reporting.
3420      *  @param sym           The symbol.
3421      *  @param s             The scope.
3422      */
checkUnique(DiagnosticPosition pos, Symbol sym, Scope s)3423     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3424         if (sym.type.isErroneous())
3425             return true;
3426         if (sym.owner.name == names.any) return false;
3427         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3428             if (sym != byName &&
3429                     (byName.flags() & CLASH) == 0 &&
3430                     sym.kind == byName.kind &&
3431                     sym.name != names.error &&
3432                     (sym.kind != MTH ||
3433                      types.hasSameArgs(sym.type, byName.type) ||
3434                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3435                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3436                     sym.flags_field |= CLASH;
3437                     varargsDuplicateError(pos, sym, byName);
3438                     return true;
3439                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3440                     duplicateErasureError(pos, sym, byName);
3441                     sym.flags_field |= CLASH;
3442                     return true;
3443                 } else {
3444                     duplicateError(pos, byName);
3445                     return false;
3446                 }
3447             }
3448         }
3449         return true;
3450     }
3451 
3452     /** Report duplicate declaration error.
3453      */
duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2)3454     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3455         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3456             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
3457         }
3458     }
3459 
3460     /**Check that types imported through the ordinary imports don't clash with types imported
3461      * by other (static or ordinary) imports. Note that two static imports may import two clashing
3462      * types without an error on the imports.
3463      * @param toplevel       The toplevel tree for which the test should be performed.
3464      */
checkImportsUnique(JCCompilationUnit toplevel)3465     void checkImportsUnique(JCCompilationUnit toplevel) {
3466         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3467         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3468         WriteableScope topLevelScope = toplevel.toplevelScope;
3469 
3470         for (JCTree def : toplevel.defs) {
3471             if (!def.hasTag(IMPORT))
3472                 continue;
3473 
3474             JCImport imp = (JCImport) def;
3475 
3476             if (imp.importScope == null)
3477                 continue;
3478 
3479             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3480                 if (imp.isStatic()) {
3481                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3482                     staticallyImportedSoFar.enter(sym);
3483                 } else {
3484                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3485                     ordinallyImportedSoFar.enter(sym);
3486                 }
3487             }
3488 
3489             imp.importScope = null;
3490         }
3491     }
3492 
3493     /** Check that single-type import is not already imported or top-level defined,
3494      *  but make an exception for two single-type imports which denote the same type.
3495      *  @param pos                     Position for error reporting.
3496      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3497      *                                 ordinary imports.
3498      *  @param staticallyImportedSoFar A Scope containing types imported so far through
3499      *                                 static imports.
3500      *  @param topLevelScope           The current file's top-level Scope
3501      *  @param sym                     The symbol.
3502      *  @param staticImport            Whether or not this was a static import
3503      */
checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar, Scope staticallyImportedSoFar, Scope topLevelScope, Symbol sym, boolean staticImport)3504     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3505                                       Scope staticallyImportedSoFar, Scope topLevelScope,
3506                                       Symbol sym, boolean staticImport) {
3507         Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3508         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3509         Symbol staticClashing = null;
3510         if (ordinaryClashing == null && !staticImport) {
3511             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3512         }
3513         if (ordinaryClashing != null || staticClashing != null) {
3514             if (ordinaryClashing != null)
3515                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
3516             else
3517                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
3518             return false;
3519         }
3520         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
3521         if (clashing != null) {
3522             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
3523             return false;
3524         }
3525         return true;
3526     }
3527 
3528     /** Check that a qualified name is in canonical form (for import decls).
3529      */
checkCanonical(JCTree tree)3530     public void checkCanonical(JCTree tree) {
3531         if (!isCanonical(tree))
3532             log.error(tree.pos(),
3533                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
3534     }
3535         // where
isCanonical(JCTree tree)3536         private boolean isCanonical(JCTree tree) {
3537             while (tree.hasTag(SELECT)) {
3538                 JCFieldAccess s = (JCFieldAccess) tree;
3539                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
3540                     return false;
3541                 tree = s.selected;
3542             }
3543             return true;
3544         }
3545 
3546     /** Check that an auxiliary class is not accessed from any other file than its own.
3547      */
checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c)3548     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3549         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3550             (c.flags() & AUXILIARY) != 0 &&
3551             rs.isAccessible(env, c) &&
3552             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3553         {
3554             log.warning(pos,
3555                         Warnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
3556         }
3557     }
3558 
3559     private class ConversionWarner extends Warner {
3560         final String uncheckedKey;
3561         final Type found;
3562         final Type expected;
ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected)3563         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3564             super(pos);
3565             this.uncheckedKey = uncheckedKey;
3566             this.found = found;
3567             this.expected = expected;
3568         }
3569 
3570         @Override
warn(LintCategory lint)3571         public void warn(LintCategory lint) {
3572             boolean warned = this.warned;
3573             super.warn(lint);
3574             if (warned) return; // suppress redundant diagnostics
3575             switch (lint) {
3576                 case UNCHECKED:
3577                     Check.this.warnUnchecked(pos(), Warnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
3578                     break;
3579                 case VARARGS:
3580                     if (method != null &&
3581                             method.attribute(syms.trustMeType.tsym) != null &&
3582                             isTrustMeAllowedOnMethod(method) &&
3583                             !types.isReifiable(method.type.getParameterTypes().last())) {
3584                         Check.this.warnUnsafeVararg(pos(), Warnings.VarargsUnsafeUseVarargsParam(method.params.last()));
3585                     }
3586                     break;
3587                 default:
3588                     throw new AssertionError("Unexpected lint: " + lint);
3589             }
3590         }
3591     }
3592 
castWarner(DiagnosticPosition pos, Type found, Type expected)3593     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3594         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3595     }
3596 
convertWarner(DiagnosticPosition pos, Type found, Type expected)3597     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3598         return new ConversionWarner(pos, "unchecked.assign", found, expected);
3599     }
3600 
checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs)3601     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3602         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3603 
3604         if (functionalType != null) {
3605             try {
3606                 types.findDescriptorSymbol((TypeSymbol)cs);
3607             } catch (Types.FunctionDescriptorLookupError ex) {
3608                 DiagnosticPosition pos = tree.pos();
3609                 for (JCAnnotation a : tree.getModifiers().annotations) {
3610                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3611                         pos = a.pos();
3612                         break;
3613                     }
3614                 }
3615                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
3616             }
3617         }
3618     }
3619 
checkImportsResolvable(final JCCompilationUnit toplevel)3620     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3621         for (final JCImport imp : toplevel.getImports()) {
3622             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3623                 continue;
3624             final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3625             final Symbol origin;
3626             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3627                 continue;
3628 
3629             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3630             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3631                 log.error(imp.pos(),
3632                           Errors.CantResolveLocation(KindName.STATIC,
3633                                                      select.name,
3634                                                      null,
3635                                                      null,
3636                                                      Fragments.Location(kindName(site),
3637                                                                         site,
3638                                                                         null)));
3639             }
3640         }
3641     }
3642 
3643     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
checkImportedPackagesObservable(final JCCompilationUnit toplevel)3644     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3645         OUTER: for (JCImport imp : toplevel.getImports()) {
3646             if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3647                 TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3648                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
3649                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
3650                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, Errors.DoesntExist(tsym));
3651                 }
3652             }
3653         }
3654     }
3655 
checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed)3656     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3657         if (tsym == null || !processed.add(tsym))
3658             return false;
3659 
3660             // also search through inherited names
3661         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3662             return true;
3663 
3664         for (Type t : types.interfaces(tsym.type))
3665             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3666                 return true;
3667 
3668         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3669             if (sym.isStatic() &&
3670                 importAccessible(sym, packge) &&
3671                 sym.isMemberOf(origin, types)) {
3672                 return true;
3673             }
3674         }
3675 
3676         return false;
3677     }
3678 
3679     // is the sym accessible everywhere in packge?
importAccessible(Symbol sym, PackageSymbol packge)3680     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3681         try {
3682             int flags = (int)(sym.flags() & AccessFlags);
3683             switch (flags) {
3684             default:
3685             case PUBLIC:
3686                 return true;
3687             case PRIVATE:
3688                 return false;
3689             case 0:
3690             case PROTECTED:
3691                 return sym.packge() == packge;
3692             }
3693         } catch (ClassFinder.BadClassFile err) {
3694             throw err;
3695         } catch (CompletionFailure ex) {
3696             return false;
3697         }
3698     }
3699 
checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check)3700     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
3701         JCCompilationUnit toplevel = env.toplevel;
3702 
3703         if (   toplevel.modle == syms.unnamedModule
3704             || toplevel.modle == syms.noModule
3705             || (check.sym.flags() & COMPOUND) != 0) {
3706             return ;
3707         }
3708 
3709         ExportsDirective currentExport = findExport(toplevel.packge);
3710 
3711         if (   currentExport == null //not exported
3712             || currentExport.modules != null) //don't check classes in qualified export
3713             return ;
3714 
3715         new TreeScanner() {
3716             Lint lint = env.info.lint;
3717             boolean inSuperType;
3718 
3719             @Override
3720             public void visitBlock(JCBlock tree) {
3721             }
3722             @Override
3723             public void visitMethodDef(JCMethodDecl tree) {
3724                 if (!isAPISymbol(tree.sym))
3725                     return;
3726                 Lint prevLint = lint;
3727                 try {
3728                     lint = lint.augment(tree.sym);
3729                     if (lint.isEnabled(LintCategory.EXPORTS)) {
3730                         super.visitMethodDef(tree);
3731                     }
3732                 } finally {
3733                     lint = prevLint;
3734                 }
3735             }
3736             @Override
3737             public void visitVarDef(JCVariableDecl tree) {
3738                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
3739                     return;
3740                 Lint prevLint = lint;
3741                 try {
3742                     lint = lint.augment(tree.sym);
3743                     if (lint.isEnabled(LintCategory.EXPORTS)) {
3744                         scan(tree.mods);
3745                         scan(tree.vartype);
3746                     }
3747                 } finally {
3748                     lint = prevLint;
3749                 }
3750             }
3751             @Override
3752             public void visitClassDef(JCClassDecl tree) {
3753                 if (tree != check)
3754                     return ;
3755 
3756                 if (!isAPISymbol(tree.sym))
3757                     return ;
3758 
3759                 Lint prevLint = lint;
3760                 try {
3761                     lint = lint.augment(tree.sym);
3762                     if (lint.isEnabled(LintCategory.EXPORTS)) {
3763                         scan(tree.mods);
3764                         scan(tree.typarams);
3765                         try {
3766                             inSuperType = true;
3767                             scan(tree.extending);
3768                             scan(tree.implementing);
3769                         } finally {
3770                             inSuperType = false;
3771                         }
3772                         scan(tree.defs);
3773                     }
3774                 } finally {
3775                     lint = prevLint;
3776                 }
3777             }
3778             @Override
3779             public void visitTypeApply(JCTypeApply tree) {
3780                 scan(tree.clazz);
3781                 boolean oldInSuperType = inSuperType;
3782                 try {
3783                     inSuperType = false;
3784                     scan(tree.arguments);
3785                 } finally {
3786                     inSuperType = oldInSuperType;
3787                 }
3788             }
3789             @Override
3790             public void visitIdent(JCIdent tree) {
3791                 Symbol sym = TreeInfo.symbol(tree);
3792                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
3793                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
3794                 }
3795             }
3796 
3797             @Override
3798             public void visitSelect(JCFieldAccess tree) {
3799                 Symbol sym = TreeInfo.symbol(tree);
3800                 Symbol sitesym = TreeInfo.symbol(tree.selected);
3801                 if (sym.kind == TYP && sitesym.kind == PCK) {
3802                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
3803                 } else {
3804                     super.visitSelect(tree);
3805                 }
3806             }
3807 
3808             @Override
3809             public void visitAnnotation(JCAnnotation tree) {
3810                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
3811                     super.visitAnnotation(tree);
3812             }
3813 
3814         }.scan(check);
3815     }
3816         //where:
findExport(PackageSymbol pack)3817         private ExportsDirective findExport(PackageSymbol pack) {
3818             for (ExportsDirective d : pack.modle.exports) {
3819                 if (d.packge == pack)
3820                     return d;
3821             }
3822 
3823             return null;
3824         }
isAPISymbol(Symbol sym)3825         private boolean isAPISymbol(Symbol sym) {
3826             while (sym.kind != PCK) {
3827                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
3828                     return false;
3829                 }
3830                 sym = sym.owner;
3831             }
3832             return true;
3833         }
checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType)3834         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
3835             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
3836                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
3837                 return ;
3838             }
3839 
3840             PackageSymbol whatPackage = what.packge();
3841             ExportsDirective whatExport = findExport(whatPackage);
3842             ExportsDirective inExport = findExport(inPackage);
3843 
3844             if (whatExport == null) { //package not exported:
3845                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
3846                 return ;
3847             }
3848 
3849             if (whatExport.modules != null) {
3850                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
3851                     log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
3852                 }
3853             }
3854 
3855             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
3856                 //check that relativeTo.modle requires transitive what.modle, somehow:
3857                 List<ModuleSymbol> todo = List.of(inPackage.modle);
3858 
3859                 while (todo.nonEmpty()) {
3860                     ModuleSymbol current = todo.head;
3861                     todo = todo.tail;
3862                     if (current == whatPackage.modle)
3863                         return ; //OK
3864                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
3865                         continue; //for automatic modules, don't look into their dependencies
3866                     for (RequiresDirective req : current.requires) {
3867                         if (req.isTransitive()) {
3868                             todo = todo.prepend(req.module);
3869                         }
3870                     }
3871                 }
3872 
3873                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
3874             }
3875         }
3876 
checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym)3877     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
3878         if (msym.kind != MDL) {
3879             deferredLintHandler.report(() -> {
3880                 if (lint.isEnabled(LintCategory.MODULE))
3881                     log.warning(LintCategory.MODULE, pos, Warnings.ModuleNotFound(msym));
3882             });
3883         }
3884     }
3885 
checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge)3886     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
3887         if (packge.members().isEmpty() &&
3888             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
3889             deferredLintHandler.report(() -> {
3890                 if (lint.isEnabled(LintCategory.OPENS))
3891                     log.warning(pos, Warnings.PackageEmptyOrNotFound(packge));
3892             });
3893         }
3894     }
3895 
checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd)3896     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
3897         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
3898             deferredLintHandler.report(() -> {
3899                 if (rd.isTransitive() && lint.isEnabled(LintCategory.REQUIRES_TRANSITIVE_AUTOMATIC)) {
3900                     log.warning(pos, Warnings.RequiresTransitiveAutomatic);
3901                 } else if (lint.isEnabled(LintCategory.REQUIRES_AUTOMATIC)) {
3902                     log.warning(pos, Warnings.RequiresAutomatic);
3903                 }
3904             });
3905         }
3906     }
3907 
3908 }
3909