1 /*
2  * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package com.sun.tools.javac.comp;
27 
28 import java.util.Collections;
29 import java.util.EnumSet;
30 import java.util.HashMap;
31 import java.util.HashSet;
32 import java.util.LinkedHashMap;
33 import java.util.Map;
34 import java.util.Set;
35 
36 import com.sun.tools.javac.code.Type;
37 import com.sun.tools.javac.code.Type.ArrayType;
38 import com.sun.tools.javac.code.Type.ClassType;
39 import com.sun.tools.javac.code.Type.TypeVar;
40 import com.sun.tools.javac.code.Type.UndetVar;
41 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
42 import com.sun.tools.javac.code.Type.WildcardType;
43 import com.sun.tools.javac.code.TypeTag;
44 import com.sun.tools.javac.code.Types;
45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
46 import com.sun.tools.javac.comp.Infer.GraphSolver;
47 import com.sun.tools.javac.comp.Infer.GraphStrategy;
48 import com.sun.tools.javac.comp.Infer.InferenceException;
49 import com.sun.tools.javac.comp.Infer.InferenceStep;
50 import com.sun.tools.javac.tree.JCTree;
51 import com.sun.tools.javac.util.Assert;
52 import com.sun.tools.javac.util.Filter;
53 import com.sun.tools.javac.util.List;
54 import com.sun.tools.javac.util.ListBuffer;
55 import com.sun.tools.javac.util.Warner;
56 
57 /**
58  * An inference context keeps track of the set of variables that are free
59  * in the current context. It provides utility methods for opening/closing
60  * types to their corresponding free/closed forms. It also provide hooks for
61  * attaching deferred post-inference action (see PendingCheck). Finally,
62  * it can be used as an entry point for performing upper/lower bound inference
63  * (see InferenceKind).
64  *
65  * <p><b>This is NOT part of any supported API.
66  * If you write code that depends on this, you do so at your own risk.
67  * This code and its internal interfaces are subject to change or
68  * deletion without notice.</b>
69  */
70 public class InferenceContext {
71 
72     /** list of inference vars as undet vars */
73     List<Type> undetvars;
74 
update(Type t)75     Type update(Type t) {
76         return t;
77     }
78 
79     /** list of inference vars in this context */
80     List<Type> inferencevars;
81 
82     Map<FreeTypeListener, List<Type>> freeTypeListeners = new LinkedHashMap<>();
83 
84     Types types;
85     Infer infer;
86 
InferenceContext(Infer infer, List<Type> inferencevars)87     public InferenceContext(Infer infer, List<Type> inferencevars) {
88         this(infer, inferencevars, inferencevars.map(infer.fromTypeVarFun));
89     }
90 
InferenceContext(Infer infer, List<Type> inferencevars, List<Type> undetvars)91     public InferenceContext(Infer infer, List<Type> inferencevars, List<Type> undetvars) {
92         this.inferencevars = inferencevars;
93         this.undetvars = undetvars;
94         this.infer = infer;
95         this.types = infer.types;
96     }
97 
98     /**
99      * add a new inference var to this inference context
100      */
addVar(TypeVar t)101     void addVar(TypeVar t) {
102         this.undetvars = this.undetvars.prepend(infer.fromTypeVarFun.apply(t));
103         this.inferencevars = this.inferencevars.prepend(t);
104     }
105 
106     /**
107      * returns the list of free variables (as type-variables) in this
108      * inference context
109      */
inferenceVars()110     List<Type> inferenceVars() {
111         return inferencevars;
112     }
113 
114     /**
115      * returns the list of undetermined variables in this inference context
116      */
undetVars()117     public List<Type> undetVars() {
118         return undetvars;
119     }
120 
121     /**
122      * returns the list of uninstantiated variables (as type-variables) in this
123      * inference context
124      */
restvars()125     List<Type> restvars() {
126         return filterVars(uv -> uv.getInst() == null);
127     }
128 
129     /**
130      * returns the list of instantiated variables (as type-variables) in this
131      * inference context
132      */
instvars()133     List<Type> instvars() {
134         return filterVars(uv -> uv.getInst() != null);
135     }
136 
137     /**
138      * Get list of bounded inference variables (where bound is other than
139      * declared bounds).
140      */
boundedVars()141     final List<Type> boundedVars() {
142         return filterVars(uv -> uv.getBounds(InferenceBound.UPPER)
143                  .diff(uv.getDeclaredBounds())
144                  .appendList(uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)).nonEmpty());
145     }
146 
147     /* Returns the corresponding inference variables.
148      */
filterVars(Filter<UndetVar> fu)149     private List<Type> filterVars(Filter<UndetVar> fu) {
150         ListBuffer<Type> res = new ListBuffer<>();
151         for (Type t : undetvars) {
152             UndetVar uv = (UndetVar)t;
153             if (fu.accepts(uv)) {
154                 res.append(uv.qtype);
155             }
156         }
157         return res.toList();
158     }
159 
160     /**
161      * is this type free?
162      */
free(Type t)163     final boolean free(Type t) {
164         return t.containsAny(inferencevars);
165     }
166 
free(List<Type> ts)167     final boolean free(List<Type> ts) {
168         for (Type t : ts) {
169             if (free(t)) return true;
170         }
171         return false;
172     }
173 
174     /**
175      * Returns a list of free variables in a given type
176      */
freeVarsIn(Type t)177     final List<Type> freeVarsIn(Type t) {
178         ListBuffer<Type> buf = new ListBuffer<>();
179         for (Type iv : inferenceVars()) {
180             if (t.contains(iv)) {
181                 buf.add(iv);
182             }
183         }
184         return buf.toList();
185     }
186 
freeVarsIn(List<Type> ts)187     final List<Type> freeVarsIn(List<Type> ts) {
188         ListBuffer<Type> buf = new ListBuffer<>();
189         for (Type t : ts) {
190             buf.appendList(freeVarsIn(t));
191         }
192         ListBuffer<Type> buf2 = new ListBuffer<>();
193         for (Type t : buf) {
194             if (!buf2.contains(t)) {
195                 buf2.add(t);
196             }
197         }
198         return buf2.toList();
199     }
200 
201     /**
202      * Replace all free variables in a given type with corresponding
203      * undet vars (used ahead of subtyping/compatibility checks to allow propagation
204      * of inference constraints).
205      */
asUndetVar(Type t)206     public final Type asUndetVar(Type t) {
207         return types.subst(t, inferencevars, undetvars);
208     }
209 
asUndetVars(List<Type> ts)210     final List<Type> asUndetVars(List<Type> ts) {
211         ListBuffer<Type> buf = new ListBuffer<>();
212         for (Type t : ts) {
213             buf.append(asUndetVar(t));
214         }
215         return buf.toList();
216     }
217 
instTypes()218     List<Type> instTypes() {
219         ListBuffer<Type> buf = new ListBuffer<>();
220         for (Type t : undetvars) {
221             UndetVar uv = (UndetVar)t;
222             buf.append(uv.getInst() != null ? uv.getInst() : uv.qtype);
223         }
224         return buf.toList();
225     }
226 
227     /**
228      * Replace all free variables in a given type with corresponding
229      * instantiated types - if one or more free variable has not been
230      * fully instantiated, it will still be available in the resulting type.
231      */
asInstType(Type t)232     Type asInstType(Type t) {
233         return types.subst(t, inferencevars, instTypes());
234     }
235 
asInstTypes(List<Type> ts)236     List<Type> asInstTypes(List<Type> ts) {
237         ListBuffer<Type> buf = new ListBuffer<>();
238         for (Type t : ts) {
239             buf.append(asInstType(t));
240         }
241         return buf.toList();
242     }
243 
244     /**
245      * Add custom hook for performing post-inference action
246      */
addFreeTypeListener(List<Type> types, FreeTypeListener ftl)247     void addFreeTypeListener(List<Type> types, FreeTypeListener ftl) {
248         freeTypeListeners.put(ftl, freeVarsIn(types));
249     }
250 
251     /**
252      * Mark the inference context as complete and trigger evaluation
253      * of all deferred checks.
254      */
notifyChange()255     void notifyChange() {
256         notifyChange(inferencevars.diff(restvars()));
257     }
258 
notifyChange(List<Type> inferredVars)259     void notifyChange(List<Type> inferredVars) {
260         InferenceException thrownEx = null;
261         for (Map.Entry<FreeTypeListener, List<Type>> entry :
262                 new LinkedHashMap<>(freeTypeListeners).entrySet()) {
263             if (!Type.containsAny(entry.getValue(), inferencevars.diff(inferredVars))) {
264                 try {
265                     entry.getKey().typesInferred(this);
266                     freeTypeListeners.remove(entry.getKey());
267                 } catch (InferenceException ex) {
268                     if (thrownEx == null) {
269                         thrownEx = ex;
270                     }
271                 }
272             }
273         }
274         //inference exception multiplexing - present any inference exception
275         //thrown when processing listeners as a single one
276         if (thrownEx != null) {
277             throw thrownEx;
278         }
279     }
280 
281     /**
282      * Save the state of this inference context
283      */
save()284     public List<Type> save() {
285         ListBuffer<Type> buf = new ListBuffer<>();
286         for (Type t : undetvars) {
287             buf.add(((UndetVar)t).dup(infer.types));
288         }
289         return buf.toList();
290     }
291 
292     /** Restore the state of this inference context to the previous known checkpoint.
293     *  Consider that the number of saved undetermined variables can be different to the current
294     *  amount. This is because new captured variables could have been added.
295     */
rollback(List<Type> saved_undet)296     public void rollback(List<Type> saved_undet) {
297         Assert.check(saved_undet != null);
298         //restore bounds (note: we need to preserve the old instances)
299         ListBuffer<Type> newUndetVars = new ListBuffer<>();
300         ListBuffer<Type> newInferenceVars = new ListBuffer<>();
301         while (saved_undet.nonEmpty() && undetvars.nonEmpty()) {
302             UndetVar uv = (UndetVar)undetvars.head;
303             UndetVar uv_saved = (UndetVar)saved_undet.head;
304             if (uv.qtype == uv_saved.qtype) {
305                 uv_saved.dupTo(uv, types);
306                 undetvars = undetvars.tail;
307                 saved_undet = saved_undet.tail;
308                 newUndetVars.add(uv);
309                 newInferenceVars.add(uv.qtype);
310             } else {
311                 undetvars = undetvars.tail;
312             }
313         }
314         undetvars = newUndetVars.toList();
315         inferencevars = newInferenceVars.toList();
316     }
317 
318     /**
319      * Copy variable in this inference context to the given context
320      */
dupTo(final InferenceContext that)321     void dupTo(final InferenceContext that) {
322         dupTo(that, false);
323     }
324 
dupTo(final InferenceContext that, boolean clone)325     void dupTo(final InferenceContext that, boolean clone) {
326         that.inferencevars = that.inferencevars.appendList(inferencevars.diff(that.inferencevars));
327         List<Type> undetsToPropagate = clone ? save() : undetvars;
328         that.undetvars = that.undetvars.appendList(undetsToPropagate.diff(that.undetvars)); //propagate cloned undet!!
329         //set up listeners to notify original inference contexts as
330         //propagated vars are inferred in new context
331         for (Type t : inferencevars) {
332             that.freeTypeListeners.put(inferenceContext -> InferenceContext.this.notifyChange(), List.of(t));
333         }
334     }
335 
min(List<Type> roots, boolean shouldSolve, Warner warn)336     InferenceContext min(List<Type> roots, boolean shouldSolve, Warner warn) {
337         if (roots.length() == inferencevars.length()) {
338             return this;
339         }
340         ReachabilityVisitor rv = new ReachabilityVisitor();
341         rv.scan(roots);
342         if (rv.min.size() == inferencevars.length()) {
343             return this;
344         }
345 
346         List<Type> minVars = List.from(rv.min);
347         List<Type> redundantVars = inferencevars.diff(minVars);
348 
349         //compute new undet variables (bounds associated to redundant variables are dropped)
350         ListBuffer<Type> minUndetVars = new ListBuffer<>();
351         for (Type minVar : minVars) {
352             UndetVar uv = (UndetVar)asUndetVar(minVar);
353             Assert.check(uv.incorporationActions.isEmpty());
354             UndetVar uv2 = uv.dup(types);
355             for (InferenceBound ib : InferenceBound.values()) {
356                 List<Type> newBounds = uv.getBounds(ib).stream()
357                         .filter(b -> !redundantVars.contains(b))
358                         .collect(List.collector());
359                 uv2.setBounds(ib, newBounds);
360             }
361             minUndetVars.add(uv2);
362         }
363 
364         //compute new minimal inference context
365         InferenceContext minContext = new InferenceContext(infer, minVars, minUndetVars.toList());
366         for (Type t : minContext.inferencevars) {
367             //add listener that forwards notifications to original context
368             minContext.addFreeTypeListener(List.of(t), (inferenceContext) -> {
369                 ((UndetVar)asUndetVar(t)).setInst(inferenceContext.asInstType(t));
370                 infer.doIncorporation(inferenceContext, warn);
371                 solve(List.from(rv.minMap.get(t)), warn);
372                 notifyChange();
373             });
374         }
375         if (shouldSolve) {
376             //solve definitively unreachable variables
377             List<Type> unreachableVars = redundantVars.diff(List.from(rv.equiv));
378             minContext.addFreeTypeListener(minVars, (inferenceContext) -> {
379                 solve(unreachableVars, warn);
380                 notifyChange();
381             });
382         }
383         return minContext;
384     }
385 
386     class ReachabilityVisitor extends Types.UnaryVisitor<Void> {
387 
388         Set<Type> equiv = new HashSet<>();
389         Set<Type> min = new HashSet<>();
390         Map<Type, Set<Type>> minMap = new HashMap<>();
391 
scan(List<Type> roots)392         void scan(List<Type> roots) {
393             roots.stream().forEach(this::visit);
394         }
395 
396         @Override
visitType(Type t, Void _unused)397         public Void visitType(Type t, Void _unused) {
398             return null;
399         }
400 
401         @Override
visitUndetVar(UndetVar t, Void _unused)402         public Void visitUndetVar(UndetVar t, Void _unused) {
403             if (min.add(t.qtype)) {
404                 Set<Type> deps = minMap.getOrDefault(t.qtype, new HashSet<>(Collections.singleton(t.qtype)));
405                 for (InferenceBound boundKind : InferenceBound.values()) {
406                     for (Type b : t.getBounds(boundKind)) {
407                         Type undet = asUndetVar(b);
408                         if (!undet.hasTag(TypeTag.UNDETVAR)) {
409                             visit(undet);
410                         } else if (isEquiv(t, b, boundKind)) {
411                             deps.add(b);
412                             equiv.add(b);
413                         } else {
414                             visit(undet);
415                         }
416                     }
417                 }
418                 minMap.put(t.qtype, deps);
419             }
420             return null;
421         }
422 
423         @Override
visitWildcardType(WildcardType t, Void _unused)424         public Void visitWildcardType(WildcardType t, Void _unused) {
425             return visit(t.type);
426         }
427 
428         @Override
visitTypeVar(TypeVar t, Void aVoid)429         public Void visitTypeVar(TypeVar t, Void aVoid) {
430             Type undet = asUndetVar(t);
431             if (undet.hasTag(TypeTag.UNDETVAR)) {
432                 visitUndetVar((UndetVar)undet, null);
433             }
434             return null;
435         }
436 
437         @Override
visitArrayType(ArrayType t, Void _unused)438         public Void visitArrayType(ArrayType t, Void _unused) {
439             return visit(t.elemtype);
440         }
441 
442         @Override
visitClassType(ClassType t, Void _unused)443         public Void visitClassType(ClassType t, Void _unused) {
444             visit(t.getEnclosingType());
445             for (Type targ : t.getTypeArguments()) {
446                 visit(targ);
447             }
448             return null;
449         }
450 
isEquiv(UndetVar from, Type t, InferenceBound boundKind)451         boolean isEquiv(UndetVar from, Type t, InferenceBound boundKind) {
452             UndetVar uv = (UndetVar)asUndetVar(t);
453             for (InferenceBound ib : InferenceBound.values()) {
454                 List<Type> b1 = from.getBounds(ib);
455                 if (ib == boundKind) {
456                     b1 = b1.diff(List.of(t));
457                 }
458                 List<Type> b2 = uv.getBounds(ib);
459                 if (ib == boundKind.complement()) {
460                     b2 = b2.diff(List.of(from.qtype));
461                 }
462                 if (!b1.containsAll(b2) || !b2.containsAll(b1)) {
463                     return false;
464                 }
465             }
466             return true;
467         }
468     }
469 
470     /**
471      * Solve with given graph strategy.
472      */
solve(GraphStrategy ss, Warner warn)473     private void solve(GraphStrategy ss, Warner warn) {
474         GraphSolver s = infer.new GraphSolver(this, warn);
475         s.solve(ss);
476     }
477 
478     /**
479      * Solve all variables in this context.
480      */
solve(Warner warn)481     public void solve(Warner warn) {
482         solve(infer.new LeafSolver() {
483             public boolean done() {
484                 return restvars().isEmpty();
485             }
486         }, warn);
487     }
488 
489     /**
490      * Solve all variables in the given list.
491      */
solve(final List<Type> vars, Warner warn)492     public void solve(final List<Type> vars, Warner warn) {
493         solve(infer.new BestLeafSolver(vars) {
494             public boolean done() {
495                 return !free(asInstTypes(vars));
496             }
497         }, warn);
498     }
499 
500     /**
501      * Solve at least one variable in given list.
502      */
solveAny(List<Type> varsToSolve, Warner warn)503     public void solveAny(List<Type> varsToSolve, Warner warn) {
504         solve(infer.new BestLeafSolver(varsToSolve.intersect(restvars())) {
505             public boolean done() {
506                 return instvars().intersect(varsToSolve).nonEmpty();
507             }
508         }, warn);
509     }
510 
511     /**
512      * Apply a set of inference steps
513      */
solveBasic(EnumSet<InferenceStep> steps)514     private List<Type> solveBasic(EnumSet<InferenceStep> steps) {
515         return solveBasic(inferencevars, steps);
516     }
517 
solveBasic(List<Type> varsToSolve, EnumSet<InferenceStep> steps)518     List<Type> solveBasic(List<Type> varsToSolve, EnumSet<InferenceStep> steps) {
519         ListBuffer<Type> solvedVars = new ListBuffer<>();
520         for (Type t : varsToSolve.intersect(restvars())) {
521             UndetVar uv = (UndetVar)asUndetVar(t);
522             for (InferenceStep step : steps) {
523                 if (step.accepts(uv, this)) {
524                     uv.setInst(step.solve(uv, this));
525                     solvedVars.add(uv.qtype);
526                     break;
527                 }
528             }
529         }
530         return solvedVars.toList();
531     }
532 
533     /**
534      * Instantiate inference variables in legacy mode (JLS 15.12.2.7, 15.12.2.8).
535      * During overload resolution, instantiation is done by doing a partial
536      * inference process using eq/lower bound instantiation. During check,
537      * we also instantiate any remaining vars by repeatedly using eq/upper
538      * instantiation, until all variables are solved.
539      */
solveLegacy(boolean partial, Warner warn, EnumSet<InferenceStep> steps)540     public void solveLegacy(boolean partial, Warner warn, EnumSet<InferenceStep> steps) {
541         while (true) {
542             List<Type> solvedVars = solveBasic(steps);
543             if (restvars().isEmpty() || partial) {
544                 //all variables have been instantiated - exit
545                 break;
546             } else if (solvedVars.isEmpty()) {
547                 //some variables could not be instantiated because of cycles in
548                 //upper bounds - provide a (possibly recursive) default instantiation
549                 infer.instantiateAsUninferredVars(restvars(), this);
550                 break;
551             } else {
552                 //some variables have been instantiated - replace newly instantiated
553                 //variables in remaining upper bounds and continue
554                 for (Type t : undetvars) {
555                     UndetVar uv = (UndetVar)t;
556                     uv.substBounds(solvedVars, asInstTypes(solvedVars), types);
557                 }
558             }
559         }
560         infer.doIncorporation(this, warn);
561     }
562 
563     @Override
toString()564     public String toString() {
565         return "Inference vars: " + inferencevars + '\n' +
566                "Undet vars: " + undetvars;
567     }
568 
569     /* Method Types.capture() generates a new type every time it's applied
570      * to a wildcard parameterized type. This is intended functionality but
571      * there are some cases when what you need is not to generate a new
572      * captured type but to check that a previously generated captured type
573      * is correct. There are cases when caching a captured type for later
574      * reuse is sound. In general two captures from the same AST are equal.
575      * This is why the tree is used as the key of the map below. This map
576      * stores a Type per AST.
577      */
578     Map<JCTree, Type> captureTypeCache = new HashMap<>();
579 
cachedCapture(JCTree tree, Type t, boolean readOnly)580     Type cachedCapture(JCTree tree, Type t, boolean readOnly) {
581         Type captured = captureTypeCache.get(tree);
582         if (captured != null) {
583             return captured;
584         }
585 
586         Type result = types.capture(t);
587         if (result != t && !readOnly) { // then t is a wildcard parameterized type
588             captureTypeCache.put(tree, result);
589         }
590         return result;
591     }
592 }
593