1 /*
2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "c1/c1_Compilation.hpp"
28 #include "c1/c1_FrameMap.hpp"
29 #include "c1/c1_Instruction.hpp"
30 #include "c1/c1_LIRAssembler.hpp"
31 #include "c1/c1_LIRGenerator.hpp"
32 #include "c1/c1_Runtime1.hpp"
33 #include "c1/c1_ValueStack.hpp"
34 #include "ci/ciArray.hpp"
35 #include "ci/ciObjArrayKlass.hpp"
36 #include "ci/ciTypeArrayKlass.hpp"
37 #include "runtime/safepointMechanism.hpp"
38 #include "runtime/sharedRuntime.hpp"
39 #include "runtime/stubRoutines.hpp"
40 #include "vmreg_sparc.inline.hpp"
41 
42 #ifdef ASSERT
43 #define __ gen()->lir(__FILE__, __LINE__)->
44 #else
45 #define __ gen()->lir()->
46 #endif
47 
load_byte_item()48 void LIRItem::load_byte_item() {
49   // byte loads use same registers as other loads
50   load_item();
51 }
52 
53 
load_nonconstant()54 void LIRItem::load_nonconstant() {
55   LIR_Opr r = value()->operand();
56   if (_gen->can_inline_as_constant(value())) {
57     if (!r->is_constant()) {
58       r = LIR_OprFact::value_type(value()->type());
59     }
60     _result = r;
61   } else {
62     load_item();
63   }
64 }
65 
66 
67 //--------------------------------------------------------------
68 //               LIRGenerator
69 //--------------------------------------------------------------
70 
exceptionOopOpr()71 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
exceptionPcOpr()72 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
syncLockOpr()73 LIR_Opr LIRGenerator::syncLockOpr()                  { return new_register(T_INT); }
syncTempOpr()74 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
getThreadTemp()75 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_LONG); }
76 
result_register_for(ValueType * type,bool callee)77 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
78   LIR_Opr opr;
79   switch (type->tag()) {
80   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
81   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
82   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
83   case floatTag:   opr = FrameMap::F0_opr;                                        break;
84   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
85 
86   case addressTag:
87   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
88   }
89 
90   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
91   return opr;
92 }
93 
rlock_callee_saved(BasicType type)94 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
95   LIR_Opr reg = new_register(type);
96   set_vreg_flag(reg, callee_saved);
97   return reg;
98 }
99 
100 
rlock_byte(BasicType type)101 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
102   return new_register(T_INT);
103 }
104 
105 
106 
107 
108 
109 //--------- loading items into registers --------------------------------
110 
111 // SPARC cannot inline all constants
can_store_as_constant(Value v,BasicType type) const112 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
113   if (v->type()->as_IntConstant() != NULL) {
114     return v->type()->as_IntConstant()->value() == 0;
115   } else if (v->type()->as_LongConstant() != NULL) {
116     return v->type()->as_LongConstant()->value() == 0L;
117   } else if (v->type()->as_ObjectConstant() != NULL) {
118     return v->type()->as_ObjectConstant()->value()->is_null_object();
119   } else {
120     return false;
121   }
122 }
123 
124 
125 // only simm13 constants can be inlined
can_inline_as_constant(Value i) const126 bool LIRGenerator:: can_inline_as_constant(Value i) const {
127   if (i->type()->as_IntConstant() != NULL) {
128     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
129   } else {
130     return can_store_as_constant(i, as_BasicType(i->type()));
131   }
132 }
133 
134 
can_inline_as_constant(LIR_Const * c) const135 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
136   if (c->type() == T_INT) {
137     return Assembler::is_simm13(c->as_jint());
138   }
139   return false;
140 }
141 
142 
safepoint_poll_register()143 LIR_Opr LIRGenerator::safepoint_poll_register() {
144   return new_register(T_INT);
145 }
146 
147 
148 
generate_address(LIR_Opr base,LIR_Opr index,int shift,int disp,BasicType type)149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
150                                             int shift, int disp, BasicType type) {
151   assert(base->is_register(), "must be");
152   intx large_disp = disp;
153 
154   // accumulate fixed displacements
155   if (index->is_constant()) {
156     large_disp += (intx)(index->as_constant_ptr()->as_jint()) << shift;
157     index = LIR_OprFact::illegalOpr;
158   }
159 
160   if (index->is_register()) {
161     // apply the shift and accumulate the displacement
162     if (shift > 0) {
163       LIR_Opr tmp = new_pointer_register();
164       __ shift_left(index, shift, tmp);
165       index = tmp;
166     }
167     if (large_disp != 0) {
168       LIR_Opr tmp = new_pointer_register();
169       if (Assembler::is_simm13(large_disp)) {
170         __ add(tmp, LIR_OprFact::intptrConst(large_disp), tmp);
171         index = tmp;
172       } else {
173         __ move(LIR_OprFact::intptrConst(large_disp), tmp);
174         __ add(tmp, index, tmp);
175         index = tmp;
176       }
177       large_disp = 0;
178     }
179   } else if (large_disp != 0 && !Assembler::is_simm13(large_disp)) {
180     // index is illegal so replace it with the displacement loaded into a register
181     index = new_pointer_register();
182     __ move(LIR_OprFact::intptrConst(large_disp), index);
183     large_disp = 0;
184   }
185 
186   // at this point we either have base + index or base + displacement
187   if (large_disp == 0) {
188     return new LIR_Address(base, index, type);
189   } else {
190     assert(Assembler::is_simm13(large_disp), "must be");
191     return new LIR_Address(base, large_disp, type);
192   }
193 }
194 
195 
emit_array_address(LIR_Opr array_opr,LIR_Opr index_opr,BasicType type)196 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
197                                               BasicType type) {
198   int elem_size = type2aelembytes(type);
199   int shift = exact_log2(elem_size);
200 
201   LIR_Opr base_opr;
202   intx offset = arrayOopDesc::base_offset_in_bytes(type);
203 
204   if (index_opr->is_constant()) {
205     intx i = index_opr->as_constant_ptr()->as_jint();
206     intx array_offset = i * elem_size;
207     if (Assembler::is_simm13(array_offset + offset)) {
208       base_opr = array_opr;
209       offset = array_offset + offset;
210     } else {
211       base_opr = new_pointer_register();
212       if (Assembler::is_simm13(array_offset)) {
213         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
214       } else {
215         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
216         __ add(base_opr, array_opr, base_opr);
217       }
218     }
219   } else {
220     if (index_opr->type() == T_INT) {
221       LIR_Opr tmp = new_register(T_LONG);
222       __ convert(Bytecodes::_i2l, index_opr, tmp);
223       index_opr = tmp;
224     }
225 
226     base_opr = new_pointer_register();
227     assert (index_opr->is_register(), "Must be register");
228     if (shift > 0) {
229       __ shift_left(index_opr, shift, base_opr);
230       __ add(base_opr, array_opr, base_opr);
231     } else {
232       __ add(index_opr, array_opr, base_opr);
233     }
234   }
235 
236   return new LIR_Address(base_opr, offset, type);
237 }
238 
load_immediate(int x,BasicType type)239 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
240   LIR_Opr r;
241   if (type == T_LONG) {
242     r = LIR_OprFact::longConst(x);
243   } else if (type == T_INT) {
244     r = LIR_OprFact::intConst(x);
245   } else {
246     ShouldNotReachHere();
247   }
248   if (!Assembler::is_simm13(x)) {
249     LIR_Opr tmp = new_register(type);
250     __ move(r, tmp);
251     return tmp;
252   }
253   return r;
254 }
255 
increment_counter(address counter,BasicType type,int step)256 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
257   LIR_Opr pointer = new_pointer_register();
258   __ move(LIR_OprFact::intptrConst(counter), pointer);
259   LIR_Address* addr = new LIR_Address(pointer, type);
260   increment_counter(addr, step);
261 }
262 
increment_counter(LIR_Address * addr,int step)263 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
264   LIR_Opr temp = new_register(addr->type());
265   __ move(addr, temp);
266   __ add(temp, load_immediate(step, addr->type()), temp);
267   __ move(temp, addr);
268 }
269 
cmp_mem_int(LIR_Condition condition,LIR_Opr base,int disp,int c,CodeEmitInfo * info)270 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
271   LIR_Opr o7opr = FrameMap::O7_opr;
272   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
273   __ cmp(condition, o7opr, c);
274 }
275 
276 
cmp_reg_mem(LIR_Condition condition,LIR_Opr reg,LIR_Opr base,int disp,BasicType type,CodeEmitInfo * info)277 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
278   LIR_Opr o7opr = FrameMap::O7_opr;
279   __ load(new LIR_Address(base, disp, type), o7opr, info);
280   __ cmp(condition, reg, o7opr);
281 }
282 
283 
strength_reduce_multiply(LIR_Opr left,int c,LIR_Opr result,LIR_Opr tmp)284 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
285   assert(left != result, "should be different registers");
286   if (is_power_of_2(c + 1)) {
287     __ shift_left(left, log2_int(c + 1), result);
288     __ sub(result, left, result);
289     return true;
290   } else if (is_power_of_2(c - 1)) {
291     __ shift_left(left, log2_int(c - 1), result);
292     __ add(result, left, result);
293     return true;
294   }
295   return false;
296 }
297 
298 
store_stack_parameter(LIR_Opr item,ByteSize offset_from_sp)299 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
300   BasicType t = item->type();
301   LIR_Opr sp_opr = FrameMap::SP_opr;
302   if ((t == T_LONG || t == T_DOUBLE) &&
303       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
304     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
305   } else {
306     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
307   }
308 }
309 
array_store_check(LIR_Opr value,LIR_Opr array,CodeEmitInfo * store_check_info,ciMethod * profiled_method,int profiled_bci)310 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
311   LIR_Opr tmp1 = FrameMap::G1_opr;
312   LIR_Opr tmp2 = FrameMap::G3_opr;
313   LIR_Opr tmp3 = FrameMap::G5_opr;
314   __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
315 }
316 
317 //----------------------------------------------------------------------
318 //             visitor functions
319 //----------------------------------------------------------------------
320 
do_MonitorEnter(MonitorEnter * x)321 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
322   assert(x->is_pinned(),"");
323   LIRItem obj(x->obj(), this);
324   obj.load_item();
325 
326   set_no_result(x);
327 
328   LIR_Opr lock    = FrameMap::G1_opr;
329   LIR_Opr scratch = FrameMap::G3_opr;
330   LIR_Opr hdr     = FrameMap::G4_opr;
331 
332   CodeEmitInfo* info_for_exception = NULL;
333   if (x->needs_null_check()) {
334     info_for_exception = state_for(x);
335   }
336 
337   // this CodeEmitInfo must not have the xhandlers because here the
338   // object is already locked (xhandlers expects object to be unlocked)
339   CodeEmitInfo* info = state_for(x, x->state(), true);
340   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
341 }
342 
343 
do_MonitorExit(MonitorExit * x)344 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
345   assert(x->is_pinned(),"");
346   LIRItem obj(x->obj(), this);
347   obj.dont_load_item();
348 
349   set_no_result(x);
350   LIR_Opr lock      = FrameMap::G1_opr;
351   LIR_Opr hdr       = FrameMap::G3_opr;
352   LIR_Opr obj_temp  = FrameMap::G4_opr;
353   monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
354 }
355 
356 
357 // _ineg, _lneg, _fneg, _dneg
do_NegateOp(NegateOp * x)358 void LIRGenerator::do_NegateOp(NegateOp* x) {
359   LIRItem value(x->x(), this);
360   value.load_item();
361   LIR_Opr reg = rlock_result(x);
362   __ negate(value.result(), reg);
363 }
364 
365 
366 
367 // for  _fadd, _fmul, _fsub, _fdiv, _frem
368 //      _dadd, _dmul, _dsub, _ddiv, _drem
do_ArithmeticOp_FPU(ArithmeticOp * x)369 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
370   switch (x->op()) {
371   case Bytecodes::_fadd:
372   case Bytecodes::_fmul:
373   case Bytecodes::_fsub:
374   case Bytecodes::_fdiv:
375   case Bytecodes::_dadd:
376   case Bytecodes::_dmul:
377   case Bytecodes::_dsub:
378   case Bytecodes::_ddiv: {
379     LIRItem left(x->x(), this);
380     LIRItem right(x->y(), this);
381     left.load_item();
382     right.load_item();
383     rlock_result(x);
384     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
385   }
386   break;
387 
388   case Bytecodes::_frem:
389   case Bytecodes::_drem: {
390     address entry;
391     switch (x->op()) {
392     case Bytecodes::_frem:
393       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
394       break;
395     case Bytecodes::_drem:
396       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
397       break;
398     default:
399       ShouldNotReachHere();
400     }
401     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
402     set_result(x, result);
403   }
404   break;
405 
406   default: ShouldNotReachHere();
407   }
408 }
409 
410 
411 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
do_ArithmeticOp_Long(ArithmeticOp * x)412 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
413   switch (x->op()) {
414   case Bytecodes::_lrem:
415   case Bytecodes::_lmul:
416   case Bytecodes::_ldiv: {
417 
418     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
419       LIRItem right(x->y(), this);
420       right.load_item();
421 
422       CodeEmitInfo* info = state_for(x);
423       LIR_Opr item = right.result();
424       assert(item->is_register(), "must be");
425       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
426       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
427     }
428 
429     address entry;
430     switch (x->op()) {
431     case Bytecodes::_lrem:
432       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
433       break; // check if dividend is 0 is done elsewhere
434     case Bytecodes::_ldiv:
435       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
436       break; // check if dividend is 0 is done elsewhere
437     case Bytecodes::_lmul:
438       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
439       break;
440     default:
441       ShouldNotReachHere();
442     }
443 
444     // order of arguments to runtime call is reversed.
445     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
446     set_result(x, result);
447     break;
448   }
449   case Bytecodes::_ladd:
450   case Bytecodes::_lsub: {
451     LIRItem left(x->x(), this);
452     LIRItem right(x->y(), this);
453     left.load_item();
454     right.load_item();
455     rlock_result(x);
456 
457     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
458     break;
459   }
460   default: ShouldNotReachHere();
461   }
462 }
463 
464 
465 // Returns if item is an int constant that can be represented by a simm13
is_simm13(LIR_Opr item)466 static bool is_simm13(LIR_Opr item) {
467   if (item->is_constant() && item->type() == T_INT) {
468     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
469   } else {
470     return false;
471   }
472 }
473 
474 
475 // for: _iadd, _imul, _isub, _idiv, _irem
do_ArithmeticOp_Int(ArithmeticOp * x)476 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
477   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
478   LIRItem left(x->x(), this);
479   LIRItem right(x->y(), this);
480   // missing test if instr is commutative and if we should swap
481   right.load_nonconstant();
482   assert(right.is_constant() || right.is_register(), "wrong state of right");
483   left.load_item();
484   rlock_result(x);
485   if (is_div_rem) {
486     CodeEmitInfo* info = state_for(x);
487     LIR_Opr tmp = FrameMap::G1_opr;
488     if (x->op() == Bytecodes::_irem) {
489       __ irem(left.result(), right.result(), x->operand(), tmp, info);
490     } else if (x->op() == Bytecodes::_idiv) {
491       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
492     }
493   } else {
494     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
495   }
496 }
497 
498 
do_ArithmeticOp(ArithmeticOp * x)499 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
500   ValueTag tag = x->type()->tag();
501   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
502   switch (tag) {
503     case floatTag:
504     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
505     case longTag:    do_ArithmeticOp_Long(x); return;
506     case intTag:     do_ArithmeticOp_Int(x);  return;
507   }
508   ShouldNotReachHere();
509 }
510 
511 
512 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
do_ShiftOp(ShiftOp * x)513 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
514   LIRItem value(x->x(), this);
515   LIRItem count(x->y(), this);
516   // Long shift destroys count register
517   if (value.type()->is_long()) {
518     count.set_destroys_register();
519   }
520   value.load_item();
521   // the old backend doesn't support this
522   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
523     jint c = count.get_jint_constant() & 0x1f;
524     assert(c >= 0 && c < 32, "should be small");
525     count.dont_load_item();
526   } else {
527     count.load_item();
528   }
529   LIR_Opr reg = rlock_result(x);
530   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
531 }
532 
533 
534 // _iand, _land, _ior, _lor, _ixor, _lxor
do_LogicOp(LogicOp * x)535 void LIRGenerator::do_LogicOp(LogicOp* x) {
536   LIRItem left(x->x(), this);
537   LIRItem right(x->y(), this);
538 
539   left.load_item();
540   right.load_nonconstant();
541   LIR_Opr reg = rlock_result(x);
542 
543   logic_op(x->op(), reg, left.result(), right.result());
544 }
545 
546 
547 
548 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
do_CompareOp(CompareOp * x)549 void LIRGenerator::do_CompareOp(CompareOp* x) {
550   LIRItem left(x->x(), this);
551   LIRItem right(x->y(), this);
552   left.load_item();
553   right.load_item();
554   LIR_Opr reg = rlock_result(x);
555   if (x->x()->type()->is_float_kind()) {
556     Bytecodes::Code code = x->op();
557     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
558   } else if (x->x()->type()->tag() == longTag) {
559     __ lcmp2int(left.result(), right.result(), reg);
560   } else {
561     Unimplemented();
562   }
563 }
564 
atomic_cmpxchg(BasicType type,LIR_Opr addr,LIRItem & cmp_value,LIRItem & new_value)565 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
566   LIR_Opr result = new_register(T_INT);
567   LIR_Opr t1 = FrameMap::G1_opr;
568   LIR_Opr t2 = FrameMap::G3_opr;
569   cmp_value.load_item();
570   new_value.load_item();
571   if (type == T_OBJECT || type == T_ARRAY) {
572     __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
573   } else if (type == T_INT) {
574     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
575   } else if (type == T_LONG) {
576     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
577   } else {
578     Unimplemented();
579   }
580   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
581            result, type);
582   return result;
583 }
584 
atomic_xchg(BasicType type,LIR_Opr addr,LIRItem & value)585 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
586   bool is_obj = type == T_OBJECT || type == T_ARRAY;
587   LIR_Opr result = new_register(type);
588   LIR_Opr tmp = LIR_OprFact::illegalOpr;
589 
590   value.load_item();
591 
592   if (is_obj) {
593     tmp = FrameMap::G3_opr;
594   }
595 
596   // Because we want a 2-arg form of xchg
597   __ move(value.result(), result);
598   __ xchg(addr, result, result, tmp);
599   return result;
600 }
601 
atomic_add(BasicType type,LIR_Opr addr,LIRItem & value)602 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
603   Unimplemented();
604   return LIR_OprFact::illegalOpr;
605 }
606 
do_MathIntrinsic(Intrinsic * x)607 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
608   switch (x->id()) {
609     case vmIntrinsics::_dabs:
610     case vmIntrinsics::_dsqrt: {
611       assert(x->number_of_arguments() == 1, "wrong type");
612       LIRItem value(x->argument_at(0), this);
613       value.load_item();
614       LIR_Opr dst = rlock_result(x);
615 
616       switch (x->id()) {
617       case vmIntrinsics::_dsqrt: {
618         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
619         break;
620       }
621       case vmIntrinsics::_dabs: {
622         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
623         break;
624       }
625       }
626       break;
627     }
628     case vmIntrinsics::_dlog10: // fall through
629     case vmIntrinsics::_dlog: // fall through
630     case vmIntrinsics::_dsin: // fall through
631     case vmIntrinsics::_dtan: // fall through
632     case vmIntrinsics::_dcos: // fall through
633     case vmIntrinsics::_dexp: {
634       assert(x->number_of_arguments() == 1, "wrong type");
635 
636       address runtime_entry = NULL;
637       switch (x->id()) {
638       case vmIntrinsics::_dsin:
639         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
640         break;
641       case vmIntrinsics::_dcos:
642         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
643         break;
644       case vmIntrinsics::_dtan:
645         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
646         break;
647       case vmIntrinsics::_dlog:
648         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
649         break;
650       case vmIntrinsics::_dlog10:
651         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
652         break;
653       case vmIntrinsics::_dexp:
654         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
655         break;
656       default:
657         ShouldNotReachHere();
658       }
659 
660       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
661       set_result(x, result);
662       break;
663     }
664     case vmIntrinsics::_dpow: {
665       assert(x->number_of_arguments() == 2, "wrong type");
666       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
667       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
668       set_result(x, result);
669       break;
670     }
671   }
672 }
673 
674 
do_ArrayCopy(Intrinsic * x)675 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
676   assert(x->number_of_arguments() == 5, "wrong type");
677 
678   // Make all state_for calls early since they can emit code
679   CodeEmitInfo* info = state_for(x, x->state());
680 
681   // Note: spill caller save before setting the item
682   LIRItem src     (x->argument_at(0), this);
683   LIRItem src_pos (x->argument_at(1), this);
684   LIRItem dst     (x->argument_at(2), this);
685   LIRItem dst_pos (x->argument_at(3), this);
686   LIRItem length  (x->argument_at(4), this);
687   // load all values in callee_save_registers, as this makes the
688   // parameter passing to the fast case simpler
689   src.load_item_force     (rlock_callee_saved(T_OBJECT));
690   src_pos.load_item_force (rlock_callee_saved(T_INT));
691   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
692   dst_pos.load_item_force (rlock_callee_saved(T_INT));
693   length.load_item_force  (rlock_callee_saved(T_INT));
694 
695   int flags;
696   ciArrayKlass* expected_type;
697   arraycopy_helper(x, &flags, &expected_type);
698 
699   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
700                length.result(), rlock_callee_saved(T_INT),
701                expected_type, flags, info);
702   set_no_result(x);
703 }
704 
do_update_CRC32(Intrinsic * x)705 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
706   // Make all state_for calls early since they can emit code
707   LIR_Opr result = rlock_result(x);
708   int flags = 0;
709   switch (x->id()) {
710     case vmIntrinsics::_updateCRC32: {
711       LIRItem crc(x->argument_at(0), this);
712       LIRItem val(x->argument_at(1), this);
713       // val is destroyed by update_crc32
714       val.set_destroys_register();
715       crc.load_item();
716       val.load_item();
717       __ update_crc32(crc.result(), val.result(), result);
718       break;
719     }
720     case vmIntrinsics::_updateBytesCRC32:
721     case vmIntrinsics::_updateByteBufferCRC32: {
722 
723       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
724 
725       LIRItem crc(x->argument_at(0), this);
726       LIRItem buf(x->argument_at(1), this);
727       LIRItem off(x->argument_at(2), this);
728       LIRItem len(x->argument_at(3), this);
729 
730       buf.load_item();
731       off.load_nonconstant();
732 
733       LIR_Opr index = off.result();
734       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
735       if(off.result()->is_constant()) {
736         index = LIR_OprFact::illegalOpr;
737         offset += off.result()->as_jint();
738       }
739 
740       LIR_Opr base_op = buf.result();
741 
742       if (index->is_valid()) {
743         LIR_Opr tmp = new_register(T_LONG);
744         __ convert(Bytecodes::_i2l, index, tmp);
745         index = tmp;
746         if (index->is_constant()) {
747           offset += index->as_constant_ptr()->as_jint();
748           index = LIR_OprFact::illegalOpr;
749         } else if (index->is_register()) {
750           LIR_Opr tmp2 = new_register(T_LONG);
751           LIR_Opr tmp3 = new_register(T_LONG);
752           __ move(base_op, tmp2);
753           __ move(index, tmp3);
754           __ add(tmp2, tmp3, tmp2);
755           base_op = tmp2;
756         } else {
757           ShouldNotReachHere();
758         }
759       }
760 
761       LIR_Address* a = new LIR_Address(base_op, offset, T_BYTE);
762 
763       BasicTypeList signature(3);
764       signature.append(T_INT);
765       signature.append(T_ADDRESS);
766       signature.append(T_INT);
767       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
768       const LIR_Opr result_reg = result_register_for(x->type());
769 
770       LIR_Opr addr = new_pointer_register();
771       __ leal(LIR_OprFact::address(a), addr);
772 
773       crc.load_item_force(cc->at(0));
774       __ move(addr, cc->at(1));
775       len.load_item_force(cc->at(2));
776 
777       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
778       __ move(result_reg, result);
779 
780       break;
781     }
782     default: {
783       ShouldNotReachHere();
784     }
785   }
786 }
787 
do_update_CRC32C(Intrinsic * x)788 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
789   // Make all state_for calls early since they can emit code
790   LIR_Opr result = rlock_result(x);
791   int flags = 0;
792   switch (x->id()) {
793     case vmIntrinsics::_updateBytesCRC32C:
794     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
795 
796       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
797       int array_offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
798 
799       LIRItem crc(x->argument_at(0), this);
800       LIRItem buf(x->argument_at(1), this);
801       LIRItem off(x->argument_at(2), this);
802       LIRItem end(x->argument_at(3), this);
803 
804       buf.load_item();
805       off.load_nonconstant();
806       end.load_nonconstant();
807 
808       // len = end - off
809       LIR_Opr len  = end.result();
810       LIR_Opr tmpA = new_register(T_INT);
811       LIR_Opr tmpB = new_register(T_INT);
812       __ move(end.result(), tmpA);
813       __ move(off.result(), tmpB);
814       __ sub(tmpA, tmpB, tmpA);
815       len = tmpA;
816 
817       LIR_Opr index = off.result();
818 
819       if(off.result()->is_constant()) {
820         index = LIR_OprFact::illegalOpr;
821         array_offset += off.result()->as_jint();
822       }
823 
824       LIR_Opr base_op = buf.result();
825 
826       if (index->is_valid()) {
827         LIR_Opr tmp = new_register(T_LONG);
828         __ convert(Bytecodes::_i2l, index, tmp);
829         index = tmp;
830         if (index->is_constant()) {
831           array_offset += index->as_constant_ptr()->as_jint();
832           index = LIR_OprFact::illegalOpr;
833         } else if (index->is_register()) {
834           LIR_Opr tmp2 = new_register(T_LONG);
835           LIR_Opr tmp3 = new_register(T_LONG);
836           __ move(base_op, tmp2);
837           __ move(index, tmp3);
838           __ add(tmp2, tmp3, tmp2);
839           base_op = tmp2;
840         } else {
841           ShouldNotReachHere();
842         }
843       }
844 
845       LIR_Address* a = new LIR_Address(base_op, array_offset, T_BYTE);
846 
847       BasicTypeList signature(3);
848       signature.append(T_INT);
849       signature.append(T_ADDRESS);
850       signature.append(T_INT);
851       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
852       const LIR_Opr result_reg = result_register_for(x->type());
853 
854       LIR_Opr addr = new_pointer_register();
855       __ leal(LIR_OprFact::address(a), addr);
856 
857       crc.load_item_force(cc->at(0));
858       __ move(addr, cc->at(1));
859       __ move(len, cc->at(2));
860 
861       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
862       __ move(result_reg, result);
863 
864       break;
865     }
866     default: {
867       ShouldNotReachHere();
868     }
869   }
870 }
871 
do_FmaIntrinsic(Intrinsic * x)872 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
873   assert(x->number_of_arguments() == 3, "wrong type");
874   assert(UseFMA, "Needs FMA instructions support.");
875 
876   LIRItem a(x->argument_at(0), this);
877   LIRItem b(x->argument_at(1), this);
878   LIRItem c(x->argument_at(2), this);
879 
880   a.load_item();
881   b.load_item();
882   c.load_item();
883 
884   LIR_Opr ina = a.result();
885   LIR_Opr inb = b.result();
886   LIR_Opr inc = c.result();
887   LIR_Opr res = rlock_result(x);
888 
889   switch (x->id()) {
890     case vmIntrinsics::_fmaF: __ fmaf(ina, inb, inc, res); break;
891     case vmIntrinsics::_fmaD: __ fmad(ina, inb, inc, res); break;
892     default:
893       ShouldNotReachHere();
894       break;
895   }
896 }
897 
do_vectorizedMismatch(Intrinsic * x)898 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
899   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
900 }
901 
902 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
903 // _i2b, _i2c, _i2s
do_Convert(Convert * x)904 void LIRGenerator::do_Convert(Convert* x) {
905 
906   switch (x->op()) {
907     case Bytecodes::_f2l:
908     case Bytecodes::_d2l:
909     case Bytecodes::_d2i:
910     case Bytecodes::_l2f:
911     case Bytecodes::_l2d: {
912 
913       address entry;
914       switch (x->op()) {
915       case Bytecodes::_l2f:
916         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
917         break;
918       case Bytecodes::_l2d:
919         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
920         break;
921       case Bytecodes::_f2l:
922         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
923         break;
924       case Bytecodes::_d2l:
925         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
926         break;
927       case Bytecodes::_d2i:
928         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
929         break;
930       default:
931         ShouldNotReachHere();
932       }
933       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
934       set_result(x, result);
935       break;
936     }
937 
938     case Bytecodes::_i2f:
939     case Bytecodes::_i2d: {
940       LIRItem value(x->value(), this);
941 
942       LIR_Opr reg = rlock_result(x);
943       // To convert an int to double, we need to load the 32-bit int
944       // from memory into a single precision floating point register
945       // (even numbered). Then the sparc fitod instruction takes care
946       // of the conversion. This is a bit ugly, but is the best way to
947       // get the int value in a single precision floating point register
948       value.load_item();
949       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
950       __ convert(x->op(), tmp, reg);
951       break;
952     }
953     break;
954 
955     case Bytecodes::_i2l:
956     case Bytecodes::_i2b:
957     case Bytecodes::_i2c:
958     case Bytecodes::_i2s:
959     case Bytecodes::_l2i:
960     case Bytecodes::_f2d:
961     case Bytecodes::_d2f: { // inline code
962       LIRItem value(x->value(), this);
963 
964       value.load_item();
965       LIR_Opr reg = rlock_result(x);
966       __ convert(x->op(), value.result(), reg, false);
967     }
968     break;
969 
970     case Bytecodes::_f2i: {
971       LIRItem value (x->value(), this);
972       value.set_destroys_register();
973       value.load_item();
974       LIR_Opr reg = rlock_result(x);
975       set_vreg_flag(reg, must_start_in_memory);
976       __ convert(x->op(), value.result(), reg, false);
977     }
978     break;
979 
980     default: ShouldNotReachHere();
981   }
982 }
983 
984 
do_NewInstance(NewInstance * x)985 void LIRGenerator::do_NewInstance(NewInstance* x) {
986   print_if_not_loaded(x);
987 
988   // This instruction can be deoptimized in the slow path : use
989   // O0 as result register.
990   const LIR_Opr reg = result_register_for(x->type());
991 
992   CodeEmitInfo* info = state_for(x, x->state());
993   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
994   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
995   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
996   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
997   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
998   new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
999   LIR_Opr result = rlock_result(x);
1000   __ move(reg, result);
1001 }
1002 
1003 
do_NewTypeArray(NewTypeArray * x)1004 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1005   // Evaluate state_for early since it may emit code
1006   CodeEmitInfo* info = state_for(x, x->state());
1007 
1008   LIRItem length(x->length(), this);
1009   length.load_item();
1010 
1011   LIR_Opr reg = result_register_for(x->type());
1012   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1013   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1014   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1015   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1016   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1017   LIR_Opr len = length.result();
1018   BasicType elem_type = x->elt_type();
1019 
1020   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1021 
1022   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1023   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1024 
1025   LIR_Opr result = rlock_result(x);
1026   __ move(reg, result);
1027 }
1028 
1029 
do_NewObjectArray(NewObjectArray * x)1030 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1031   // Evaluate state_for early since it may emit code.
1032   CodeEmitInfo* info = state_for(x, x->state());
1033   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1034   // and therefore provide the state before the parameters have been consumed
1035   CodeEmitInfo* patching_info = NULL;
1036   if (!x->klass()->is_loaded() || PatchALot) {
1037     patching_info = state_for(x, x->state_before());
1038   }
1039 
1040   LIRItem length(x->length(), this);
1041   length.load_item();
1042 
1043   const LIR_Opr reg = result_register_for(x->type());
1044   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1045   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1046   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1047   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1048   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1049   LIR_Opr len = length.result();
1050 
1051   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1052   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
1053   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1054     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1055   }
1056   klass2reg_with_patching(klass_reg, obj, patching_info);
1057   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1058 
1059   LIR_Opr result = rlock_result(x);
1060   __ move(reg, result);
1061 }
1062 
1063 
do_NewMultiArray(NewMultiArray * x)1064 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1065   Values* dims = x->dims();
1066   int i = dims->length();
1067   LIRItemList* items = new LIRItemList(i, i, NULL);
1068   while (i-- > 0) {
1069     LIRItem* size = new LIRItem(dims->at(i), this);
1070     items->at_put(i, size);
1071   }
1072 
1073   // Evaluate state_for early since it may emit code.
1074   CodeEmitInfo* patching_info = NULL;
1075   if (!x->klass()->is_loaded() || PatchALot) {
1076     patching_info = state_for(x, x->state_before());
1077 
1078     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1079     // clone all handlers (NOTE: Usually this is handled transparently
1080     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1081     // is done explicitly here because a stub isn't being used).
1082     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1083   }
1084   CodeEmitInfo* info = state_for(x, x->state());
1085 
1086   i = dims->length();
1087   while (i-- > 0) {
1088     LIRItem* size = items->at(i);
1089     size->load_item();
1090     store_stack_parameter (size->result(),
1091                            in_ByteSize(STACK_BIAS +
1092                                        frame::memory_parameter_word_sp_offset * wordSize +
1093                                        i * sizeof(jint)));
1094   }
1095 
1096   // This instruction can be deoptimized in the slow path : use
1097   // O0 as result register.
1098   const LIR_Opr klass_reg = FrameMap::O0_metadata_opr;
1099   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1100   LIR_Opr rank = FrameMap::O1_opr;
1101   __ move(LIR_OprFact::intConst(x->rank()), rank);
1102   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
1103   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
1104   __ add(FrameMap::SP_opr,
1105          LIR_OprFact::intptrConst(offset_from_sp),
1106          varargs);
1107   LIR_OprList* args = new LIR_OprList(3);
1108   args->append(klass_reg);
1109   args->append(rank);
1110   args->append(varargs);
1111   const LIR_Opr reg = result_register_for(x->type());
1112   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1113                   LIR_OprFact::illegalOpr,
1114                   reg, args, info);
1115 
1116   LIR_Opr result = rlock_result(x);
1117   __ move(reg, result);
1118 }
1119 
1120 
do_BlockBegin(BlockBegin * x)1121 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1122 }
1123 
1124 
do_CheckCast(CheckCast * x)1125 void LIRGenerator::do_CheckCast(CheckCast* x) {
1126   LIRItem obj(x->obj(), this);
1127   CodeEmitInfo* patching_info = NULL;
1128   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1129     // must do this before locking the destination register as an oop register,
1130     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
1131     patching_info = state_for(x, x->state_before());
1132   }
1133   obj.load_item();
1134   LIR_Opr out_reg = rlock_result(x);
1135   CodeStub* stub;
1136   CodeEmitInfo* info_for_exception =
1137       (x->needs_exception_state() ? state_for(x) :
1138                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1139 
1140   if (x->is_incompatible_class_change_check()) {
1141     assert(patching_info == NULL, "can't patch this");
1142     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1143   } else if (x->is_invokespecial_receiver_check()) {
1144     assert(patching_info == NULL, "can't patch this");
1145     stub = new DeoptimizeStub(info_for_exception,
1146                               Deoptimization::Reason_class_check,
1147                               Deoptimization::Action_none);
1148   } else {
1149     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1150   }
1151   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1152   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1153   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1154   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1155                x->direct_compare(), info_for_exception, patching_info, stub,
1156                x->profiled_method(), x->profiled_bci());
1157 }
1158 
1159 
do_InstanceOf(InstanceOf * x)1160 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1161   LIRItem obj(x->obj(), this);
1162   CodeEmitInfo* patching_info = NULL;
1163   if (!x->klass()->is_loaded() || PatchALot) {
1164     patching_info = state_for(x, x->state_before());
1165   }
1166   // ensure the result register is not the input register because the result is initialized before the patching safepoint
1167   obj.load_item();
1168   LIR_Opr out_reg = rlock_result(x);
1169   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1170   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1171   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1172   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1173                 x->direct_compare(), patching_info,
1174                 x->profiled_method(), x->profiled_bci());
1175 }
1176 
1177 
do_If(If * x)1178 void LIRGenerator::do_If(If* x) {
1179   assert(x->number_of_sux() == 2, "inconsistency");
1180   ValueTag tag = x->x()->type()->tag();
1181   LIRItem xitem(x->x(), this);
1182   LIRItem yitem(x->y(), this);
1183   LIRItem* xin = &xitem;
1184   LIRItem* yin = &yitem;
1185   If::Condition cond = x->cond();
1186 
1187   if (tag == longTag) {
1188     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1189     // mirror for other conditions
1190     if (cond == If::gtr || cond == If::leq) {
1191       // swap inputs
1192       cond = Instruction::mirror(cond);
1193       xin = &yitem;
1194       yin = &xitem;
1195     }
1196     xin->set_destroys_register();
1197   }
1198 
1199   LIR_Opr left = LIR_OprFact::illegalOpr;
1200   LIR_Opr right = LIR_OprFact::illegalOpr;
1201 
1202   xin->load_item();
1203   left = xin->result();
1204 
1205   if (is_simm13(yin->result())) {
1206     // inline int constants which are small enough to be immediate operands
1207     right = LIR_OprFact::value_type(yin->value()->type());
1208   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1209              (cond == If::eql || cond == If::neq)) {
1210     // inline long zero
1211     right = LIR_OprFact::value_type(yin->value()->type());
1212   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1213     right = LIR_OprFact::value_type(yin->value()->type());
1214   } else {
1215     yin->load_item();
1216     right = yin->result();
1217   }
1218   set_no_result(x);
1219 
1220   // add safepoint before generating condition code so it can be recomputed
1221   if (x->is_safepoint()) {
1222     // increment backedge counter if needed
1223     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1224         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1225     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1226   }
1227 
1228   __ cmp(lir_cond(cond), left, right);
1229   // Generate branch profiling. Profiling code doesn't kill flags.
1230   profile_branch(x, cond);
1231   move_to_phi(x->state());
1232   if (x->x()->type()->is_float_kind()) {
1233     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1234   } else {
1235     __ branch(lir_cond(cond), right->type(), x->tsux());
1236   }
1237   assert(x->default_sux() == x->fsux(), "wrong destination above");
1238   __ jump(x->default_sux());
1239 }
1240 
1241 
getThreadPointer()1242 LIR_Opr LIRGenerator::getThreadPointer() {
1243   return FrameMap::as_pointer_opr(G2);
1244 }
1245 
1246 
trace_block_entry(BlockBegin * block)1247 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1248   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1249   LIR_OprList* args = new LIR_OprList(1);
1250   args->append(FrameMap::O0_opr);
1251   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1252   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1253 }
1254 
1255 
volatile_field_store(LIR_Opr value,LIR_Address * address,CodeEmitInfo * info)1256 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1257                                         CodeEmitInfo* info) {
1258   __ store(value, address, info);
1259 }
1260 
volatile_field_load(LIR_Address * address,LIR_Opr result,CodeEmitInfo * info)1261 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1262                                        CodeEmitInfo* info) {
1263   __ load(address, result, info);
1264 }
1265