1 /*
2  * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/g1/g1Allocator.inline.hpp"
27 #include "gc/g1/g1AllocRegion.inline.hpp"
28 #include "gc/g1/g1EvacStats.inline.hpp"
29 #include "gc/g1/g1EvacuationInfo.hpp"
30 #include "gc/g1/g1CollectedHeap.inline.hpp"
31 #include "gc/g1/g1Policy.hpp"
32 #include "gc/g1/heapRegion.inline.hpp"
33 #include "gc/g1/heapRegionSet.inline.hpp"
34 #include "gc/g1/heapRegionType.hpp"
35 #include "utilities/align.hpp"
36 
G1Allocator(G1CollectedHeap * heap)37 G1Allocator::G1Allocator(G1CollectedHeap* heap) :
38   _g1h(heap),
39   _survivor_is_full(false),
40   _old_is_full(false),
41   _mutator_alloc_region(),
42   _survivor_gc_alloc_region(heap->alloc_buffer_stats(G1HeapRegionAttr::Young)),
43   _old_gc_alloc_region(heap->alloc_buffer_stats(G1HeapRegionAttr::Old)),
44   _retained_old_gc_alloc_region(NULL) {
45 }
46 
init_mutator_alloc_region()47 void G1Allocator::init_mutator_alloc_region() {
48   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
49   _mutator_alloc_region.init();
50 }
51 
release_mutator_alloc_region()52 void G1Allocator::release_mutator_alloc_region() {
53   _mutator_alloc_region.release();
54   assert(_mutator_alloc_region.get() == NULL, "post-condition");
55 }
56 
is_retained_old_region(HeapRegion * hr)57 bool G1Allocator::is_retained_old_region(HeapRegion* hr) {
58   return _retained_old_gc_alloc_region == hr;
59 }
60 
reuse_retained_old_region(G1EvacuationInfo & evacuation_info,OldGCAllocRegion * old,HeapRegion ** retained_old)61 void G1Allocator::reuse_retained_old_region(G1EvacuationInfo& evacuation_info,
62                                             OldGCAllocRegion* old,
63                                             HeapRegion** retained_old) {
64   HeapRegion* retained_region = *retained_old;
65   *retained_old = NULL;
66   assert(retained_region == NULL || !retained_region->is_archive(),
67          "Archive region should not be alloc region (index %u)", retained_region->hrm_index());
68 
69   // We will discard the current GC alloc region if:
70   // a) it's in the collection set (it can happen!),
71   // b) it's already full (no point in using it),
72   // c) it's empty (this means that it was emptied during
73   // a cleanup and it should be on the free list now), or
74   // d) it's humongous (this means that it was emptied
75   // during a cleanup and was added to the free list, but
76   // has been subsequently used to allocate a humongous
77   // object that may be less than the region size).
78   if (retained_region != NULL &&
79       !retained_region->in_collection_set() &&
80       !(retained_region->top() == retained_region->end()) &&
81       !retained_region->is_empty() &&
82       !retained_region->is_humongous()) {
83     // The retained region was added to the old region set when it was
84     // retired. We have to remove it now, since we don't allow regions
85     // we allocate to in the region sets. We'll re-add it later, when
86     // it's retired again.
87     _g1h->old_set_remove(retained_region);
88     old->set(retained_region);
89     _g1h->hr_printer()->reuse(retained_region);
90     evacuation_info.set_alloc_regions_used_before(retained_region->used());
91   }
92 }
93 
init_gc_alloc_regions(G1EvacuationInfo & evacuation_info)94 void G1Allocator::init_gc_alloc_regions(G1EvacuationInfo& evacuation_info) {
95   assert_at_safepoint_on_vm_thread();
96 
97   _survivor_is_full = false;
98   _old_is_full = false;
99 
100   _survivor_gc_alloc_region.init();
101   _old_gc_alloc_region.init();
102   reuse_retained_old_region(evacuation_info,
103                             &_old_gc_alloc_region,
104                             &_retained_old_gc_alloc_region);
105 }
106 
release_gc_alloc_regions(G1EvacuationInfo & evacuation_info)107 void G1Allocator::release_gc_alloc_regions(G1EvacuationInfo& evacuation_info) {
108   evacuation_info.set_allocation_regions(survivor_gc_alloc_region()->count() +
109                                          old_gc_alloc_region()->count());
110   survivor_gc_alloc_region()->release();
111   // If we have an old GC alloc region to release, we'll save it in
112   // _retained_old_gc_alloc_region. If we don't
113   // _retained_old_gc_alloc_region will become NULL. This is what we
114   // want either way so no reason to check explicitly for either
115   // condition.
116   _retained_old_gc_alloc_region = old_gc_alloc_region()->release();
117 }
118 
abandon_gc_alloc_regions()119 void G1Allocator::abandon_gc_alloc_regions() {
120   assert(survivor_gc_alloc_region()->get() == NULL, "pre-condition");
121   assert(old_gc_alloc_region()->get() == NULL, "pre-condition");
122   _retained_old_gc_alloc_region = NULL;
123 }
124 
survivor_is_full() const125 bool G1Allocator::survivor_is_full() const {
126   return _survivor_is_full;
127 }
128 
old_is_full() const129 bool G1Allocator::old_is_full() const {
130   return _old_is_full;
131 }
132 
set_survivor_full()133 void G1Allocator::set_survivor_full() {
134   _survivor_is_full = true;
135 }
136 
set_old_full()137 void G1Allocator::set_old_full() {
138   _old_is_full = true;
139 }
140 
unsafe_max_tlab_alloc()141 size_t G1Allocator::unsafe_max_tlab_alloc() {
142   // Return the remaining space in the cur alloc region, but not less than
143   // the min TLAB size.
144 
145   // Also, this value can be at most the humongous object threshold,
146   // since we can't allow tlabs to grow big enough to accommodate
147   // humongous objects.
148 
149   HeapRegion* hr = mutator_alloc_region()->get();
150   size_t max_tlab = _g1h->max_tlab_size() * wordSize;
151   if (hr == NULL) {
152     return max_tlab;
153   } else {
154     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
155   }
156 }
157 
used_in_alloc_regions()158 size_t G1Allocator::used_in_alloc_regions() {
159   assert(Heap_lock->owner() != NULL, "Should be owned on this thread's behalf.");
160   return mutator_alloc_region()->used_in_alloc_regions();
161 }
162 
163 
par_allocate_during_gc(G1HeapRegionAttr dest,size_t word_size)164 HeapWord* G1Allocator::par_allocate_during_gc(G1HeapRegionAttr dest,
165                                               size_t word_size) {
166   size_t temp = 0;
167   HeapWord* result = par_allocate_during_gc(dest, word_size, word_size, &temp);
168   assert(result == NULL || temp == word_size,
169          "Requested " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
170          word_size, temp, p2i(result));
171   return result;
172 }
173 
par_allocate_during_gc(G1HeapRegionAttr dest,size_t min_word_size,size_t desired_word_size,size_t * actual_word_size)174 HeapWord* G1Allocator::par_allocate_during_gc(G1HeapRegionAttr dest,
175                                               size_t min_word_size,
176                                               size_t desired_word_size,
177                                               size_t* actual_word_size) {
178   switch (dest.type()) {
179     case G1HeapRegionAttr::Young:
180       return survivor_attempt_allocation(min_word_size, desired_word_size, actual_word_size);
181     case G1HeapRegionAttr::Old:
182       return old_attempt_allocation(min_word_size, desired_word_size, actual_word_size);
183     default:
184       ShouldNotReachHere();
185       return NULL; // Keep some compilers happy
186   }
187 }
188 
survivor_attempt_allocation(size_t min_word_size,size_t desired_word_size,size_t * actual_word_size)189 HeapWord* G1Allocator::survivor_attempt_allocation(size_t min_word_size,
190                                                    size_t desired_word_size,
191                                                    size_t* actual_word_size) {
192   assert(!_g1h->is_humongous(desired_word_size),
193          "we should not be seeing humongous-size allocations in this path");
194 
195   HeapWord* result = survivor_gc_alloc_region()->attempt_allocation(min_word_size,
196                                                                     desired_word_size,
197                                                                     actual_word_size);
198   if (result == NULL && !survivor_is_full()) {
199     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
200     result = survivor_gc_alloc_region()->attempt_allocation_locked(min_word_size,
201                                                                    desired_word_size,
202                                                                    actual_word_size);
203     if (result == NULL) {
204       set_survivor_full();
205     }
206   }
207   if (result != NULL) {
208     _g1h->dirty_young_block(result, *actual_word_size);
209   }
210   return result;
211 }
212 
old_attempt_allocation(size_t min_word_size,size_t desired_word_size,size_t * actual_word_size)213 HeapWord* G1Allocator::old_attempt_allocation(size_t min_word_size,
214                                               size_t desired_word_size,
215                                               size_t* actual_word_size) {
216   assert(!_g1h->is_humongous(desired_word_size),
217          "we should not be seeing humongous-size allocations in this path");
218 
219   HeapWord* result = old_gc_alloc_region()->attempt_allocation(min_word_size,
220                                                                desired_word_size,
221                                                                actual_word_size);
222   if (result == NULL && !old_is_full()) {
223     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
224     result = old_gc_alloc_region()->attempt_allocation_locked(min_word_size,
225                                                               desired_word_size,
226                                                               actual_word_size);
227     if (result == NULL) {
228       set_old_full();
229     }
230   }
231   return result;
232 }
233 
calc_survivor_alignment_bytes()234 uint G1PLABAllocator::calc_survivor_alignment_bytes() {
235   assert(SurvivorAlignmentInBytes >= ObjectAlignmentInBytes, "sanity");
236   if (SurvivorAlignmentInBytes == ObjectAlignmentInBytes) {
237     // No need to align objects in the survivors differently, return 0
238     // which means "survivor alignment is not used".
239     return 0;
240   } else {
241     assert(SurvivorAlignmentInBytes > 0, "sanity");
242     return SurvivorAlignmentInBytes;
243   }
244 }
245 
G1PLABAllocator(G1Allocator * allocator)246 G1PLABAllocator::G1PLABAllocator(G1Allocator* allocator) :
247   _g1h(G1CollectedHeap::heap()),
248   _allocator(allocator),
249   _surviving_alloc_buffer(_g1h->desired_plab_sz(G1HeapRegionAttr::Young)),
250   _tenured_alloc_buffer(_g1h->desired_plab_sz(G1HeapRegionAttr::Old)),
251   _survivor_alignment_bytes(calc_survivor_alignment_bytes()) {
252   for (uint state = 0; state < G1HeapRegionAttr::Num; state++) {
253     _direct_allocated[state] = 0;
254     _alloc_buffers[state] = NULL;
255   }
256   _alloc_buffers[G1HeapRegionAttr::Young] = &_surviving_alloc_buffer;
257   _alloc_buffers[G1HeapRegionAttr::Old]  = &_tenured_alloc_buffer;
258 }
259 
may_throw_away_buffer(size_t const allocation_word_sz,size_t const buffer_size) const260 bool G1PLABAllocator::may_throw_away_buffer(size_t const allocation_word_sz, size_t const buffer_size) const {
261   return (allocation_word_sz * 100 < buffer_size * ParallelGCBufferWastePct);
262 }
263 
allocate_direct_or_new_plab(G1HeapRegionAttr dest,size_t word_sz,bool * plab_refill_failed)264 HeapWord* G1PLABAllocator::allocate_direct_or_new_plab(G1HeapRegionAttr dest,
265                                                        size_t word_sz,
266                                                        bool* plab_refill_failed) {
267   size_t plab_word_size = _g1h->desired_plab_sz(dest);
268   size_t required_in_plab = PLAB::size_required_for_allocation(word_sz);
269 
270   // Only get a new PLAB if the allocation fits and it would not waste more than
271   // ParallelGCBufferWastePct in the existing buffer.
272   if ((required_in_plab <= plab_word_size) &&
273     may_throw_away_buffer(required_in_plab, plab_word_size)) {
274 
275     PLAB* alloc_buf = alloc_buffer(dest);
276     alloc_buf->retire();
277 
278     size_t actual_plab_size = 0;
279     HeapWord* buf = _allocator->par_allocate_during_gc(dest,
280                                                        required_in_plab,
281                                                        plab_word_size,
282                                                        &actual_plab_size);
283 
284     assert(buf == NULL || ((actual_plab_size >= required_in_plab) && (actual_plab_size <= plab_word_size)),
285            "Requested at minimum " SIZE_FORMAT ", desired " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
286            required_in_plab, plab_word_size, actual_plab_size, p2i(buf));
287 
288     if (buf != NULL) {
289       alloc_buf->set_buf(buf, actual_plab_size);
290 
291       HeapWord* const obj = alloc_buf->allocate(word_sz);
292       assert(obj != NULL, "PLAB should have been big enough, tried to allocate "
293                           SIZE_FORMAT " requiring " SIZE_FORMAT " PLAB size " SIZE_FORMAT,
294                           word_sz, required_in_plab, plab_word_size);
295       return obj;
296     }
297     // Otherwise.
298     *plab_refill_failed = true;
299   }
300   // Try direct allocation.
301   HeapWord* result = _allocator->par_allocate_during_gc(dest, word_sz);
302   if (result != NULL) {
303     _direct_allocated[dest.type()] += word_sz;
304   }
305   return result;
306 }
307 
undo_allocation(G1HeapRegionAttr dest,HeapWord * obj,size_t word_sz)308 void G1PLABAllocator::undo_allocation(G1HeapRegionAttr dest, HeapWord* obj, size_t word_sz) {
309   alloc_buffer(dest)->undo_allocation(obj, word_sz);
310 }
311 
flush_and_retire_stats()312 void G1PLABAllocator::flush_and_retire_stats() {
313   for (uint state = 0; state < G1HeapRegionAttr::Num; state++) {
314     PLAB* const buf = _alloc_buffers[state];
315     if (buf != NULL) {
316       G1EvacStats* stats = _g1h->alloc_buffer_stats(state);
317       buf->flush_and_retire_stats(stats);
318       stats->add_direct_allocated(_direct_allocated[state]);
319       _direct_allocated[state] = 0;
320     }
321   }
322 }
323 
waste() const324 size_t G1PLABAllocator::waste() const {
325   size_t result = 0;
326   for (uint state = 0; state < G1HeapRegionAttr::Num; state++) {
327     PLAB * const buf = _alloc_buffers[state];
328     if (buf != NULL) {
329       result += buf->waste();
330     }
331   }
332   return result;
333 }
334 
undo_waste() const335 size_t G1PLABAllocator::undo_waste() const {
336   size_t result = 0;
337   for (uint state = 0; state < G1HeapRegionAttr::Num; state++) {
338     PLAB * const buf = _alloc_buffers[state];
339     if (buf != NULL) {
340       result += buf->undo_waste();
341     }
342   }
343   return result;
344 }
345 
346 bool G1ArchiveAllocator::_archive_check_enabled = false;
347 G1ArchiveRegionMap G1ArchiveAllocator::_closed_archive_region_map;
348 G1ArchiveRegionMap G1ArchiveAllocator::_open_archive_region_map;
349 
create_allocator(G1CollectedHeap * g1h,bool open)350 G1ArchiveAllocator* G1ArchiveAllocator::create_allocator(G1CollectedHeap* g1h, bool open) {
351   // Create the archive allocator, and also enable archive object checking
352   // in mark-sweep, since we will be creating archive regions.
353   G1ArchiveAllocator* result =  new G1ArchiveAllocator(g1h, open);
354   enable_archive_object_check();
355   return result;
356 }
357 
alloc_new_region()358 bool G1ArchiveAllocator::alloc_new_region() {
359   // Allocate the highest free region in the reserved heap,
360   // and add it to our list of allocated regions. It is marked
361   // archive and added to the old set.
362   HeapRegion* hr = _g1h->alloc_highest_free_region();
363   if (hr == NULL) {
364     return false;
365   }
366   assert(hr->is_empty(), "expected empty region (index %u)", hr->hrm_index());
367   if (_open) {
368     hr->set_open_archive();
369   } else {
370     hr->set_closed_archive();
371   }
372   _g1h->policy()->remset_tracker()->update_at_allocate(hr);
373   _g1h->archive_set_add(hr);
374   _g1h->hr_printer()->alloc(hr);
375   _allocated_regions.append(hr);
376   _allocation_region = hr;
377 
378   // Set up _bottom and _max to begin allocating in the lowest
379   // min_region_size'd chunk of the allocated G1 region.
380   _bottom = hr->bottom();
381   _max = _bottom + HeapRegion::min_region_size_in_words();
382 
383   // Tell mark-sweep that objects in this region are not to be marked.
384   set_range_archive(MemRegion(_bottom, HeapRegion::GrainWords), _open);
385 
386   // Since we've modified the old set, call update_sizes.
387   _g1h->g1mm()->update_sizes();
388   return true;
389 }
390 
archive_mem_allocate(size_t word_size)391 HeapWord* G1ArchiveAllocator::archive_mem_allocate(size_t word_size) {
392   assert(word_size != 0, "size must not be zero");
393   if (_allocation_region == NULL) {
394     if (!alloc_new_region()) {
395       return NULL;
396     }
397   }
398   HeapWord* old_top = _allocation_region->top();
399   assert(_bottom >= _allocation_region->bottom(),
400          "inconsistent allocation state: " PTR_FORMAT " < " PTR_FORMAT,
401          p2i(_bottom), p2i(_allocation_region->bottom()));
402   assert(_max <= _allocation_region->end(),
403          "inconsistent allocation state: " PTR_FORMAT " > " PTR_FORMAT,
404          p2i(_max), p2i(_allocation_region->end()));
405   assert(_bottom <= old_top && old_top <= _max,
406          "inconsistent allocation state: expected "
407          PTR_FORMAT " <= " PTR_FORMAT " <= " PTR_FORMAT,
408          p2i(_bottom), p2i(old_top), p2i(_max));
409 
410   // Allocate the next word_size words in the current allocation chunk.
411   // If allocation would cross the _max boundary, insert a filler and begin
412   // at the base of the next min_region_size'd chunk. Also advance to the next
413   // chunk if we don't yet cross the boundary, but the remainder would be too
414   // small to fill.
415   HeapWord* new_top = old_top + word_size;
416   size_t remainder = pointer_delta(_max, new_top);
417   if ((new_top > _max) ||
418       ((new_top < _max) && (remainder < CollectedHeap::min_fill_size()))) {
419     if (old_top != _max) {
420       size_t fill_size = pointer_delta(_max, old_top);
421       CollectedHeap::fill_with_object(old_top, fill_size);
422       _summary_bytes_used += fill_size * HeapWordSize;
423     }
424     _allocation_region->set_top(_max);
425     old_top = _bottom = _max;
426 
427     // Check if we've just used up the last min_region_size'd chunk
428     // in the current region, and if so, allocate a new one.
429     if (_bottom != _allocation_region->end()) {
430       _max = _bottom + HeapRegion::min_region_size_in_words();
431     } else {
432       if (!alloc_new_region()) {
433         return NULL;
434       }
435       old_top = _allocation_region->bottom();
436     }
437   }
438   _allocation_region->set_top(old_top + word_size);
439   _summary_bytes_used += word_size * HeapWordSize;
440 
441   return old_top;
442 }
443 
complete_archive(GrowableArray<MemRegion> * ranges,size_t end_alignment_in_bytes)444 void G1ArchiveAllocator::complete_archive(GrowableArray<MemRegion>* ranges,
445                                           size_t end_alignment_in_bytes) {
446   assert((end_alignment_in_bytes >> LogHeapWordSize) < HeapRegion::min_region_size_in_words(),
447          "alignment " SIZE_FORMAT " too large", end_alignment_in_bytes);
448   assert(is_aligned(end_alignment_in_bytes, HeapWordSize),
449          "alignment " SIZE_FORMAT " is not HeapWord (%u) aligned", end_alignment_in_bytes, HeapWordSize);
450 
451   // If we've allocated nothing, simply return.
452   if (_allocation_region == NULL) {
453     return;
454   }
455 
456   // If an end alignment was requested, insert filler objects.
457   if (end_alignment_in_bytes != 0) {
458     HeapWord* currtop = _allocation_region->top();
459     HeapWord* newtop = align_up(currtop, end_alignment_in_bytes);
460     size_t fill_size = pointer_delta(newtop, currtop);
461     if (fill_size != 0) {
462       if (fill_size < CollectedHeap::min_fill_size()) {
463         // If the required fill is smaller than we can represent,
464         // bump up to the next aligned address. We know we won't exceed the current
465         // region boundary because the max supported alignment is smaller than the min
466         // region size, and because the allocation code never leaves space smaller than
467         // the min_fill_size at the top of the current allocation region.
468         newtop = align_up(currtop + CollectedHeap::min_fill_size(),
469                           end_alignment_in_bytes);
470         fill_size = pointer_delta(newtop, currtop);
471       }
472       HeapWord* fill = archive_mem_allocate(fill_size);
473       CollectedHeap::fill_with_objects(fill, fill_size);
474     }
475   }
476 
477   // Loop through the allocated regions, and create MemRegions summarizing
478   // the allocated address range, combining contiguous ranges. Add the
479   // MemRegions to the GrowableArray provided by the caller.
480   int index = _allocated_regions.length() - 1;
481   assert(_allocated_regions.at(index) == _allocation_region,
482          "expected region %u at end of array, found %u",
483          _allocation_region->hrm_index(), _allocated_regions.at(index)->hrm_index());
484   HeapWord* base_address = _allocation_region->bottom();
485   HeapWord* top = base_address;
486 
487   while (index >= 0) {
488     HeapRegion* next = _allocated_regions.at(index);
489     HeapWord* new_base = next->bottom();
490     HeapWord* new_top = next->top();
491     if (new_base != top) {
492       ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
493       base_address = new_base;
494     }
495     top = new_top;
496     index = index - 1;
497   }
498 
499   assert(top != base_address, "zero-sized range, address " PTR_FORMAT, p2i(base_address));
500   ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
501   _allocated_regions.clear();
502   _allocation_region = NULL;
503 };
504