1 /*
2  * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "code/vmreg.inline.hpp"
27 #include "compiler/oopMap.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/callnode.hpp"
31 #include "opto/compile.hpp"
32 #include "opto/machnode.hpp"
33 #include "opto/matcher.hpp"
34 #include "opto/phase.hpp"
35 #include "opto/regalloc.hpp"
36 #include "opto/rootnode.hpp"
37 #include "utilities/align.hpp"
38 
39 // The functions in this file builds OopMaps after all scheduling is done.
40 //
41 // OopMaps contain a list of all registers and stack-slots containing oops (so
42 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
43 // base-pointer pairs.  When the base is moved, the derived pointer moves to
44 // follow it.  Finally, any registers holding callee-save values are also
45 // recorded.  These might contain oops, but only the caller knows.
46 //
47 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
48 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
49 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
50 // derived pointers, and bases can be found from them.  Finally, we'll also
51 // track reaching callee-save values.  Note that a copy of a callee-save value
52 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
53 // a time.
54 //
55 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
56 // irreducible loops, we can have a reaching def of an oop that only reaches
57 // along one path and no way to know if it's valid or not on the other path.
58 // The bitvectors are quite dense and the liveness pass is fast.
59 //
60 // At GC points, we consult this information to build OopMaps.  All reaching
61 // defs typed as oops are added to the OopMap.  Only 1 instance of a
62 // callee-save register can be recorded.  For derived pointers, we'll have to
63 // find and record the register holding the base.
64 //
65 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
66 // breadth-first approach but it was worse (showed O(n^2) in the
67 // pick-next-block code).
68 //
69 // The relevant data is kept in a struct of arrays (it could just as well be
70 // an array of structs, but the struct-of-arrays is generally a little more
71 // efficient).  The arrays are indexed by register number (including
72 // stack-slots as registers) and so is bounded by 200 to 300 elements in
73 // practice.  One array will map to a reaching def Node (or NULL for
74 // conflict/dead).  The other array will map to a callee-saved register or
75 // OptoReg::Bad for not-callee-saved.
76 
77 
78 // Structure to pass around
79 struct OopFlow : public ResourceObj {
80   short *_callees;              // Array mapping register to callee-saved
81   Node **_defs;                 // array mapping register to reaching def
82                                 // or NULL if dead/conflict
83   // OopFlow structs, when not being actively modified, describe the _end_ of
84   // this block.
85   Block *_b;                    // Block for this struct
86   OopFlow *_next;               // Next free OopFlow
87                                 // or NULL if dead/conflict
88   Compile* C;
89 
OopFlowOopFlow90   OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
91     _b(NULL), _next(NULL), C(c) { }
92 
93   // Given reaching-defs for this block start, compute it for this block end
94   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
95 
96   // Merge these two OopFlows into the 'this' pointer.
97   void merge( OopFlow *flow, int max_reg );
98 
99   // Copy a 'flow' over an existing flow
100   void clone( OopFlow *flow, int max_size);
101 
102   // Make a new OopFlow from scratch
103   static OopFlow *make( Arena *A, int max_size, Compile* C );
104 
105   // Build an oopmap from the current flow info
106   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
107 };
108 
109 // Given reaching-defs for this block start, compute it for this block end
compute_reach(PhaseRegAlloc * regalloc,int max_reg,Dict * safehash)110 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
111 
112   for( uint i=0; i<_b->number_of_nodes(); i++ ) {
113     Node *n = _b->get_node(i);
114 
115     if( n->jvms() ) {           // Build an OopMap here?
116       JVMState *jvms = n->jvms();
117       // no map needed for leaf calls
118       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
119         int *live = (int*) (*safehash)[n];
120         assert( live, "must find live" );
121         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
122       }
123     }
124 
125     // Assign new reaching def's.
126     // Note that I padded the _defs and _callees arrays so it's legal
127     // to index at _defs[OptoReg::Bad].
128     OptoReg::Name first = regalloc->get_reg_first(n);
129     OptoReg::Name second = regalloc->get_reg_second(n);
130     _defs[first] = n;
131     _defs[second] = n;
132 
133     // Pass callee-save info around copies
134     int idx = n->is_Copy();
135     if( idx ) {                 // Copies move callee-save info
136       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
137       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
138       int tmp_first = _callees[old_first];
139       int tmp_second = _callees[old_second];
140       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
141       _callees[old_second] = OptoReg::Bad;
142       _callees[first] = tmp_first;
143       _callees[second] = tmp_second;
144     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
145       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
146       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
147       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
148       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
149     } else {
150       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
151       _callees[second] = OptoReg::Bad;
152 
153       // Find base case for callee saves
154       if( n->is_Proj() && n->in(0)->is_Start() ) {
155         if( OptoReg::is_reg(first) &&
156             regalloc->_matcher.is_save_on_entry(first) )
157           _callees[first] = first;
158         if( OptoReg::is_reg(second) &&
159             regalloc->_matcher.is_save_on_entry(second) )
160           _callees[second] = second;
161       }
162     }
163   }
164 }
165 
166 // Merge the given flow into the 'this' flow
merge(OopFlow * flow,int max_reg)167 void OopFlow::merge( OopFlow *flow, int max_reg ) {
168   assert( _b == NULL, "merging into a happy flow" );
169   assert( flow->_b, "this flow is still alive" );
170   assert( flow != this, "no self flow" );
171 
172   // Do the merge.  If there are any differences, drop to 'bottom' which
173   // is OptoReg::Bad or NULL depending.
174   for( int i=0; i<max_reg; i++ ) {
175     // Merge the callee-save's
176     if( _callees[i] != flow->_callees[i] )
177       _callees[i] = OptoReg::Bad;
178     // Merge the reaching defs
179     if( _defs[i] != flow->_defs[i] )
180       _defs[i] = NULL;
181   }
182 
183 }
184 
clone(OopFlow * flow,int max_size)185 void OopFlow::clone( OopFlow *flow, int max_size ) {
186   _b = flow->_b;
187   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
188   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
189 }
190 
make(Arena * A,int max_size,Compile * C)191 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
192   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
193   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
194   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
195   OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
196   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
197   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
198   return flow;
199 }
200 
get_live_bit(int * live,int reg)201 static int get_live_bit( int *live, int reg ) {
202   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
set_live_bit(int * live,int reg)203 static void set_live_bit( int *live, int reg ) {
204          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
clr_live_bit(int * live,int reg)205 static void clr_live_bit( int *live, int reg ) {
206          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
207 
208 // Build an oopmap from the current flow info
build_oop_map(Node * n,int max_reg,PhaseRegAlloc * regalloc,int * live)209 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
210   int framesize = regalloc->_framesize;
211   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
212   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
213               memset(dup_check,0,OptoReg::stack0()) );
214 
215   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
216   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
217   JVMState* jvms = n->jvms();
218 
219   // For all registers do...
220   for( int reg=0; reg<max_reg; reg++ ) {
221     if( get_live_bit(live,reg) == 0 )
222       continue;                 // Ignore if not live
223 
224     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
225     // register in that case we'll get an non-concrete register for the second
226     // half. We only need to tell the map the register once!
227     //
228     // However for the moment we disable this change and leave things as they
229     // were.
230 
231     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
232 
233     if (false && r->is_reg() && !r->is_concrete()) {
234       continue;
235     }
236 
237     // See if dead (no reaching def).
238     Node *def = _defs[reg];     // Get reaching def
239     assert( def, "since live better have reaching def" );
240 
241     // Classify the reaching def as oop, derived, callee-save, dead, or other
242     const Type *t = def->bottom_type();
243     if( t->isa_oop_ptr() ) {    // Oop or derived?
244       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
245 #ifdef _LP64
246       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
247       // Make sure both are record from the same reaching def, but do not
248       // put both into the oopmap.
249       if( (reg&1) == 1 ) {      // High half of oop-pair?
250         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
251         continue;               // Do not record high parts in oopmap
252       }
253 #endif
254 
255       // Check for a legal reg name in the oopMap and bailout if it is not.
256       if (!omap->legal_vm_reg_name(r)) {
257         regalloc->C->record_method_not_compilable("illegal oopMap register name");
258         continue;
259       }
260       if( t->is_ptr()->_offset == 0 ) { // Not derived?
261         if( mcall ) {
262           // Outgoing argument GC mask responsibility belongs to the callee,
263           // not the caller.  Inspect the inputs to the call, to see if
264           // this live-range is one of them.
265           uint cnt = mcall->tf()->domain()->cnt();
266           uint j;
267           for( j = TypeFunc::Parms; j < cnt; j++)
268             if( mcall->in(j) == def )
269               break;            // reaching def is an argument oop
270           if( j < cnt )         // arg oops dont go in GC map
271             continue;           // Continue on to the next register
272         }
273         omap->set_oop(r);
274       } else {                  // Else it's derived.
275         // Find the base of the derived value.
276         uint i;
277         // Fast, common case, scan
278         for( i = jvms->oopoff(); i < n->req(); i+=2 )
279           if( n->in(i) == def ) break; // Common case
280         if( i == n->req() ) {   // Missed, try a more generous scan
281           // Scan again, but this time peek through copies
282           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
283             Node *m = n->in(i); // Get initial derived value
284             while( 1 ) {
285               Node *d = def;    // Get initial reaching def
286               while( 1 ) {      // Follow copies of reaching def to end
287                 if( m == d ) goto found; // breaks 3 loops
288                 int idx = d->is_Copy();
289                 if( !idx ) break;
290                 d = d->in(idx);     // Link through copy
291               }
292               int idx = m->is_Copy();
293               if( !idx ) break;
294               m = m->in(idx);
295             }
296           }
297           guarantee( 0, "must find derived/base pair" );
298         }
299       found: ;
300         Node *base = n->in(i+1); // Base is other half of pair
301         int breg = regalloc->get_reg_first(base);
302         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
303 
304         // I record liveness at safepoints BEFORE I make the inputs
305         // live.  This is because argument oops are NOT live at a
306         // safepoint (or at least they cannot appear in the oopmap).
307         // Thus bases of base/derived pairs might not be in the
308         // liveness data but they need to appear in the oopmap.
309         if( get_live_bit(live,breg) == 0 ) {// Not live?
310           // Flag it, so next derived pointer won't re-insert into oopmap
311           set_live_bit(live,breg);
312           // Already missed our turn?
313           if( breg < reg ) {
314             if (b->is_stack() || b->is_concrete() || true ) {
315               omap->set_oop( b);
316             }
317           }
318         }
319         if (b->is_stack() || b->is_concrete() || true ) {
320           omap->set_derived_oop( r, b);
321         }
322       }
323 
324     } else if( t->isa_narrowoop() ) {
325       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
326       // Check for a legal reg name in the oopMap and bailout if it is not.
327       if (!omap->legal_vm_reg_name(r)) {
328         regalloc->C->record_method_not_compilable("illegal oopMap register name");
329         continue;
330       }
331       if( mcall ) {
332           // Outgoing argument GC mask responsibility belongs to the callee,
333           // not the caller.  Inspect the inputs to the call, to see if
334           // this live-range is one of them.
335         uint cnt = mcall->tf()->domain()->cnt();
336         uint j;
337         for( j = TypeFunc::Parms; j < cnt; j++)
338           if( mcall->in(j) == def )
339             break;            // reaching def is an argument oop
340         if( j < cnt )         // arg oops dont go in GC map
341           continue;           // Continue on to the next register
342       }
343       omap->set_narrowoop(r);
344     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
345       // It's a callee-save value
346       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
347       debug_only( dup_check[_callees[reg]]=1; )
348       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
349       if ( callee->is_concrete() || true ) {
350         omap->set_callee_saved( r, callee);
351       }
352 
353     } else {
354       // Other - some reaching non-oop value
355 #ifdef ASSERT
356       if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
357         def->dump();
358         n->dump();
359         assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
360       }
361 #endif
362     }
363 
364   }
365 
366 #ifdef ASSERT
367   /* Nice, Intel-only assert
368   int cnt_callee_saves=0;
369   int reg2 = 0;
370   while (OptoReg::is_reg(reg2)) {
371     if( dup_check[reg2] != 0) cnt_callee_saves++;
372     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
373     reg2++;
374   }
375   */
376 #endif
377 
378 #ifdef ASSERT
379   for( OopMapStream oms1(omap); !oms1.is_done(); oms1.next()) {
380     OopMapValue omv1 = oms1.current();
381     if (omv1.type() != OopMapValue::derived_oop_value) {
382       continue;
383     }
384     bool found = false;
385     for( OopMapStream oms2(omap); !oms2.is_done(); oms2.next()) {
386       OopMapValue omv2 = oms2.current();
387       if (omv2.type() != OopMapValue::oop_value) {
388         continue;
389       }
390       if( omv1.content_reg() == omv2.reg() ) {
391         found = true;
392         break;
393       }
394     }
395     assert( found, "derived with no base in oopmap" );
396   }
397 #endif
398 
399   return omap;
400 }
401 
402 // Compute backwards liveness on registers
do_liveness(PhaseRegAlloc * regalloc,PhaseCFG * cfg,Block_List * worklist,int max_reg_ints,Arena * A,Dict * safehash)403 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
404   int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
405   int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
406   Node* root = cfg->get_root_node();
407   // On CISC platforms, get the node representing the stack pointer  that regalloc
408   // used for spills
409   Node *fp = NodeSentinel;
410   if (UseCISCSpill && root->req() > 1) {
411     fp = root->in(1)->in(TypeFunc::FramePtr);
412   }
413   memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
414   // Push preds onto worklist
415   for (uint i = 1; i < root->req(); i++) {
416     Block* block = cfg->get_block_for_node(root->in(i));
417     worklist->push(block);
418   }
419 
420   // ZKM.jar includes tiny infinite loops which are unreached from below.
421   // If we missed any blocks, we'll retry here after pushing all missed
422   // blocks on the worklist.  Normally this outer loop never trips more
423   // than once.
424   while (1) {
425 
426     while( worklist->size() ) { // Standard worklist algorithm
427       Block *b = worklist->rpop();
428 
429       // Copy first successor into my tmp_live space
430       int s0num = b->_succs[0]->_pre_order;
431       int *t = &live[s0num*max_reg_ints];
432       for( int i=0; i<max_reg_ints; i++ )
433         tmp_live[i] = t[i];
434 
435       // OR in the remaining live registers
436       for( uint j=1; j<b->_num_succs; j++ ) {
437         uint sjnum = b->_succs[j]->_pre_order;
438         int *t = &live[sjnum*max_reg_ints];
439         for( int i=0; i<max_reg_ints; i++ )
440           tmp_live[i] |= t[i];
441       }
442 
443       // Now walk tmp_live up the block backwards, computing live
444       for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
445         Node *n = b->get_node(k);
446         // KILL def'd bits
447         int first = regalloc->get_reg_first(n);
448         int second = regalloc->get_reg_second(n);
449         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
450         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
451 
452         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
453 
454         // Check if m is potentially a CISC alternate instruction (i.e, possibly
455         // synthesized by RegAlloc from a conventional instruction and a
456         // spilled input)
457         bool is_cisc_alternate = false;
458         if (UseCISCSpill && m) {
459           is_cisc_alternate = m->is_cisc_alternate();
460         }
461 
462         // GEN use'd bits
463         for( uint l=1; l<n->req(); l++ ) {
464           Node *def = n->in(l);
465           assert(def != 0, "input edge required");
466           int first = regalloc->get_reg_first(def);
467           int second = regalloc->get_reg_second(def);
468           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
469           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
470           // If we use the stack pointer in a cisc-alternative instruction,
471           // check for use as a memory operand.  Then reconstruct the RegName
472           // for this stack location, and set the appropriate bit in the
473           // live vector 4987749.
474           if (is_cisc_alternate && def == fp) {
475             const TypePtr *adr_type = NULL;
476             intptr_t offset;
477             const Node* base = m->get_base_and_disp(offset, adr_type);
478             if (base == NodeSentinel) {
479               // Machnode has multiple memory inputs. We are unable to reason
480               // with these, but are presuming (with trepidation) that not any of
481               // them are oops. This can be fixed by making get_base_and_disp()
482               // look at a specific input instead of all inputs.
483               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
484             } else if (base != fp || offset == Type::OffsetBot) {
485               // Do nothing: the fp operand is either not from a memory use
486               // (base == NULL) OR the fp is used in a non-memory context
487               // (base is some other register) OR the offset is not constant,
488               // so it is not a stack slot.
489             } else {
490               assert(offset >= 0, "unexpected negative offset");
491               offset -= (offset % jintSize);  // count the whole word
492               int stack_reg = regalloc->offset2reg(offset);
493               if (OptoReg::is_stack(stack_reg)) {
494                 set_live_bit(tmp_live, stack_reg);
495               } else {
496                 assert(false, "stack_reg not on stack?");
497               }
498             }
499           }
500         }
501 
502         if( n->jvms() ) {       // Record liveness at safepoint
503 
504           // This placement of this stanza means inputs to calls are
505           // considered live at the callsite's OopMap.  Argument oops are
506           // hence live, but NOT included in the oopmap.  See cutout in
507           // build_oop_map.  Debug oops are live (and in OopMap).
508           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
509           for( int l=0; l<max_reg_ints; l++ )
510             n_live[l] = tmp_live[l];
511           safehash->Insert(n,n_live);
512         }
513 
514       }
515 
516       // Now at block top, see if we have any changes.  If so, propagate
517       // to prior blocks.
518       int *old_live = &live[b->_pre_order*max_reg_ints];
519       int l;
520       for( l=0; l<max_reg_ints; l++ )
521         if( tmp_live[l] != old_live[l] )
522           break;
523       if( l<max_reg_ints ) {     // Change!
524         // Copy in new value
525         for( l=0; l<max_reg_ints; l++ )
526           old_live[l] = tmp_live[l];
527         // Push preds onto worklist
528         for (l = 1; l < (int)b->num_preds(); l++) {
529           Block* block = cfg->get_block_for_node(b->pred(l));
530           worklist->push(block);
531         }
532       }
533     }
534 
535     // Scan for any missing safepoints.  Happens to infinite loops
536     // ala ZKM.jar
537     uint i;
538     for (i = 1; i < cfg->number_of_blocks(); i++) {
539       Block* block = cfg->get_block(i);
540       uint j;
541       for (j = 1; j < block->number_of_nodes(); j++) {
542         if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
543            break;
544         }
545       }
546       if (j < block->number_of_nodes()) {
547         break;
548       }
549     }
550     if (i == cfg->number_of_blocks()) {
551       break;                    // Got 'em all
552     }
553 
554     if (PrintOpto && Verbose) {
555       tty->print_cr("retripping live calc");
556     }
557 
558     // Force the issue (expensively): recheck everybody
559     for (i = 1; i < cfg->number_of_blocks(); i++) {
560       worklist->push(cfg->get_block(i));
561     }
562   }
563 }
564 
565 // Collect GC mask info - where are all the OOPs?
BuildOopMaps()566 void Compile::BuildOopMaps() {
567   TracePhase tp("bldOopMaps", &timers[_t_buildOopMaps]);
568   // Can't resource-mark because I need to leave all those OopMaps around,
569   // or else I need to resource-mark some arena other than the default.
570   // ResourceMark rm;              // Reclaim all OopFlows when done
571   int max_reg = _regalloc->_max_reg; // Current array extent
572 
573   Arena *A = Thread::current()->resource_area();
574   Block_List worklist;          // Worklist of pending blocks
575 
576   int max_reg_ints = align_up(max_reg, BitsPerInt)>>LogBitsPerInt;
577   Dict *safehash = NULL;        // Used for assert only
578   // Compute a backwards liveness per register.  Needs a bitarray of
579   // #blocks x (#registers, rounded up to ints)
580   safehash = new Dict(cmpkey,hashkey,A);
581   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
582   OopFlow *free_list = NULL;    // Free, unused
583 
584   // Array mapping blocks to completed oopflows
585   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->number_of_blocks());
586   memset( flows, 0, _cfg->number_of_blocks() * sizeof(OopFlow*) );
587 
588 
589   // Do the first block 'by hand' to prime the worklist
590   Block *entry = _cfg->get_block(1);
591   OopFlow *rootflow = OopFlow::make(A,max_reg,this);
592   // Initialize to 'bottom' (not 'top')
593   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
594   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
595   flows[entry->_pre_order] = rootflow;
596 
597   // Do the first block 'by hand' to prime the worklist
598   rootflow->_b = entry;
599   rootflow->compute_reach( _regalloc, max_reg, safehash );
600   for( uint i=0; i<entry->_num_succs; i++ )
601     worklist.push(entry->_succs[i]);
602 
603   // Now worklist contains blocks which have some, but perhaps not all,
604   // predecessors visited.
605   while( worklist.size() ) {
606     // Scan for a block with all predecessors visited, or any randoms slob
607     // otherwise.  All-preds-visited order allows me to recycle OopFlow
608     // structures rapidly and cut down on the memory footprint.
609     // Note: not all predecessors might be visited yet (must happen for
610     // irreducible loops).  This is OK, since every live value must have the
611     // SAME reaching def for the block, so any reaching def is OK.
612     uint i;
613 
614     Block *b = worklist.pop();
615     // Ignore root block
616     if (b == _cfg->get_root_block()) {
617       continue;
618     }
619     // Block is already done?  Happens if block has several predecessors,
620     // he can get on the worklist more than once.
621     if( flows[b->_pre_order] ) continue;
622 
623     // If this block has a visited predecessor AND that predecessor has this
624     // last block as his only undone child, we can move the OopFlow from the
625     // pred to this block.  Otherwise we have to grab a new OopFlow.
626     OopFlow *flow = NULL;       // Flag for finding optimized flow
627     Block *pred = (Block*)((intptr_t)0xdeadbeef);
628     // Scan this block's preds to find a done predecessor
629     for (uint j = 1; j < b->num_preds(); j++) {
630       Block* p = _cfg->get_block_for_node(b->pred(j));
631       OopFlow *p_flow = flows[p->_pre_order];
632       if( p_flow ) {            // Predecessor is done
633         assert( p_flow->_b == p, "cross check" );
634         pred = p;               // Record some predecessor
635         // If all successors of p are done except for 'b', then we can carry
636         // p_flow forward to 'b' without copying, otherwise we have to draw
637         // from the free_list and clone data.
638         uint k;
639         for( k=0; k<p->_num_succs; k++ )
640           if( !flows[p->_succs[k]->_pre_order] &&
641               p->_succs[k] != b )
642             break;
643 
644         // Either carry-forward the now-unused OopFlow for b's use
645         // or draw a new one from the free list
646         if( k==p->_num_succs ) {
647           flow = p_flow;
648           break;                // Found an ideal pred, use him
649         }
650       }
651     }
652 
653     if( flow ) {
654       // We have an OopFlow that's the last-use of a predecessor.
655       // Carry it forward.
656     } else {                    // Draw a new OopFlow from the freelist
657       if( !free_list )
658         free_list = OopFlow::make(A,max_reg,C);
659       flow = free_list;
660       assert( flow->_b == NULL, "oopFlow is not free" );
661       free_list = flow->_next;
662       flow->_next = NULL;
663 
664       // Copy/clone over the data
665       flow->clone(flows[pred->_pre_order], max_reg);
666     }
667 
668     // Mark flow for block.  Blocks can only be flowed over once,
669     // because after the first time they are guarded from entering
670     // this code again.
671     assert( flow->_b == pred, "have some prior flow" );
672     flow->_b = NULL;
673 
674     // Now push flow forward
675     flows[b->_pre_order] = flow;// Mark flow for this block
676     flow->_b = b;
677     flow->compute_reach( _regalloc, max_reg, safehash );
678 
679     // Now push children onto worklist
680     for( i=0; i<b->_num_succs; i++ )
681       worklist.push(b->_succs[i]);
682 
683   }
684 }
685