1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "ci/ciReplay.hpp"
29 #include "classfile/systemDictionary.hpp"
30 #include "code/exceptionHandlerTable.hpp"
31 #include "code/nmethod.hpp"
32 #include "compiler/compileBroker.hpp"
33 #include "compiler/compileLog.hpp"
34 #include "compiler/disassembler.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "gc/shared/barrierSet.hpp"
37 #include "gc/shared/c2/barrierSetC2.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "opto/addnode.hpp"
40 #include "opto/block.hpp"
41 #include "opto/c2compiler.hpp"
42 #include "opto/callGenerator.hpp"
43 #include "opto/callnode.hpp"
44 #include "opto/castnode.hpp"
45 #include "opto/cfgnode.hpp"
46 #include "opto/chaitin.hpp"
47 #include "opto/compile.hpp"
48 #include "opto/connode.hpp"
49 #include "opto/convertnode.hpp"
50 #include "opto/divnode.hpp"
51 #include "opto/escape.hpp"
52 #include "opto/idealGraphPrinter.hpp"
53 #include "opto/loopnode.hpp"
54 #include "opto/machnode.hpp"
55 #include "opto/macro.hpp"
56 #include "opto/matcher.hpp"
57 #include "opto/mathexactnode.hpp"
58 #include "opto/memnode.hpp"
59 #include "opto/mulnode.hpp"
60 #include "opto/narrowptrnode.hpp"
61 #include "opto/node.hpp"
62 #include "opto/opcodes.hpp"
63 #include "opto/output.hpp"
64 #include "opto/parse.hpp"
65 #include "opto/phaseX.hpp"
66 #include "opto/rootnode.hpp"
67 #include "opto/runtime.hpp"
68 #include "opto/stringopts.hpp"
69 #include "opto/type.hpp"
70 #include "opto/vectornode.hpp"
71 #include "runtime/arguments.hpp"
72 #include "runtime/sharedRuntime.hpp"
73 #include "runtime/signature.hpp"
74 #include "runtime/stubRoutines.hpp"
75 #include "runtime/timer.hpp"
76 #include "utilities/align.hpp"
77 #include "utilities/copy.hpp"
78 #include "utilities/macros.hpp"
79 
80 
81 // -------------------- Compile::mach_constant_base_node -----------------------
82 // Constant table base node singleton.
mach_constant_base_node()83 MachConstantBaseNode* Compile::mach_constant_base_node() {
84   if (_mach_constant_base_node == NULL) {
85     _mach_constant_base_node = new MachConstantBaseNode();
86     _mach_constant_base_node->add_req(C->root());
87   }
88   return _mach_constant_base_node;
89 }
90 
91 
92 /// Support for intrinsics.
93 
94 // Return the index at which m must be inserted (or already exists).
95 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
96 class IntrinsicDescPair {
97  private:
98   ciMethod* _m;
99   bool _is_virtual;
100  public:
IntrinsicDescPair(ciMethod * m,bool is_virtual)101   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
compare(IntrinsicDescPair * const & key,CallGenerator * const & elt)102   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
103     ciMethod* m= elt->method();
104     ciMethod* key_m = key->_m;
105     if (key_m < m)      return -1;
106     else if (key_m > m) return 1;
107     else {
108       bool is_virtual = elt->is_virtual();
109       bool key_virtual = key->_is_virtual;
110       if (key_virtual < is_virtual)      return -1;
111       else if (key_virtual > is_virtual) return 1;
112       else                               return 0;
113     }
114   }
115 };
intrinsic_insertion_index(ciMethod * m,bool is_virtual,bool & found)116 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
117 #ifdef ASSERT
118   for (int i = 1; i < _intrinsics->length(); i++) {
119     CallGenerator* cg1 = _intrinsics->at(i-1);
120     CallGenerator* cg2 = _intrinsics->at(i);
121     assert(cg1->method() != cg2->method()
122            ? cg1->method()     < cg2->method()
123            : cg1->is_virtual() < cg2->is_virtual(),
124            "compiler intrinsics list must stay sorted");
125   }
126 #endif
127   IntrinsicDescPair pair(m, is_virtual);
128   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
129 }
130 
register_intrinsic(CallGenerator * cg)131 void Compile::register_intrinsic(CallGenerator* cg) {
132   if (_intrinsics == NULL) {
133     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
134   }
135   int len = _intrinsics->length();
136   bool found = false;
137   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
138   assert(!found, "registering twice");
139   _intrinsics->insert_before(index, cg);
140   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
141 }
142 
find_intrinsic(ciMethod * m,bool is_virtual)143 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
144   assert(m->is_loaded(), "don't try this on unloaded methods");
145   if (_intrinsics != NULL) {
146     bool found = false;
147     int index = intrinsic_insertion_index(m, is_virtual, found);
148      if (found) {
149       return _intrinsics->at(index);
150     }
151   }
152   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
153   if (m->intrinsic_id() != vmIntrinsics::_none &&
154       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
155     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
156     if (cg != NULL) {
157       // Save it for next time:
158       register_intrinsic(cg);
159       return cg;
160     } else {
161       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
162     }
163   }
164   return NULL;
165 }
166 
167 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
168 // in library_call.cpp.
169 
170 
171 #ifndef PRODUCT
172 // statistics gathering...
173 
174 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
175 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
176 
gather_intrinsic_statistics(vmIntrinsics::ID id,bool is_virtual,int flags)177 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
178   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
179   int oflags = _intrinsic_hist_flags[id];
180   assert(flags != 0, "what happened?");
181   if (is_virtual) {
182     flags |= _intrinsic_virtual;
183   }
184   bool changed = (flags != oflags);
185   if ((flags & _intrinsic_worked) != 0) {
186     juint count = (_intrinsic_hist_count[id] += 1);
187     if (count == 1) {
188       changed = true;           // first time
189     }
190     // increment the overall count also:
191     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
192   }
193   if (changed) {
194     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
195       // Something changed about the intrinsic's virtuality.
196       if ((flags & _intrinsic_virtual) != 0) {
197         // This is the first use of this intrinsic as a virtual call.
198         if (oflags != 0) {
199           // We already saw it as a non-virtual, so note both cases.
200           flags |= _intrinsic_both;
201         }
202       } else if ((oflags & _intrinsic_both) == 0) {
203         // This is the first use of this intrinsic as a non-virtual
204         flags |= _intrinsic_both;
205       }
206     }
207     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
208   }
209   // update the overall flags also:
210   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
211   return changed;
212 }
213 
format_flags(int flags,char * buf)214 static char* format_flags(int flags, char* buf) {
215   buf[0] = 0;
216   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
217   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
218   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
219   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
220   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
221   if (buf[0] == 0)  strcat(buf, ",");
222   assert(buf[0] == ',', "must be");
223   return &buf[1];
224 }
225 
print_intrinsic_statistics()226 void Compile::print_intrinsic_statistics() {
227   char flagsbuf[100];
228   ttyLocker ttyl;
229   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
230   tty->print_cr("Compiler intrinsic usage:");
231   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
232   if (total == 0)  total = 1;  // avoid div0 in case of no successes
233   #define PRINT_STAT_LINE(name, c, f) \
234     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
235   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
236     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
237     int   flags = _intrinsic_hist_flags[id];
238     juint count = _intrinsic_hist_count[id];
239     if ((flags | count) != 0) {
240       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
241     }
242   }
243   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
244   if (xtty != NULL)  xtty->tail("statistics");
245 }
246 
print_statistics()247 void Compile::print_statistics() {
248   { ttyLocker ttyl;
249     if (xtty != NULL)  xtty->head("statistics type='opto'");
250     Parse::print_statistics();
251     PhaseCCP::print_statistics();
252     PhaseRegAlloc::print_statistics();
253     Scheduling::print_statistics();
254     PhasePeephole::print_statistics();
255     PhaseIdealLoop::print_statistics();
256     if (xtty != NULL)  xtty->tail("statistics");
257   }
258   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
259     // put this under its own <statistics> element.
260     print_intrinsic_statistics();
261   }
262 }
263 #endif //PRODUCT
264 
265 // Support for bundling info
node_bundling(const Node * n)266 Bundle* Compile::node_bundling(const Node *n) {
267   assert(valid_bundle_info(n), "oob");
268   return &_node_bundling_base[n->_idx];
269 }
270 
valid_bundle_info(const Node * n)271 bool Compile::valid_bundle_info(const Node *n) {
272   return (_node_bundling_limit > n->_idx);
273 }
274 
275 
gvn_replace_by(Node * n,Node * nn)276 void Compile::gvn_replace_by(Node* n, Node* nn) {
277   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
278     Node* use = n->last_out(i);
279     bool is_in_table = initial_gvn()->hash_delete(use);
280     uint uses_found = 0;
281     for (uint j = 0; j < use->len(); j++) {
282       if (use->in(j) == n) {
283         if (j < use->req())
284           use->set_req(j, nn);
285         else
286           use->set_prec(j, nn);
287         uses_found++;
288       }
289     }
290     if (is_in_table) {
291       // reinsert into table
292       initial_gvn()->hash_find_insert(use);
293     }
294     record_for_igvn(use);
295     i -= uses_found;    // we deleted 1 or more copies of this edge
296   }
297 }
298 
299 
not_a_node(const Node * n)300 static inline bool not_a_node(const Node* n) {
301   if (n == NULL)                   return true;
302   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
303   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
304   return false;
305 }
306 
307 // Identify all nodes that are reachable from below, useful.
308 // Use breadth-first pass that records state in a Unique_Node_List,
309 // recursive traversal is slower.
identify_useful_nodes(Unique_Node_List & useful)310 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
311   int estimated_worklist_size = live_nodes();
312   useful.map( estimated_worklist_size, NULL );  // preallocate space
313 
314   // Initialize worklist
315   if (root() != NULL)     { useful.push(root()); }
316   // If 'top' is cached, declare it useful to preserve cached node
317   if( cached_top_node() ) { useful.push(cached_top_node()); }
318 
319   // Push all useful nodes onto the list, breadthfirst
320   for( uint next = 0; next < useful.size(); ++next ) {
321     assert( next < unique(), "Unique useful nodes < total nodes");
322     Node *n  = useful.at(next);
323     uint max = n->len();
324     for( uint i = 0; i < max; ++i ) {
325       Node *m = n->in(i);
326       if (not_a_node(m))  continue;
327       useful.push(m);
328     }
329   }
330 }
331 
332 // Update dead_node_list with any missing dead nodes using useful
333 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
update_dead_node_list(Unique_Node_List & useful)334 void Compile::update_dead_node_list(Unique_Node_List &useful) {
335   uint max_idx = unique();
336   VectorSet& useful_node_set = useful.member_set();
337 
338   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
339     // If node with index node_idx is not in useful set,
340     // mark it as dead in dead node list.
341     if (! useful_node_set.test(node_idx) ) {
342       record_dead_node(node_idx);
343     }
344   }
345 }
346 
remove_useless_late_inlines(GrowableArray<CallGenerator * > * inlines,Unique_Node_List & useful)347 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
348   int shift = 0;
349   for (int i = 0; i < inlines->length(); i++) {
350     CallGenerator* cg = inlines->at(i);
351     CallNode* call = cg->call_node();
352     if (shift > 0) {
353       inlines->at_put(i-shift, cg);
354     }
355     if (!useful.member(call)) {
356       shift++;
357     }
358   }
359   inlines->trunc_to(inlines->length()-shift);
360 }
361 
362 // Disconnect all useless nodes by disconnecting those at the boundary.
remove_useless_nodes(Unique_Node_List & useful)363 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
364   uint next = 0;
365   while (next < useful.size()) {
366     Node *n = useful.at(next++);
367     if (n->is_SafePoint()) {
368       // We're done with a parsing phase. Replaced nodes are not valid
369       // beyond that point.
370       n->as_SafePoint()->delete_replaced_nodes();
371     }
372     // Use raw traversal of out edges since this code removes out edges
373     int max = n->outcnt();
374     for (int j = 0; j < max; ++j) {
375       Node* child = n->raw_out(j);
376       if (! useful.member(child)) {
377         assert(!child->is_top() || child != top(),
378                "If top is cached in Compile object it is in useful list");
379         // Only need to remove this out-edge to the useless node
380         n->raw_del_out(j);
381         --j;
382         --max;
383       }
384     }
385     if (n->outcnt() == 1 && n->has_special_unique_user()) {
386       record_for_igvn(n->unique_out());
387     }
388   }
389   // Remove useless macro and predicate opaq nodes
390   for (int i = C->macro_count()-1; i >= 0; i--) {
391     Node* n = C->macro_node(i);
392     if (!useful.member(n)) {
393       remove_macro_node(n);
394     }
395   }
396   // Remove useless CastII nodes with range check dependency
397   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
398     Node* cast = range_check_cast_node(i);
399     if (!useful.member(cast)) {
400       remove_range_check_cast(cast);
401     }
402   }
403   // Remove useless expensive nodes
404   for (int i = C->expensive_count()-1; i >= 0; i--) {
405     Node* n = C->expensive_node(i);
406     if (!useful.member(n)) {
407       remove_expensive_node(n);
408     }
409   }
410   // Remove useless Opaque4 nodes
411   for (int i = opaque4_count() - 1; i >= 0; i--) {
412     Node* opaq = opaque4_node(i);
413     if (!useful.member(opaq)) {
414       remove_opaque4_node(opaq);
415     }
416   }
417   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
418   bs->eliminate_useless_gc_barriers(useful, this);
419   // clean up the late inline lists
420   remove_useless_late_inlines(&_string_late_inlines, useful);
421   remove_useless_late_inlines(&_boxing_late_inlines, useful);
422   remove_useless_late_inlines(&_late_inlines, useful);
423   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
424 }
425 
426 //------------------------------frame_size_in_words-----------------------------
427 // frame_slots in units of words
frame_size_in_words() const428 int Compile::frame_size_in_words() const {
429   // shift is 0 in LP32 and 1 in LP64
430   const int shift = (LogBytesPerWord - LogBytesPerInt);
431   int words = _frame_slots >> shift;
432   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
433   return words;
434 }
435 
436 // To bang the stack of this compiled method we use the stack size
437 // that the interpreter would need in case of a deoptimization. This
438 // removes the need to bang the stack in the deoptimization blob which
439 // in turn simplifies stack overflow handling.
bang_size_in_bytes() const440 int Compile::bang_size_in_bytes() const {
441   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
442 }
443 
444 // ============================================================================
445 //------------------------------CompileWrapper---------------------------------
446 class CompileWrapper : public StackObj {
447   Compile *const _compile;
448  public:
449   CompileWrapper(Compile* compile);
450 
451   ~CompileWrapper();
452 };
453 
CompileWrapper(Compile * compile)454 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
455   // the Compile* pointer is stored in the current ciEnv:
456   ciEnv* env = compile->env();
457   assert(env == ciEnv::current(), "must already be a ciEnv active");
458   assert(env->compiler_data() == NULL, "compile already active?");
459   env->set_compiler_data(compile);
460   assert(compile == Compile::current(), "sanity");
461 
462   compile->set_type_dict(NULL);
463   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
464   compile->clone_map().set_clone_idx(0);
465   compile->set_type_hwm(NULL);
466   compile->set_type_last_size(0);
467   compile->set_last_tf(NULL, NULL);
468   compile->set_indexSet_arena(NULL);
469   compile->set_indexSet_free_block_list(NULL);
470   compile->init_type_arena();
471   Type::Initialize(compile);
472   _compile->set_scratch_buffer_blob(NULL);
473   _compile->begin_method();
474   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
475 }
~CompileWrapper()476 CompileWrapper::~CompileWrapper() {
477   _compile->end_method();
478   if (_compile->scratch_buffer_blob() != NULL)
479     BufferBlob::free(_compile->scratch_buffer_blob());
480   _compile->env()->set_compiler_data(NULL);
481 }
482 
483 
484 //----------------------------print_compile_messages---------------------------
print_compile_messages()485 void Compile::print_compile_messages() {
486 #ifndef PRODUCT
487   // Check if recompiling
488   if (_subsume_loads == false && PrintOpto) {
489     // Recompiling without allowing machine instructions to subsume loads
490     tty->print_cr("*********************************************************");
491     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
492     tty->print_cr("*********************************************************");
493   }
494   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
495     // Recompiling without escape analysis
496     tty->print_cr("*********************************************************");
497     tty->print_cr("** Bailout: Recompile without escape analysis          **");
498     tty->print_cr("*********************************************************");
499   }
500   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
501     // Recompiling without boxing elimination
502     tty->print_cr("*********************************************************");
503     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
504     tty->print_cr("*********************************************************");
505   }
506   if (C->directive()->BreakAtCompileOption) {
507     // Open the debugger when compiling this method.
508     tty->print("### Breaking when compiling: ");
509     method()->print_short_name();
510     tty->cr();
511     BREAKPOINT;
512   }
513 
514   if( PrintOpto ) {
515     if (is_osr_compilation()) {
516       tty->print("[OSR]%3d", _compile_id);
517     } else {
518       tty->print("%3d", _compile_id);
519     }
520   }
521 #endif
522 }
523 
524 
525 //-----------------------init_scratch_buffer_blob------------------------------
526 // Construct a temporary BufferBlob and cache it for this compile.
init_scratch_buffer_blob(int const_size)527 void Compile::init_scratch_buffer_blob(int const_size) {
528   // If there is already a scratch buffer blob allocated and the
529   // constant section is big enough, use it.  Otherwise free the
530   // current and allocate a new one.
531   BufferBlob* blob = scratch_buffer_blob();
532   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
533     // Use the current blob.
534   } else {
535     if (blob != NULL) {
536       BufferBlob::free(blob);
537     }
538 
539     ResourceMark rm;
540     _scratch_const_size = const_size;
541     int size = C2Compiler::initial_code_buffer_size(const_size);
542     blob = BufferBlob::create("Compile::scratch_buffer", size);
543     // Record the buffer blob for next time.
544     set_scratch_buffer_blob(blob);
545     // Have we run out of code space?
546     if (scratch_buffer_blob() == NULL) {
547       // Let CompilerBroker disable further compilations.
548       record_failure("Not enough space for scratch buffer in CodeCache");
549       return;
550     }
551   }
552 
553   // Initialize the relocation buffers
554   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
555   set_scratch_locs_memory(locs_buf);
556 }
557 
558 
559 //-----------------------scratch_emit_size-------------------------------------
560 // Helper function that computes size by emitting code
scratch_emit_size(const Node * n)561 uint Compile::scratch_emit_size(const Node* n) {
562   // Start scratch_emit_size section.
563   set_in_scratch_emit_size(true);
564 
565   // Emit into a trash buffer and count bytes emitted.
566   // This is a pretty expensive way to compute a size,
567   // but it works well enough if seldom used.
568   // All common fixed-size instructions are given a size
569   // method by the AD file.
570   // Note that the scratch buffer blob and locs memory are
571   // allocated at the beginning of the compile task, and
572   // may be shared by several calls to scratch_emit_size.
573   // The allocation of the scratch buffer blob is particularly
574   // expensive, since it has to grab the code cache lock.
575   BufferBlob* blob = this->scratch_buffer_blob();
576   assert(blob != NULL, "Initialize BufferBlob at start");
577   assert(blob->size() > MAX_inst_size, "sanity");
578   relocInfo* locs_buf = scratch_locs_memory();
579   address blob_begin = blob->content_begin();
580   address blob_end   = (address)locs_buf;
581   assert(blob->contains(blob_end), "sanity");
582   CodeBuffer buf(blob_begin, blob_end - blob_begin);
583   buf.initialize_consts_size(_scratch_const_size);
584   buf.initialize_stubs_size(MAX_stubs_size);
585   assert(locs_buf != NULL, "sanity");
586   int lsize = MAX_locs_size / 3;
587   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
588   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
589   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
590   // Mark as scratch buffer.
591   buf.consts()->set_scratch_emit();
592   buf.insts()->set_scratch_emit();
593   buf.stubs()->set_scratch_emit();
594 
595   // Do the emission.
596 
597   Label fakeL; // Fake label for branch instructions.
598   Label*   saveL = NULL;
599   uint save_bnum = 0;
600   bool is_branch = n->is_MachBranch();
601   if (is_branch) {
602     MacroAssembler masm(&buf);
603     masm.bind(fakeL);
604     n->as_MachBranch()->save_label(&saveL, &save_bnum);
605     n->as_MachBranch()->label_set(&fakeL, 0);
606   }
607   n->emit(buf, this->regalloc());
608 
609   // Emitting into the scratch buffer should not fail
610   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
611 
612   if (is_branch) // Restore label.
613     n->as_MachBranch()->label_set(saveL, save_bnum);
614 
615   // End scratch_emit_size section.
616   set_in_scratch_emit_size(false);
617 
618   return buf.insts_size();
619 }
620 
621 
622 // ============================================================================
623 //------------------------------Compile standard-------------------------------
debug_only(int Compile::_debug_idx=100000;)624 debug_only( int Compile::_debug_idx = 100000; )
625 
626 // Compile a method.  entry_bci is -1 for normal compilations and indicates
627 // the continuation bci for on stack replacement.
628 
629 
630 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
631                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
632                 : Phase(Compiler),
633                   _compile_id(ci_env->compile_id()),
634                   _save_argument_registers(false),
635                   _subsume_loads(subsume_loads),
636                   _do_escape_analysis(do_escape_analysis),
637                   _eliminate_boxing(eliminate_boxing),
638                   _method(target),
639                   _entry_bci(osr_bci),
640                   _stub_function(NULL),
641                   _stub_name(NULL),
642                   _stub_entry_point(NULL),
643                   _max_node_limit(MaxNodeLimit),
644                   _orig_pc_slot(0),
645                   _orig_pc_slot_offset_in_bytes(0),
646                   _inlining_progress(false),
647                   _inlining_incrementally(false),
648                   _do_cleanup(false),
649                   _has_reserved_stack_access(target->has_reserved_stack_access()),
650 #ifndef PRODUCT
651                   _trace_opto_output(directive->TraceOptoOutputOption),
652 #endif
653                   _has_method_handle_invokes(false),
654                   _clinit_barrier_on_entry(false),
655                   _comp_arena(mtCompiler),
656                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
657                   _env(ci_env),
658                   _directive(directive),
659                   _log(ci_env->log()),
660                   _failure_reason(NULL),
661                   _congraph(NULL),
662 #ifndef PRODUCT
663                   _printer(IdealGraphPrinter::printer()),
664 #endif
665                   _dead_node_list(comp_arena()),
666                   _dead_node_count(0),
667                   _node_arena(mtCompiler),
668                   _old_arena(mtCompiler),
669                   _mach_constant_base_node(NULL),
670                   _Compile_types(mtCompiler),
671                   _initial_gvn(NULL),
672                   _for_igvn(NULL),
673                   _warm_calls(NULL),
674                   _late_inlines(comp_arena(), 2, 0, NULL),
675                   _string_late_inlines(comp_arena(), 2, 0, NULL),
676                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
677                   _late_inlines_pos(0),
678                   _number_of_mh_late_inlines(0),
679                   _print_inlining_stream(NULL),
680                   _print_inlining_list(NULL),
681                   _print_inlining_idx(0),
682                   _print_inlining_output(NULL),
683                   _replay_inline_data(NULL),
684                   _java_calls(0),
685                   _inner_loops(0),
686                   _interpreter_frame_size(0),
687                   _node_bundling_limit(0),
688                   _node_bundling_base(NULL),
689                   _code_buffer("Compile::Fill_buffer"),
690                   _scratch_const_size(-1),
691                   _in_scratch_emit_size(false)
692 #ifndef PRODUCT
693                   , _in_dump_cnt(0)
694 #endif
695 {
696   C = this;
697 #ifndef PRODUCT
698   if (_printer != NULL) {
699     _printer->set_compile(this);
700   }
701 #endif
702   CompileWrapper cw(this);
703 
704   if (CITimeVerbose) {
705     tty->print(" ");
706     target->holder()->name()->print();
707     tty->print(".");
708     target->print_short_name();
709     tty->print("  ");
710   }
711   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
712   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
713 
714 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
715   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
716   // We can always print a disassembly, either abstract (hex dump) or
717   // with the help of a suitable hsdis library. Thus, we should not
718   // couple print_assembly and print_opto_assembly controls.
719   // But: always print opto and regular assembly on compile command 'print'.
720   bool print_assembly = directive->PrintAssemblyOption;
721   set_print_assembly(print_opto_assembly || print_assembly);
722 #else
723   set_print_assembly(false); // must initialize.
724 #endif
725 
726 #ifndef PRODUCT
727   set_parsed_irreducible_loop(false);
728 
729   if (directive->ReplayInlineOption) {
730     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
731   }
732 #endif
733   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
734   set_print_intrinsics(directive->PrintIntrinsicsOption);
735   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
736 
737   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
738     // Make sure the method being compiled gets its own MDO,
739     // so we can at least track the decompile_count().
740     // Need MDO to record RTM code generation state.
741     method()->ensure_method_data();
742   }
743 
744   Init(::AliasLevel);
745 
746 
747   print_compile_messages();
748 
749   _ilt = InlineTree::build_inline_tree_root();
750 
751   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
752   assert(num_alias_types() >= AliasIdxRaw, "");
753 
754 #define MINIMUM_NODE_HASH  1023
755   // Node list that Iterative GVN will start with
756   Unique_Node_List for_igvn(comp_arena());
757   set_for_igvn(&for_igvn);
758 
759   // GVN that will be run immediately on new nodes
760   uint estimated_size = method()->code_size()*4+64;
761   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
762   PhaseGVN gvn(node_arena(), estimated_size);
763   set_initial_gvn(&gvn);
764 
765   print_inlining_init();
766   { // Scope for timing the parser
767     TracePhase tp("parse", &timers[_t_parser]);
768 
769     // Put top into the hash table ASAP.
770     initial_gvn()->transform_no_reclaim(top());
771 
772     // Set up tf(), start(), and find a CallGenerator.
773     CallGenerator* cg = NULL;
774     if (is_osr_compilation()) {
775       const TypeTuple *domain = StartOSRNode::osr_domain();
776       const TypeTuple *range = TypeTuple::make_range(method()->signature());
777       init_tf(TypeFunc::make(domain, range));
778       StartNode* s = new StartOSRNode(root(), domain);
779       initial_gvn()->set_type_bottom(s);
780       init_start(s);
781       cg = CallGenerator::for_osr(method(), entry_bci());
782     } else {
783       // Normal case.
784       init_tf(TypeFunc::make(method()));
785       StartNode* s = new StartNode(root(), tf()->domain());
786       initial_gvn()->set_type_bottom(s);
787       init_start(s);
788       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
789         // With java.lang.ref.reference.get() we must go through the
790         // intrinsic - even when get() is the root
791         // method of the compile - so that, if necessary, the value in
792         // the referent field of the reference object gets recorded by
793         // the pre-barrier code.
794         cg = find_intrinsic(method(), false);
795       }
796       if (cg == NULL) {
797         float past_uses = method()->interpreter_invocation_count();
798         float expected_uses = past_uses;
799         cg = CallGenerator::for_inline(method(), expected_uses);
800       }
801     }
802     if (failing())  return;
803     if (cg == NULL) {
804       record_method_not_compilable("cannot parse method");
805       return;
806     }
807     JVMState* jvms = build_start_state(start(), tf());
808     if ((jvms = cg->generate(jvms)) == NULL) {
809       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
810         record_method_not_compilable("method parse failed");
811       }
812       return;
813     }
814     GraphKit kit(jvms);
815 
816     if (!kit.stopped()) {
817       // Accept return values, and transfer control we know not where.
818       // This is done by a special, unique ReturnNode bound to root.
819       return_values(kit.jvms());
820     }
821 
822     if (kit.has_exceptions()) {
823       // Any exceptions that escape from this call must be rethrown
824       // to whatever caller is dynamically above us on the stack.
825       // This is done by a special, unique RethrowNode bound to root.
826       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
827     }
828 
829     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
830 
831     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
832       inline_string_calls(true);
833     }
834 
835     if (failing())  return;
836 
837     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
838 
839     // Remove clutter produced by parsing.
840     if (!failing()) {
841       ResourceMark rm;
842       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
843     }
844   }
845 
846   // Note:  Large methods are capped off in do_one_bytecode().
847   if (failing())  return;
848 
849   // After parsing, node notes are no longer automagic.
850   // They must be propagated by register_new_node_with_optimizer(),
851   // clone(), or the like.
852   set_default_node_notes(NULL);
853 
854   for (;;) {
855     int successes = Inline_Warm();
856     if (failing())  return;
857     if (successes == 0)  break;
858   }
859 
860   // Drain the list.
861   Finish_Warm();
862 #ifndef PRODUCT
863   if (_printer && _printer->should_print(1)) {
864     _printer->print_inlining();
865   }
866 #endif
867 
868   if (failing())  return;
869   NOT_PRODUCT( verify_graph_edges(); )
870 
871   // Now optimize
872   Optimize();
873   if (failing())  return;
874   NOT_PRODUCT( verify_graph_edges(); )
875 
876 #ifndef PRODUCT
877   if (PrintIdeal) {
878     ttyLocker ttyl;  // keep the following output all in one block
879     // This output goes directly to the tty, not the compiler log.
880     // To enable tools to match it up with the compilation activity,
881     // be sure to tag this tty output with the compile ID.
882     if (xtty != NULL) {
883       xtty->head("ideal compile_id='%d'%s", compile_id(),
884                  is_osr_compilation()    ? " compile_kind='osr'" :
885                  "");
886     }
887     root()->dump(9999);
888     if (xtty != NULL) {
889       xtty->tail("ideal");
890     }
891   }
892 #endif
893 
894 #ifdef ASSERT
895   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
896   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
897 #endif
898 
899   // Dump compilation data to replay it.
900   if (directive->DumpReplayOption) {
901     env()->dump_replay_data(_compile_id);
902   }
903   if (directive->DumpInlineOption && (ilt() != NULL)) {
904     env()->dump_inline_data(_compile_id);
905   }
906 
907   // Now that we know the size of all the monitors we can add a fixed slot
908   // for the original deopt pc.
909 
910   _orig_pc_slot =  fixed_slots();
911   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
912   set_fixed_slots(next_slot);
913 
914   // Compute when to use implicit null checks. Used by matching trap based
915   // nodes and NullCheck optimization.
916   set_allowed_deopt_reasons();
917 
918   // Now generate code
919   Code_Gen();
920   if (failing())  return;
921 
922   // Check if we want to skip execution of all compiled code.
923   {
924 #ifndef PRODUCT
925     if (OptoNoExecute) {
926       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
927       return;
928     }
929 #endif
930     TracePhase tp("install_code", &timers[_t_registerMethod]);
931 
932     if (is_osr_compilation()) {
933       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
934       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
935     } else {
936       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
937       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
938     }
939 
940     env()->register_method(_method, _entry_bci,
941                            &_code_offsets,
942                            _orig_pc_slot_offset_in_bytes,
943                            code_buffer(),
944                            frame_size_in_words(), _oop_map_set,
945                            &_handler_table, &_inc_table,
946                            compiler,
947                            has_unsafe_access(),
948                            SharedRuntime::is_wide_vector(max_vector_size()),
949                            rtm_state()
950                            );
951 
952     if (log() != NULL) // Print code cache state into compiler log
953       log()->code_cache_state();
954   }
955 }
956 
957 //------------------------------Compile----------------------------------------
958 // Compile a runtime stub
Compile(ciEnv * ci_env,TypeFunc_generator generator,address stub_function,const char * stub_name,int is_fancy_jump,bool pass_tls,bool save_arg_registers,bool return_pc,DirectiveSet * directive)959 Compile::Compile( ciEnv* ci_env,
960                   TypeFunc_generator generator,
961                   address stub_function,
962                   const char *stub_name,
963                   int is_fancy_jump,
964                   bool pass_tls,
965                   bool save_arg_registers,
966                   bool return_pc,
967                   DirectiveSet* directive)
968   : Phase(Compiler),
969     _compile_id(0),
970     _save_argument_registers(save_arg_registers),
971     _subsume_loads(true),
972     _do_escape_analysis(false),
973     _eliminate_boxing(false),
974     _method(NULL),
975     _entry_bci(InvocationEntryBci),
976     _stub_function(stub_function),
977     _stub_name(stub_name),
978     _stub_entry_point(NULL),
979     _max_node_limit(MaxNodeLimit),
980     _orig_pc_slot(0),
981     _orig_pc_slot_offset_in_bytes(0),
982     _inlining_progress(false),
983     _inlining_incrementally(false),
984     _has_reserved_stack_access(false),
985 #ifndef PRODUCT
986     _trace_opto_output(directive->TraceOptoOutputOption),
987 #endif
988     _has_method_handle_invokes(false),
989     _clinit_barrier_on_entry(false),
990     _comp_arena(mtCompiler),
991     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
992     _env(ci_env),
993     _directive(directive),
994     _log(ci_env->log()),
995     _failure_reason(NULL),
996     _congraph(NULL),
997 #ifndef PRODUCT
998     _printer(NULL),
999 #endif
1000     _dead_node_list(comp_arena()),
1001     _dead_node_count(0),
1002     _node_arena(mtCompiler),
1003     _old_arena(mtCompiler),
1004     _mach_constant_base_node(NULL),
1005     _Compile_types(mtCompiler),
1006     _initial_gvn(NULL),
1007     _for_igvn(NULL),
1008     _warm_calls(NULL),
1009     _number_of_mh_late_inlines(0),
1010     _print_inlining_stream(NULL),
1011     _print_inlining_list(NULL),
1012     _print_inlining_idx(0),
1013     _print_inlining_output(NULL),
1014     _replay_inline_data(NULL),
1015     _java_calls(0),
1016     _inner_loops(0),
1017     _interpreter_frame_size(0),
1018     _node_bundling_limit(0),
1019     _node_bundling_base(NULL),
1020     _code_buffer("Compile::Fill_buffer"),
1021 #ifndef PRODUCT
1022     _in_dump_cnt(0),
1023 #endif
1024     _allowed_reasons(0) {
1025   C = this;
1026 
1027   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1028   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1029 
1030 #ifndef PRODUCT
1031   set_print_assembly(PrintFrameConverterAssembly);
1032   set_parsed_irreducible_loop(false);
1033 #else
1034   set_print_assembly(false); // Must initialize.
1035 #endif
1036   set_has_irreducible_loop(false); // no loops
1037 
1038   CompileWrapper cw(this);
1039   Init(/*AliasLevel=*/ 0);
1040   init_tf((*generator)());
1041 
1042   {
1043     // The following is a dummy for the sake of GraphKit::gen_stub
1044     Unique_Node_List for_igvn(comp_arena());
1045     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1046     PhaseGVN gvn(Thread::current()->resource_area(),255);
1047     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1048     gvn.transform_no_reclaim(top());
1049 
1050     GraphKit kit;
1051     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1052   }
1053 
1054   NOT_PRODUCT( verify_graph_edges(); )
1055   Code_Gen();
1056   if (failing())  return;
1057 
1058 
1059   // Entry point will be accessed using compile->stub_entry_point();
1060   if (code_buffer() == NULL) {
1061     Matcher::soft_match_failure();
1062   } else {
1063     if (PrintAssembly && (WizardMode || Verbose))
1064       tty->print_cr("### Stub::%s", stub_name);
1065 
1066     if (!failing()) {
1067       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1068 
1069       // Make the NMethod
1070       // For now we mark the frame as never safe for profile stackwalking
1071       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1072                                                       code_buffer(),
1073                                                       CodeOffsets::frame_never_safe,
1074                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1075                                                       frame_size_in_words(),
1076                                                       _oop_map_set,
1077                                                       save_arg_registers);
1078       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1079 
1080       _stub_entry_point = rs->entry_point();
1081     }
1082   }
1083 }
1084 
1085 //------------------------------Init-------------------------------------------
1086 // Prepare for a single compilation
Init(int aliaslevel)1087 void Compile::Init(int aliaslevel) {
1088   _unique  = 0;
1089   _regalloc = NULL;
1090 
1091   _tf      = NULL;  // filled in later
1092   _top     = NULL;  // cached later
1093   _matcher = NULL;  // filled in later
1094   _cfg     = NULL;  // filled in later
1095 
1096   set_24_bit_selection_and_mode(Use24BitFP, false);
1097 
1098   _node_note_array = NULL;
1099   _default_node_notes = NULL;
1100   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1101 
1102   _immutable_memory = NULL; // filled in at first inquiry
1103 
1104   // Globally visible Nodes
1105   // First set TOP to NULL to give safe behavior during creation of RootNode
1106   set_cached_top_node(NULL);
1107   set_root(new RootNode());
1108   // Now that you have a Root to point to, create the real TOP
1109   set_cached_top_node( new ConNode(Type::TOP) );
1110   set_recent_alloc(NULL, NULL);
1111 
1112   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1113   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1114   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1115   env()->set_dependencies(new Dependencies(env()));
1116 
1117   _fixed_slots = 0;
1118   set_has_split_ifs(false);
1119   set_has_loops(has_method() && method()->has_loops()); // first approximation
1120   set_has_stringbuilder(false);
1121   set_has_boxed_value(false);
1122   _trap_can_recompile = false;  // no traps emitted yet
1123   _major_progress = true; // start out assuming good things will happen
1124   set_has_unsafe_access(false);
1125   set_max_vector_size(0);
1126   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1127   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1128   set_decompile_count(0);
1129 
1130   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1131   _loop_opts_cnt = LoopOptsCount;
1132   set_do_inlining(Inline);
1133   set_max_inline_size(MaxInlineSize);
1134   set_freq_inline_size(FreqInlineSize);
1135   set_do_scheduling(OptoScheduling);
1136   set_do_count_invocations(false);
1137   set_do_method_data_update(false);
1138 
1139   set_do_vector_loop(false);
1140 
1141   if (AllowVectorizeOnDemand) {
1142     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1143       set_do_vector_loop(true);
1144       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1145     } else if (has_method() && method()->name() != 0 &&
1146                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1147       set_do_vector_loop(true);
1148     }
1149   }
1150   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1151   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1152 
1153   set_age_code(has_method() && method()->profile_aging());
1154   set_rtm_state(NoRTM); // No RTM lock eliding by default
1155   _max_node_limit = _directive->MaxNodeLimitOption;
1156 
1157 #if INCLUDE_RTM_OPT
1158   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1159     int rtm_state = method()->method_data()->rtm_state();
1160     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1161       // Don't generate RTM lock eliding code.
1162       set_rtm_state(NoRTM);
1163     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1164       // Generate RTM lock eliding code without abort ratio calculation code.
1165       set_rtm_state(UseRTM);
1166     } else if (UseRTMDeopt) {
1167       // Generate RTM lock eliding code and include abort ratio calculation
1168       // code if UseRTMDeopt is on.
1169       set_rtm_state(ProfileRTM);
1170     }
1171   }
1172 #endif
1173   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1174     set_clinit_barrier_on_entry(true);
1175   }
1176   if (debug_info()->recording_non_safepoints()) {
1177     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1178                         (comp_arena(), 8, 0, NULL));
1179     set_default_node_notes(Node_Notes::make(this));
1180   }
1181 
1182   // // -- Initialize types before each compile --
1183   // // Update cached type information
1184   // if( _method && _method->constants() )
1185   //   Type::update_loaded_types(_method, _method->constants());
1186 
1187   // Init alias_type map.
1188   if (!_do_escape_analysis && aliaslevel == 3)
1189     aliaslevel = 2;  // No unique types without escape analysis
1190   _AliasLevel = aliaslevel;
1191   const int grow_ats = 16;
1192   _max_alias_types = grow_ats;
1193   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1194   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1195   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1196   {
1197     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1198   }
1199   // Initialize the first few types.
1200   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1201   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1202   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1203   _num_alias_types = AliasIdxRaw+1;
1204   // Zero out the alias type cache.
1205   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1206   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1207   probe_alias_cache(NULL)->_index = AliasIdxTop;
1208 
1209   _intrinsics = NULL;
1210   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1211   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1212   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1213   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1214   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1215   register_library_intrinsics();
1216 }
1217 
1218 //---------------------------init_start----------------------------------------
1219 // Install the StartNode on this compile object.
init_start(StartNode * s)1220 void Compile::init_start(StartNode* s) {
1221   if (failing())
1222     return; // already failing
1223   assert(s == start(), "");
1224 }
1225 
1226 /**
1227  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1228  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1229  * the ideal graph.
1230  */
start() const1231 StartNode* Compile::start() const {
1232   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1233   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1234     Node* start = root()->fast_out(i);
1235     if (start->is_Start()) {
1236       return start->as_Start();
1237     }
1238   }
1239   fatal("Did not find Start node!");
1240   return NULL;
1241 }
1242 
1243 //-------------------------------immutable_memory-------------------------------------
1244 // Access immutable memory
immutable_memory()1245 Node* Compile::immutable_memory() {
1246   if (_immutable_memory != NULL) {
1247     return _immutable_memory;
1248   }
1249   StartNode* s = start();
1250   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1251     Node *p = s->fast_out(i);
1252     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1253       _immutable_memory = p;
1254       return _immutable_memory;
1255     }
1256   }
1257   ShouldNotReachHere();
1258   return NULL;
1259 }
1260 
1261 //----------------------set_cached_top_node------------------------------------
1262 // Install the cached top node, and make sure Node::is_top works correctly.
set_cached_top_node(Node * tn)1263 void Compile::set_cached_top_node(Node* tn) {
1264   if (tn != NULL)  verify_top(tn);
1265   Node* old_top = _top;
1266   _top = tn;
1267   // Calling Node::setup_is_top allows the nodes the chance to adjust
1268   // their _out arrays.
1269   if (_top != NULL)     _top->setup_is_top();
1270   if (old_top != NULL)  old_top->setup_is_top();
1271   assert(_top == NULL || top()->is_top(), "");
1272 }
1273 
1274 #ifdef ASSERT
count_live_nodes_by_graph_walk()1275 uint Compile::count_live_nodes_by_graph_walk() {
1276   Unique_Node_List useful(comp_arena());
1277   // Get useful node list by walking the graph.
1278   identify_useful_nodes(useful);
1279   return useful.size();
1280 }
1281 
print_missing_nodes()1282 void Compile::print_missing_nodes() {
1283 
1284   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1285   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1286     return;
1287   }
1288 
1289   // This is an expensive function. It is executed only when the user
1290   // specifies VerifyIdealNodeCount option or otherwise knows the
1291   // additional work that needs to be done to identify reachable nodes
1292   // by walking the flow graph and find the missing ones using
1293   // _dead_node_list.
1294 
1295   Unique_Node_List useful(comp_arena());
1296   // Get useful node list by walking the graph.
1297   identify_useful_nodes(useful);
1298 
1299   uint l_nodes = C->live_nodes();
1300   uint l_nodes_by_walk = useful.size();
1301 
1302   if (l_nodes != l_nodes_by_walk) {
1303     if (_log != NULL) {
1304       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1305       _log->stamp();
1306       _log->end_head();
1307     }
1308     VectorSet& useful_member_set = useful.member_set();
1309     int last_idx = l_nodes_by_walk;
1310     for (int i = 0; i < last_idx; i++) {
1311       if (useful_member_set.test(i)) {
1312         if (_dead_node_list.test(i)) {
1313           if (_log != NULL) {
1314             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1315           }
1316           if (PrintIdealNodeCount) {
1317             // Print the log message to tty
1318               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1319               useful.at(i)->dump();
1320           }
1321         }
1322       }
1323       else if (! _dead_node_list.test(i)) {
1324         if (_log != NULL) {
1325           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1326         }
1327         if (PrintIdealNodeCount) {
1328           // Print the log message to tty
1329           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1330         }
1331       }
1332     }
1333     if (_log != NULL) {
1334       _log->tail("mismatched_nodes");
1335     }
1336   }
1337 }
record_modified_node(Node * n)1338 void Compile::record_modified_node(Node* n) {
1339   if (_modified_nodes != NULL && !_inlining_incrementally &&
1340       n->outcnt() != 0 && !n->is_Con()) {
1341     _modified_nodes->push(n);
1342   }
1343 }
1344 
remove_modified_node(Node * n)1345 void Compile::remove_modified_node(Node* n) {
1346   if (_modified_nodes != NULL) {
1347     _modified_nodes->remove(n);
1348   }
1349 }
1350 #endif
1351 
1352 #ifndef PRODUCT
verify_top(Node * tn) const1353 void Compile::verify_top(Node* tn) const {
1354   if (tn != NULL) {
1355     assert(tn->is_Con(), "top node must be a constant");
1356     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1357     assert(tn->in(0) != NULL, "must have live top node");
1358   }
1359 }
1360 #endif
1361 
1362 
1363 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1364 
grow_node_notes(GrowableArray<Node_Notes * > * arr,int grow_by)1365 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1366   guarantee(arr != NULL, "");
1367   int num_blocks = arr->length();
1368   if (grow_by < num_blocks)  grow_by = num_blocks;
1369   int num_notes = grow_by * _node_notes_block_size;
1370   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1371   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1372   while (num_notes > 0) {
1373     arr->append(notes);
1374     notes     += _node_notes_block_size;
1375     num_notes -= _node_notes_block_size;
1376   }
1377   assert(num_notes == 0, "exact multiple, please");
1378 }
1379 
copy_node_notes_to(Node * dest,Node * source)1380 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1381   if (source == NULL || dest == NULL)  return false;
1382 
1383   if (dest->is_Con())
1384     return false;               // Do not push debug info onto constants.
1385 
1386 #ifdef ASSERT
1387   // Leave a bread crumb trail pointing to the original node:
1388   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1389     dest->set_debug_orig(source);
1390   }
1391 #endif
1392 
1393   if (node_note_array() == NULL)
1394     return false;               // Not collecting any notes now.
1395 
1396   // This is a copy onto a pre-existing node, which may already have notes.
1397   // If both nodes have notes, do not overwrite any pre-existing notes.
1398   Node_Notes* source_notes = node_notes_at(source->_idx);
1399   if (source_notes == NULL || source_notes->is_clear())  return false;
1400   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1401   if (dest_notes == NULL || dest_notes->is_clear()) {
1402     return set_node_notes_at(dest->_idx, source_notes);
1403   }
1404 
1405   Node_Notes merged_notes = (*source_notes);
1406   // The order of operations here ensures that dest notes will win...
1407   merged_notes.update_from(dest_notes);
1408   return set_node_notes_at(dest->_idx, &merged_notes);
1409 }
1410 
1411 
1412 //--------------------------allow_range_check_smearing-------------------------
1413 // Gating condition for coalescing similar range checks.
1414 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1415 // single covering check that is at least as strong as any of them.
1416 // If the optimization succeeds, the simplified (strengthened) range check
1417 // will always succeed.  If it fails, we will deopt, and then give up
1418 // on the optimization.
allow_range_check_smearing() const1419 bool Compile::allow_range_check_smearing() const {
1420   // If this method has already thrown a range-check,
1421   // assume it was because we already tried range smearing
1422   // and it failed.
1423   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1424   return !already_trapped;
1425 }
1426 
1427 
1428 //------------------------------flatten_alias_type-----------------------------
flatten_alias_type(const TypePtr * tj) const1429 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1430   int offset = tj->offset();
1431   TypePtr::PTR ptr = tj->ptr();
1432 
1433   // Known instance (scalarizable allocation) alias only with itself.
1434   bool is_known_inst = tj->isa_oopptr() != NULL &&
1435                        tj->is_oopptr()->is_known_instance();
1436 
1437   // Process weird unsafe references.
1438   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1439     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1440     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1441     tj = TypeOopPtr::BOTTOM;
1442     ptr = tj->ptr();
1443     offset = tj->offset();
1444   }
1445 
1446   // Array pointers need some flattening
1447   const TypeAryPtr *ta = tj->isa_aryptr();
1448   if (ta && ta->is_stable()) {
1449     // Erase stability property for alias analysis.
1450     tj = ta = ta->cast_to_stable(false);
1451   }
1452   if( ta && is_known_inst ) {
1453     if ( offset != Type::OffsetBot &&
1454          offset > arrayOopDesc::length_offset_in_bytes() ) {
1455       offset = Type::OffsetBot; // Flatten constant access into array body only
1456       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1457     }
1458   } else if( ta && _AliasLevel >= 2 ) {
1459     // For arrays indexed by constant indices, we flatten the alias
1460     // space to include all of the array body.  Only the header, klass
1461     // and array length can be accessed un-aliased.
1462     if( offset != Type::OffsetBot ) {
1463       if( ta->const_oop() ) { // MethodData* or Method*
1464         offset = Type::OffsetBot;   // Flatten constant access into array body
1465         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1466       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1467         // range is OK as-is.
1468         tj = ta = TypeAryPtr::RANGE;
1469       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1470         tj = TypeInstPtr::KLASS; // all klass loads look alike
1471         ta = TypeAryPtr::RANGE; // generic ignored junk
1472         ptr = TypePtr::BotPTR;
1473       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1474         tj = TypeInstPtr::MARK;
1475         ta = TypeAryPtr::RANGE; // generic ignored junk
1476         ptr = TypePtr::BotPTR;
1477       } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1478         ta = tj->isa_aryptr();
1479       } else {                  // Random constant offset into array body
1480         offset = Type::OffsetBot;   // Flatten constant access into array body
1481         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1482       }
1483     }
1484     // Arrays of fixed size alias with arrays of unknown size.
1485     if (ta->size() != TypeInt::POS) {
1486       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1487       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1488     }
1489     // Arrays of known objects become arrays of unknown objects.
1490     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1491       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1492       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1493     }
1494     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1495       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1496       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1497     }
1498     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1499     // cannot be distinguished by bytecode alone.
1500     if (ta->elem() == TypeInt::BOOL) {
1501       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1502       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1503       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1504     }
1505     // During the 2nd round of IterGVN, NotNull castings are removed.
1506     // Make sure the Bottom and NotNull variants alias the same.
1507     // Also, make sure exact and non-exact variants alias the same.
1508     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1509       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1510     }
1511   }
1512 
1513   // Oop pointers need some flattening
1514   const TypeInstPtr *to = tj->isa_instptr();
1515   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1516     ciInstanceKlass *k = to->klass()->as_instance_klass();
1517     if( ptr == TypePtr::Constant ) {
1518       if (to->klass() != ciEnv::current()->Class_klass() ||
1519           offset < k->size_helper() * wordSize) {
1520         // No constant oop pointers (such as Strings); they alias with
1521         // unknown strings.
1522         assert(!is_known_inst, "not scalarizable allocation");
1523         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1524       }
1525     } else if( is_known_inst ) {
1526       tj = to; // Keep NotNull and klass_is_exact for instance type
1527     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1528       // During the 2nd round of IterGVN, NotNull castings are removed.
1529       // Make sure the Bottom and NotNull variants alias the same.
1530       // Also, make sure exact and non-exact variants alias the same.
1531       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1532     }
1533     if (to->speculative() != NULL) {
1534       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1535     }
1536     // Canonicalize the holder of this field
1537     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1538       // First handle header references such as a LoadKlassNode, even if the
1539       // object's klass is unloaded at compile time (4965979).
1540       if (!is_known_inst) { // Do it only for non-instance types
1541         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1542       }
1543     } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1544       to = tj->is_instptr();
1545     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1546       // Static fields are in the space above the normal instance
1547       // fields in the java.lang.Class instance.
1548       if (to->klass() != ciEnv::current()->Class_klass()) {
1549         to = NULL;
1550         tj = TypeOopPtr::BOTTOM;
1551         offset = tj->offset();
1552       }
1553     } else {
1554       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1555       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1556         if( is_known_inst ) {
1557           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1558         } else {
1559           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1560         }
1561       }
1562     }
1563   }
1564 
1565   // Klass pointers to object array klasses need some flattening
1566   const TypeKlassPtr *tk = tj->isa_klassptr();
1567   if( tk ) {
1568     // If we are referencing a field within a Klass, we need
1569     // to assume the worst case of an Object.  Both exact and
1570     // inexact types must flatten to the same alias class so
1571     // use NotNull as the PTR.
1572     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1573 
1574       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1575                                    TypeKlassPtr::OBJECT->klass(),
1576                                    offset);
1577     }
1578 
1579     ciKlass* klass = tk->klass();
1580     if( klass->is_obj_array_klass() ) {
1581       ciKlass* k = TypeAryPtr::OOPS->klass();
1582       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1583         k = TypeInstPtr::BOTTOM->klass();
1584       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1585     }
1586 
1587     // Check for precise loads from the primary supertype array and force them
1588     // to the supertype cache alias index.  Check for generic array loads from
1589     // the primary supertype array and also force them to the supertype cache
1590     // alias index.  Since the same load can reach both, we need to merge
1591     // these 2 disparate memories into the same alias class.  Since the
1592     // primary supertype array is read-only, there's no chance of confusion
1593     // where we bypass an array load and an array store.
1594     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1595     if (offset == Type::OffsetBot ||
1596         (offset >= primary_supers_offset &&
1597          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1598         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1599       offset = in_bytes(Klass::secondary_super_cache_offset());
1600       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1601     }
1602   }
1603 
1604   // Flatten all Raw pointers together.
1605   if (tj->base() == Type::RawPtr)
1606     tj = TypeRawPtr::BOTTOM;
1607 
1608   if (tj->base() == Type::AnyPtr)
1609     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1610 
1611   // Flatten all to bottom for now
1612   switch( _AliasLevel ) {
1613   case 0:
1614     tj = TypePtr::BOTTOM;
1615     break;
1616   case 1:                       // Flatten to: oop, static, field or array
1617     switch (tj->base()) {
1618     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1619     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1620     case Type::AryPtr:   // do not distinguish arrays at all
1621     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1622     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1623     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1624     default: ShouldNotReachHere();
1625     }
1626     break;
1627   case 2:                       // No collapsing at level 2; keep all splits
1628   case 3:                       // No collapsing at level 3; keep all splits
1629     break;
1630   default:
1631     Unimplemented();
1632   }
1633 
1634   offset = tj->offset();
1635   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1636 
1637   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1638           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1639           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1640           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1641           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1642           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1643           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1644           (BarrierSet::barrier_set()->barrier_set_c2()->verify_gc_alias_type(tj, offset)),
1645           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1646   assert( tj->ptr() != TypePtr::TopPTR &&
1647           tj->ptr() != TypePtr::AnyNull &&
1648           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1649 //    assert( tj->ptr() != TypePtr::Constant ||
1650 //            tj->base() == Type::RawPtr ||
1651 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1652 
1653   return tj;
1654 }
1655 
Init(int i,const TypePtr * at)1656 void Compile::AliasType::Init(int i, const TypePtr* at) {
1657   _index = i;
1658   _adr_type = at;
1659   _field = NULL;
1660   _element = NULL;
1661   _is_rewritable = true; // default
1662   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1663   if (atoop != NULL && atoop->is_known_instance()) {
1664     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1665     _general_index = Compile::current()->get_alias_index(gt);
1666   } else {
1667     _general_index = 0;
1668   }
1669 }
1670 
basic_type() const1671 BasicType Compile::AliasType::basic_type() const {
1672   if (element() != NULL) {
1673     const Type* element = adr_type()->is_aryptr()->elem();
1674     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1675   } if (field() != NULL) {
1676     return field()->layout_type();
1677   } else {
1678     return T_ILLEGAL; // unknown
1679   }
1680 }
1681 
1682 //---------------------------------print_on------------------------------------
1683 #ifndef PRODUCT
print_on(outputStream * st)1684 void Compile::AliasType::print_on(outputStream* st) {
1685   if (index() < 10)
1686         st->print("@ <%d> ", index());
1687   else  st->print("@ <%d>",  index());
1688   st->print(is_rewritable() ? "   " : " RO");
1689   int offset = adr_type()->offset();
1690   if (offset == Type::OffsetBot)
1691         st->print(" +any");
1692   else  st->print(" +%-3d", offset);
1693   st->print(" in ");
1694   adr_type()->dump_on(st);
1695   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1696   if (field() != NULL && tjp) {
1697     if (tjp->klass()  != field()->holder() ||
1698         tjp->offset() != field()->offset_in_bytes()) {
1699       st->print(" != ");
1700       field()->print();
1701       st->print(" ***");
1702     }
1703   }
1704 }
1705 
print_alias_types()1706 void print_alias_types() {
1707   Compile* C = Compile::current();
1708   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1709   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1710     C->alias_type(idx)->print_on(tty);
1711     tty->cr();
1712   }
1713 }
1714 #endif
1715 
1716 
1717 //----------------------------probe_alias_cache--------------------------------
probe_alias_cache(const TypePtr * adr_type)1718 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1719   intptr_t key = (intptr_t) adr_type;
1720   key ^= key >> logAliasCacheSize;
1721   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1722 }
1723 
1724 
1725 //-----------------------------grow_alias_types--------------------------------
grow_alias_types()1726 void Compile::grow_alias_types() {
1727   const int old_ats  = _max_alias_types; // how many before?
1728   const int new_ats  = old_ats;          // how many more?
1729   const int grow_ats = old_ats+new_ats;  // how many now?
1730   _max_alias_types = grow_ats;
1731   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1732   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1733   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1734   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1735 }
1736 
1737 
1738 //--------------------------------find_alias_type------------------------------
find_alias_type(const TypePtr * adr_type,bool no_create,ciField * original_field)1739 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1740   if (_AliasLevel == 0)
1741     return alias_type(AliasIdxBot);
1742 
1743   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1744   if (ace->_adr_type == adr_type) {
1745     return alias_type(ace->_index);
1746   }
1747 
1748   // Handle special cases.
1749   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1750   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1751 
1752   // Do it the slow way.
1753   const TypePtr* flat = flatten_alias_type(adr_type);
1754 
1755 #ifdef ASSERT
1756   {
1757     ResourceMark rm;
1758     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1759            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1760     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1761            Type::str(adr_type));
1762     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1763       const TypeOopPtr* foop = flat->is_oopptr();
1764       // Scalarizable allocations have exact klass always.
1765       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1766       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1767       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1768              Type::str(foop), Type::str(xoop));
1769     }
1770   }
1771 #endif
1772 
1773   int idx = AliasIdxTop;
1774   for (int i = 0; i < num_alias_types(); i++) {
1775     if (alias_type(i)->adr_type() == flat) {
1776       idx = i;
1777       break;
1778     }
1779   }
1780 
1781   if (idx == AliasIdxTop) {
1782     if (no_create)  return NULL;
1783     // Grow the array if necessary.
1784     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1785     // Add a new alias type.
1786     idx = _num_alias_types++;
1787     _alias_types[idx]->Init(idx, flat);
1788     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1789     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1790     if (flat->isa_instptr()) {
1791       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1792           && flat->is_instptr()->klass() == env()->Class_klass())
1793         alias_type(idx)->set_rewritable(false);
1794     }
1795     if (flat->isa_aryptr()) {
1796 #ifdef ASSERT
1797       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1798       // (T_BYTE has the weakest alignment and size restrictions...)
1799       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1800 #endif
1801       if (flat->offset() == TypePtr::OffsetBot) {
1802         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1803       }
1804     }
1805     if (flat->isa_klassptr()) {
1806       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1807         alias_type(idx)->set_rewritable(false);
1808       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1809         alias_type(idx)->set_rewritable(false);
1810       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1811         alias_type(idx)->set_rewritable(false);
1812       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1813         alias_type(idx)->set_rewritable(false);
1814     }
1815     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1816     // but the base pointer type is not distinctive enough to identify
1817     // references into JavaThread.)
1818 
1819     // Check for final fields.
1820     const TypeInstPtr* tinst = flat->isa_instptr();
1821     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1822       ciField* field;
1823       if (tinst->const_oop() != NULL &&
1824           tinst->klass() == ciEnv::current()->Class_klass() &&
1825           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1826         // static field
1827         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1828         field = k->get_field_by_offset(tinst->offset(), true);
1829       } else {
1830         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1831         field = k->get_field_by_offset(tinst->offset(), false);
1832       }
1833       assert(field == NULL ||
1834              original_field == NULL ||
1835              (field->holder() == original_field->holder() &&
1836               field->offset() == original_field->offset() &&
1837               field->is_static() == original_field->is_static()), "wrong field?");
1838       // Set field() and is_rewritable() attributes.
1839       if (field != NULL)  alias_type(idx)->set_field(field);
1840     }
1841   }
1842 
1843   // Fill the cache for next time.
1844   ace->_adr_type = adr_type;
1845   ace->_index    = idx;
1846   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1847 
1848   // Might as well try to fill the cache for the flattened version, too.
1849   AliasCacheEntry* face = probe_alias_cache(flat);
1850   if (face->_adr_type == NULL) {
1851     face->_adr_type = flat;
1852     face->_index    = idx;
1853     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1854   }
1855 
1856   return alias_type(idx);
1857 }
1858 
1859 
alias_type(ciField * field)1860 Compile::AliasType* Compile::alias_type(ciField* field) {
1861   const TypeOopPtr* t;
1862   if (field->is_static())
1863     t = TypeInstPtr::make(field->holder()->java_mirror());
1864   else
1865     t = TypeOopPtr::make_from_klass_raw(field->holder());
1866   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1867   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1868   return atp;
1869 }
1870 
1871 
1872 //------------------------------have_alias_type--------------------------------
have_alias_type(const TypePtr * adr_type)1873 bool Compile::have_alias_type(const TypePtr* adr_type) {
1874   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1875   if (ace->_adr_type == adr_type) {
1876     return true;
1877   }
1878 
1879   // Handle special cases.
1880   if (adr_type == NULL)             return true;
1881   if (adr_type == TypePtr::BOTTOM)  return true;
1882 
1883   return find_alias_type(adr_type, true, NULL) != NULL;
1884 }
1885 
1886 //-----------------------------must_alias--------------------------------------
1887 // True if all values of the given address type are in the given alias category.
must_alias(const TypePtr * adr_type,int alias_idx)1888 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1889   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1890   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1891   if (alias_idx == AliasIdxTop)         return false; // the empty category
1892   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1893 
1894   // the only remaining possible overlap is identity
1895   int adr_idx = get_alias_index(adr_type);
1896   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1897   assert(adr_idx == alias_idx ||
1898          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1899           && adr_type                       != TypeOopPtr::BOTTOM),
1900          "should not be testing for overlap with an unsafe pointer");
1901   return adr_idx == alias_idx;
1902 }
1903 
1904 //------------------------------can_alias--------------------------------------
1905 // True if any values of the given address type are in the given alias category.
can_alias(const TypePtr * adr_type,int alias_idx)1906 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1907   if (alias_idx == AliasIdxTop)         return false; // the empty category
1908   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1909   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1910   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1911 
1912   // the only remaining possible overlap is identity
1913   int adr_idx = get_alias_index(adr_type);
1914   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1915   return adr_idx == alias_idx;
1916 }
1917 
1918 
1919 
1920 //---------------------------pop_warm_call-------------------------------------
pop_warm_call()1921 WarmCallInfo* Compile::pop_warm_call() {
1922   WarmCallInfo* wci = _warm_calls;
1923   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1924   return wci;
1925 }
1926 
1927 //----------------------------Inline_Warm--------------------------------------
Inline_Warm()1928 int Compile::Inline_Warm() {
1929   // If there is room, try to inline some more warm call sites.
1930   // %%% Do a graph index compaction pass when we think we're out of space?
1931   if (!InlineWarmCalls)  return 0;
1932 
1933   int calls_made_hot = 0;
1934   int room_to_grow   = NodeCountInliningCutoff - unique();
1935   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1936   int amount_grown   = 0;
1937   WarmCallInfo* call;
1938   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1939     int est_size = (int)call->size();
1940     if (est_size > (room_to_grow - amount_grown)) {
1941       // This one won't fit anyway.  Get rid of it.
1942       call->make_cold();
1943       continue;
1944     }
1945     call->make_hot();
1946     calls_made_hot++;
1947     amount_grown   += est_size;
1948     amount_to_grow -= est_size;
1949   }
1950 
1951   if (calls_made_hot > 0)  set_major_progress();
1952   return calls_made_hot;
1953 }
1954 
1955 
1956 //----------------------------Finish_Warm--------------------------------------
Finish_Warm()1957 void Compile::Finish_Warm() {
1958   if (!InlineWarmCalls)  return;
1959   if (failing())  return;
1960   if (warm_calls() == NULL)  return;
1961 
1962   // Clean up loose ends, if we are out of space for inlining.
1963   WarmCallInfo* call;
1964   while ((call = pop_warm_call()) != NULL) {
1965     call->make_cold();
1966   }
1967 }
1968 
1969 //---------------------cleanup_loop_predicates-----------------------
1970 // Remove the opaque nodes that protect the predicates so that all unused
1971 // checks and uncommon_traps will be eliminated from the ideal graph
cleanup_loop_predicates(PhaseIterGVN & igvn)1972 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1973   if (predicate_count()==0) return;
1974   for (int i = predicate_count(); i > 0; i--) {
1975     Node * n = predicate_opaque1_node(i-1);
1976     assert(n->Opcode() == Op_Opaque1, "must be");
1977     igvn.replace_node(n, n->in(1));
1978   }
1979   assert(predicate_count()==0, "should be clean!");
1980 }
1981 
add_range_check_cast(Node * n)1982 void Compile::add_range_check_cast(Node* n) {
1983   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1984   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1985   _range_check_casts->append(n);
1986 }
1987 
1988 // Remove all range check dependent CastIINodes.
remove_range_check_casts(PhaseIterGVN & igvn)1989 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1990   for (int i = range_check_cast_count(); i > 0; i--) {
1991     Node* cast = range_check_cast_node(i-1);
1992     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1993     igvn.replace_node(cast, cast->in(1));
1994   }
1995   assert(range_check_cast_count() == 0, "should be empty");
1996 }
1997 
add_opaque4_node(Node * n)1998 void Compile::add_opaque4_node(Node* n) {
1999   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
2000   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
2001   _opaque4_nodes->append(n);
2002 }
2003 
2004 // Remove all Opaque4 nodes.
remove_opaque4_nodes(PhaseIterGVN & igvn)2005 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2006   for (int i = opaque4_count(); i > 0; i--) {
2007     Node* opaq = opaque4_node(i-1);
2008     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2009     igvn.replace_node(opaq, opaq->in(2));
2010   }
2011   assert(opaque4_count() == 0, "should be empty");
2012 }
2013 
2014 // StringOpts and late inlining of string methods
inline_string_calls(bool parse_time)2015 void Compile::inline_string_calls(bool parse_time) {
2016   {
2017     // remove useless nodes to make the usage analysis simpler
2018     ResourceMark rm;
2019     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2020   }
2021 
2022   {
2023     ResourceMark rm;
2024     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2025     PhaseStringOpts pso(initial_gvn(), for_igvn());
2026     print_method(PHASE_AFTER_STRINGOPTS, 3);
2027   }
2028 
2029   // now inline anything that we skipped the first time around
2030   if (!parse_time) {
2031     _late_inlines_pos = _late_inlines.length();
2032   }
2033 
2034   while (_string_late_inlines.length() > 0) {
2035     CallGenerator* cg = _string_late_inlines.pop();
2036     cg->do_late_inline();
2037     if (failing())  return;
2038   }
2039   _string_late_inlines.trunc_to(0);
2040 }
2041 
2042 // Late inlining of boxing methods
inline_boxing_calls(PhaseIterGVN & igvn)2043 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2044   if (_boxing_late_inlines.length() > 0) {
2045     assert(has_boxed_value(), "inconsistent");
2046 
2047     PhaseGVN* gvn = initial_gvn();
2048     set_inlining_incrementally(true);
2049 
2050     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2051     for_igvn()->clear();
2052     gvn->replace_with(&igvn);
2053 
2054     _late_inlines_pos = _late_inlines.length();
2055 
2056     while (_boxing_late_inlines.length() > 0) {
2057       CallGenerator* cg = _boxing_late_inlines.pop();
2058       cg->do_late_inline();
2059       if (failing())  return;
2060     }
2061     _boxing_late_inlines.trunc_to(0);
2062 
2063     inline_incrementally_cleanup(igvn);
2064 
2065     set_inlining_incrementally(false);
2066   }
2067 }
2068 
inline_incrementally_one()2069 bool Compile::inline_incrementally_one() {
2070   assert(IncrementalInline, "incremental inlining should be on");
2071 
2072   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2073   set_inlining_progress(false);
2074   set_do_cleanup(false);
2075   int i = 0;
2076   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2077     CallGenerator* cg = _late_inlines.at(i);
2078     _late_inlines_pos = i+1;
2079     cg->do_late_inline();
2080     if (failing())  return false;
2081   }
2082   int j = 0;
2083   for (; i < _late_inlines.length(); i++, j++) {
2084     _late_inlines.at_put(j, _late_inlines.at(i));
2085   }
2086   _late_inlines.trunc_to(j);
2087   assert(inlining_progress() || _late_inlines.length() == 0, "");
2088 
2089   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2090 
2091   set_inlining_progress(false);
2092   set_do_cleanup(false);
2093   return (_late_inlines.length() > 0) && !needs_cleanup;
2094 }
2095 
inline_incrementally_cleanup(PhaseIterGVN & igvn)2096 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2097   {
2098     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2099     ResourceMark rm;
2100     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2101   }
2102   {
2103     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2104     igvn = PhaseIterGVN(initial_gvn());
2105     igvn.optimize();
2106   }
2107 }
2108 
2109 // Perform incremental inlining until bound on number of live nodes is reached
inline_incrementally(PhaseIterGVN & igvn)2110 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2111   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2112 
2113   set_inlining_incrementally(true);
2114   uint low_live_nodes = 0;
2115 
2116   while (_late_inlines.length() > 0) {
2117     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2118       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2119         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2120         // PhaseIdealLoop is expensive so we only try it once we are
2121         // out of live nodes and we only try it again if the previous
2122         // helped got the number of nodes down significantly
2123         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2124         if (failing())  return;
2125         low_live_nodes = live_nodes();
2126         _major_progress = true;
2127       }
2128 
2129       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2130         break; // finish
2131       }
2132     }
2133 
2134     for_igvn()->clear();
2135     initial_gvn()->replace_with(&igvn);
2136 
2137     while (inline_incrementally_one()) {
2138       assert(!failing(), "inconsistent");
2139     }
2140 
2141     if (failing())  return;
2142 
2143     inline_incrementally_cleanup(igvn);
2144 
2145     if (failing())  return;
2146   }
2147   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2148 
2149   if (_string_late_inlines.length() > 0) {
2150     assert(has_stringbuilder(), "inconsistent");
2151     for_igvn()->clear();
2152     initial_gvn()->replace_with(&igvn);
2153 
2154     inline_string_calls(false);
2155 
2156     if (failing())  return;
2157 
2158     inline_incrementally_cleanup(igvn);
2159   }
2160 
2161   set_inlining_incrementally(false);
2162 }
2163 
2164 
optimize_loops(PhaseIterGVN & igvn,LoopOptsMode mode)2165 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2166   if(_loop_opts_cnt > 0) {
2167     debug_only( int cnt = 0; );
2168     while(major_progress() && (_loop_opts_cnt > 0)) {
2169       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2170       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2171       PhaseIdealLoop::optimize(igvn, mode);
2172       _loop_opts_cnt--;
2173       if (failing())  return false;
2174       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2175     }
2176   }
2177   return true;
2178 }
2179 
2180 // Remove edges from "root" to each SafePoint at a backward branch.
2181 // They were inserted during parsing (see add_safepoint()) to make
2182 // infinite loops without calls or exceptions visible to root, i.e.,
2183 // useful.
remove_root_to_sfpts_edges(PhaseIterGVN & igvn)2184 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2185   Node *r = root();
2186   if (r != NULL) {
2187     for (uint i = r->req(); i < r->len(); ++i) {
2188       Node *n = r->in(i);
2189       if (n != NULL && n->is_SafePoint()) {
2190         r->rm_prec(i);
2191         if (n->outcnt() == 0) {
2192           igvn.remove_dead_node(n);
2193         }
2194         --i;
2195       }
2196     }
2197     // Parsing may have added top inputs to the root node (Path
2198     // leading to the Halt node proven dead). Make sure we get a
2199     // chance to clean them up.
2200     igvn._worklist.push(r);
2201     igvn.optimize();
2202   }
2203 }
2204 
2205 //------------------------------Optimize---------------------------------------
2206 // Given a graph, optimize it.
Optimize()2207 void Compile::Optimize() {
2208   TracePhase tp("optimizer", &timers[_t_optimizer]);
2209 
2210 #ifndef PRODUCT
2211   if (_directive->BreakAtCompileOption) {
2212     BREAKPOINT;
2213   }
2214 
2215 #endif
2216 
2217   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2218 #ifdef ASSERT
2219   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2220 #endif
2221 
2222   ResourceMark rm;
2223 
2224   print_inlining_reinit();
2225 
2226   NOT_PRODUCT( verify_graph_edges(); )
2227 
2228   print_method(PHASE_AFTER_PARSING);
2229 
2230  {
2231   // Iterative Global Value Numbering, including ideal transforms
2232   // Initialize IterGVN with types and values from parse-time GVN
2233   PhaseIterGVN igvn(initial_gvn());
2234 #ifdef ASSERT
2235   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2236 #endif
2237   {
2238     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2239     igvn.optimize();
2240   }
2241 
2242   if (failing())  return;
2243 
2244   print_method(PHASE_ITER_GVN1, 2);
2245 
2246   inline_incrementally(igvn);
2247 
2248   print_method(PHASE_INCREMENTAL_INLINE, 2);
2249 
2250   if (failing())  return;
2251 
2252   if (eliminate_boxing()) {
2253     // Inline valueOf() methods now.
2254     inline_boxing_calls(igvn);
2255 
2256     if (AlwaysIncrementalInline) {
2257       inline_incrementally(igvn);
2258     }
2259 
2260     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2261 
2262     if (failing())  return;
2263   }
2264 
2265   // Now that all inlining is over, cut edge from root to loop
2266   // safepoints
2267   remove_root_to_sfpts_edges(igvn);
2268 
2269   // Remove the speculative part of types and clean up the graph from
2270   // the extra CastPP nodes whose only purpose is to carry them. Do
2271   // that early so that optimizations are not disrupted by the extra
2272   // CastPP nodes.
2273   remove_speculative_types(igvn);
2274 
2275   // No more new expensive nodes will be added to the list from here
2276   // so keep only the actual candidates for optimizations.
2277   cleanup_expensive_nodes(igvn);
2278 
2279   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2280     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2281     initial_gvn()->replace_with(&igvn);
2282     for_igvn()->clear();
2283     Unique_Node_List new_worklist(C->comp_arena());
2284     {
2285       ResourceMark rm;
2286       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2287     }
2288     set_for_igvn(&new_worklist);
2289     igvn = PhaseIterGVN(initial_gvn());
2290     igvn.optimize();
2291   }
2292 
2293   // Perform escape analysis
2294   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2295     if (has_loops()) {
2296       // Cleanup graph (remove dead nodes).
2297       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2298       PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2299       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2300       if (failing())  return;
2301     }
2302     ConnectionGraph::do_analysis(this, &igvn);
2303 
2304     if (failing())  return;
2305 
2306     // Optimize out fields loads from scalar replaceable allocations.
2307     igvn.optimize();
2308     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2309 
2310     if (failing())  return;
2311 
2312     if (congraph() != NULL && macro_count() > 0) {
2313       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2314       PhaseMacroExpand mexp(igvn);
2315       mexp.eliminate_macro_nodes();
2316       igvn.set_delay_transform(false);
2317 
2318       igvn.optimize();
2319       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2320 
2321       if (failing())  return;
2322     }
2323   }
2324 
2325   // Loop transforms on the ideal graph.  Range Check Elimination,
2326   // peeling, unrolling, etc.
2327 
2328   // Set loop opts counter
2329   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2330     {
2331       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2332       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2333       _loop_opts_cnt--;
2334       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2335       if (failing())  return;
2336     }
2337     // Loop opts pass if partial peeling occurred in previous pass
2338     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2339       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2340       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2341       _loop_opts_cnt--;
2342       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2343       if (failing())  return;
2344     }
2345     // Loop opts pass for loop-unrolling before CCP
2346     if(major_progress() && (_loop_opts_cnt > 0)) {
2347       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2348       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2349       _loop_opts_cnt--;
2350       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2351     }
2352     if (!failing()) {
2353       // Verify that last round of loop opts produced a valid graph
2354       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2355       PhaseIdealLoop::verify(igvn);
2356     }
2357   }
2358   if (failing())  return;
2359 
2360   // Conditional Constant Propagation;
2361   PhaseCCP ccp( &igvn );
2362   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2363   {
2364     TracePhase tp("ccp", &timers[_t_ccp]);
2365     ccp.do_transform();
2366   }
2367   print_method(PHASE_CPP1, 2);
2368 
2369   assert( true, "Break here to ccp.dump_old2new_map()");
2370 
2371   // Iterative Global Value Numbering, including ideal transforms
2372   {
2373     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2374     igvn = ccp;
2375     igvn.optimize();
2376   }
2377   print_method(PHASE_ITER_GVN2, 2);
2378 
2379   if (failing())  return;
2380 
2381   // Loop transforms on the ideal graph.  Range Check Elimination,
2382   // peeling, unrolling, etc.
2383   if (!optimize_loops(igvn, LoopOptsDefault)) {
2384     return;
2385   }
2386 
2387   if (failing())  return;
2388 
2389   // Ensure that major progress is now clear
2390   C->clear_major_progress();
2391 
2392   {
2393     // Verify that all previous optimizations produced a valid graph
2394     // at least to this point, even if no loop optimizations were done.
2395     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2396     PhaseIdealLoop::verify(igvn);
2397   }
2398 
2399   if (range_check_cast_count() > 0) {
2400     // No more loop optimizations. Remove all range check dependent CastIINodes.
2401     C->remove_range_check_casts(igvn);
2402     igvn.optimize();
2403   }
2404 
2405 #ifdef ASSERT
2406   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2407 #endif
2408 
2409   {
2410     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2411     PhaseMacroExpand  mex(igvn);
2412     if (mex.expand_macro_nodes()) {
2413       assert(failing(), "must bail out w/ explicit message");
2414       return;
2415     }
2416     print_method(PHASE_MACRO_EXPANSION, 2);
2417   }
2418 
2419   {
2420     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2421     if (bs->expand_barriers(this, igvn)) {
2422       assert(failing(), "must bail out w/ explicit message");
2423       return;
2424     }
2425     print_method(PHASE_BARRIER_EXPANSION, 2);
2426   }
2427 
2428   if (opaque4_count() > 0) {
2429     C->remove_opaque4_nodes(igvn);
2430     igvn.optimize();
2431   }
2432 
2433   DEBUG_ONLY( _modified_nodes = NULL; )
2434  } // (End scope of igvn; run destructor if necessary for asserts.)
2435 
2436  process_print_inlining();
2437  // A method with only infinite loops has no edges entering loops from root
2438  {
2439    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2440    if (final_graph_reshaping()) {
2441      assert(failing(), "must bail out w/ explicit message");
2442      return;
2443    }
2444  }
2445 
2446  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2447 }
2448 
2449 
2450 //------------------------------Code_Gen---------------------------------------
2451 // Given a graph, generate code for it
Code_Gen()2452 void Compile::Code_Gen() {
2453   if (failing()) {
2454     return;
2455   }
2456 
2457   // Perform instruction selection.  You might think we could reclaim Matcher
2458   // memory PDQ, but actually the Matcher is used in generating spill code.
2459   // Internals of the Matcher (including some VectorSets) must remain live
2460   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2461   // set a bit in reclaimed memory.
2462 
2463   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2464   // nodes.  Mapping is only valid at the root of each matched subtree.
2465   NOT_PRODUCT( verify_graph_edges(); )
2466 
2467   Matcher matcher;
2468   _matcher = &matcher;
2469   {
2470     TracePhase tp("matcher", &timers[_t_matcher]);
2471     matcher.match();
2472   }
2473   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2474   // nodes.  Mapping is only valid at the root of each matched subtree.
2475   NOT_PRODUCT( verify_graph_edges(); )
2476 
2477   // If you have too many nodes, or if matching has failed, bail out
2478   check_node_count(0, "out of nodes matching instructions");
2479   if (failing()) {
2480     return;
2481   }
2482 
2483   print_method(PHASE_MATCHING, 2);
2484 
2485   // Build a proper-looking CFG
2486   PhaseCFG cfg(node_arena(), root(), matcher);
2487   _cfg = &cfg;
2488   {
2489     TracePhase tp("scheduler", &timers[_t_scheduler]);
2490     bool success = cfg.do_global_code_motion();
2491     if (!success) {
2492       return;
2493     }
2494 
2495     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2496     NOT_PRODUCT( verify_graph_edges(); )
2497     debug_only( cfg.verify(); )
2498   }
2499 
2500   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2501   _regalloc = &regalloc;
2502   {
2503     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2504     // Perform register allocation.  After Chaitin, use-def chains are
2505     // no longer accurate (at spill code) and so must be ignored.
2506     // Node->LRG->reg mappings are still accurate.
2507     _regalloc->Register_Allocate();
2508 
2509     // Bail out if the allocator builds too many nodes
2510     if (failing()) {
2511       return;
2512     }
2513   }
2514 
2515   // Prior to register allocation we kept empty basic blocks in case the
2516   // the allocator needed a place to spill.  After register allocation we
2517   // are not adding any new instructions.  If any basic block is empty, we
2518   // can now safely remove it.
2519   {
2520     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2521     cfg.remove_empty_blocks();
2522     if (do_freq_based_layout()) {
2523       PhaseBlockLayout layout(cfg);
2524     } else {
2525       cfg.set_loop_alignment();
2526     }
2527     cfg.fixup_flow();
2528   }
2529 
2530   // Apply peephole optimizations
2531   if( OptoPeephole ) {
2532     TracePhase tp("peephole", &timers[_t_peephole]);
2533     PhasePeephole peep( _regalloc, cfg);
2534     peep.do_transform();
2535   }
2536 
2537   // Do late expand if CPU requires this.
2538   if (Matcher::require_postalloc_expand) {
2539     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2540     cfg.postalloc_expand(_regalloc);
2541   }
2542 
2543   // Convert Nodes to instruction bits in a buffer
2544   {
2545     TraceTime tp("output", &timers[_t_output], CITime);
2546     Output();
2547   }
2548 
2549   print_method(PHASE_FINAL_CODE);
2550 
2551   // He's dead, Jim.
2552   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2553   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2554 }
2555 
2556 
2557 //------------------------------dump_asm---------------------------------------
2558 // Dump formatted assembly
2559 #if defined(SUPPORT_OPTO_ASSEMBLY)
dump_asm_on(outputStream * st,int * pcs,uint pc_limit)2560 void Compile::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
2561 
2562   int pc_digits = 3; // #chars required for pc
2563   int sb_chars  = 3; // #chars for "start bundle" indicator
2564   int tab_size  = 8;
2565   if (pcs != NULL) {
2566     int max_pc = 0;
2567     for (uint i = 0; i < pc_limit; i++) {
2568       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
2569     }
2570     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
2571   }
2572   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
2573 
2574   bool cut_short = false;
2575   st->print_cr("#");
2576   st->print("#  ");  _tf->dump_on(st);  st->cr();
2577   st->print_cr("#");
2578 
2579   // For all blocks
2580   int pc = 0x0;                 // Program counter
2581   char starts_bundle = ' ';
2582   _regalloc->dump_frame();
2583 
2584   Node *n = NULL;
2585   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2586     if (VMThread::should_terminate()) {
2587       cut_short = true;
2588       break;
2589     }
2590     Block* block = _cfg->get_block(i);
2591     if (block->is_connector() && !Verbose) {
2592       continue;
2593     }
2594     n = block->head();
2595     if ((pcs != NULL) && (n->_idx < pc_limit)) {
2596       pc = pcs[n->_idx];
2597       st->print("%*.*x", pc_digits, pc_digits, pc);
2598     }
2599     st->fill_to(prefix_len);
2600     block->dump_head(_cfg, st);
2601     if (block->is_connector()) {
2602       st->fill_to(prefix_len);
2603       st->print_cr("# Empty connector block");
2604     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2605       st->fill_to(prefix_len);
2606       st->print_cr("# Block is sole successor of call");
2607     }
2608 
2609     // For all instructions
2610     Node *delay = NULL;
2611     for (uint j = 0; j < block->number_of_nodes(); j++) {
2612       if (VMThread::should_terminate()) {
2613         cut_short = true;
2614         break;
2615       }
2616       n = block->get_node(j);
2617       if (valid_bundle_info(n)) {
2618         Bundle* bundle = node_bundling(n);
2619         if (bundle->used_in_unconditional_delay()) {
2620           delay = n;
2621           continue;
2622         }
2623         if (bundle->starts_bundle()) {
2624           starts_bundle = '+';
2625         }
2626       }
2627 
2628       if (WizardMode) {
2629         n->dump();
2630       }
2631 
2632       if( !n->is_Region() &&    // Dont print in the Assembly
2633           !n->is_Phi() &&       // a few noisely useless nodes
2634           !n->is_Proj() &&
2635           !n->is_MachTemp() &&
2636           !n->is_SafePointScalarObject() &&
2637           !n->is_Catch() &&     // Would be nice to print exception table targets
2638           !n->is_MergeMem() &&  // Not very interesting
2639           !n->is_top() &&       // Debug info table constants
2640           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2641           ) {
2642         if ((pcs != NULL) && (n->_idx < pc_limit)) {
2643           pc = pcs[n->_idx];
2644           st->print("%*.*x", pc_digits, pc_digits, pc);
2645         } else {
2646           st->fill_to(pc_digits);
2647         }
2648         st->print(" %c ", starts_bundle);
2649         starts_bundle = ' ';
2650         st->fill_to(prefix_len);
2651         n->format(_regalloc, st);
2652         st->cr();
2653       }
2654 
2655       // If we have an instruction with a delay slot, and have seen a delay,
2656       // then back up and print it
2657       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2658         // Coverity finding - Explicit null dereferenced.
2659         guarantee(delay != NULL, "no unconditional delay instruction");
2660         if (WizardMode) delay->dump();
2661 
2662         if (node_bundling(delay)->starts_bundle())
2663           starts_bundle = '+';
2664         if ((pcs != NULL) && (n->_idx < pc_limit)) {
2665           pc = pcs[n->_idx];
2666           st->print("%*.*x", pc_digits, pc_digits, pc);
2667         } else {
2668           st->fill_to(pc_digits);
2669         }
2670         st->print(" %c ", starts_bundle);
2671         starts_bundle = ' ';
2672         st->fill_to(prefix_len);
2673         delay->format(_regalloc, st);
2674         st->cr();
2675         delay = NULL;
2676       }
2677 
2678       // Dump the exception table as well
2679       if( n->is_Catch() && (Verbose || WizardMode) ) {
2680         // Print the exception table for this offset
2681         _handler_table.print_subtable_for(pc);
2682       }
2683       st->bol(); // Make sure we start on a new line
2684     }
2685     st->cr(); // one empty line between blocks
2686     assert(cut_short || delay == NULL, "no unconditional delay branch");
2687   } // End of per-block dump
2688 
2689   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
2690 }
2691 #endif
2692 
2693 //------------------------------Final_Reshape_Counts---------------------------
2694 // This class defines counters to help identify when a method
2695 // may/must be executed using hardware with only 24-bit precision.
2696 struct Final_Reshape_Counts : public StackObj {
2697   int  _call_count;             // count non-inlined 'common' calls
2698   int  _float_count;            // count float ops requiring 24-bit precision
2699   int  _double_count;           // count double ops requiring more precision
2700   int  _java_call_count;        // count non-inlined 'java' calls
2701   int  _inner_loop_count;       // count loops which need alignment
2702   VectorSet _visited;           // Visitation flags
2703   Node_List _tests;             // Set of IfNodes & PCTableNodes
2704 
Final_Reshape_CountsFinal_Reshape_Counts2705   Final_Reshape_Counts() :
2706     _call_count(0), _float_count(0), _double_count(0),
2707     _java_call_count(0), _inner_loop_count(0),
2708     _visited( Thread::current()->resource_area() ) { }
2709 
inc_call_countFinal_Reshape_Counts2710   void inc_call_count  () { _call_count  ++; }
inc_float_countFinal_Reshape_Counts2711   void inc_float_count () { _float_count ++; }
inc_double_countFinal_Reshape_Counts2712   void inc_double_count() { _double_count++; }
inc_java_call_countFinal_Reshape_Counts2713   void inc_java_call_count() { _java_call_count++; }
inc_inner_loop_countFinal_Reshape_Counts2714   void inc_inner_loop_count() { _inner_loop_count++; }
2715 
get_call_countFinal_Reshape_Counts2716   int  get_call_count  () const { return _call_count  ; }
get_float_countFinal_Reshape_Counts2717   int  get_float_count () const { return _float_count ; }
get_double_countFinal_Reshape_Counts2718   int  get_double_count() const { return _double_count; }
get_java_call_countFinal_Reshape_Counts2719   int  get_java_call_count() const { return _java_call_count; }
get_inner_loop_countFinal_Reshape_Counts2720   int  get_inner_loop_count() const { return _inner_loop_count; }
2721 };
2722 
2723 #ifdef ASSERT
oop_offset_is_sane(const TypeInstPtr * tp)2724 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2725   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2726   // Make sure the offset goes inside the instance layout.
2727   return k->contains_field_offset(tp->offset());
2728   // Note that OffsetBot and OffsetTop are very negative.
2729 }
2730 #endif
2731 
2732 // Eliminate trivially redundant StoreCMs and accumulate their
2733 // precedence edges.
eliminate_redundant_card_marks(Node * n)2734 void Compile::eliminate_redundant_card_marks(Node* n) {
2735   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2736   if (n->in(MemNode::Address)->outcnt() > 1) {
2737     // There are multiple users of the same address so it might be
2738     // possible to eliminate some of the StoreCMs
2739     Node* mem = n->in(MemNode::Memory);
2740     Node* adr = n->in(MemNode::Address);
2741     Node* val = n->in(MemNode::ValueIn);
2742     Node* prev = n;
2743     bool done = false;
2744     // Walk the chain of StoreCMs eliminating ones that match.  As
2745     // long as it's a chain of single users then the optimization is
2746     // safe.  Eliminating partially redundant StoreCMs would require
2747     // cloning copies down the other paths.
2748     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2749       if (adr == mem->in(MemNode::Address) &&
2750           val == mem->in(MemNode::ValueIn)) {
2751         // redundant StoreCM
2752         if (mem->req() > MemNode::OopStore) {
2753           // Hasn't been processed by this code yet.
2754           n->add_prec(mem->in(MemNode::OopStore));
2755         } else {
2756           // Already converted to precedence edge
2757           for (uint i = mem->req(); i < mem->len(); i++) {
2758             // Accumulate any precedence edges
2759             if (mem->in(i) != NULL) {
2760               n->add_prec(mem->in(i));
2761             }
2762           }
2763           // Everything above this point has been processed.
2764           done = true;
2765         }
2766         // Eliminate the previous StoreCM
2767         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2768         assert(mem->outcnt() == 0, "should be dead");
2769         mem->disconnect_inputs(NULL, this);
2770       } else {
2771         prev = mem;
2772       }
2773       mem = prev->in(MemNode::Memory);
2774     }
2775   }
2776 }
2777 
2778 //------------------------------final_graph_reshaping_impl----------------------
2779 // Implement items 1-5 from final_graph_reshaping below.
final_graph_reshaping_impl(Node * n,Final_Reshape_Counts & frc)2780 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2781 
2782   if ( n->outcnt() == 0 ) return; // dead node
2783   uint nop = n->Opcode();
2784 
2785   // Check for 2-input instruction with "last use" on right input.
2786   // Swap to left input.  Implements item (2).
2787   if( n->req() == 3 &&          // two-input instruction
2788       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2789       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2790       n->in(2)->outcnt() == 1 &&// right use IS a last use
2791       !n->in(2)->is_Con() ) {   // right use is not a constant
2792     // Check for commutative opcode
2793     switch( nop ) {
2794     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2795     case Op_MaxI:  case Op_MinI:
2796     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2797     case Op_AndL:  case Op_XorL:  case Op_OrL:
2798     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2799       // Move "last use" input to left by swapping inputs
2800       n->swap_edges(1, 2);
2801       break;
2802     }
2803     default:
2804       break;
2805     }
2806   }
2807 
2808 #ifdef ASSERT
2809   if( n->is_Mem() ) {
2810     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2811     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2812             // oop will be recorded in oop map if load crosses safepoint
2813             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2814                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2815             "raw memory operations should have control edge");
2816   }
2817   if (n->is_MemBar()) {
2818     MemBarNode* mb = n->as_MemBar();
2819     if (mb->trailing_store() || mb->trailing_load_store()) {
2820       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2821       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
2822       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2823              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2824     } else if (mb->leading()) {
2825       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2826     }
2827   }
2828 #endif
2829   // Count FPU ops and common calls, implements item (3)
2830   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
2831   if (!gc_handled) {
2832     final_graph_reshaping_main_switch(n, frc, nop);
2833   }
2834 
2835   // Collect CFG split points
2836   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
2837     frc._tests.push(n);
2838   }
2839 }
2840 
final_graph_reshaping_main_switch(Node * n,Final_Reshape_Counts & frc,uint nop)2841 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
2842   switch( nop ) {
2843   // Count all float operations that may use FPU
2844   case Op_AddF:
2845   case Op_SubF:
2846   case Op_MulF:
2847   case Op_DivF:
2848   case Op_NegF:
2849   case Op_ModF:
2850   case Op_ConvI2F:
2851   case Op_ConF:
2852   case Op_CmpF:
2853   case Op_CmpF3:
2854   // case Op_ConvL2F: // longs are split into 32-bit halves
2855     frc.inc_float_count();
2856     break;
2857 
2858   case Op_ConvF2D:
2859   case Op_ConvD2F:
2860     frc.inc_float_count();
2861     frc.inc_double_count();
2862     break;
2863 
2864   // Count all double operations that may use FPU
2865   case Op_AddD:
2866   case Op_SubD:
2867   case Op_MulD:
2868   case Op_DivD:
2869   case Op_NegD:
2870   case Op_ModD:
2871   case Op_ConvI2D:
2872   case Op_ConvD2I:
2873   // case Op_ConvL2D: // handled by leaf call
2874   // case Op_ConvD2L: // handled by leaf call
2875   case Op_ConD:
2876   case Op_CmpD:
2877   case Op_CmpD3:
2878     frc.inc_double_count();
2879     break;
2880   case Op_Opaque1:              // Remove Opaque Nodes before matching
2881   case Op_Opaque2:              // Remove Opaque Nodes before matching
2882   case Op_Opaque3:
2883     n->subsume_by(n->in(1), this);
2884     break;
2885   case Op_CallStaticJava:
2886   case Op_CallJava:
2887   case Op_CallDynamicJava:
2888     frc.inc_java_call_count(); // Count java call site;
2889   case Op_CallRuntime:
2890   case Op_CallLeaf:
2891   case Op_CallLeafNoFP: {
2892     assert (n->is_Call(), "");
2893     CallNode *call = n->as_Call();
2894     // Count call sites where the FP mode bit would have to be flipped.
2895     // Do not count uncommon runtime calls:
2896     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2897     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2898     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2899       frc.inc_call_count();   // Count the call site
2900     } else {                  // See if uncommon argument is shared
2901       Node *n = call->in(TypeFunc::Parms);
2902       int nop = n->Opcode();
2903       // Clone shared simple arguments to uncommon calls, item (1).
2904       if (n->outcnt() > 1 &&
2905           !n->is_Proj() &&
2906           nop != Op_CreateEx &&
2907           nop != Op_CheckCastPP &&
2908           nop != Op_DecodeN &&
2909           nop != Op_DecodeNKlass &&
2910           !n->is_Mem() &&
2911           !n->is_Phi()) {
2912         Node *x = n->clone();
2913         call->set_req(TypeFunc::Parms, x);
2914       }
2915     }
2916     break;
2917   }
2918 
2919   case Op_StoreD:
2920   case Op_LoadD:
2921   case Op_LoadD_unaligned:
2922     frc.inc_double_count();
2923     goto handle_mem;
2924   case Op_StoreF:
2925   case Op_LoadF:
2926     frc.inc_float_count();
2927     goto handle_mem;
2928 
2929   case Op_StoreCM:
2930     {
2931       // Convert OopStore dependence into precedence edge
2932       Node* prec = n->in(MemNode::OopStore);
2933       n->del_req(MemNode::OopStore);
2934       n->add_prec(prec);
2935       eliminate_redundant_card_marks(n);
2936     }
2937 
2938     // fall through
2939 
2940   case Op_StoreB:
2941   case Op_StoreC:
2942   case Op_StorePConditional:
2943   case Op_StoreI:
2944   case Op_StoreL:
2945   case Op_StoreIConditional:
2946   case Op_StoreLConditional:
2947   case Op_CompareAndSwapB:
2948   case Op_CompareAndSwapS:
2949   case Op_CompareAndSwapI:
2950   case Op_CompareAndSwapL:
2951   case Op_CompareAndSwapP:
2952   case Op_CompareAndSwapN:
2953   case Op_WeakCompareAndSwapB:
2954   case Op_WeakCompareAndSwapS:
2955   case Op_WeakCompareAndSwapI:
2956   case Op_WeakCompareAndSwapL:
2957   case Op_WeakCompareAndSwapP:
2958   case Op_WeakCompareAndSwapN:
2959   case Op_CompareAndExchangeB:
2960   case Op_CompareAndExchangeS:
2961   case Op_CompareAndExchangeI:
2962   case Op_CompareAndExchangeL:
2963   case Op_CompareAndExchangeP:
2964   case Op_CompareAndExchangeN:
2965   case Op_GetAndAddS:
2966   case Op_GetAndAddB:
2967   case Op_GetAndAddI:
2968   case Op_GetAndAddL:
2969   case Op_GetAndSetS:
2970   case Op_GetAndSetB:
2971   case Op_GetAndSetI:
2972   case Op_GetAndSetL:
2973   case Op_GetAndSetP:
2974   case Op_GetAndSetN:
2975   case Op_StoreP:
2976   case Op_StoreN:
2977   case Op_StoreNKlass:
2978   case Op_LoadB:
2979   case Op_LoadUB:
2980   case Op_LoadUS:
2981   case Op_LoadI:
2982   case Op_LoadKlass:
2983   case Op_LoadNKlass:
2984   case Op_LoadL:
2985   case Op_LoadL_unaligned:
2986   case Op_LoadPLocked:
2987   case Op_LoadP:
2988   case Op_LoadN:
2989   case Op_LoadRange:
2990   case Op_LoadS: {
2991   handle_mem:
2992 #ifdef ASSERT
2993     if( VerifyOptoOopOffsets ) {
2994       MemNode* mem  = n->as_Mem();
2995       // Check to see if address types have grounded out somehow.
2996       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2997       assert( !tp || oop_offset_is_sane(tp), "" );
2998     }
2999 #endif
3000     break;
3001   }
3002 
3003   case Op_AddP: {               // Assert sane base pointers
3004     Node *addp = n->in(AddPNode::Address);
3005     assert( !addp->is_AddP() ||
3006             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3007             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3008             "Base pointers must match (addp %u)", addp->_idx );
3009 #ifdef _LP64
3010     if ((UseCompressedOops || UseCompressedClassPointers) &&
3011         addp->Opcode() == Op_ConP &&
3012         addp == n->in(AddPNode::Base) &&
3013         n->in(AddPNode::Offset)->is_Con()) {
3014       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3015       // on the platform and on the compressed oops mode.
3016       // Use addressing with narrow klass to load with offset on x86.
3017       // Some platforms can use the constant pool to load ConP.
3018       // Do this transformation here since IGVN will convert ConN back to ConP.
3019       const Type* t = addp->bottom_type();
3020       bool is_oop   = t->isa_oopptr() != NULL;
3021       bool is_klass = t->isa_klassptr() != NULL;
3022 
3023       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3024           (is_klass && Matcher::const_klass_prefer_decode())) {
3025         Node* nn = NULL;
3026 
3027         int op = is_oop ? Op_ConN : Op_ConNKlass;
3028 
3029         // Look for existing ConN node of the same exact type.
3030         Node* r  = root();
3031         uint cnt = r->outcnt();
3032         for (uint i = 0; i < cnt; i++) {
3033           Node* m = r->raw_out(i);
3034           if (m!= NULL && m->Opcode() == op &&
3035               m->bottom_type()->make_ptr() == t) {
3036             nn = m;
3037             break;
3038           }
3039         }
3040         if (nn != NULL) {
3041           // Decode a narrow oop to match address
3042           // [R12 + narrow_oop_reg<<3 + offset]
3043           if (is_oop) {
3044             nn = new DecodeNNode(nn, t);
3045           } else {
3046             nn = new DecodeNKlassNode(nn, t);
3047           }
3048           // Check for succeeding AddP which uses the same Base.
3049           // Otherwise we will run into the assertion above when visiting that guy.
3050           for (uint i = 0; i < n->outcnt(); ++i) {
3051             Node *out_i = n->raw_out(i);
3052             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3053               out_i->set_req(AddPNode::Base, nn);
3054 #ifdef ASSERT
3055               for (uint j = 0; j < out_i->outcnt(); ++j) {
3056                 Node *out_j = out_i->raw_out(j);
3057                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3058                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3059               }
3060 #endif
3061             }
3062           }
3063           n->set_req(AddPNode::Base, nn);
3064           n->set_req(AddPNode::Address, nn);
3065           if (addp->outcnt() == 0) {
3066             addp->disconnect_inputs(NULL, this);
3067           }
3068         }
3069       }
3070     }
3071 #endif
3072     // platform dependent reshaping of the address expression
3073     reshape_address(n->as_AddP());
3074     break;
3075   }
3076 
3077   case Op_CastPP: {
3078     // Remove CastPP nodes to gain more freedom during scheduling but
3079     // keep the dependency they encode as control or precedence edges
3080     // (if control is set already) on memory operations. Some CastPP
3081     // nodes don't have a control (don't carry a dependency): skip
3082     // those.
3083     if (n->in(0) != NULL) {
3084       ResourceMark rm;
3085       Unique_Node_List wq;
3086       wq.push(n);
3087       for (uint next = 0; next < wq.size(); ++next) {
3088         Node *m = wq.at(next);
3089         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3090           Node* use = m->fast_out(i);
3091           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3092             use->ensure_control_or_add_prec(n->in(0));
3093           } else {
3094             switch(use->Opcode()) {
3095             case Op_AddP:
3096             case Op_DecodeN:
3097             case Op_DecodeNKlass:
3098             case Op_CheckCastPP:
3099             case Op_CastPP:
3100               wq.push(use);
3101               break;
3102             }
3103           }
3104         }
3105       }
3106     }
3107     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3108     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3109       Node* in1 = n->in(1);
3110       const Type* t = n->bottom_type();
3111       Node* new_in1 = in1->clone();
3112       new_in1->as_DecodeN()->set_type(t);
3113 
3114       if (!Matcher::narrow_oop_use_complex_address()) {
3115         //
3116         // x86, ARM and friends can handle 2 adds in addressing mode
3117         // and Matcher can fold a DecodeN node into address by using
3118         // a narrow oop directly and do implicit NULL check in address:
3119         //
3120         // [R12 + narrow_oop_reg<<3 + offset]
3121         // NullCheck narrow_oop_reg
3122         //
3123         // On other platforms (Sparc) we have to keep new DecodeN node and
3124         // use it to do implicit NULL check in address:
3125         //
3126         // decode_not_null narrow_oop_reg, base_reg
3127         // [base_reg + offset]
3128         // NullCheck base_reg
3129         //
3130         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3131         // to keep the information to which NULL check the new DecodeN node
3132         // corresponds to use it as value in implicit_null_check().
3133         //
3134         new_in1->set_req(0, n->in(0));
3135       }
3136 
3137       n->subsume_by(new_in1, this);
3138       if (in1->outcnt() == 0) {
3139         in1->disconnect_inputs(NULL, this);
3140       }
3141     } else {
3142       n->subsume_by(n->in(1), this);
3143       if (n->outcnt() == 0) {
3144         n->disconnect_inputs(NULL, this);
3145       }
3146     }
3147     break;
3148   }
3149 #ifdef _LP64
3150   case Op_CmpP:
3151     // Do this transformation here to preserve CmpPNode::sub() and
3152     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3153     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3154       Node* in1 = n->in(1);
3155       Node* in2 = n->in(2);
3156       if (!in1->is_DecodeNarrowPtr()) {
3157         in2 = in1;
3158         in1 = n->in(2);
3159       }
3160       assert(in1->is_DecodeNarrowPtr(), "sanity");
3161 
3162       Node* new_in2 = NULL;
3163       if (in2->is_DecodeNarrowPtr()) {
3164         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3165         new_in2 = in2->in(1);
3166       } else if (in2->Opcode() == Op_ConP) {
3167         const Type* t = in2->bottom_type();
3168         if (t == TypePtr::NULL_PTR) {
3169           assert(in1->is_DecodeN(), "compare klass to null?");
3170           // Don't convert CmpP null check into CmpN if compressed
3171           // oops implicit null check is not generated.
3172           // This will allow to generate normal oop implicit null check.
3173           if (Matcher::gen_narrow_oop_implicit_null_checks())
3174             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3175           //
3176           // This transformation together with CastPP transformation above
3177           // will generated code for implicit NULL checks for compressed oops.
3178           //
3179           // The original code after Optimize()
3180           //
3181           //    LoadN memory, narrow_oop_reg
3182           //    decode narrow_oop_reg, base_reg
3183           //    CmpP base_reg, NULL
3184           //    CastPP base_reg // NotNull
3185           //    Load [base_reg + offset], val_reg
3186           //
3187           // after these transformations will be
3188           //
3189           //    LoadN memory, narrow_oop_reg
3190           //    CmpN narrow_oop_reg, NULL
3191           //    decode_not_null narrow_oop_reg, base_reg
3192           //    Load [base_reg + offset], val_reg
3193           //
3194           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3195           // since narrow oops can be used in debug info now (see the code in
3196           // final_graph_reshaping_walk()).
3197           //
3198           // At the end the code will be matched to
3199           // on x86:
3200           //
3201           //    Load_narrow_oop memory, narrow_oop_reg
3202           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3203           //    NullCheck narrow_oop_reg
3204           //
3205           // and on sparc:
3206           //
3207           //    Load_narrow_oop memory, narrow_oop_reg
3208           //    decode_not_null narrow_oop_reg, base_reg
3209           //    Load [base_reg + offset], val_reg
3210           //    NullCheck base_reg
3211           //
3212         } else if (t->isa_oopptr()) {
3213           new_in2 = ConNode::make(t->make_narrowoop());
3214         } else if (t->isa_klassptr()) {
3215           new_in2 = ConNode::make(t->make_narrowklass());
3216         }
3217       }
3218       if (new_in2 != NULL) {
3219         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3220         n->subsume_by(cmpN, this);
3221         if (in1->outcnt() == 0) {
3222           in1->disconnect_inputs(NULL, this);
3223         }
3224         if (in2->outcnt() == 0) {
3225           in2->disconnect_inputs(NULL, this);
3226         }
3227       }
3228     }
3229     break;
3230 
3231   case Op_DecodeN:
3232   case Op_DecodeNKlass:
3233     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3234     // DecodeN could be pinned when it can't be fold into
3235     // an address expression, see the code for Op_CastPP above.
3236     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3237     break;
3238 
3239   case Op_EncodeP:
3240   case Op_EncodePKlass: {
3241     Node* in1 = n->in(1);
3242     if (in1->is_DecodeNarrowPtr()) {
3243       n->subsume_by(in1->in(1), this);
3244     } else if (in1->Opcode() == Op_ConP) {
3245       const Type* t = in1->bottom_type();
3246       if (t == TypePtr::NULL_PTR) {
3247         assert(t->isa_oopptr(), "null klass?");
3248         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3249       } else if (t->isa_oopptr()) {
3250         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3251       } else if (t->isa_klassptr()) {
3252         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3253       }
3254     }
3255     if (in1->outcnt() == 0) {
3256       in1->disconnect_inputs(NULL, this);
3257     }
3258     break;
3259   }
3260 
3261   case Op_Proj: {
3262     if (OptimizeStringConcat) {
3263       ProjNode* p = n->as_Proj();
3264       if (p->_is_io_use) {
3265         // Separate projections were used for the exception path which
3266         // are normally removed by a late inline.  If it wasn't inlined
3267         // then they will hang around and should just be replaced with
3268         // the original one.
3269         Node* proj = NULL;
3270         // Replace with just one
3271         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3272           Node *use = i.get();
3273           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3274             proj = use;
3275             break;
3276           }
3277         }
3278         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3279         if (proj != NULL) {
3280           p->subsume_by(proj, this);
3281         }
3282       }
3283     }
3284     break;
3285   }
3286 
3287   case Op_Phi:
3288     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3289       // The EncodeP optimization may create Phi with the same edges
3290       // for all paths. It is not handled well by Register Allocator.
3291       Node* unique_in = n->in(1);
3292       assert(unique_in != NULL, "");
3293       uint cnt = n->req();
3294       for (uint i = 2; i < cnt; i++) {
3295         Node* m = n->in(i);
3296         assert(m != NULL, "");
3297         if (unique_in != m)
3298           unique_in = NULL;
3299       }
3300       if (unique_in != NULL) {
3301         n->subsume_by(unique_in, this);
3302       }
3303     }
3304     break;
3305 
3306 #endif
3307 
3308 #ifdef ASSERT
3309   case Op_CastII:
3310     // Verify that all range check dependent CastII nodes were removed.
3311     if (n->isa_CastII()->has_range_check()) {
3312       n->dump(3);
3313       assert(false, "Range check dependent CastII node was not removed");
3314     }
3315     break;
3316 #endif
3317 
3318   case Op_ModI:
3319     if (UseDivMod) {
3320       // Check if a%b and a/b both exist
3321       Node* d = n->find_similar(Op_DivI);
3322       if (d) {
3323         // Replace them with a fused divmod if supported
3324         if (Matcher::has_match_rule(Op_DivModI)) {
3325           DivModINode* divmod = DivModINode::make(n);
3326           d->subsume_by(divmod->div_proj(), this);
3327           n->subsume_by(divmod->mod_proj(), this);
3328         } else {
3329           // replace a%b with a-((a/b)*b)
3330           Node* mult = new MulINode(d, d->in(2));
3331           Node* sub  = new SubINode(d->in(1), mult);
3332           n->subsume_by(sub, this);
3333         }
3334       }
3335     }
3336     break;
3337 
3338   case Op_ModL:
3339     if (UseDivMod) {
3340       // Check if a%b and a/b both exist
3341       Node* d = n->find_similar(Op_DivL);
3342       if (d) {
3343         // Replace them with a fused divmod if supported
3344         if (Matcher::has_match_rule(Op_DivModL)) {
3345           DivModLNode* divmod = DivModLNode::make(n);
3346           d->subsume_by(divmod->div_proj(), this);
3347           n->subsume_by(divmod->mod_proj(), this);
3348         } else {
3349           // replace a%b with a-((a/b)*b)
3350           Node* mult = new MulLNode(d, d->in(2));
3351           Node* sub  = new SubLNode(d->in(1), mult);
3352           n->subsume_by(sub, this);
3353         }
3354       }
3355     }
3356     break;
3357 
3358   case Op_LoadVector:
3359   case Op_StoreVector:
3360     break;
3361 
3362   case Op_AddReductionVI:
3363   case Op_AddReductionVL:
3364   case Op_AddReductionVF:
3365   case Op_AddReductionVD:
3366   case Op_MulReductionVI:
3367   case Op_MulReductionVL:
3368   case Op_MulReductionVF:
3369   case Op_MulReductionVD:
3370   case Op_MinReductionV:
3371   case Op_MaxReductionV:
3372     break;
3373 
3374   case Op_PackB:
3375   case Op_PackS:
3376   case Op_PackI:
3377   case Op_PackF:
3378   case Op_PackL:
3379   case Op_PackD:
3380     if (n->req()-1 > 2) {
3381       // Replace many operand PackNodes with a binary tree for matching
3382       PackNode* p = (PackNode*) n;
3383       Node* btp = p->binary_tree_pack(1, n->req());
3384       n->subsume_by(btp, this);
3385     }
3386     break;
3387   case Op_Loop:
3388   case Op_CountedLoop:
3389   case Op_OuterStripMinedLoop:
3390     if (n->as_Loop()->is_inner_loop()) {
3391       frc.inc_inner_loop_count();
3392     }
3393     n->as_Loop()->verify_strip_mined(0);
3394     break;
3395   case Op_LShiftI:
3396   case Op_RShiftI:
3397   case Op_URShiftI:
3398   case Op_LShiftL:
3399   case Op_RShiftL:
3400   case Op_URShiftL:
3401     if (Matcher::need_masked_shift_count) {
3402       // The cpu's shift instructions don't restrict the count to the
3403       // lower 5/6 bits. We need to do the masking ourselves.
3404       Node* in2 = n->in(2);
3405       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3406       const TypeInt* t = in2->find_int_type();
3407       if (t != NULL && t->is_con()) {
3408         juint shift = t->get_con();
3409         if (shift > mask) { // Unsigned cmp
3410           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3411         }
3412       } else {
3413         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3414           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3415           n->set_req(2, shift);
3416         }
3417       }
3418       if (in2->outcnt() == 0) { // Remove dead node
3419         in2->disconnect_inputs(NULL, this);
3420       }
3421     }
3422     break;
3423   case Op_MemBarStoreStore:
3424   case Op_MemBarRelease:
3425     // Break the link with AllocateNode: it is no longer useful and
3426     // confuses register allocation.
3427     if (n->req() > MemBarNode::Precedent) {
3428       n->set_req(MemBarNode::Precedent, top());
3429     }
3430     break;
3431   case Op_MemBarAcquire: {
3432     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3433       // At parse time, the trailing MemBarAcquire for a volatile load
3434       // is created with an edge to the load. After optimizations,
3435       // that input may be a chain of Phis. If those phis have no
3436       // other use, then the MemBarAcquire keeps them alive and
3437       // register allocation can be confused.
3438       ResourceMark rm;
3439       Unique_Node_List wq;
3440       wq.push(n->in(MemBarNode::Precedent));
3441       n->set_req(MemBarNode::Precedent, top());
3442       while (wq.size() > 0) {
3443         Node* m = wq.pop();
3444         if (m->outcnt() == 0) {
3445           for (uint j = 0; j < m->req(); j++) {
3446             Node* in = m->in(j);
3447             if (in != NULL) {
3448               wq.push(in);
3449             }
3450           }
3451           m->disconnect_inputs(NULL, this);
3452         }
3453       }
3454     }
3455     break;
3456   }
3457   case Op_RangeCheck: {
3458     RangeCheckNode* rc = n->as_RangeCheck();
3459     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3460     n->subsume_by(iff, this);
3461     frc._tests.push(iff);
3462     break;
3463   }
3464   case Op_ConvI2L: {
3465     if (!Matcher::convi2l_type_required) {
3466       // Code generation on some platforms doesn't need accurate
3467       // ConvI2L types. Widening the type can help remove redundant
3468       // address computations.
3469       n->as_Type()->set_type(TypeLong::INT);
3470       ResourceMark rm;
3471       Unique_Node_List wq;
3472       wq.push(n);
3473       for (uint next = 0; next < wq.size(); next++) {
3474         Node *m = wq.at(next);
3475 
3476         for(;;) {
3477           // Loop over all nodes with identical inputs edges as m
3478           Node* k = m->find_similar(m->Opcode());
3479           if (k == NULL) {
3480             break;
3481           }
3482           // Push their uses so we get a chance to remove node made
3483           // redundant
3484           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3485             Node* u = k->fast_out(i);
3486             if (u->Opcode() == Op_LShiftL ||
3487                 u->Opcode() == Op_AddL ||
3488                 u->Opcode() == Op_SubL ||
3489                 u->Opcode() == Op_AddP) {
3490               wq.push(u);
3491             }
3492           }
3493           // Replace all nodes with identical edges as m with m
3494           k->subsume_by(m, this);
3495         }
3496       }
3497     }
3498     break;
3499   }
3500   case Op_CmpUL: {
3501     if (!Matcher::has_match_rule(Op_CmpUL)) {
3502       // No support for unsigned long comparisons
3503       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3504       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3505       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3506       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3507       Node* andl = new AndLNode(orl, remove_sign_mask);
3508       Node* cmp = new CmpLNode(andl, n->in(2));
3509       n->subsume_by(cmp, this);
3510     }
3511     break;
3512   }
3513   default:
3514     assert(!n->is_Call(), "");
3515     assert(!n->is_Mem(), "");
3516     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3517     break;
3518   }
3519 }
3520 
3521 //------------------------------final_graph_reshaping_walk---------------------
3522 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3523 // requires that the walk visits a node's inputs before visiting the node.
final_graph_reshaping_walk(Node_Stack & nstack,Node * root,Final_Reshape_Counts & frc)3524 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3525   ResourceArea *area = Thread::current()->resource_area();
3526   Unique_Node_List sfpt(area);
3527 
3528   frc._visited.set(root->_idx); // first, mark node as visited
3529   uint cnt = root->req();
3530   Node *n = root;
3531   uint  i = 0;
3532   while (true) {
3533     if (i < cnt) {
3534       // Place all non-visited non-null inputs onto stack
3535       Node* m = n->in(i);
3536       ++i;
3537       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3538         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3539           // compute worst case interpreter size in case of a deoptimization
3540           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3541 
3542           sfpt.push(m);
3543         }
3544         cnt = m->req();
3545         nstack.push(n, i); // put on stack parent and next input's index
3546         n = m;
3547         i = 0;
3548       }
3549     } else {
3550       // Now do post-visit work
3551       final_graph_reshaping_impl( n, frc );
3552       if (nstack.is_empty())
3553         break;             // finished
3554       n = nstack.node();   // Get node from stack
3555       cnt = n->req();
3556       i = nstack.index();
3557       nstack.pop();        // Shift to the next node on stack
3558     }
3559   }
3560 
3561   // Skip next transformation if compressed oops are not used.
3562   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3563       (!UseCompressedOops && !UseCompressedClassPointers))
3564     return;
3565 
3566   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3567   // It could be done for an uncommon traps or any safepoints/calls
3568   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3569   while (sfpt.size() > 0) {
3570     n = sfpt.pop();
3571     JVMState *jvms = n->as_SafePoint()->jvms();
3572     assert(jvms != NULL, "sanity");
3573     int start = jvms->debug_start();
3574     int end   = n->req();
3575     bool is_uncommon = (n->is_CallStaticJava() &&
3576                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3577     for (int j = start; j < end; j++) {
3578       Node* in = n->in(j);
3579       if (in->is_DecodeNarrowPtr()) {
3580         bool safe_to_skip = true;
3581         if (!is_uncommon ) {
3582           // Is it safe to skip?
3583           for (uint i = 0; i < in->outcnt(); i++) {
3584             Node* u = in->raw_out(i);
3585             if (!u->is_SafePoint() ||
3586                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3587               safe_to_skip = false;
3588             }
3589           }
3590         }
3591         if (safe_to_skip) {
3592           n->set_req(j, in->in(1));
3593         }
3594         if (in->outcnt() == 0) {
3595           in->disconnect_inputs(NULL, this);
3596         }
3597       }
3598     }
3599   }
3600 }
3601 
3602 //------------------------------final_graph_reshaping--------------------------
3603 // Final Graph Reshaping.
3604 //
3605 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3606 //     and not commoned up and forced early.  Must come after regular
3607 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3608 //     inputs to Loop Phis; these will be split by the allocator anyways.
3609 //     Remove Opaque nodes.
3610 // (2) Move last-uses by commutative operations to the left input to encourage
3611 //     Intel update-in-place two-address operations and better register usage
3612 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3613 //     calls canonicalizing them back.
3614 // (3) Count the number of double-precision FP ops, single-precision FP ops
3615 //     and call sites.  On Intel, we can get correct rounding either by
3616 //     forcing singles to memory (requires extra stores and loads after each
3617 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3618 //     clearing the mode bit around call sites).  The mode bit is only used
3619 //     if the relative frequency of single FP ops to calls is low enough.
3620 //     This is a key transform for SPEC mpeg_audio.
3621 // (4) Detect infinite loops; blobs of code reachable from above but not
3622 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3623 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3624 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3625 //     Detection is by looking for IfNodes where only 1 projection is
3626 //     reachable from below or CatchNodes missing some targets.
3627 // (5) Assert for insane oop offsets in debug mode.
3628 
final_graph_reshaping()3629 bool Compile::final_graph_reshaping() {
3630   // an infinite loop may have been eliminated by the optimizer,
3631   // in which case the graph will be empty.
3632   if (root()->req() == 1) {
3633     record_method_not_compilable("trivial infinite loop");
3634     return true;
3635   }
3636 
3637   // Expensive nodes have their control input set to prevent the GVN
3638   // from freely commoning them. There's no GVN beyond this point so
3639   // no need to keep the control input. We want the expensive nodes to
3640   // be freely moved to the least frequent code path by gcm.
3641   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3642   for (int i = 0; i < expensive_count(); i++) {
3643     _expensive_nodes->at(i)->set_req(0, NULL);
3644   }
3645 
3646   Final_Reshape_Counts frc;
3647 
3648   // Visit everybody reachable!
3649   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3650   Node_Stack nstack(live_nodes() >> 1);
3651   final_graph_reshaping_walk(nstack, root(), frc);
3652 
3653   // Check for unreachable (from below) code (i.e., infinite loops).
3654   for( uint i = 0; i < frc._tests.size(); i++ ) {
3655     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3656     // Get number of CFG targets.
3657     // Note that PCTables include exception targets after calls.
3658     uint required_outcnt = n->required_outcnt();
3659     if (n->outcnt() != required_outcnt) {
3660       // Check for a few special cases.  Rethrow Nodes never take the
3661       // 'fall-thru' path, so expected kids is 1 less.
3662       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3663         if (n->in(0)->in(0)->is_Call()) {
3664           CallNode *call = n->in(0)->in(0)->as_Call();
3665           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3666             required_outcnt--;      // Rethrow always has 1 less kid
3667           } else if (call->req() > TypeFunc::Parms &&
3668                      call->is_CallDynamicJava()) {
3669             // Check for null receiver. In such case, the optimizer has
3670             // detected that the virtual call will always result in a null
3671             // pointer exception. The fall-through projection of this CatchNode
3672             // will not be populated.
3673             Node *arg0 = call->in(TypeFunc::Parms);
3674             if (arg0->is_Type() &&
3675                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3676               required_outcnt--;
3677             }
3678           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3679                      call->req() > TypeFunc::Parms+1 &&
3680                      call->is_CallStaticJava()) {
3681             // Check for negative array length. In such case, the optimizer has
3682             // detected that the allocation attempt will always result in an
3683             // exception. There is no fall-through projection of this CatchNode .
3684             Node *arg1 = call->in(TypeFunc::Parms+1);
3685             if (arg1->is_Type() &&
3686                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3687               required_outcnt--;
3688             }
3689           }
3690         }
3691       }
3692       // Recheck with a better notion of 'required_outcnt'
3693       if (n->outcnt() != required_outcnt) {
3694         record_method_not_compilable("malformed control flow");
3695         return true;            // Not all targets reachable!
3696       }
3697     }
3698     // Check that I actually visited all kids.  Unreached kids
3699     // must be infinite loops.
3700     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3701       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3702         record_method_not_compilable("infinite loop");
3703         return true;            // Found unvisited kid; must be unreach
3704       }
3705 
3706     // Here so verification code in final_graph_reshaping_walk()
3707     // always see an OuterStripMinedLoopEnd
3708     if (n->is_OuterStripMinedLoopEnd()) {
3709       IfNode* init_iff = n->as_If();
3710       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3711       n->subsume_by(iff, this);
3712     }
3713   }
3714 
3715   // If original bytecodes contained a mixture of floats and doubles
3716   // check if the optimizer has made it homogenous, item (3).
3717   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3718       frc.get_float_count() > 32 &&
3719       frc.get_double_count() == 0 &&
3720       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3721     set_24_bit_selection_and_mode( false,  true );
3722   }
3723 
3724   set_java_calls(frc.get_java_call_count());
3725   set_inner_loops(frc.get_inner_loop_count());
3726 
3727   // No infinite loops, no reason to bail out.
3728   return false;
3729 }
3730 
3731 //-----------------------------too_many_traps----------------------------------
3732 // Report if there are too many traps at the current method and bci.
3733 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
too_many_traps(ciMethod * method,int bci,Deoptimization::DeoptReason reason)3734 bool Compile::too_many_traps(ciMethod* method,
3735                              int bci,
3736                              Deoptimization::DeoptReason reason) {
3737   ciMethodData* md = method->method_data();
3738   if (md->is_empty()) {
3739     // Assume the trap has not occurred, or that it occurred only
3740     // because of a transient condition during start-up in the interpreter.
3741     return false;
3742   }
3743   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3744   if (md->has_trap_at(bci, m, reason) != 0) {
3745     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3746     // Also, if there are multiple reasons, or if there is no per-BCI record,
3747     // assume the worst.
3748     if (log())
3749       log()->elem("observe trap='%s' count='%d'",
3750                   Deoptimization::trap_reason_name(reason),
3751                   md->trap_count(reason));
3752     return true;
3753   } else {
3754     // Ignore method/bci and see if there have been too many globally.
3755     return too_many_traps(reason, md);
3756   }
3757 }
3758 
3759 // Less-accurate variant which does not require a method and bci.
too_many_traps(Deoptimization::DeoptReason reason,ciMethodData * logmd)3760 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3761                              ciMethodData* logmd) {
3762   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3763     // Too many traps globally.
3764     // Note that we use cumulative trap_count, not just md->trap_count.
3765     if (log()) {
3766       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3767       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3768                   Deoptimization::trap_reason_name(reason),
3769                   mcount, trap_count(reason));
3770     }
3771     return true;
3772   } else {
3773     // The coast is clear.
3774     return false;
3775   }
3776 }
3777 
3778 //--------------------------too_many_recompiles--------------------------------
3779 // Report if there are too many recompiles at the current method and bci.
3780 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3781 // Is not eager to return true, since this will cause the compiler to use
3782 // Action_none for a trap point, to avoid too many recompilations.
too_many_recompiles(ciMethod * method,int bci,Deoptimization::DeoptReason reason)3783 bool Compile::too_many_recompiles(ciMethod* method,
3784                                   int bci,
3785                                   Deoptimization::DeoptReason reason) {
3786   ciMethodData* md = method->method_data();
3787   if (md->is_empty()) {
3788     // Assume the trap has not occurred, or that it occurred only
3789     // because of a transient condition during start-up in the interpreter.
3790     return false;
3791   }
3792   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3793   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3794   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3795   Deoptimization::DeoptReason per_bc_reason
3796     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3797   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3798   if ((per_bc_reason == Deoptimization::Reason_none
3799        || md->has_trap_at(bci, m, reason) != 0)
3800       // The trap frequency measure we care about is the recompile count:
3801       && md->trap_recompiled_at(bci, m)
3802       && md->overflow_recompile_count() >= bc_cutoff) {
3803     // Do not emit a trap here if it has already caused recompilations.
3804     // Also, if there are multiple reasons, or if there is no per-BCI record,
3805     // assume the worst.
3806     if (log())
3807       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3808                   Deoptimization::trap_reason_name(reason),
3809                   md->trap_count(reason),
3810                   md->overflow_recompile_count());
3811     return true;
3812   } else if (trap_count(reason) != 0
3813              && decompile_count() >= m_cutoff) {
3814     // Too many recompiles globally, and we have seen this sort of trap.
3815     // Use cumulative decompile_count, not just md->decompile_count.
3816     if (log())
3817       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3818                   Deoptimization::trap_reason_name(reason),
3819                   md->trap_count(reason), trap_count(reason),
3820                   md->decompile_count(), decompile_count());
3821     return true;
3822   } else {
3823     // The coast is clear.
3824     return false;
3825   }
3826 }
3827 
3828 // Compute when not to trap. Used by matching trap based nodes and
3829 // NullCheck optimization.
set_allowed_deopt_reasons()3830 void Compile::set_allowed_deopt_reasons() {
3831   _allowed_reasons = 0;
3832   if (is_method_compilation()) {
3833     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3834       assert(rs < BitsPerInt, "recode bit map");
3835       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3836         _allowed_reasons |= nth_bit(rs);
3837       }
3838     }
3839   }
3840 }
3841 
needs_clinit_barrier(ciMethod * method,ciMethod * accessing_method)3842 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
3843   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
3844 }
3845 
needs_clinit_barrier(ciField * field,ciMethod * accessing_method)3846 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
3847   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
3848 }
3849 
needs_clinit_barrier(ciInstanceKlass * holder,ciMethod * accessing_method)3850 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
3851   if (holder->is_initialized()) {
3852     return false;
3853   }
3854   if (holder->is_being_initialized()) {
3855     if (accessing_method->holder() == holder) {
3856       // Access inside a class. The barrier can be elided when access happens in <clinit>,
3857       // <init>, or a static method. In all those cases, there was an initialization
3858       // barrier on the holder klass passed.
3859       if (accessing_method->is_static_initializer() ||
3860           accessing_method->is_object_initializer() ||
3861           accessing_method->is_static()) {
3862         return false;
3863       }
3864     } else if (accessing_method->holder()->is_subclass_of(holder)) {
3865       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
3866       // In case of <init> or a static method, the barrier is on the subclass is not enough:
3867       // child class can become fully initialized while its parent class is still being initialized.
3868       if (accessing_method->is_static_initializer()) {
3869         return false;
3870       }
3871     }
3872     ciMethod* root = method(); // the root method of compilation
3873     if (root != accessing_method) {
3874       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
3875     }
3876   }
3877   return true;
3878 }
3879 
3880 #ifndef PRODUCT
3881 //------------------------------verify_graph_edges---------------------------
3882 // Walk the Graph and verify that there is a one-to-one correspondence
3883 // between Use-Def edges and Def-Use edges in the graph.
verify_graph_edges(bool no_dead_code)3884 void Compile::verify_graph_edges(bool no_dead_code) {
3885   if (VerifyGraphEdges) {
3886     ResourceArea *area = Thread::current()->resource_area();
3887     Unique_Node_List visited(area);
3888     // Call recursive graph walk to check edges
3889     _root->verify_edges(visited);
3890     if (no_dead_code) {
3891       // Now make sure that no visited node is used by an unvisited node.
3892       bool dead_nodes = false;
3893       Unique_Node_List checked(area);
3894       while (visited.size() > 0) {
3895         Node* n = visited.pop();
3896         checked.push(n);
3897         for (uint i = 0; i < n->outcnt(); i++) {
3898           Node* use = n->raw_out(i);
3899           if (checked.member(use))  continue;  // already checked
3900           if (visited.member(use))  continue;  // already in the graph
3901           if (use->is_Con())        continue;  // a dead ConNode is OK
3902           // At this point, we have found a dead node which is DU-reachable.
3903           if (!dead_nodes) {
3904             tty->print_cr("*** Dead nodes reachable via DU edges:");
3905             dead_nodes = true;
3906           }
3907           use->dump(2);
3908           tty->print_cr("---");
3909           checked.push(use);  // No repeats; pretend it is now checked.
3910         }
3911       }
3912       assert(!dead_nodes, "using nodes must be reachable from root");
3913     }
3914   }
3915 }
3916 #endif
3917 
3918 // The Compile object keeps track of failure reasons separately from the ciEnv.
3919 // This is required because there is not quite a 1-1 relation between the
3920 // ciEnv and its compilation task and the Compile object.  Note that one
3921 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3922 // to backtrack and retry without subsuming loads.  Other than this backtracking
3923 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3924 // by the logic in C2Compiler.
record_failure(const char * reason)3925 void Compile::record_failure(const char* reason) {
3926   if (log() != NULL) {
3927     log()->elem("failure reason='%s' phase='compile'", reason);
3928   }
3929   if (_failure_reason == NULL) {
3930     // Record the first failure reason.
3931     _failure_reason = reason;
3932   }
3933 
3934   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3935     C->print_method(PHASE_FAILURE);
3936   }
3937   _root = NULL;  // flush the graph, too
3938 }
3939 
TracePhase(const char * name,elapsedTimer * accumulator)3940 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3941   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3942     _phase_name(name), _dolog(CITimeVerbose)
3943 {
3944   if (_dolog) {
3945     C = Compile::current();
3946     _log = C->log();
3947   } else {
3948     C = NULL;
3949     _log = NULL;
3950   }
3951   if (_log != NULL) {
3952     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3953     _log->stamp();
3954     _log->end_head();
3955   }
3956 }
3957 
~TracePhase()3958 Compile::TracePhase::~TracePhase() {
3959 
3960   C = Compile::current();
3961   if (_dolog) {
3962     _log = C->log();
3963   } else {
3964     _log = NULL;
3965   }
3966 
3967 #ifdef ASSERT
3968   if (PrintIdealNodeCount) {
3969     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3970                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3971   }
3972 
3973   if (VerifyIdealNodeCount) {
3974     Compile::current()->print_missing_nodes();
3975   }
3976 #endif
3977 
3978   if (_log != NULL) {
3979     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3980   }
3981 }
3982 
3983 //=============================================================================
3984 // Two Constant's are equal when the type and the value are equal.
operator ==(const Constant & other)3985 bool Compile::Constant::operator==(const Constant& other) {
3986   if (type()          != other.type()         )  return false;
3987   if (can_be_reused() != other.can_be_reused())  return false;
3988   // For floating point values we compare the bit pattern.
3989   switch (type()) {
3990   case T_INT:
3991   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3992   case T_LONG:
3993   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3994   case T_OBJECT:
3995   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3996   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3997   case T_METADATA: return (_v._metadata == other._v._metadata);
3998   default: ShouldNotReachHere(); return false;
3999   }
4000 }
4001 
type_to_size_in_bytes(BasicType t)4002 static int type_to_size_in_bytes(BasicType t) {
4003   switch (t) {
4004   case T_INT:     return sizeof(jint   );
4005   case T_LONG:    return sizeof(jlong  );
4006   case T_FLOAT:   return sizeof(jfloat );
4007   case T_DOUBLE:  return sizeof(jdouble);
4008   case T_METADATA: return sizeof(Metadata*);
4009     // We use T_VOID as marker for jump-table entries (labels) which
4010     // need an internal word relocation.
4011   case T_VOID:
4012   case T_ADDRESS:
4013   case T_OBJECT:  return sizeof(jobject);
4014   default:
4015     ShouldNotReachHere();
4016     return -1;
4017   }
4018 }
4019 
qsort_comparator(Constant * a,Constant * b)4020 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4021   // sort descending
4022   if (a->freq() > b->freq())  return -1;
4023   if (a->freq() < b->freq())  return  1;
4024   return 0;
4025 }
4026 
calculate_offsets_and_size()4027 void Compile::ConstantTable::calculate_offsets_and_size() {
4028   // First, sort the array by frequencies.
4029   _constants.sort(qsort_comparator);
4030 
4031 #ifdef ASSERT
4032   // Make sure all jump-table entries were sorted to the end of the
4033   // array (they have a negative frequency).
4034   bool found_void = false;
4035   for (int i = 0; i < _constants.length(); i++) {
4036     Constant con = _constants.at(i);
4037     if (con.type() == T_VOID)
4038       found_void = true;  // jump-tables
4039     else
4040       assert(!found_void, "wrong sorting");
4041   }
4042 #endif
4043 
4044   int offset = 0;
4045   for (int i = 0; i < _constants.length(); i++) {
4046     Constant* con = _constants.adr_at(i);
4047 
4048     // Align offset for type.
4049     int typesize = type_to_size_in_bytes(con->type());
4050     offset = align_up(offset, typesize);
4051     con->set_offset(offset);   // set constant's offset
4052 
4053     if (con->type() == T_VOID) {
4054       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4055       offset = offset + typesize * n->outcnt();  // expand jump-table
4056     } else {
4057       offset = offset + typesize;
4058     }
4059   }
4060 
4061   // Align size up to the next section start (which is insts; see
4062   // CodeBuffer::align_at_start).
4063   assert(_size == -1, "already set?");
4064   _size = align_up(offset, (int)CodeEntryAlignment);
4065 }
4066 
emit(CodeBuffer & cb)4067 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4068   MacroAssembler _masm(&cb);
4069   for (int i = 0; i < _constants.length(); i++) {
4070     Constant con = _constants.at(i);
4071     address constant_addr = NULL;
4072     switch (con.type()) {
4073     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4074     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4075     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4076     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4077     case T_OBJECT: {
4078       jobject obj = con.get_jobject();
4079       int oop_index = _masm.oop_recorder()->find_index(obj);
4080       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4081       break;
4082     }
4083     case T_ADDRESS: {
4084       address addr = (address) con.get_jobject();
4085       constant_addr = _masm.address_constant(addr);
4086       break;
4087     }
4088     // We use T_VOID as marker for jump-table entries (labels) which
4089     // need an internal word relocation.
4090     case T_VOID: {
4091       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4092       // Fill the jump-table with a dummy word.  The real value is
4093       // filled in later in fill_jump_table.
4094       address dummy = (address) n;
4095       constant_addr = _masm.address_constant(dummy);
4096       // Expand jump-table
4097       for (uint i = 1; i < n->outcnt(); i++) {
4098         address temp_addr = _masm.address_constant(dummy + i);
4099         assert(temp_addr, "consts section too small");
4100       }
4101       break;
4102     }
4103     case T_METADATA: {
4104       Metadata* obj = con.get_metadata();
4105       int metadata_index = _masm.oop_recorder()->find_index(obj);
4106       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4107       break;
4108     }
4109     default: ShouldNotReachHere();
4110     }
4111     assert(constant_addr, "consts section too small");
4112     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4113             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4114   }
4115 }
4116 
find_offset(Constant & con) const4117 int Compile::ConstantTable::find_offset(Constant& con) const {
4118   int idx = _constants.find(con);
4119   guarantee(idx != -1, "constant must be in constant table");
4120   int offset = _constants.at(idx).offset();
4121   guarantee(offset != -1, "constant table not emitted yet?");
4122   return offset;
4123 }
4124 
add(Constant & con)4125 void Compile::ConstantTable::add(Constant& con) {
4126   if (con.can_be_reused()) {
4127     int idx = _constants.find(con);
4128     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4129       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4130       return;
4131     }
4132   }
4133   (void) _constants.append(con);
4134 }
4135 
add(MachConstantNode * n,BasicType type,jvalue value)4136 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4137   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4138   Constant con(type, value, b->_freq);
4139   add(con);
4140   return con;
4141 }
4142 
add(Metadata * metadata)4143 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4144   Constant con(metadata);
4145   add(con);
4146   return con;
4147 }
4148 
add(MachConstantNode * n,MachOper * oper)4149 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4150   jvalue value;
4151   BasicType type = oper->type()->basic_type();
4152   switch (type) {
4153   case T_LONG:    value.j = oper->constantL(); break;
4154   case T_FLOAT:   value.f = oper->constantF(); break;
4155   case T_DOUBLE:  value.d = oper->constantD(); break;
4156   case T_OBJECT:
4157   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4158   case T_METADATA: return add((Metadata*)oper->constant()); break;
4159   default: guarantee(false, "unhandled type: %s", type2name(type));
4160   }
4161   return add(n, type, value);
4162 }
4163 
add_jump_table(MachConstantNode * n)4164 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4165   jvalue value;
4166   // We can use the node pointer here to identify the right jump-table
4167   // as this method is called from Compile::Fill_buffer right before
4168   // the MachNodes are emitted and the jump-table is filled (means the
4169   // MachNode pointers do not change anymore).
4170   value.l = (jobject) n;
4171   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4172   add(con);
4173   return con;
4174 }
4175 
fill_jump_table(CodeBuffer & cb,MachConstantNode * n,GrowableArray<Label * > labels) const4176 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4177   // If called from Compile::scratch_emit_size do nothing.
4178   if (Compile::current()->in_scratch_emit_size())  return;
4179 
4180   assert(labels.is_nonempty(), "must be");
4181   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4182 
4183   // Since MachConstantNode::constant_offset() also contains
4184   // table_base_offset() we need to subtract the table_base_offset()
4185   // to get the plain offset into the constant table.
4186   int offset = n->constant_offset() - table_base_offset();
4187 
4188   MacroAssembler _masm(&cb);
4189   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4190 
4191   for (uint i = 0; i < n->outcnt(); i++) {
4192     address* constant_addr = &jump_table_base[i];
4193     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4194     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4195     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4196   }
4197 }
4198 
4199 //----------------------------static_subtype_check-----------------------------
4200 // Shortcut important common cases when superklass is exact:
4201 // (0) superklass is java.lang.Object (can occur in reflective code)
4202 // (1) subklass is already limited to a subtype of superklass => always ok
4203 // (2) subklass does not overlap with superklass => always fail
4204 // (3) superklass has NO subtypes and we can check with a simple compare.
static_subtype_check(ciKlass * superk,ciKlass * subk)4205 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4206   if (StressReflectiveCode) {
4207     return SSC_full_test;       // Let caller generate the general case.
4208   }
4209 
4210   if (superk == env()->Object_klass()) {
4211     return SSC_always_true;     // (0) this test cannot fail
4212   }
4213 
4214   ciType* superelem = superk;
4215   if (superelem->is_array_klass())
4216     superelem = superelem->as_array_klass()->base_element_type();
4217 
4218   if (!subk->is_interface()) {  // cannot trust static interface types yet
4219     if (subk->is_subtype_of(superk)) {
4220       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4221     }
4222     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4223         !superk->is_subtype_of(subk)) {
4224       return SSC_always_false;
4225     }
4226   }
4227 
4228   // If casting to an instance klass, it must have no subtypes
4229   if (superk->is_interface()) {
4230     // Cannot trust interfaces yet.
4231     // %%% S.B. superk->nof_implementors() == 1
4232   } else if (superelem->is_instance_klass()) {
4233     ciInstanceKlass* ik = superelem->as_instance_klass();
4234     if (!ik->has_subklass() && !ik->is_interface()) {
4235       if (!ik->is_final()) {
4236         // Add a dependency if there is a chance of a later subclass.
4237         dependencies()->assert_leaf_type(ik);
4238       }
4239       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4240     }
4241   } else {
4242     // A primitive array type has no subtypes.
4243     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4244   }
4245 
4246   return SSC_full_test;
4247 }
4248 
conv_I2X_index(PhaseGVN * phase,Node * idx,const TypeInt * sizetype,Node * ctrl)4249 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4250 #ifdef _LP64
4251   // The scaled index operand to AddP must be a clean 64-bit value.
4252   // Java allows a 32-bit int to be incremented to a negative
4253   // value, which appears in a 64-bit register as a large
4254   // positive number.  Using that large positive number as an
4255   // operand in pointer arithmetic has bad consequences.
4256   // On the other hand, 32-bit overflow is rare, and the possibility
4257   // can often be excluded, if we annotate the ConvI2L node with
4258   // a type assertion that its value is known to be a small positive
4259   // number.  (The prior range check has ensured this.)
4260   // This assertion is used by ConvI2LNode::Ideal.
4261   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4262   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4263   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4264   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4265 #endif
4266   return idx;
4267 }
4268 
4269 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
constrained_convI2L(PhaseGVN * phase,Node * value,const TypeInt * itype,Node * ctrl)4270 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4271   if (ctrl != NULL) {
4272     // Express control dependency by a CastII node with a narrow type.
4273     value = new CastIINode(value, itype, false, true /* range check dependency */);
4274     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4275     // node from floating above the range check during loop optimizations. Otherwise, the
4276     // ConvI2L node may be eliminated independently of the range check, causing the data path
4277     // to become TOP while the control path is still there (although it's unreachable).
4278     value->set_req(0, ctrl);
4279     // Save CastII node to remove it after loop optimizations.
4280     phase->C->add_range_check_cast(value);
4281     value = phase->transform(value);
4282   }
4283   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4284   return phase->transform(new ConvI2LNode(value, ltype));
4285 }
4286 
print_inlining_stream_free()4287 void Compile::print_inlining_stream_free() {
4288   if (_print_inlining_stream != NULL) {
4289     _print_inlining_stream->~stringStream();
4290     _print_inlining_stream = NULL;
4291   }
4292 }
4293 
4294 // The message about the current inlining is accumulated in
4295 // _print_inlining_stream and transfered into the _print_inlining_list
4296 // once we know whether inlining succeeds or not. For regular
4297 // inlining, messages are appended to the buffer pointed by
4298 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4299 // a new buffer is added after _print_inlining_idx in the list. This
4300 // way we can update the inlining message for late inlining call site
4301 // when the inlining is attempted again.
print_inlining_init()4302 void Compile::print_inlining_init() {
4303   if (print_inlining() || print_intrinsics()) {
4304     // print_inlining_init is actually called several times.
4305     print_inlining_stream_free();
4306     _print_inlining_stream = new stringStream();
4307     // Watch out: The memory initialized by the constructor call PrintInliningBuffer()
4308     // will be copied into the only initial element. The default destructor of
4309     // PrintInliningBuffer will be called when leaving the scope here. If it
4310     // would destuct the  enclosed stringStream _print_inlining_list[0]->_ss
4311     // would be destructed, too!
4312     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4313   }
4314 }
4315 
print_inlining_reinit()4316 void Compile::print_inlining_reinit() {
4317   if (print_inlining() || print_intrinsics()) {
4318     print_inlining_stream_free();
4319     // Re allocate buffer when we change ResourceMark
4320     _print_inlining_stream = new stringStream();
4321   }
4322 }
4323 
print_inlining_reset()4324 void Compile::print_inlining_reset() {
4325   _print_inlining_stream->reset();
4326 }
4327 
print_inlining_commit()4328 void Compile::print_inlining_commit() {
4329   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4330   // Transfer the message from _print_inlining_stream to the current
4331   // _print_inlining_list buffer and clear _print_inlining_stream.
4332   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4333   print_inlining_reset();
4334 }
4335 
print_inlining_push()4336 void Compile::print_inlining_push() {
4337   // Add new buffer to the _print_inlining_list at current position
4338   _print_inlining_idx++;
4339   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4340 }
4341 
print_inlining_current()4342 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4343   return _print_inlining_list->at(_print_inlining_idx);
4344 }
4345 
print_inlining_update(CallGenerator * cg)4346 void Compile::print_inlining_update(CallGenerator* cg) {
4347   if (print_inlining() || print_intrinsics()) {
4348     if (!cg->is_late_inline()) {
4349       if (print_inlining_current().cg() != NULL) {
4350         print_inlining_push();
4351       }
4352       print_inlining_commit();
4353     } else {
4354       if (print_inlining_current().cg() != cg &&
4355           (print_inlining_current().cg() != NULL ||
4356            print_inlining_current().ss()->size() != 0)) {
4357         print_inlining_push();
4358       }
4359       print_inlining_commit();
4360       print_inlining_current().set_cg(cg);
4361     }
4362   }
4363 }
4364 
print_inlining_move_to(CallGenerator * cg)4365 void Compile::print_inlining_move_to(CallGenerator* cg) {
4366   // We resume inlining at a late inlining call site. Locate the
4367   // corresponding inlining buffer so that we can update it.
4368   if (print_inlining()) {
4369     for (int i = 0; i < _print_inlining_list->length(); i++) {
4370       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4371         _print_inlining_idx = i;
4372         return;
4373       }
4374     }
4375     ShouldNotReachHere();
4376   }
4377 }
4378 
print_inlining_update_delayed(CallGenerator * cg)4379 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4380   if (print_inlining()) {
4381     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4382     assert(print_inlining_current().cg() == cg, "wrong entry");
4383     // replace message with new message
4384     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4385     print_inlining_commit();
4386     print_inlining_current().set_cg(cg);
4387   }
4388 }
4389 
print_inlining_assert_ready()4390 void Compile::print_inlining_assert_ready() {
4391   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4392 }
4393 
process_print_inlining()4394 void Compile::process_print_inlining() {
4395   bool do_print_inlining = print_inlining() || print_intrinsics();
4396   if (do_print_inlining || log() != NULL) {
4397     // Print inlining message for candidates that we couldn't inline
4398     // for lack of space
4399     for (int i = 0; i < _late_inlines.length(); i++) {
4400       CallGenerator* cg = _late_inlines.at(i);
4401       if (!cg->is_mh_late_inline()) {
4402         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4403         if (do_print_inlining) {
4404           cg->print_inlining_late(msg);
4405         }
4406         log_late_inline_failure(cg, msg);
4407       }
4408     }
4409   }
4410   if (do_print_inlining) {
4411     ResourceMark rm;
4412     stringStream ss;
4413     assert(_print_inlining_list != NULL, "process_print_inlining should be called only once.");
4414     for (int i = 0; i < _print_inlining_list->length(); i++) {
4415       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4416       _print_inlining_list->at(i).freeStream();
4417     }
4418     // Reset _print_inlining_list, it only contains destructed objects.
4419     // It is on the arena, so it will be freed when the arena is reset.
4420     _print_inlining_list = NULL;
4421     // _print_inlining_stream won't be used anymore, either.
4422     print_inlining_stream_free();
4423     size_t end = ss.size();
4424     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4425     strncpy(_print_inlining_output, ss.base(), end+1);
4426     _print_inlining_output[end] = 0;
4427   }
4428 }
4429 
dump_print_inlining()4430 void Compile::dump_print_inlining() {
4431   if (_print_inlining_output != NULL) {
4432     tty->print_raw(_print_inlining_output);
4433   }
4434 }
4435 
log_late_inline(CallGenerator * cg)4436 void Compile::log_late_inline(CallGenerator* cg) {
4437   if (log() != NULL) {
4438     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4439                 cg->unique_id());
4440     JVMState* p = cg->call_node()->jvms();
4441     while (p != NULL) {
4442       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4443       p = p->caller();
4444     }
4445     log()->tail("late_inline");
4446   }
4447 }
4448 
log_late_inline_failure(CallGenerator * cg,const char * msg)4449 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4450   log_late_inline(cg);
4451   if (log() != NULL) {
4452     log()->inline_fail(msg);
4453   }
4454 }
4455 
log_inline_id(CallGenerator * cg)4456 void Compile::log_inline_id(CallGenerator* cg) {
4457   if (log() != NULL) {
4458     // The LogCompilation tool needs a unique way to identify late
4459     // inline call sites. This id must be unique for this call site in
4460     // this compilation. Try to have it unique across compilations as
4461     // well because it can be convenient when grepping through the log
4462     // file.
4463     // Distinguish OSR compilations from others in case CICountOSR is
4464     // on.
4465     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4466     cg->set_unique_id(id);
4467     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4468   }
4469 }
4470 
log_inline_failure(const char * msg)4471 void Compile::log_inline_failure(const char* msg) {
4472   if (C->log() != NULL) {
4473     C->log()->inline_fail(msg);
4474   }
4475 }
4476 
4477 
4478 // Dump inlining replay data to the stream.
4479 // Don't change thread state and acquire any locks.
dump_inline_data(outputStream * out)4480 void Compile::dump_inline_data(outputStream* out) {
4481   InlineTree* inl_tree = ilt();
4482   if (inl_tree != NULL) {
4483     out->print(" inline %d", inl_tree->count());
4484     inl_tree->dump_replay_data(out);
4485   }
4486 }
4487 
cmp_expensive_nodes(Node * n1,Node * n2)4488 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4489   if (n1->Opcode() < n2->Opcode())      return -1;
4490   else if (n1->Opcode() > n2->Opcode()) return 1;
4491 
4492   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4493   for (uint i = 1; i < n1->req(); i++) {
4494     if (n1->in(i) < n2->in(i))      return -1;
4495     else if (n1->in(i) > n2->in(i)) return 1;
4496   }
4497 
4498   return 0;
4499 }
4500 
cmp_expensive_nodes(Node ** n1p,Node ** n2p)4501 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4502   Node* n1 = *n1p;
4503   Node* n2 = *n2p;
4504 
4505   return cmp_expensive_nodes(n1, n2);
4506 }
4507 
sort_expensive_nodes()4508 void Compile::sort_expensive_nodes() {
4509   if (!expensive_nodes_sorted()) {
4510     _expensive_nodes->sort(cmp_expensive_nodes);
4511   }
4512 }
4513 
expensive_nodes_sorted() const4514 bool Compile::expensive_nodes_sorted() const {
4515   for (int i = 1; i < _expensive_nodes->length(); i++) {
4516     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4517       return false;
4518     }
4519   }
4520   return true;
4521 }
4522 
should_optimize_expensive_nodes(PhaseIterGVN & igvn)4523 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4524   if (_expensive_nodes->length() == 0) {
4525     return false;
4526   }
4527 
4528   assert(OptimizeExpensiveOps, "optimization off?");
4529 
4530   // Take this opportunity to remove dead nodes from the list
4531   int j = 0;
4532   for (int i = 0; i < _expensive_nodes->length(); i++) {
4533     Node* n = _expensive_nodes->at(i);
4534     if (!n->is_unreachable(igvn)) {
4535       assert(n->is_expensive(), "should be expensive");
4536       _expensive_nodes->at_put(j, n);
4537       j++;
4538     }
4539   }
4540   _expensive_nodes->trunc_to(j);
4541 
4542   // Then sort the list so that similar nodes are next to each other
4543   // and check for at least two nodes of identical kind with same data
4544   // inputs.
4545   sort_expensive_nodes();
4546 
4547   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4548     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4549       return true;
4550     }
4551   }
4552 
4553   return false;
4554 }
4555 
cleanup_expensive_nodes(PhaseIterGVN & igvn)4556 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4557   if (_expensive_nodes->length() == 0) {
4558     return;
4559   }
4560 
4561   assert(OptimizeExpensiveOps, "optimization off?");
4562 
4563   // Sort to bring similar nodes next to each other and clear the
4564   // control input of nodes for which there's only a single copy.
4565   sort_expensive_nodes();
4566 
4567   int j = 0;
4568   int identical = 0;
4569   int i = 0;
4570   bool modified = false;
4571   for (; i < _expensive_nodes->length()-1; i++) {
4572     assert(j <= i, "can't write beyond current index");
4573     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4574       identical++;
4575       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4576       continue;
4577     }
4578     if (identical > 0) {
4579       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4580       identical = 0;
4581     } else {
4582       Node* n = _expensive_nodes->at(i);
4583       igvn.replace_input_of(n, 0, NULL);
4584       igvn.hash_insert(n);
4585       modified = true;
4586     }
4587   }
4588   if (identical > 0) {
4589     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4590   } else if (_expensive_nodes->length() >= 1) {
4591     Node* n = _expensive_nodes->at(i);
4592     igvn.replace_input_of(n, 0, NULL);
4593     igvn.hash_insert(n);
4594     modified = true;
4595   }
4596   _expensive_nodes->trunc_to(j);
4597   if (modified) {
4598     igvn.optimize();
4599   }
4600 }
4601 
add_expensive_node(Node * n)4602 void Compile::add_expensive_node(Node * n) {
4603   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4604   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4605   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4606   if (OptimizeExpensiveOps) {
4607     _expensive_nodes->append(n);
4608   } else {
4609     // Clear control input and let IGVN optimize expensive nodes if
4610     // OptimizeExpensiveOps is off.
4611     n->set_req(0, NULL);
4612   }
4613 }
4614 
4615 /**
4616  * Remove the speculative part of types and clean up the graph
4617  */
remove_speculative_types(PhaseIterGVN & igvn)4618 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4619   if (UseTypeSpeculation) {
4620     Unique_Node_List worklist;
4621     worklist.push(root());
4622     int modified = 0;
4623     // Go over all type nodes that carry a speculative type, drop the
4624     // speculative part of the type and enqueue the node for an igvn
4625     // which may optimize it out.
4626     for (uint next = 0; next < worklist.size(); ++next) {
4627       Node *n  = worklist.at(next);
4628       if (n->is_Type()) {
4629         TypeNode* tn = n->as_Type();
4630         const Type* t = tn->type();
4631         const Type* t_no_spec = t->remove_speculative();
4632         if (t_no_spec != t) {
4633           bool in_hash = igvn.hash_delete(n);
4634           assert(in_hash, "node should be in igvn hash table");
4635           tn->set_type(t_no_spec);
4636           igvn.hash_insert(n);
4637           igvn._worklist.push(n); // give it a chance to go away
4638           modified++;
4639         }
4640       }
4641       uint max = n->len();
4642       for( uint i = 0; i < max; ++i ) {
4643         Node *m = n->in(i);
4644         if (not_a_node(m))  continue;
4645         worklist.push(m);
4646       }
4647     }
4648     // Drop the speculative part of all types in the igvn's type table
4649     igvn.remove_speculative_types();
4650     if (modified > 0) {
4651       igvn.optimize();
4652     }
4653 #ifdef ASSERT
4654     // Verify that after the IGVN is over no speculative type has resurfaced
4655     worklist.clear();
4656     worklist.push(root());
4657     for (uint next = 0; next < worklist.size(); ++next) {
4658       Node *n  = worklist.at(next);
4659       const Type* t = igvn.type_or_null(n);
4660       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4661       if (n->is_Type()) {
4662         t = n->as_Type()->type();
4663         assert(t == t->remove_speculative(), "no more speculative types");
4664       }
4665       uint max = n->len();
4666       for( uint i = 0; i < max; ++i ) {
4667         Node *m = n->in(i);
4668         if (not_a_node(m))  continue;
4669         worklist.push(m);
4670       }
4671     }
4672     igvn.check_no_speculative_types();
4673 #endif
4674   }
4675 }
4676 
4677 // Auxiliary method to support randomized stressing/fuzzing.
4678 //
4679 // This method can be called the arbitrary number of times, with current count
4680 // as the argument. The logic allows selecting a single candidate from the
4681 // running list of candidates as follows:
4682 //    int count = 0;
4683 //    Cand* selected = null;
4684 //    while(cand = cand->next()) {
4685 //      if (randomized_select(++count)) {
4686 //        selected = cand;
4687 //      }
4688 //    }
4689 //
4690 // Including count equalizes the chances any candidate is "selected".
4691 // This is useful when we don't have the complete list of candidates to choose
4692 // from uniformly. In this case, we need to adjust the randomicity of the
4693 // selection, or else we will end up biasing the selection towards the latter
4694 // candidates.
4695 //
4696 // Quick back-envelope calculation shows that for the list of n candidates
4697 // the equal probability for the candidate to persist as "best" can be
4698 // achieved by replacing it with "next" k-th candidate with the probability
4699 // of 1/k. It can be easily shown that by the end of the run, the
4700 // probability for any candidate is converged to 1/n, thus giving the
4701 // uniform distribution among all the candidates.
4702 //
4703 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4704 #define RANDOMIZED_DOMAIN_POW 29
4705 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4706 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
randomized_select(int count)4707 bool Compile::randomized_select(int count) {
4708   assert(count > 0, "only positive");
4709   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4710 }
4711 
clone_map()4712 CloneMap&     Compile::clone_map()                 { return _clone_map; }
set_clone_map(Dict * d)4713 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4714 
dump() const4715 void NodeCloneInfo::dump() const {
4716   tty->print(" {%d:%d} ", idx(), gen());
4717 }
4718 
clone(Node * old,Node * nnn,int gen)4719 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4720   uint64_t val = value(old->_idx);
4721   NodeCloneInfo cio(val);
4722   assert(val != 0, "old node should be in the map");
4723   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4724   insert(nnn->_idx, cin.get());
4725 #ifndef PRODUCT
4726   if (is_debug()) {
4727     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4728   }
4729 #endif
4730 }
4731 
verify_insert_and_clone(Node * old,Node * nnn,int gen)4732 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4733   NodeCloneInfo cio(value(old->_idx));
4734   if (cio.get() == 0) {
4735     cio.set(old->_idx, 0);
4736     insert(old->_idx, cio.get());
4737 #ifndef PRODUCT
4738     if (is_debug()) {
4739       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4740     }
4741 #endif
4742   }
4743   clone(old, nnn, gen);
4744 }
4745 
max_gen() const4746 int CloneMap::max_gen() const {
4747   int g = 0;
4748   DictI di(_dict);
4749   for(; di.test(); ++di) {
4750     int t = gen(di._key);
4751     if (g < t) {
4752       g = t;
4753 #ifndef PRODUCT
4754       if (is_debug()) {
4755         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4756       }
4757 #endif
4758     }
4759   }
4760   return g;
4761 }
4762 
dump(node_idx_t key) const4763 void CloneMap::dump(node_idx_t key) const {
4764   uint64_t val = value(key);
4765   if (val != 0) {
4766     NodeCloneInfo ni(val);
4767     ni.dump();
4768   }
4769 }
4770