1 /*
2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "code/codeCache.hpp"
29 #include "code/compiledMethod.inline.hpp"
30 #include "code/compiledIC.hpp"
31 #include "code/icBuffer.hpp"
32 #include "code/nmethod.hpp"
33 #include "code/pcDesc.hpp"
34 #include "code/scopeDesc.hpp"
35 #include "code/vtableStubs.hpp"
36 #include "compiler/compileBroker.hpp"
37 #include "compiler/oopMap.hpp"
38 #include "gc/g1/heapRegion.hpp"
39 #include "gc/shared/barrierSet.hpp"
40 #include "gc/shared/collectedHeap.hpp"
41 #include "gc/shared/gcLocker.hpp"
42 #include "interpreter/bytecode.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/linkResolver.hpp"
45 #include "logging/log.hpp"
46 #include "logging/logStream.hpp"
47 #include "memory/oopFactory.hpp"
48 #include "memory/resourceArea.hpp"
49 #include "oops/objArrayKlass.hpp"
50 #include "oops/oop.inline.hpp"
51 #include "oops/typeArrayOop.inline.hpp"
52 #include "opto/ad.hpp"
53 #include "opto/addnode.hpp"
54 #include "opto/callnode.hpp"
55 #include "opto/cfgnode.hpp"
56 #include "opto/graphKit.hpp"
57 #include "opto/machnode.hpp"
58 #include "opto/matcher.hpp"
59 #include "opto/memnode.hpp"
60 #include "opto/mulnode.hpp"
61 #include "opto/runtime.hpp"
62 #include "opto/subnode.hpp"
63 #include "runtime/atomic.hpp"
64 #include "runtime/frame.inline.hpp"
65 #include "runtime/handles.inline.hpp"
66 #include "runtime/interfaceSupport.inline.hpp"
67 #include "runtime/javaCalls.hpp"
68 #include "runtime/sharedRuntime.hpp"
69 #include "runtime/signature.hpp"
70 #include "runtime/threadCritical.hpp"
71 #include "runtime/vframe.hpp"
72 #include "runtime/vframeArray.hpp"
73 #include "runtime/vframe_hp.hpp"
74 #include "utilities/copy.hpp"
75 #include "utilities/preserveException.hpp"
76 
77 
78 // For debugging purposes:
79 //  To force FullGCALot inside a runtime function, add the following two lines
80 //
81 //  Universe::release_fullgc_alot_dummy();
82 //  MarkSweep::invoke(0, "Debugging");
83 //
84 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
85 
86 
87 
88 
89 // Compiled code entry points
90 address OptoRuntime::_new_instance_Java                           = NULL;
91 address OptoRuntime::_new_array_Java                              = NULL;
92 address OptoRuntime::_new_array_nozero_Java                       = NULL;
93 address OptoRuntime::_multianewarray2_Java                        = NULL;
94 address OptoRuntime::_multianewarray3_Java                        = NULL;
95 address OptoRuntime::_multianewarray4_Java                        = NULL;
96 address OptoRuntime::_multianewarray5_Java                        = NULL;
97 address OptoRuntime::_multianewarrayN_Java                        = NULL;
98 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
99 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
100 address OptoRuntime::_monitor_notify_Java                         = NULL;
101 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
102 address OptoRuntime::_rethrow_Java                                = NULL;
103 
104 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
105 address OptoRuntime::_register_finalizer_Java                     = NULL;
106 
107 ExceptionBlob* OptoRuntime::_exception_blob;
108 
109 // This should be called in an assertion at the start of OptoRuntime routines
110 // which are entered from compiled code (all of them)
111 #ifdef ASSERT
check_compiled_frame(JavaThread * thread)112 static bool check_compiled_frame(JavaThread* thread) {
113   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
114   RegisterMap map(thread, false);
115   frame caller = thread->last_frame().sender(&map);
116   assert(caller.is_compiled_frame(), "not being called from compiled like code");
117   return true;
118 }
119 #endif // ASSERT
120 
121 
122 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
123   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
124   if (var == NULL) { return false; }
125 
generate(ciEnv * env)126 bool OptoRuntime::generate(ciEnv* env) {
127 
128   generate_exception_blob();
129 
130   // Note: tls: Means fetching the return oop out of the thread-local storage
131   //
132   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
133   // -------------------------------------------------------------------------------------------------------------------------------
134   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
135   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
136   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
137   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
138   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
139   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
140   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
141   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
142   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
143   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
144   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
145   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
146 
147   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
148   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
149 
150   return true;
151 }
152 
153 #undef gen
154 
155 
156 // Helper method to do generation of RunTimeStub's
generate_stub(ciEnv * env,TypeFunc_generator gen,address C_function,const char * name,int is_fancy_jump,bool pass_tls,bool save_argument_registers,bool return_pc)157 address OptoRuntime::generate_stub( ciEnv* env,
158                                     TypeFunc_generator gen, address C_function,
159                                     const char *name, int is_fancy_jump,
160                                     bool pass_tls,
161                                     bool save_argument_registers,
162                                     bool return_pc) {
163 
164   // Matching the default directive, we currently have no method to match.
165   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
166   ResourceMark rm;
167   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
168   DirectivesStack::release(directive);
169   return  C.stub_entry_point();
170 }
171 
stub_name(address entry)172 const char* OptoRuntime::stub_name(address entry) {
173 #ifndef PRODUCT
174   CodeBlob* cb = CodeCache::find_blob(entry);
175   RuntimeStub* rs =(RuntimeStub *)cb;
176   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
177   return rs->name();
178 #else
179   // Fast implementation for product mode (maybe it should be inlined too)
180   return "runtime stub";
181 #endif
182 }
183 
184 
185 //=============================================================================
186 // Opto compiler runtime routines
187 //=============================================================================
188 
189 
190 //=============================allocation======================================
191 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
192 // and try allocation again.
193 
194 // object allocation
195 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
196   JRT_BLOCK;
197 #ifndef PRODUCT
198   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
199 #endif
200   assert(check_compiled_frame(thread), "incorrect caller");
201 
202   // These checks are cheap to make and support reflective allocation.
203   int lh = klass->layout_helper();
204   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
205     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
206     klass->check_valid_for_instantiation(false, THREAD);
207     if (!HAS_PENDING_EXCEPTION) {
208       InstanceKlass::cast(klass)->initialize(THREAD);
209     }
210   }
211 
212   if (!HAS_PENDING_EXCEPTION) {
213     // Scavenge and allocate an instance.
214     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
215     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
216     thread->set_vm_result(result);
217 
218     // Pass oops back through thread local storage.  Our apparent type to Java
219     // is that we return an oop, but we can block on exit from this routine and
220     // a GC can trash the oop in C's return register.  The generated stub will
221     // fetch the oop from TLS after any possible GC.
222   }
223 
224   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
225   JRT_BLOCK_END;
226 
227   // inform GC that we won't do card marks for initializing writes.
228   SharedRuntime::on_slowpath_allocation_exit(thread);
229 JRT_END
230 
231 
232 // array allocation
233 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
234   JRT_BLOCK;
235 #ifndef PRODUCT
236   SharedRuntime::_new_array_ctr++;            // new array requires GC
237 #endif
238   assert(check_compiled_frame(thread), "incorrect caller");
239 
240   // Scavenge and allocate an instance.
241   oop result;
242 
243   if (array_type->is_typeArray_klass()) {
244     // The oopFactory likes to work with the element type.
245     // (We could bypass the oopFactory, since it doesn't add much value.)
246     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
247     result = oopFactory::new_typeArray(elem_type, len, THREAD);
248   } else {
249     // Although the oopFactory likes to work with the elem_type,
250     // the compiler prefers the array_type, since it must already have
251     // that latter value in hand for the fast path.
252     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
253     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
254     result = oopFactory::new_objArray(elem_type, len, THREAD);
255   }
256 
257   // Pass oops back through thread local storage.  Our apparent type to Java
258   // is that we return an oop, but we can block on exit from this routine and
259   // a GC can trash the oop in C's return register.  The generated stub will
260   // fetch the oop from TLS after any possible GC.
261   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
262   thread->set_vm_result(result);
263   JRT_BLOCK_END;
264 
265   // inform GC that we won't do card marks for initializing writes.
266   SharedRuntime::on_slowpath_allocation_exit(thread);
267 JRT_END
268 
269 // array allocation without zeroing
270 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
271   JRT_BLOCK;
272 #ifndef PRODUCT
273   SharedRuntime::_new_array_ctr++;            // new array requires GC
274 #endif
275   assert(check_compiled_frame(thread), "incorrect caller");
276 
277   // Scavenge and allocate an instance.
278   oop result;
279 
280   assert(array_type->is_typeArray_klass(), "should be called only for type array");
281   // The oopFactory likes to work with the element type.
282   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
283   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
284 
285   // Pass oops back through thread local storage.  Our apparent type to Java
286   // is that we return an oop, but we can block on exit from this routine and
287   // a GC can trash the oop in C's return register.  The generated stub will
288   // fetch the oop from TLS after any possible GC.
289   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
290   thread->set_vm_result(result);
291   JRT_BLOCK_END;
292 
293 
294   // inform GC that we won't do card marks for initializing writes.
295   SharedRuntime::on_slowpath_allocation_exit(thread);
296 
297   oop result = thread->vm_result();
298   if ((len > 0) && (result != NULL) &&
299       is_deoptimized_caller_frame(thread)) {
300     // Zero array here if the caller is deoptimized.
301     int size = ((typeArrayOop)result)->object_size();
302     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
303     const size_t hs = arrayOopDesc::header_size(elem_type);
304     // Align to next 8 bytes to avoid trashing arrays's length.
305     const size_t aligned_hs = align_object_offset(hs);
306     HeapWord* obj = (HeapWord*)result;
307     if (aligned_hs > hs) {
308       Copy::zero_to_words(obj+hs, aligned_hs-hs);
309     }
310     // Optimized zeroing.
311     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
312   }
313 
314 JRT_END
315 
316 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
317 
318 // multianewarray for 2 dimensions
319 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
320 #ifndef PRODUCT
321   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
322 #endif
323   assert(check_compiled_frame(thread), "incorrect caller");
324   assert(elem_type->is_klass(), "not a class");
325   jint dims[2];
326   dims[0] = len1;
327   dims[1] = len2;
328   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
329   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
330   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
331   thread->set_vm_result(obj);
332 JRT_END
333 
334 // multianewarray for 3 dimensions
335 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
336 #ifndef PRODUCT
337   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
338 #endif
339   assert(check_compiled_frame(thread), "incorrect caller");
340   assert(elem_type->is_klass(), "not a class");
341   jint dims[3];
342   dims[0] = len1;
343   dims[1] = len2;
344   dims[2] = len3;
345   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
346   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
347   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
348   thread->set_vm_result(obj);
349 JRT_END
350 
351 // multianewarray for 4 dimensions
352 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
353 #ifndef PRODUCT
354   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
355 #endif
356   assert(check_compiled_frame(thread), "incorrect caller");
357   assert(elem_type->is_klass(), "not a class");
358   jint dims[4];
359   dims[0] = len1;
360   dims[1] = len2;
361   dims[2] = len3;
362   dims[3] = len4;
363   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
364   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
365   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
366   thread->set_vm_result(obj);
367 JRT_END
368 
369 // multianewarray for 5 dimensions
370 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
371 #ifndef PRODUCT
372   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
373 #endif
374   assert(check_compiled_frame(thread), "incorrect caller");
375   assert(elem_type->is_klass(), "not a class");
376   jint dims[5];
377   dims[0] = len1;
378   dims[1] = len2;
379   dims[2] = len3;
380   dims[3] = len4;
381   dims[4] = len5;
382   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
383   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
384   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
385   thread->set_vm_result(obj);
386 JRT_END
387 
388 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
389   assert(check_compiled_frame(thread), "incorrect caller");
390   assert(elem_type->is_klass(), "not a class");
391   assert(oop(dims)->is_typeArray(), "not an array");
392 
393   ResourceMark rm;
394   jint len = dims->length();
395   assert(len > 0, "Dimensions array should contain data");
396   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
397   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
398                                        c_dims, len);
399 
400   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
401   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
402   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
403   thread->set_vm_result(obj);
404 JRT_END
405 
406 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
407 
408   // Very few notify/notifyAll operations find any threads on the waitset, so
409   // the dominant fast-path is to simply return.
410   // Relatedly, it's critical that notify/notifyAll be fast in order to
411   // reduce lock hold times.
412   if (!SafepointSynchronize::is_synchronizing()) {
413     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
414       return;
415     }
416   }
417 
418   // This is the case the fast-path above isn't provisioned to handle.
419   // The fast-path is designed to handle frequently arising cases in an efficient manner.
420   // (The fast-path is just a degenerate variant of the slow-path).
421   // Perform the dreaded state transition and pass control into the slow-path.
422   JRT_BLOCK;
423   Handle h_obj(THREAD, obj);
424   ObjectSynchronizer::notify(h_obj, CHECK);
425   JRT_BLOCK_END;
426 JRT_END
427 
428 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
429 
430   if (!SafepointSynchronize::is_synchronizing() ) {
431     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
432       return;
433     }
434   }
435 
436   // This is the case the fast-path above isn't provisioned to handle.
437   // The fast-path is designed to handle frequently arising cases in an efficient manner.
438   // (The fast-path is just a degenerate variant of the slow-path).
439   // Perform the dreaded state transition and pass control into the slow-path.
440   JRT_BLOCK;
441   Handle h_obj(THREAD, obj);
442   ObjectSynchronizer::notifyall(h_obj, CHECK);
443   JRT_BLOCK_END;
444 JRT_END
445 
new_instance_Type()446 const TypeFunc *OptoRuntime::new_instance_Type() {
447   // create input type (domain)
448   const Type **fields = TypeTuple::fields(1);
449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
450   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
451 
452   // create result type (range)
453   fields = TypeTuple::fields(1);
454   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
455 
456   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
457 
458   return TypeFunc::make(domain, range);
459 }
460 
461 
athrow_Type()462 const TypeFunc *OptoRuntime::athrow_Type() {
463   // create input type (domain)
464   const Type **fields = TypeTuple::fields(1);
465   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
466   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
467 
468   // create result type (range)
469   fields = TypeTuple::fields(0);
470 
471   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
472 
473   return TypeFunc::make(domain, range);
474 }
475 
476 
new_array_Type()477 const TypeFunc *OptoRuntime::new_array_Type() {
478   // create input type (domain)
479   const Type **fields = TypeTuple::fields(2);
480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
481   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
483 
484   // create result type (range)
485   fields = TypeTuple::fields(1);
486   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
487 
488   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
489 
490   return TypeFunc::make(domain, range);
491 }
492 
multianewarray_Type(int ndim)493 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
494   // create input type (domain)
495   const int nargs = ndim + 1;
496   const Type **fields = TypeTuple::fields(nargs);
497   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
498   for( int i = 1; i < nargs; i++ )
499     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
500   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
501 
502   // create result type (range)
503   fields = TypeTuple::fields(1);
504   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
505   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
506 
507   return TypeFunc::make(domain, range);
508 }
509 
multianewarray2_Type()510 const TypeFunc *OptoRuntime::multianewarray2_Type() {
511   return multianewarray_Type(2);
512 }
513 
multianewarray3_Type()514 const TypeFunc *OptoRuntime::multianewarray3_Type() {
515   return multianewarray_Type(3);
516 }
517 
multianewarray4_Type()518 const TypeFunc *OptoRuntime::multianewarray4_Type() {
519   return multianewarray_Type(4);
520 }
521 
multianewarray5_Type()522 const TypeFunc *OptoRuntime::multianewarray5_Type() {
523   return multianewarray_Type(5);
524 }
525 
multianewarrayN_Type()526 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
527   // create input type (domain)
528   const Type **fields = TypeTuple::fields(2);
529   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
530   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
531   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
532 
533   // create result type (range)
534   fields = TypeTuple::fields(1);
535   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
537 
538   return TypeFunc::make(domain, range);
539 }
540 
uncommon_trap_Type()541 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
542   // create input type (domain)
543   const Type **fields = TypeTuple::fields(1);
544   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
546 
547   // create result type (range)
548   fields = TypeTuple::fields(0);
549   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
550 
551   return TypeFunc::make(domain, range);
552 }
553 
554 //-----------------------------------------------------------------------------
555 // Monitor Handling
complete_monitor_enter_Type()556 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
557   // create input type (domain)
558   const Type **fields = TypeTuple::fields(2);
559   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
560   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
562 
563   // create result type (range)
564   fields = TypeTuple::fields(0);
565 
566   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
567 
568   return TypeFunc::make(domain,range);
569 }
570 
571 
572 //-----------------------------------------------------------------------------
complete_monitor_exit_Type()573 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
574   // create input type (domain)
575   const Type **fields = TypeTuple::fields(3);
576   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
577   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
578   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
579   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
580 
581   // create result type (range)
582   fields = TypeTuple::fields(0);
583 
584   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
585 
586   return TypeFunc::make(domain, range);
587 }
588 
monitor_notify_Type()589 const TypeFunc *OptoRuntime::monitor_notify_Type() {
590   // create input type (domain)
591   const Type **fields = TypeTuple::fields(1);
592   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
593   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
594 
595   // create result type (range)
596   fields = TypeTuple::fields(0);
597   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
598   return TypeFunc::make(domain, range);
599 }
600 
flush_windows_Type()601 const TypeFunc* OptoRuntime::flush_windows_Type() {
602   // create input type (domain)
603   const Type** fields = TypeTuple::fields(1);
604   fields[TypeFunc::Parms+0] = NULL; // void
605   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
606 
607   // create result type
608   fields = TypeTuple::fields(1);
609   fields[TypeFunc::Parms+0] = NULL; // void
610   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
611 
612   return TypeFunc::make(domain, range);
613 }
614 
l2f_Type()615 const TypeFunc* OptoRuntime::l2f_Type() {
616   // create input type (domain)
617   const Type **fields = TypeTuple::fields(2);
618   fields[TypeFunc::Parms+0] = TypeLong::LONG;
619   fields[TypeFunc::Parms+1] = Type::HALF;
620   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
621 
622   // create result type (range)
623   fields = TypeTuple::fields(1);
624   fields[TypeFunc::Parms+0] = Type::FLOAT;
625   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
626 
627   return TypeFunc::make(domain, range);
628 }
629 
modf_Type()630 const TypeFunc* OptoRuntime::modf_Type() {
631   const Type **fields = TypeTuple::fields(2);
632   fields[TypeFunc::Parms+0] = Type::FLOAT;
633   fields[TypeFunc::Parms+1] = Type::FLOAT;
634   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
635 
636   // create result type (range)
637   fields = TypeTuple::fields(1);
638   fields[TypeFunc::Parms+0] = Type::FLOAT;
639 
640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
641 
642   return TypeFunc::make(domain, range);
643 }
644 
Math_D_D_Type()645 const TypeFunc *OptoRuntime::Math_D_D_Type() {
646   // create input type (domain)
647   const Type **fields = TypeTuple::fields(2);
648   // Symbol* name of class to be loaded
649   fields[TypeFunc::Parms+0] = Type::DOUBLE;
650   fields[TypeFunc::Parms+1] = Type::HALF;
651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
652 
653   // create result type (range)
654   fields = TypeTuple::fields(2);
655   fields[TypeFunc::Parms+0] = Type::DOUBLE;
656   fields[TypeFunc::Parms+1] = Type::HALF;
657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
658 
659   return TypeFunc::make(domain, range);
660 }
661 
Math_DD_D_Type()662 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
663   const Type **fields = TypeTuple::fields(4);
664   fields[TypeFunc::Parms+0] = Type::DOUBLE;
665   fields[TypeFunc::Parms+1] = Type::HALF;
666   fields[TypeFunc::Parms+2] = Type::DOUBLE;
667   fields[TypeFunc::Parms+3] = Type::HALF;
668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
669 
670   // create result type (range)
671   fields = TypeTuple::fields(2);
672   fields[TypeFunc::Parms+0] = Type::DOUBLE;
673   fields[TypeFunc::Parms+1] = Type::HALF;
674   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
675 
676   return TypeFunc::make(domain, range);
677 }
678 
679 //-------------- currentTimeMillis, currentTimeNanos, etc
680 
void_long_Type()681 const TypeFunc* OptoRuntime::void_long_Type() {
682   // create input type (domain)
683   const Type **fields = TypeTuple::fields(0);
684   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
685 
686   // create result type (range)
687   fields = TypeTuple::fields(2);
688   fields[TypeFunc::Parms+0] = TypeLong::LONG;
689   fields[TypeFunc::Parms+1] = Type::HALF;
690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
691 
692   return TypeFunc::make(domain, range);
693 }
694 
695 // arraycopy stub variations:
696 enum ArrayCopyType {
697   ac_fast,                      // void(ptr, ptr, size_t)
698   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
699   ac_slow,                      // void(ptr, int, ptr, int, int)
700   ac_generic                    //  int(ptr, int, ptr, int, int)
701 };
702 
make_arraycopy_Type(ArrayCopyType act)703 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
704   // create input type (domain)
705   int num_args      = (act == ac_fast ? 3 : 5);
706   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
707   int argcnt = num_args;
708   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
709   const Type** fields = TypeTuple::fields(argcnt);
710   int argp = TypeFunc::Parms;
711   fields[argp++] = TypePtr::NOTNULL;    // src
712   if (num_size_args == 0) {
713     fields[argp++] = TypeInt::INT;      // src_pos
714   }
715   fields[argp++] = TypePtr::NOTNULL;    // dest
716   if (num_size_args == 0) {
717     fields[argp++] = TypeInt::INT;      // dest_pos
718     fields[argp++] = TypeInt::INT;      // length
719   }
720   while (num_size_args-- > 0) {
721     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
722     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
723   }
724   if (act == ac_checkcast) {
725     fields[argp++] = TypePtr::NOTNULL;  // super_klass
726   }
727   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
728   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
729 
730   // create result type if needed
731   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
732   fields = TypeTuple::fields(1);
733   if (retcnt == 0)
734     fields[TypeFunc::Parms+0] = NULL; // void
735   else
736     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
737   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
738   return TypeFunc::make(domain, range);
739 }
740 
fast_arraycopy_Type()741 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
742   // This signature is simple:  Two base pointers and a size_t.
743   return make_arraycopy_Type(ac_fast);
744 }
745 
checkcast_arraycopy_Type()746 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
747   // An extension of fast_arraycopy_Type which adds type checking.
748   return make_arraycopy_Type(ac_checkcast);
749 }
750 
slow_arraycopy_Type()751 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
752   // This signature is exactly the same as System.arraycopy.
753   // There are no intptr_t (int/long) arguments.
754   return make_arraycopy_Type(ac_slow);
755 }
756 
generic_arraycopy_Type()757 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
758   // This signature is like System.arraycopy, except that it returns status.
759   return make_arraycopy_Type(ac_generic);
760 }
761 
762 
array_fill_Type()763 const TypeFunc* OptoRuntime::array_fill_Type() {
764   const Type** fields;
765   int argp = TypeFunc::Parms;
766   // create input type (domain): pointer, int, size_t
767   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
768   fields[argp++] = TypePtr::NOTNULL;
769   fields[argp++] = TypeInt::INT;
770   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
771   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
772   const TypeTuple *domain = TypeTuple::make(argp, fields);
773 
774   // create result type
775   fields = TypeTuple::fields(1);
776   fields[TypeFunc::Parms+0] = NULL; // void
777   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
778 
779   return TypeFunc::make(domain, range);
780 }
781 
782 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
aescrypt_block_Type()783 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
784   // create input type (domain)
785   int num_args      = 3;
786   if (Matcher::pass_original_key_for_aes()) {
787     num_args = 4;
788   }
789   int argcnt = num_args;
790   const Type** fields = TypeTuple::fields(argcnt);
791   int argp = TypeFunc::Parms;
792   fields[argp++] = TypePtr::NOTNULL;    // src
793   fields[argp++] = TypePtr::NOTNULL;    // dest
794   fields[argp++] = TypePtr::NOTNULL;    // k array
795   if (Matcher::pass_original_key_for_aes()) {
796     fields[argp++] = TypePtr::NOTNULL;    // original k array
797   }
798   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
799   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
800 
801   // no result type needed
802   fields = TypeTuple::fields(1);
803   fields[TypeFunc::Parms+0] = NULL; // void
804   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
805   return TypeFunc::make(domain, range);
806 }
807 
808 /**
809  * int updateBytesCRC32(int crc, byte* b, int len)
810  */
updateBytesCRC32_Type()811 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
812   // create input type (domain)
813   int num_args      = 3;
814   int argcnt = num_args;
815   const Type** fields = TypeTuple::fields(argcnt);
816   int argp = TypeFunc::Parms;
817   fields[argp++] = TypeInt::INT;        // crc
818   fields[argp++] = TypePtr::NOTNULL;    // src
819   fields[argp++] = TypeInt::INT;        // len
820   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
821   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
822 
823   // result type needed
824   fields = TypeTuple::fields(1);
825   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
826   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
827   return TypeFunc::make(domain, range);
828 }
829 
830 /**
831  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
832  */
updateBytesCRC32C_Type()833 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
834   // create input type (domain)
835   int num_args      = 4;
836   int argcnt = num_args;
837   const Type** fields = TypeTuple::fields(argcnt);
838   int argp = TypeFunc::Parms;
839   fields[argp++] = TypeInt::INT;        // crc
840   fields[argp++] = TypePtr::NOTNULL;    // buf
841   fields[argp++] = TypeInt::INT;        // len
842   fields[argp++] = TypePtr::NOTNULL;    // table
843   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
844   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
845 
846   // result type needed
847   fields = TypeTuple::fields(1);
848   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
849   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
850   return TypeFunc::make(domain, range);
851 }
852 
853 /**
854 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
855 */
updateBytesAdler32_Type()856 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
857   // create input type (domain)
858   int num_args      = 3;
859   int argcnt = num_args;
860   const Type** fields = TypeTuple::fields(argcnt);
861   int argp = TypeFunc::Parms;
862   fields[argp++] = TypeInt::INT;        // crc
863   fields[argp++] = TypePtr::NOTNULL;    // src + offset
864   fields[argp++] = TypeInt::INT;        // len
865   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
866   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
867 
868   // result type needed
869   fields = TypeTuple::fields(1);
870   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
871   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
872   return TypeFunc::make(domain, range);
873 }
874 
875 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
cipherBlockChaining_aescrypt_Type()876 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
877   // create input type (domain)
878   int num_args      = 5;
879   if (Matcher::pass_original_key_for_aes()) {
880     num_args = 6;
881   }
882   int argcnt = num_args;
883   const Type** fields = TypeTuple::fields(argcnt);
884   int argp = TypeFunc::Parms;
885   fields[argp++] = TypePtr::NOTNULL;    // src
886   fields[argp++] = TypePtr::NOTNULL;    // dest
887   fields[argp++] = TypePtr::NOTNULL;    // k array
888   fields[argp++] = TypePtr::NOTNULL;    // r array
889   fields[argp++] = TypeInt::INT;        // src len
890   if (Matcher::pass_original_key_for_aes()) {
891     fields[argp++] = TypePtr::NOTNULL;    // original k array
892   }
893   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
894   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
895 
896   // returning cipher len (int)
897   fields = TypeTuple::fields(1);
898   fields[TypeFunc::Parms+0] = TypeInt::INT;
899   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
900   return TypeFunc::make(domain, range);
901 }
902 
903 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
counterMode_aescrypt_Type()904 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
905   // create input type (domain)
906   int num_args = 7;
907   if (Matcher::pass_original_key_for_aes()) {
908     num_args = 8;
909   }
910   int argcnt = num_args;
911   const Type** fields = TypeTuple::fields(argcnt);
912   int argp = TypeFunc::Parms;
913   fields[argp++] = TypePtr::NOTNULL; // src
914   fields[argp++] = TypePtr::NOTNULL; // dest
915   fields[argp++] = TypePtr::NOTNULL; // k array
916   fields[argp++] = TypePtr::NOTNULL; // counter array
917   fields[argp++] = TypeInt::INT; // src len
918   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
919   fields[argp++] = TypePtr::NOTNULL; // saved used addr
920   if (Matcher::pass_original_key_for_aes()) {
921     fields[argp++] = TypePtr::NOTNULL; // original k array
922   }
923   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
924   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
925   // returning cipher len (int)
926   fields = TypeTuple::fields(1);
927   fields[TypeFunc::Parms + 0] = TypeInt::INT;
928   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
929   return TypeFunc::make(domain, range);
930 }
931 
932 /*
933  * void implCompress(byte[] buf, int ofs)
934  */
sha_implCompress_Type()935 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
936   // create input type (domain)
937   int num_args = 2;
938   int argcnt = num_args;
939   const Type** fields = TypeTuple::fields(argcnt);
940   int argp = TypeFunc::Parms;
941   fields[argp++] = TypePtr::NOTNULL; // buf
942   fields[argp++] = TypePtr::NOTNULL; // state
943   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
944   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
945 
946   // no result type needed
947   fields = TypeTuple::fields(1);
948   fields[TypeFunc::Parms+0] = NULL; // void
949   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
950   return TypeFunc::make(domain, range);
951 }
952 
953 /*
954  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
955  */
digestBase_implCompressMB_Type()956 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
957   // create input type (domain)
958   int num_args = 4;
959   int argcnt = num_args;
960   const Type** fields = TypeTuple::fields(argcnt);
961   int argp = TypeFunc::Parms;
962   fields[argp++] = TypePtr::NOTNULL; // buf
963   fields[argp++] = TypePtr::NOTNULL; // state
964   fields[argp++] = TypeInt::INT;     // ofs
965   fields[argp++] = TypeInt::INT;     // limit
966   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
967   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
968 
969   // returning ofs (int)
970   fields = TypeTuple::fields(1);
971   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
972   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
973   return TypeFunc::make(domain, range);
974 }
975 
multiplyToLen_Type()976 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
977   // create input type (domain)
978   int num_args      = 6;
979   int argcnt = num_args;
980   const Type** fields = TypeTuple::fields(argcnt);
981   int argp = TypeFunc::Parms;
982   fields[argp++] = TypePtr::NOTNULL;    // x
983   fields[argp++] = TypeInt::INT;        // xlen
984   fields[argp++] = TypePtr::NOTNULL;    // y
985   fields[argp++] = TypeInt::INT;        // ylen
986   fields[argp++] = TypePtr::NOTNULL;    // z
987   fields[argp++] = TypeInt::INT;        // zlen
988   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
989   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
990 
991   // no result type needed
992   fields = TypeTuple::fields(1);
993   fields[TypeFunc::Parms+0] = NULL;
994   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
995   return TypeFunc::make(domain, range);
996 }
997 
squareToLen_Type()998 const TypeFunc* OptoRuntime::squareToLen_Type() {
999   // create input type (domain)
1000   int num_args      = 4;
1001   int argcnt = num_args;
1002   const Type** fields = TypeTuple::fields(argcnt);
1003   int argp = TypeFunc::Parms;
1004   fields[argp++] = TypePtr::NOTNULL;    // x
1005   fields[argp++] = TypeInt::INT;        // len
1006   fields[argp++] = TypePtr::NOTNULL;    // z
1007   fields[argp++] = TypeInt::INT;        // zlen
1008   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1009   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1010 
1011   // no result type needed
1012   fields = TypeTuple::fields(1);
1013   fields[TypeFunc::Parms+0] = NULL;
1014   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1015   return TypeFunc::make(domain, range);
1016 }
1017 
1018 // for mulAdd calls, 2 pointers and 3 ints, returning int
mulAdd_Type()1019 const TypeFunc* OptoRuntime::mulAdd_Type() {
1020   // create input type (domain)
1021   int num_args      = 5;
1022   int argcnt = num_args;
1023   const Type** fields = TypeTuple::fields(argcnt);
1024   int argp = TypeFunc::Parms;
1025   fields[argp++] = TypePtr::NOTNULL;    // out
1026   fields[argp++] = TypePtr::NOTNULL;    // in
1027   fields[argp++] = TypeInt::INT;        // offset
1028   fields[argp++] = TypeInt::INT;        // len
1029   fields[argp++] = TypeInt::INT;        // k
1030   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1031   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1032 
1033   // returning carry (int)
1034   fields = TypeTuple::fields(1);
1035   fields[TypeFunc::Parms+0] = TypeInt::INT;
1036   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1037   return TypeFunc::make(domain, range);
1038 }
1039 
montgomeryMultiply_Type()1040 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1041   // create input type (domain)
1042   int num_args      = 7;
1043   int argcnt = num_args;
1044   const Type** fields = TypeTuple::fields(argcnt);
1045   int argp = TypeFunc::Parms;
1046   fields[argp++] = TypePtr::NOTNULL;    // a
1047   fields[argp++] = TypePtr::NOTNULL;    // b
1048   fields[argp++] = TypePtr::NOTNULL;    // n
1049   fields[argp++] = TypeInt::INT;        // len
1050   fields[argp++] = TypeLong::LONG;      // inv
1051   fields[argp++] = Type::HALF;
1052   fields[argp++] = TypePtr::NOTNULL;    // result
1053   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1054   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1055 
1056   // result type needed
1057   fields = TypeTuple::fields(1);
1058   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1059 
1060   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1061   return TypeFunc::make(domain, range);
1062 }
1063 
montgomerySquare_Type()1064 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1065   // create input type (domain)
1066   int num_args      = 6;
1067   int argcnt = num_args;
1068   const Type** fields = TypeTuple::fields(argcnt);
1069   int argp = TypeFunc::Parms;
1070   fields[argp++] = TypePtr::NOTNULL;    // a
1071   fields[argp++] = TypePtr::NOTNULL;    // n
1072   fields[argp++] = TypeInt::INT;        // len
1073   fields[argp++] = TypeLong::LONG;      // inv
1074   fields[argp++] = Type::HALF;
1075   fields[argp++] = TypePtr::NOTNULL;    // result
1076   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1077   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1078 
1079   // result type needed
1080   fields = TypeTuple::fields(1);
1081   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1082 
1083   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1084   return TypeFunc::make(domain, range);
1085 }
1086 
vectorizedMismatch_Type()1087 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1088   // create input type (domain)
1089   int num_args = 4;
1090   int argcnt = num_args;
1091   const Type** fields = TypeTuple::fields(argcnt);
1092   int argp = TypeFunc::Parms;
1093   fields[argp++] = TypePtr::NOTNULL;    // obja
1094   fields[argp++] = TypePtr::NOTNULL;    // objb
1095   fields[argp++] = TypeInt::INT;        // length, number of elements
1096   fields[argp++] = TypeInt::INT;        // log2scale, element size
1097   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1098   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1099 
1100   //return mismatch index (int)
1101   fields = TypeTuple::fields(1);
1102   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1103   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1104   return TypeFunc::make(domain, range);
1105 }
1106 
1107 // GHASH block processing
ghash_processBlocks_Type()1108 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1109     int argcnt = 4;
1110 
1111     const Type** fields = TypeTuple::fields(argcnt);
1112     int argp = TypeFunc::Parms;
1113     fields[argp++] = TypePtr::NOTNULL;    // state
1114     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1115     fields[argp++] = TypePtr::NOTNULL;    // data
1116     fields[argp++] = TypeInt::INT;        // blocks
1117     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1118     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1119 
1120     // result type needed
1121     fields = TypeTuple::fields(1);
1122     fields[TypeFunc::Parms+0] = NULL; // void
1123     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1124     return TypeFunc::make(domain, range);
1125 }
1126 // Base64 encode function
base64_encodeBlock_Type()1127 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1128   int argcnt = 6;
1129 
1130   const Type** fields = TypeTuple::fields(argcnt);
1131   int argp = TypeFunc::Parms;
1132   fields[argp++] = TypePtr::NOTNULL;    // src array
1133   fields[argp++] = TypeInt::INT;        // offset
1134   fields[argp++] = TypeInt::INT;        // length
1135   fields[argp++] = TypePtr::NOTNULL;    // dest array
1136   fields[argp++] = TypeInt::INT;       // dp
1137   fields[argp++] = TypeInt::BOOL;       // isURL
1138   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1139   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1140 
1141   // result type needed
1142   fields = TypeTuple::fields(1);
1143   fields[TypeFunc::Parms + 0] = NULL; // void
1144   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1145   return TypeFunc::make(domain, range);
1146 }
1147 
1148 //------------- Interpreter state access for on stack replacement
osr_end_Type()1149 const TypeFunc* OptoRuntime::osr_end_Type() {
1150   // create input type (domain)
1151   const Type **fields = TypeTuple::fields(1);
1152   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1153   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1154 
1155   // create result type
1156   fields = TypeTuple::fields(1);
1157   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1158   fields[TypeFunc::Parms+0] = NULL; // void
1159   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1160   return TypeFunc::make(domain, range);
1161 }
1162 
1163 //-------------- methodData update helpers
1164 
profile_receiver_type_Type()1165 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1166   // create input type (domain)
1167   const Type **fields = TypeTuple::fields(2);
1168   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1169   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1170   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1171 
1172   // create result type
1173   fields = TypeTuple::fields(1);
1174   fields[TypeFunc::Parms+0] = NULL; // void
1175   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1176   return TypeFunc::make(domain,range);
1177 }
1178 
1179 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1180   if (receiver == NULL) return;
1181   Klass* receiver_klass = receiver->klass();
1182 
1183   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1184   int empty_row = -1;           // free row, if any is encountered
1185 
1186   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1187   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1188     // if (vc->receiver(row) == receiver_klass)
1189     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1190     intptr_t row_recv = *(mdp + receiver_off);
1191     if (row_recv == (intptr_t) receiver_klass) {
1192       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1193       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1194       *(mdp + count_off) += DataLayout::counter_increment;
1195       return;
1196     } else if (row_recv == 0) {
1197       // else if (vc->receiver(row) == NULL)
1198       empty_row = (int) row;
1199     }
1200   }
1201 
1202   if (empty_row != -1) {
1203     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1204     // vc->set_receiver(empty_row, receiver_klass);
1205     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1206     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1207     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1208     *(mdp + count_off) = DataLayout::counter_increment;
1209   } else {
1210     // Receiver did not match any saved receiver and there is no empty row for it.
1211     // Increment total counter to indicate polymorphic case.
1212     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1213     *count_p += DataLayout::counter_increment;
1214   }
1215 JRT_END
1216 
1217 //-------------------------------------------------------------------------------------
1218 // register policy
1219 
is_callee_saved_register(MachRegisterNumbers reg)1220 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1221   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1222   switch (register_save_policy[reg]) {
1223     case 'C': return false; //SOC
1224     case 'E': return true ; //SOE
1225     case 'N': return false; //NS
1226     case 'A': return false; //AS
1227   }
1228   ShouldNotReachHere();
1229   return false;
1230 }
1231 
1232 //-----------------------------------------------------------------------
1233 // Exceptions
1234 //
1235 
1236 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1237 
1238 // The method is an entry that is always called by a C++ method not
1239 // directly from compiled code. Compiled code will call the C++ method following.
1240 // We can't allow async exception to be installed during  exception processing.
1241 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1242 
1243   // Do not confuse exception_oop with pending_exception. The exception_oop
1244   // is only used to pass arguments into the method. Not for general
1245   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1246   // the runtime stubs checks this on exit.
1247   assert(thread->exception_oop() != NULL, "exception oop is found");
1248   address handler_address = NULL;
1249 
1250   Handle exception(thread, thread->exception_oop());
1251   address pc = thread->exception_pc();
1252 
1253   // Clear out the exception oop and pc since looking up an
1254   // exception handler can cause class loading, which might throw an
1255   // exception and those fields are expected to be clear during
1256   // normal bytecode execution.
1257   thread->clear_exception_oop_and_pc();
1258 
1259   LogTarget(Info, exceptions) lt;
1260   if (lt.is_enabled()) {
1261     ResourceMark rm;
1262     LogStream ls(lt);
1263     trace_exception(&ls, exception(), pc, "");
1264   }
1265 
1266   // for AbortVMOnException flag
1267   Exceptions::debug_check_abort(exception);
1268 
1269 #ifdef ASSERT
1270   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1271     // should throw an exception here
1272     ShouldNotReachHere();
1273   }
1274 #endif
1275 
1276   // new exception handling: this method is entered only from adapters
1277   // exceptions from compiled java methods are handled in compiled code
1278   // using rethrow node
1279 
1280   nm = CodeCache::find_nmethod(pc);
1281   assert(nm != NULL, "No NMethod found");
1282   if (nm->is_native_method()) {
1283     fatal("Native method should not have path to exception handling");
1284   } else {
1285     // we are switching to old paradigm: search for exception handler in caller_frame
1286     // instead in exception handler of caller_frame.sender()
1287 
1288     if (JvmtiExport::can_post_on_exceptions()) {
1289       // "Full-speed catching" is not necessary here,
1290       // since we're notifying the VM on every catch.
1291       // Force deoptimization and the rest of the lookup
1292       // will be fine.
1293       deoptimize_caller_frame(thread);
1294     }
1295 
1296     // Check the stack guard pages.  If enabled, look for handler in this frame;
1297     // otherwise, forcibly unwind the frame.
1298     //
1299     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1300     bool force_unwind = !thread->reguard_stack();
1301     bool deopting = false;
1302     if (nm->is_deopt_pc(pc)) {
1303       deopting = true;
1304       RegisterMap map(thread, false);
1305       frame deoptee = thread->last_frame().sender(&map);
1306       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1307       // Adjust the pc back to the original throwing pc
1308       pc = deoptee.pc();
1309     }
1310 
1311     // If we are forcing an unwind because of stack overflow then deopt is
1312     // irrelevant since we are throwing the frame away anyway.
1313 
1314     if (deopting && !force_unwind) {
1315       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1316     } else {
1317 
1318       handler_address =
1319         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1320 
1321       if (handler_address == NULL) {
1322         bool recursive_exception = false;
1323         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1324         assert (handler_address != NULL, "must have compiled handler");
1325         // Update the exception cache only when the unwind was not forced
1326         // and there didn't happen another exception during the computation of the
1327         // compiled exception handler. Checking for exception oop equality is not
1328         // sufficient because some exceptions are pre-allocated and reused.
1329         if (!force_unwind && !recursive_exception) {
1330           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1331         }
1332       } else {
1333 #ifdef ASSERT
1334         bool recursive_exception = false;
1335         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1336         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1337                  p2i(handler_address), p2i(computed_address));
1338 #endif
1339       }
1340     }
1341 
1342     thread->set_exception_pc(pc);
1343     thread->set_exception_handler_pc(handler_address);
1344 
1345     // Check if the exception PC is a MethodHandle call site.
1346     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1347   }
1348 
1349   // Restore correct return pc.  Was saved above.
1350   thread->set_exception_oop(exception());
1351   return handler_address;
1352 
1353 JRT_END
1354 
1355 // We are entering here from exception_blob
1356 // If there is a compiled exception handler in this method, we will continue there;
1357 // otherwise we will unwind the stack and continue at the caller of top frame method
1358 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1359 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1360 // we looked up the handler for has been deoptimized in the meantime. If it has been
1361 // we must not use the handler and instead return the deopt blob.
handle_exception_C(JavaThread * thread)1362 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1363 //
1364 // We are in Java not VM and in debug mode we have a NoHandleMark
1365 //
1366 #ifndef PRODUCT
1367   SharedRuntime::_find_handler_ctr++;          // find exception handler
1368 #endif
1369   debug_only(NoHandleMark __hm;)
1370   nmethod* nm = NULL;
1371   address handler_address = NULL;
1372   {
1373     // Enter the VM
1374 
1375     ResetNoHandleMark rnhm;
1376     handler_address = handle_exception_C_helper(thread, nm);
1377   }
1378 
1379   // Back in java: Use no oops, DON'T safepoint
1380 
1381   // Now check to see if the handler we are returning is in a now
1382   // deoptimized frame
1383 
1384   if (nm != NULL) {
1385     RegisterMap map(thread, false);
1386     frame caller = thread->last_frame().sender(&map);
1387 #ifdef ASSERT
1388     assert(caller.is_compiled_frame(), "must be");
1389 #endif // ASSERT
1390     if (caller.is_deoptimized_frame()) {
1391       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1392     }
1393   }
1394   return handler_address;
1395 }
1396 
1397 //------------------------------rethrow----------------------------------------
1398 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1399 // is either throwing or rethrowing an exception.  The callee-save registers
1400 // have been restored, synchronized objects have been unlocked and the callee
1401 // stack frame has been removed.  The return address was passed in.
1402 // Exception oop is passed as the 1st argument.  This routine is then called
1403 // from the stub.  On exit, we know where to jump in the caller's code.
1404 // After this C code exits, the stub will pop his frame and end in a jump
1405 // (instead of a return).  We enter the caller's default handler.
1406 //
1407 // This must be JRT_LEAF:
1408 //     - caller will not change its state as we cannot block on exit,
1409 //       therefore raw_exception_handler_for_return_address is all it takes
1410 //       to handle deoptimized blobs
1411 //
1412 // However, there needs to be a safepoint check in the middle!  So compiled
1413 // safepoints are completely watertight.
1414 //
1415 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1416 //
1417 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1418 //
rethrow_C(oopDesc * exception,JavaThread * thread,address ret_pc)1419 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1420 #ifndef PRODUCT
1421   SharedRuntime::_rethrow_ctr++;               // count rethrows
1422 #endif
1423   assert (exception != NULL, "should have thrown a NULLPointerException");
1424 #ifdef ASSERT
1425   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1426     // should throw an exception here
1427     ShouldNotReachHere();
1428   }
1429 #endif
1430 
1431   thread->set_vm_result(exception);
1432   // Frame not compiled (handles deoptimization blob)
1433   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1434 }
1435 
1436 
rethrow_Type()1437 const TypeFunc *OptoRuntime::rethrow_Type() {
1438   // create input type (domain)
1439   const Type **fields = TypeTuple::fields(1);
1440   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1441   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1442 
1443   // create result type (range)
1444   fields = TypeTuple::fields(1);
1445   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1446   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1447 
1448   return TypeFunc::make(domain, range);
1449 }
1450 
1451 
deoptimize_caller_frame(JavaThread * thread,bool doit)1452 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1453   // Deoptimize the caller before continuing, as the compiled
1454   // exception handler table may not be valid.
1455   if (!StressCompiledExceptionHandlers && doit) {
1456     deoptimize_caller_frame(thread);
1457   }
1458 }
1459 
deoptimize_caller_frame(JavaThread * thread)1460 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1461   // Called from within the owner thread, so no need for safepoint
1462   RegisterMap reg_map(thread);
1463   frame stub_frame = thread->last_frame();
1464   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1465   frame caller_frame = stub_frame.sender(&reg_map);
1466 
1467   // Deoptimize the caller frame.
1468   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1469 }
1470 
1471 
is_deoptimized_caller_frame(JavaThread * thread)1472 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1473   // Called from within the owner thread, so no need for safepoint
1474   RegisterMap reg_map(thread);
1475   frame stub_frame = thread->last_frame();
1476   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1477   frame caller_frame = stub_frame.sender(&reg_map);
1478   return caller_frame.is_deoptimized_frame();
1479 }
1480 
1481 
register_finalizer_Type()1482 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1483   // create input type (domain)
1484   const Type **fields = TypeTuple::fields(1);
1485   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1486   // // The JavaThread* is passed to each routine as the last argument
1487   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1489 
1490   // create result type (range)
1491   fields = TypeTuple::fields(0);
1492 
1493   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1494 
1495   return TypeFunc::make(domain,range);
1496 }
1497 
1498 
1499 //-----------------------------------------------------------------------------
1500 // Dtrace support.  entry and exit probes have the same signature
dtrace_method_entry_exit_Type()1501 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1502   // create input type (domain)
1503   const Type **fields = TypeTuple::fields(2);
1504   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1505   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1506   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1507 
1508   // create result type (range)
1509   fields = TypeTuple::fields(0);
1510 
1511   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1512 
1513   return TypeFunc::make(domain,range);
1514 }
1515 
dtrace_object_alloc_Type()1516 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1517   // create input type (domain)
1518   const Type **fields = TypeTuple::fields(2);
1519   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1520   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1521 
1522   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1523 
1524   // create result type (range)
1525   fields = TypeTuple::fields(0);
1526 
1527   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1528 
1529   return TypeFunc::make(domain,range);
1530 }
1531 
1532 
1533 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1534   assert(oopDesc::is_oop(obj), "must be a valid oop");
1535   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1536   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1537 JRT_END
1538 
1539 //-----------------------------------------------------------------------------
1540 
1541 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1542 
1543 //
1544 // dump the collected NamedCounters.
1545 //
print_named_counters()1546 void OptoRuntime::print_named_counters() {
1547   int total_lock_count = 0;
1548   int eliminated_lock_count = 0;
1549 
1550   NamedCounter* c = _named_counters;
1551   while (c) {
1552     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1553       int count = c->count();
1554       if (count > 0) {
1555         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1556         if (Verbose) {
1557           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1558         }
1559         total_lock_count += count;
1560         if (eliminated) {
1561           eliminated_lock_count += count;
1562         }
1563       }
1564     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1565       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1566       if (blc->nonzero()) {
1567         tty->print_cr("%s", c->name());
1568         blc->print_on(tty);
1569       }
1570 #if INCLUDE_RTM_OPT
1571     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1572       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1573       if (rlc->nonzero()) {
1574         tty->print_cr("%s", c->name());
1575         rlc->print_on(tty);
1576       }
1577 #endif
1578     }
1579     c = c->next();
1580   }
1581   if (total_lock_count > 0) {
1582     tty->print_cr("dynamic locks: %d", total_lock_count);
1583     if (eliminated_lock_count) {
1584       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1585                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1586     }
1587   }
1588 }
1589 
1590 //
1591 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1592 //  name which consists of method@line for the inlining tree.
1593 //
1594 
new_named_counter(JVMState * youngest_jvms,NamedCounter::CounterTag tag)1595 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1596   int max_depth = youngest_jvms->depth();
1597 
1598   // Visit scopes from youngest to oldest.
1599   bool first = true;
1600   stringStream st;
1601   for (int depth = max_depth; depth >= 1; depth--) {
1602     JVMState* jvms = youngest_jvms->of_depth(depth);
1603     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1604     if (!first) {
1605       st.print(" ");
1606     } else {
1607       first = false;
1608     }
1609     int bci = jvms->bci();
1610     if (bci < 0) bci = 0;
1611     if (m != NULL) {
1612       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1613     } else {
1614       st.print("no method");
1615     }
1616     st.print("@%d", bci);
1617     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1618   }
1619   NamedCounter* c;
1620   if (tag == NamedCounter::BiasedLockingCounter) {
1621     c = new BiasedLockingNamedCounter(st.as_string());
1622   } else if (tag == NamedCounter::RTMLockingCounter) {
1623     c = new RTMLockingNamedCounter(st.as_string());
1624   } else {
1625     c = new NamedCounter(st.as_string(), tag);
1626   }
1627 
1628   // atomically add the new counter to the head of the list.  We only
1629   // add counters so this is safe.
1630   NamedCounter* head;
1631   do {
1632     c->set_next(NULL);
1633     head = _named_counters;
1634     c->set_next(head);
1635   } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1636   return c;
1637 }
1638 
1639 int trace_exception_counter = 0;
trace_exception(outputStream * st,oop exception_oop,address exception_pc,const char * msg)1640 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1641   trace_exception_counter++;
1642   stringStream tempst;
1643 
1644   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1645   exception_oop->print_value_on(&tempst);
1646   tempst.print(" in ");
1647   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1648   if (blob->is_compiled()) {
1649     CompiledMethod* cm = blob->as_compiled_method_or_null();
1650     cm->method()->print_value_on(&tempst);
1651   } else if (blob->is_runtime_stub()) {
1652     tempst.print("<runtime-stub>");
1653   } else {
1654     tempst.print("<unknown>");
1655   }
1656   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1657   tempst.print("]");
1658 
1659   st->print_raw_cr(tempst.as_string());
1660 }
1661