1 /*
2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 #include "precompiled.hpp"
25 #include "compiler/compileLog.hpp"
26 #include "libadt/vectset.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/callnode.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/convertnode.hpp"
33 #include "opto/divnode.hpp"
34 #include "opto/matcher.hpp"
35 #include "opto/memnode.hpp"
36 #include "opto/mulnode.hpp"
37 #include "opto/opcodes.hpp"
38 #include "opto/opaquenode.hpp"
39 #include "opto/superword.hpp"
40 #include "opto/vectornode.hpp"
41 #include "opto/movenode.hpp"
42 
43 //
44 //                  S U P E R W O R D   T R A N S F O R M
45 //=============================================================================
46 
47 //------------------------------SuperWord---------------------------
SuperWord(PhaseIdealLoop * phase)48 SuperWord::SuperWord(PhaseIdealLoop* phase) :
49   _phase(phase),
50   _arena(phase->C->comp_arena()),
51   _igvn(phase->_igvn),
52   _packset(arena(), 8,  0, NULL),         // packs for the current block
53   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
54   _block(arena(), 8,  0, NULL),           // nodes in current block
55   _post_block(arena(), 8, 0, NULL),       // nodes common to current block which are marked as post loop vectorizable
56   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
57   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
58   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
59   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
60   _clone_map(phase->C->clone_map()),      // map of nodes created in cloning
61   _cmovev_kit(_arena, this),              // map to facilitate CMoveV creation
62   _align_to_ref(NULL),                    // memory reference to align vectors to
63   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
64   _dg(_arena),                            // dependence graph
65   _visited(arena()),                      // visited node set
66   _post_visited(arena()),                 // post visited node set
67   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
68   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
69   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
70   _lpt(NULL),                             // loop tree node
71   _lp(NULL),                              // LoopNode
72   _bb(NULL),                              // basic block
73   _iv(NULL),                              // induction var
74   _race_possible(false),                  // cases where SDMU is true
75   _early_return(true),                    // analysis evaluations routine
76   _do_vector_loop(phase->C->do_vector_loop()),  // whether to do vectorization/simd style
77   _do_reserve_copy(DoReserveCopyInSuperWord),
78   _num_work_vecs(0),                      // amount of vector work we have
79   _num_reductions(0),                     // amount of reduction work we have
80   _ii_first(-1),                          // first loop generation index - only if do_vector_loop()
81   _ii_last(-1),                           // last loop generation index - only if do_vector_loop()
82   _ii_order(arena(), 8, 0, 0)
83 {
84 #ifndef PRODUCT
85   _vector_loop_debug = 0;
86   if (_phase->C->method() != NULL) {
87     _vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
88   }
89 
90 #endif
91 }
92 
93 //------------------------------transform_loop---------------------------
transform_loop(IdealLoopTree * lpt,bool do_optimization)94 void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
95   assert(UseSuperWord, "should be");
96   // Do vectors exist on this architecture?
97   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
98 
99   assert(lpt->_head->is_CountedLoop(), "must be");
100   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
101 
102   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
103 
104   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
105   if (post_loop_allowed) {
106     if (cl->is_reduction_loop()) return; // no predication mapping
107     Node *limit = cl->limit();
108     if (limit->is_Con()) return; // non constant limits only
109     // Now check the limit for expressions we do not handle
110     if (limit->is_Add()) {
111       Node *in2 = limit->in(2);
112       if (in2->is_Con()) {
113         int val = in2->get_int();
114         // should not try to program these cases
115         if (val < 0) return;
116       }
117     }
118   }
119 
120   // skip any loop that has not been assigned max unroll by analysis
121   if (do_optimization) {
122     if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return;
123   }
124 
125   // Check for no control flow in body (other than exit)
126   Node *cl_exit = cl->loopexit();
127   if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) {
128     #ifndef PRODUCT
129       if (TraceSuperWord) {
130         tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
131         tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
132         tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
133         tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
134         lpt->dump_head();
135       }
136     #endif
137     return;
138   }
139 
140   // Make sure the are no extra control users of the loop backedge
141   if (cl->back_control()->outcnt() != 1) {
142     return;
143   }
144 
145   // Skip any loops already optimized by slp
146   if (cl->is_vectorized_loop()) return;
147 
148   if (cl->is_unroll_only()) return;
149 
150   if (cl->is_main_loop()) {
151     // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
152     CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
153     if (pre_end == NULL) return;
154     Node *pre_opaq1 = pre_end->limit();
155     if (pre_opaq1->Opcode() != Op_Opaque1) return;
156   }
157 
158   init(); // initialize data structures
159 
160   set_lpt(lpt);
161   set_lp(cl);
162 
163   // For now, define one block which is the entire loop body
164   set_bb(cl);
165 
166   if (do_optimization) {
167     assert(_packset.length() == 0, "packset must be empty");
168     SLP_extract();
169     if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) {
170       if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) {
171         IdealLoopTree *lpt_next = lpt->_next;
172         CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop();
173         _phase->has_range_checks(lpt_next);
174         if (cl_next->is_post_loop() && !cl_next->range_checks_present()) {
175           if (!cl_next->is_vectorized_loop()) {
176             int slp_max_unroll_factor = cl->slp_max_unroll();
177             cl_next->set_slp_max_unroll(slp_max_unroll_factor);
178           }
179         }
180       }
181     }
182   }
183 }
184 
185 //------------------------------early unrolling analysis------------------------------
unrolling_analysis(int & local_loop_unroll_factor)186 void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
187   bool is_slp = true;
188   ResourceMark rm;
189   size_t ignored_size = lpt()->_body.size();
190   int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
191   Node_Stack nstack((int)ignored_size);
192   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
193   Node *cl_exit = cl->loopexit_or_null();
194   int rpo_idx = _post_block.length();
195 
196   assert(rpo_idx == 0, "post loop block is empty");
197 
198   // First clear the entries
199   for (uint i = 0; i < lpt()->_body.size(); i++) {
200     ignored_loop_nodes[i] = -1;
201   }
202 
203   int max_vector = Matcher::max_vector_size(T_BYTE);
204   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
205 
206   // Process the loop, some/all of the stack entries will not be in order, ergo
207   // need to preprocess the ignored initial state before we process the loop
208   for (uint i = 0; i < lpt()->_body.size(); i++) {
209     Node* n = lpt()->_body.at(i);
210     if (n == cl->incr() ||
211       n->is_reduction() ||
212       n->is_AddP() ||
213       n->is_Cmp() ||
214       n->is_IfTrue() ||
215       n->is_CountedLoop() ||
216       (n == cl_exit)) {
217       ignored_loop_nodes[i] = n->_idx;
218       continue;
219     }
220 
221     if (n->is_If()) {
222       IfNode *iff = n->as_If();
223       if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
224         if (lpt()->is_loop_exit(iff)) {
225           ignored_loop_nodes[i] = n->_idx;
226           continue;
227         }
228       }
229     }
230 
231     if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
232       Node* n_tail = n->in(LoopNode::LoopBackControl);
233       if (n_tail != n->in(LoopNode::EntryControl)) {
234         if (!n_tail->is_Mem()) {
235           is_slp = false;
236           break;
237         }
238       }
239     }
240 
241     // This must happen after check of phi/if
242     if (n->is_Phi() || n->is_If()) {
243       ignored_loop_nodes[i] = n->_idx;
244       continue;
245     }
246 
247     if (n->is_LoadStore() || n->is_MergeMem() ||
248       (n->is_Proj() && !n->as_Proj()->is_CFG())) {
249       is_slp = false;
250       break;
251     }
252 
253     // Ignore nodes with non-primitive type.
254     BasicType bt;
255     if (n->is_Mem()) {
256       bt = n->as_Mem()->memory_type();
257     } else {
258       bt = n->bottom_type()->basic_type();
259     }
260     if (is_java_primitive(bt) == false) {
261       ignored_loop_nodes[i] = n->_idx;
262       continue;
263     }
264 
265     if (n->is_Mem()) {
266       MemNode* current = n->as_Mem();
267       Node* adr = n->in(MemNode::Address);
268       Node* n_ctrl = _phase->get_ctrl(adr);
269 
270       // save a queue of post process nodes
271       if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
272         // Process the memory expression
273         int stack_idx = 0;
274         bool have_side_effects = true;
275         if (adr->is_AddP() == false) {
276           nstack.push(adr, stack_idx++);
277         } else {
278           // Mark the components of the memory operation in nstack
279           SWPointer p1(current, this, &nstack, true);
280           have_side_effects = p1.node_stack()->is_nonempty();
281         }
282 
283         // Process the pointer stack
284         while (have_side_effects) {
285           Node* pointer_node = nstack.node();
286           for (uint j = 0; j < lpt()->_body.size(); j++) {
287             Node* cur_node = lpt()->_body.at(j);
288             if (cur_node == pointer_node) {
289               ignored_loop_nodes[j] = cur_node->_idx;
290               break;
291             }
292           }
293           nstack.pop();
294           have_side_effects = nstack.is_nonempty();
295         }
296       }
297     }
298   }
299 
300   if (is_slp) {
301     // Now we try to find the maximum supported consistent vector which the machine
302     // description can use
303     bool small_basic_type = false;
304     bool flag_small_bt = false;
305     for (uint i = 0; i < lpt()->_body.size(); i++) {
306       if (ignored_loop_nodes[i] != -1) continue;
307 
308       BasicType bt;
309       Node* n = lpt()->_body.at(i);
310       if (n->is_Mem()) {
311         bt = n->as_Mem()->memory_type();
312       } else {
313         bt = n->bottom_type()->basic_type();
314       }
315 
316       if (post_loop_allowed) {
317         if (!small_basic_type) {
318           switch (bt) {
319           case T_CHAR:
320           case T_BYTE:
321           case T_SHORT:
322             small_basic_type = true;
323             break;
324 
325           case T_LONG:
326             // TODO: Remove when support completed for mask context with LONG.
327             //       Support needs to be augmented for logical qword operations, currently we map to dword
328             //       buckets for vectors on logicals as these were legacy.
329             small_basic_type = true;
330             break;
331 
332           default:
333             break;
334           }
335         }
336       }
337 
338       if (is_java_primitive(bt) == false) continue;
339 
340          int cur_max_vector = Matcher::max_vector_size(bt);
341 
342       // If a max vector exists which is not larger than _local_loop_unroll_factor
343       // stop looking, we already have the max vector to map to.
344       if (cur_max_vector < local_loop_unroll_factor) {
345         is_slp = false;
346         if (TraceSuperWordLoopUnrollAnalysis) {
347           tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
348         }
349         break;
350       }
351 
352       // Map the maximal common vector
353       if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
354         if (cur_max_vector < max_vector && !flag_small_bt) {
355           max_vector = cur_max_vector;
356         } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) {
357           // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types.
358           // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively.
359           // We check for possibility of narrowing by looking through chain operations using subword types.
360           if (is_subword_type(bt)) {
361             uint start, end;
362             VectorNode::vector_operands(n, &start, &end);
363 
364             for (uint j = start; j < end; j++) {
365               Node* in = n->in(j);
366               // Don't propagate through a memory
367               if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) {
368                 bool same_type = true;
369                 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
370                   Node *use = in->fast_out(k);
371                   if (!in_bb(use) && use->bottom_type()->basic_type() != bt) {
372                     same_type = false;
373                     break;
374                   }
375                 }
376                 if (same_type) {
377                   max_vector = cur_max_vector;
378                   flag_small_bt = true;
379                   cl->mark_subword_loop();
380                 }
381               }
382             }
383           }
384         }
385         // We only process post loops on predicated targets where we want to
386         // mask map the loop to a single iteration
387         if (post_loop_allowed) {
388           _post_block.at_put_grow(rpo_idx++, n);
389         }
390       }
391     }
392     if (is_slp) {
393       local_loop_unroll_factor = max_vector;
394       cl->mark_passed_slp();
395     }
396     cl->mark_was_slp();
397     if (cl->is_main_loop()) {
398       cl->set_slp_max_unroll(local_loop_unroll_factor);
399     } else if (post_loop_allowed) {
400       if (!small_basic_type) {
401         // avoid replication context for small basic types in programmable masked loops
402         cl->set_slp_max_unroll(local_loop_unroll_factor);
403       }
404     }
405   }
406 }
407 
408 //------------------------------SLP_extract---------------------------
409 // Extract the superword level parallelism
410 //
411 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
412 //    this list from first to last, all definitions are visited before their uses.
413 //
414 // 2) A point-to-point dependence graph is constructed between memory references.
415 //    This simplies the upcoming "independence" checker.
416 //
417 // 3) The maximum depth in the node graph from the beginning of the block
418 //    to each node is computed.  This is used to prune the graph search
419 //    in the independence checker.
420 //
421 // 4) For integer types, the necessary bit width is propagated backwards
422 //    from stores to allow packed operations on byte, char, and short
423 //    integers.  This reverses the promotion to type "int" that javac
424 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
425 //
426 // 5) One of the memory references is picked to be an aligned vector reference.
427 //    The pre-loop trip count is adjusted to align this reference in the
428 //    unrolled body.
429 //
430 // 6) The initial set of pack pairs is seeded with memory references.
431 //
432 // 7) The set of pack pairs is extended by following use->def and def->use links.
433 //
434 // 8) The pairs are combined into vector sized packs.
435 //
436 // 9) Reorder the memory slices to co-locate members of the memory packs.
437 //
438 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
439 //    inserting scalar promotion, vector creation from multiple scalars, and
440 //    extraction of scalar values from vectors.
441 //
SLP_extract()442 void SuperWord::SLP_extract() {
443 
444 #ifndef PRODUCT
445   if (_do_vector_loop && TraceSuperWord) {
446     tty->print("SuperWord::SLP_extract\n");
447     tty->print("input loop\n");
448     _lpt->dump_head();
449     _lpt->dump();
450     for (uint i = 0; i < _lpt->_body.size(); i++) {
451       _lpt->_body.at(i)->dump();
452     }
453   }
454 #endif
455   // Ready the block
456   if (!construct_bb()) {
457     return; // Exit if no interesting nodes or complex graph.
458   }
459 
460   // build    _dg, _disjoint_ptrs
461   dependence_graph();
462 
463   // compute function depth(Node*)
464   compute_max_depth();
465 
466   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
467   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
468   if (cl->is_main_loop()) {
469     if (_do_vector_loop) {
470       if (mark_generations() != -1) {
471         hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
472 
473         if (!construct_bb()) {
474           return; // Exit if no interesting nodes or complex graph.
475         }
476         dependence_graph();
477         compute_max_depth();
478       }
479 
480 #ifndef PRODUCT
481       if (TraceSuperWord) {
482         tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
483         _lpt->dump_head();
484         for (int j = 0; j < _block.length(); j++) {
485           Node* n = _block.at(j);
486           int d = depth(n);
487           for (int i = 0; i < d; i++) tty->print("%s", "  ");
488           tty->print("%d :", d);
489           n->dump();
490         }
491       }
492 #endif
493     }
494 
495     compute_vector_element_type();
496 
497     // Attempt vectorization
498 
499     find_adjacent_refs();
500 
501     extend_packlist();
502 
503     if (_do_vector_loop) {
504       if (_packset.length() == 0) {
505         if (TraceSuperWord) {
506           tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
507         }
508         pack_parallel();
509       }
510     }
511 
512     combine_packs();
513 
514     construct_my_pack_map();
515     if (UseVectorCmov) {
516       merge_packs_to_cmovd();
517     }
518 
519     filter_packs();
520 
521     schedule();
522   } else if (post_loop_allowed) {
523     int saved_mapped_unroll_factor = cl->slp_max_unroll();
524     if (saved_mapped_unroll_factor) {
525       int vector_mapped_unroll_factor = saved_mapped_unroll_factor;
526 
527       // now reset the slp_unroll_factor so that we can check the analysis mapped
528       // what the vector loop was mapped to
529       cl->set_slp_max_unroll(0);
530 
531       // do the analysis on the post loop
532       unrolling_analysis(vector_mapped_unroll_factor);
533 
534       // if our analyzed loop is a canonical fit, start processing it
535       if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) {
536         // now add the vector nodes to packsets
537         for (int i = 0; i < _post_block.length(); i++) {
538           Node* n = _post_block.at(i);
539           Node_List* singleton = new Node_List();
540           singleton->push(n);
541           _packset.append(singleton);
542           set_my_pack(n, singleton);
543         }
544 
545         // map base types for vector usage
546         compute_vector_element_type();
547       } else {
548         return;
549       }
550     } else {
551       // for some reason we could not map the slp analysis state of the vectorized loop
552       return;
553     }
554   }
555 
556   output();
557 }
558 
559 //------------------------------find_adjacent_refs---------------------------
560 // Find the adjacent memory references and create pack pairs for them.
561 // This is the initial set of packs that will then be extended by
562 // following use->def and def->use links.  The align positions are
563 // assigned relative to the reference "align_to_ref"
find_adjacent_refs()564 void SuperWord::find_adjacent_refs() {
565   // Get list of memory operations
566   Node_List memops;
567   for (int i = 0; i < _block.length(); i++) {
568     Node* n = _block.at(i);
569     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
570         is_java_primitive(n->as_Mem()->memory_type())) {
571       int align = memory_alignment(n->as_Mem(), 0);
572       if (align != bottom_align) {
573         memops.push(n);
574       }
575     }
576   }
577 
578   Node_List align_to_refs;
579   int best_iv_adjustment = 0;
580   MemNode* best_align_to_mem_ref = NULL;
581 
582   while (memops.size() != 0) {
583     // Find a memory reference to align to.
584     MemNode* mem_ref = find_align_to_ref(memops);
585     if (mem_ref == NULL) break;
586     align_to_refs.push(mem_ref);
587     int iv_adjustment = get_iv_adjustment(mem_ref);
588 
589     if (best_align_to_mem_ref == NULL) {
590       // Set memory reference which is the best from all memory operations
591       // to be used for alignment. The pre-loop trip count is modified to align
592       // this reference to a vector-aligned address.
593       best_align_to_mem_ref = mem_ref;
594       best_iv_adjustment = iv_adjustment;
595       NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
596     }
597 
598     SWPointer align_to_ref_p(mem_ref, this, NULL, false);
599     // Set alignment relative to "align_to_ref" for all related memory operations.
600     for (int i = memops.size() - 1; i >= 0; i--) {
601       MemNode* s = memops.at(i)->as_Mem();
602       if (isomorphic(s, mem_ref) &&
603            (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
604         SWPointer p2(s, this, NULL, false);
605         if (p2.comparable(align_to_ref_p)) {
606           int align = memory_alignment(s, iv_adjustment);
607           set_alignment(s, align);
608         }
609       }
610     }
611 
612     // Create initial pack pairs of memory operations for which
613     // alignment is set and vectors will be aligned.
614     bool create_pack = true;
615     if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
616       if (!Matcher::misaligned_vectors_ok() || AlignVector) {
617         int vw = vector_width(mem_ref);
618         int vw_best = vector_width(best_align_to_mem_ref);
619         if (vw > vw_best) {
620           // Do not vectorize a memory access with more elements per vector
621           // if unaligned memory access is not allowed because number of
622           // iterations in pre-loop will be not enough to align it.
623           create_pack = false;
624         } else {
625           SWPointer p2(best_align_to_mem_ref, this, NULL, false);
626           if (align_to_ref_p.invar() != p2.invar()) {
627             // Do not vectorize memory accesses with different invariants
628             // if unaligned memory accesses are not allowed.
629             create_pack = false;
630           }
631         }
632       }
633     } else {
634       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
635         // Can't allow vectorization of unaligned memory accesses with the
636         // same type since it could be overlapped accesses to the same array.
637         create_pack = false;
638       } else {
639         // Allow independent (different type) unaligned memory operations
640         // if HW supports them.
641         if (!Matcher::misaligned_vectors_ok() || AlignVector) {
642           create_pack = false;
643         } else {
644           // Check if packs of the same memory type but
645           // with a different alignment were created before.
646           for (uint i = 0; i < align_to_refs.size(); i++) {
647             MemNode* mr = align_to_refs.at(i)->as_Mem();
648             if (mr == mem_ref) {
649               // Skip when we are looking at same memory operation.
650               continue;
651             }
652             if (same_velt_type(mr, mem_ref) &&
653                 memory_alignment(mr, iv_adjustment) != 0)
654               create_pack = false;
655           }
656         }
657       }
658     }
659     if (create_pack) {
660       for (uint i = 0; i < memops.size(); i++) {
661         Node* s1 = memops.at(i);
662         int align = alignment(s1);
663         if (align == top_align) continue;
664         for (uint j = 0; j < memops.size(); j++) {
665           Node* s2 = memops.at(j);
666           if (alignment(s2) == top_align) continue;
667           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
668             if (stmts_can_pack(s1, s2, align)) {
669               Node_List* pair = new Node_List();
670               pair->push(s1);
671               pair->push(s2);
672               if (!_do_vector_loop || same_origin_idx(s1, s2)) {
673                 _packset.append(pair);
674               }
675             }
676           }
677         }
678       }
679     } else { // Don't create unaligned pack
680       // First, remove remaining memory ops of the same type from the list.
681       for (int i = memops.size() - 1; i >= 0; i--) {
682         MemNode* s = memops.at(i)->as_Mem();
683         if (same_velt_type(s, mem_ref)) {
684           memops.remove(i);
685         }
686       }
687 
688       // Second, remove already constructed packs of the same type.
689       for (int i = _packset.length() - 1; i >= 0; i--) {
690         Node_List* p = _packset.at(i);
691         MemNode* s = p->at(0)->as_Mem();
692         if (same_velt_type(s, mem_ref)) {
693           remove_pack_at(i);
694         }
695       }
696 
697       // If needed find the best memory reference for loop alignment again.
698       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
699         // Put memory ops from remaining packs back on memops list for
700         // the best alignment search.
701         uint orig_msize = memops.size();
702         for (int i = 0; i < _packset.length(); i++) {
703           Node_List* p = _packset.at(i);
704           MemNode* s = p->at(0)->as_Mem();
705           assert(!same_velt_type(s, mem_ref), "sanity");
706           memops.push(s);
707         }
708         best_align_to_mem_ref = find_align_to_ref(memops);
709         if (best_align_to_mem_ref == NULL) {
710           if (TraceSuperWord) {
711             tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
712           }
713           break;
714         }
715         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
716         NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
717         // Restore list.
718         while (memops.size() > orig_msize)
719           (void)memops.pop();
720       }
721     } // unaligned memory accesses
722 
723     // Remove used mem nodes.
724     for (int i = memops.size() - 1; i >= 0; i--) {
725       MemNode* m = memops.at(i)->as_Mem();
726       if (alignment(m) != top_align) {
727         memops.remove(i);
728       }
729     }
730 
731   } // while (memops.size() != 0
732   set_align_to_ref(best_align_to_mem_ref);
733 
734   if (TraceSuperWord) {
735     tty->print_cr("\nAfter find_adjacent_refs");
736     print_packset();
737   }
738 }
739 
740 #ifndef PRODUCT
find_adjacent_refs_trace_1(Node * best_align_to_mem_ref,int best_iv_adjustment)741 void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
742   if (is_trace_adjacent()) {
743     tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
744        best_align_to_mem_ref->_idx, best_iv_adjustment);
745        best_align_to_mem_ref->dump();
746   }
747 }
748 #endif
749 
750 //------------------------------find_align_to_ref---------------------------
751 // Find a memory reference to align the loop induction variable to.
752 // Looks first at stores then at loads, looking for a memory reference
753 // with the largest number of references similar to it.
find_align_to_ref(Node_List & memops)754 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
755   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
756 
757   // Count number of comparable memory ops
758   for (uint i = 0; i < memops.size(); i++) {
759     MemNode* s1 = memops.at(i)->as_Mem();
760     SWPointer p1(s1, this, NULL, false);
761     // Discard if pre loop can't align this reference
762     if (!ref_is_alignable(p1)) {
763       *cmp_ct.adr_at(i) = 0;
764       continue;
765     }
766     for (uint j = i+1; j < memops.size(); j++) {
767       MemNode* s2 = memops.at(j)->as_Mem();
768       if (isomorphic(s1, s2)) {
769         SWPointer p2(s2, this, NULL, false);
770         if (p1.comparable(p2)) {
771           (*cmp_ct.adr_at(i))++;
772           (*cmp_ct.adr_at(j))++;
773         }
774       }
775     }
776   }
777 
778   // Find Store (or Load) with the greatest number of "comparable" references,
779   // biggest vector size, smallest data size and smallest iv offset.
780   int max_ct        = 0;
781   int max_vw        = 0;
782   int max_idx       = -1;
783   int min_size      = max_jint;
784   int min_iv_offset = max_jint;
785   for (uint j = 0; j < memops.size(); j++) {
786     MemNode* s = memops.at(j)->as_Mem();
787     if (s->is_Store()) {
788       int vw = vector_width_in_bytes(s);
789       assert(vw > 1, "sanity");
790       SWPointer p(s, this, NULL, false);
791       if ( cmp_ct.at(j) >  max_ct ||
792           (cmp_ct.at(j) == max_ct &&
793             ( vw >  max_vw ||
794              (vw == max_vw &&
795               ( data_size(s) <  min_size ||
796                (data_size(s) == min_size &&
797                 p.offset_in_bytes() < min_iv_offset)))))) {
798         max_ct = cmp_ct.at(j);
799         max_vw = vw;
800         max_idx = j;
801         min_size = data_size(s);
802         min_iv_offset = p.offset_in_bytes();
803       }
804     }
805   }
806   // If no stores, look at loads
807   if (max_ct == 0) {
808     for (uint j = 0; j < memops.size(); j++) {
809       MemNode* s = memops.at(j)->as_Mem();
810       if (s->is_Load()) {
811         int vw = vector_width_in_bytes(s);
812         assert(vw > 1, "sanity");
813         SWPointer p(s, this, NULL, false);
814         if ( cmp_ct.at(j) >  max_ct ||
815             (cmp_ct.at(j) == max_ct &&
816               ( vw >  max_vw ||
817                (vw == max_vw &&
818                 ( data_size(s) <  min_size ||
819                  (data_size(s) == min_size &&
820                   p.offset_in_bytes() < min_iv_offset)))))) {
821           max_ct = cmp_ct.at(j);
822           max_vw = vw;
823           max_idx = j;
824           min_size = data_size(s);
825           min_iv_offset = p.offset_in_bytes();
826         }
827       }
828     }
829   }
830 
831 #ifdef ASSERT
832   if (TraceSuperWord && Verbose) {
833     tty->print_cr("\nVector memops after find_align_to_ref");
834     for (uint i = 0; i < memops.size(); i++) {
835       MemNode* s = memops.at(i)->as_Mem();
836       s->dump();
837     }
838   }
839 #endif
840 
841   if (max_ct > 0) {
842 #ifdef ASSERT
843     if (TraceSuperWord) {
844       tty->print("\nVector align to node: ");
845       memops.at(max_idx)->as_Mem()->dump();
846     }
847 #endif
848     return memops.at(max_idx)->as_Mem();
849   }
850   return NULL;
851 }
852 
853 //------------------span_works_for_memory_size-----------------------------
span_works_for_memory_size(MemNode * mem,int span,int mem_size,int offset)854 static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) {
855   bool span_matches_memory = false;
856   if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT))
857     && ABS(span) == type2aelembytes(T_INT)) {
858     // There is a mismatch on span size compared to memory.
859     for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) {
860       Node* use = mem->fast_out(j);
861       if (!VectorNode::is_type_transition_to_int(use)) {
862         return false;
863       }
864     }
865     // If all uses transition to integer, it means that we can successfully align even on mismatch.
866     return true;
867   }
868   else {
869     span_matches_memory = ABS(span) == mem_size;
870   }
871   return span_matches_memory && (ABS(offset) % mem_size) == 0;
872 }
873 
874 //------------------------------ref_is_alignable---------------------------
875 // Can the preloop align the reference to position zero in the vector?
ref_is_alignable(SWPointer & p)876 bool SuperWord::ref_is_alignable(SWPointer& p) {
877   if (!p.has_iv()) {
878     return true;   // no induction variable
879   }
880   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
881   assert(pre_end != NULL, "we must have a correct pre-loop");
882   assert(pre_end->stride_is_con(), "pre loop stride is constant");
883   int preloop_stride = pre_end->stride_con();
884 
885   int span = preloop_stride * p.scale_in_bytes();
886   int mem_size = p.memory_size();
887   int offset   = p.offset_in_bytes();
888   // Stride one accesses are alignable if offset is aligned to memory operation size.
889   // Offset can be unaligned when UseUnalignedAccesses is used.
890   if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) {
891     return true;
892   }
893   // If the initial offset from start of the object is computable,
894   // check if the pre-loop can align the final offset accordingly.
895   //
896   // In other words: Can we find an i such that the offset
897   // after i pre-loop iterations is aligned to vw?
898   //   (init_offset + pre_loop) % vw == 0              (1)
899   // where
900   //   pre_loop = i * span
901   // is the number of bytes added to the offset by i pre-loop iterations.
902   //
903   // For this to hold we need pre_loop to increase init_offset by
904   //   pre_loop = vw - (init_offset % vw)
905   //
906   // This is only possible if pre_loop is divisible by span because each
907   // pre-loop iteration increases the initial offset by 'span' bytes:
908   //   (vw - (init_offset % vw)) % span == 0
909   //
910   int vw = vector_width_in_bytes(p.mem());
911   assert(vw > 1, "sanity");
912   Node* init_nd = pre_end->init_trip();
913   if (init_nd->is_Con() && p.invar() == NULL) {
914     int init = init_nd->bottom_type()->is_int()->get_con();
915     int init_offset = init * p.scale_in_bytes() + offset;
916     if (init_offset < 0) { // negative offset from object start?
917       return false;        // may happen in dead loop
918     }
919     if (vw % span == 0) {
920       // If vm is a multiple of span, we use formula (1).
921       if (span > 0) {
922         return (vw - (init_offset % vw)) % span == 0;
923       } else {
924         assert(span < 0, "nonzero stride * scale");
925         return (init_offset % vw) % -span == 0;
926       }
927     } else if (span % vw == 0) {
928       // If span is a multiple of vw, we can simplify formula (1) to:
929       //   (init_offset + i * span) % vw == 0
930       //     =>
931       //   (init_offset % vw) + ((i * span) % vw) == 0
932       //     =>
933       //   init_offset % vw == 0
934       //
935       // Because we add a multiple of vw to the initial offset, the final
936       // offset is a multiple of vw if and only if init_offset is a multiple.
937       //
938       return (init_offset % vw) == 0;
939     }
940   }
941   return false;
942 }
943 //---------------------------get_vw_bytes_special------------------------
get_vw_bytes_special(MemNode * s)944 int SuperWord::get_vw_bytes_special(MemNode* s) {
945   // Get the vector width in bytes.
946   int vw = vector_width_in_bytes(s);
947 
948   // Check for special case where there is an MulAddS2I usage where short vectors are going to need combined.
949   BasicType btype = velt_basic_type(s);
950   if (type2aelembytes(btype) == 2) {
951     bool should_combine_adjacent = true;
952     for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
953       Node* user = s->fast_out(i);
954       if (!VectorNode::is_muladds2i(user)) {
955         should_combine_adjacent = false;
956       }
957     }
958     if (should_combine_adjacent) {
959       vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2);
960     }
961   }
962 
963   return vw;
964 }
965 
966 //---------------------------get_iv_adjustment---------------------------
967 // Calculate loop's iv adjustment for this memory ops.
get_iv_adjustment(MemNode * mem_ref)968 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
969   SWPointer align_to_ref_p(mem_ref, this, NULL, false);
970   int offset = align_to_ref_p.offset_in_bytes();
971   int scale  = align_to_ref_p.scale_in_bytes();
972   int elt_size = align_to_ref_p.memory_size();
973   int vw       = get_vw_bytes_special(mem_ref);
974   assert(vw > 1, "sanity");
975   int iv_adjustment;
976   if (scale != 0) {
977     int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
978     // At least one iteration is executed in pre-loop by default. As result
979     // several iterations are needed to align memory operations in main-loop even
980     // if offset is 0.
981     int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
982     assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
983            "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
984     iv_adjustment = iv_adjustment_in_bytes/elt_size;
985   } else {
986     // This memory op is not dependent on iv (scale == 0)
987     iv_adjustment = 0;
988   }
989 
990 #ifndef PRODUCT
991   if (TraceSuperWord) {
992     tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
993       mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
994     mem_ref->dump();
995   }
996 #endif
997   return iv_adjustment;
998 }
999 
1000 //---------------------------dependence_graph---------------------------
1001 // Construct dependency graph.
1002 // Add dependence edges to load/store nodes for memory dependence
1003 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
dependence_graph()1004 void SuperWord::dependence_graph() {
1005   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
1006   // First, assign a dependence node to each memory node
1007   for (int i = 0; i < _block.length(); i++ ) {
1008     Node *n = _block.at(i);
1009     if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1010       _dg.make_node(n);
1011     }
1012   }
1013 
1014   // For each memory slice, create the dependences
1015   for (int i = 0; i < _mem_slice_head.length(); i++) {
1016     Node* n      = _mem_slice_head.at(i);
1017     Node* n_tail = _mem_slice_tail.at(i);
1018 
1019     // Get slice in predecessor order (last is first)
1020     if (cl->is_main_loop()) {
1021       mem_slice_preds(n_tail, n, _nlist);
1022     }
1023 
1024 #ifndef PRODUCT
1025     if(TraceSuperWord && Verbose) {
1026       tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
1027       for (int j = _nlist.length() - 1; j >= 0 ; j--) {
1028         _nlist.at(j)->dump();
1029       }
1030     }
1031 #endif
1032     // Make the slice dependent on the root
1033     DepMem* slice = _dg.dep(n);
1034     _dg.make_edge(_dg.root(), slice);
1035 
1036     // Create a sink for the slice
1037     DepMem* slice_sink = _dg.make_node(NULL);
1038     _dg.make_edge(slice_sink, _dg.tail());
1039 
1040     // Now visit each pair of memory ops, creating the edges
1041     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
1042       Node* s1 = _nlist.at(j);
1043 
1044       // If no dependency yet, use slice
1045       if (_dg.dep(s1)->in_cnt() == 0) {
1046         _dg.make_edge(slice, s1);
1047       }
1048       SWPointer p1(s1->as_Mem(), this, NULL, false);
1049       bool sink_dependent = true;
1050       for (int k = j - 1; k >= 0; k--) {
1051         Node* s2 = _nlist.at(k);
1052         if (s1->is_Load() && s2->is_Load())
1053           continue;
1054         SWPointer p2(s2->as_Mem(), this, NULL, false);
1055 
1056         int cmp = p1.cmp(p2);
1057         if (SuperWordRTDepCheck &&
1058             p1.base() != p2.base() && p1.valid() && p2.valid()) {
1059           // Create a runtime check to disambiguate
1060           OrderedPair pp(p1.base(), p2.base());
1061           _disjoint_ptrs.append_if_missing(pp);
1062         } else if (!SWPointer::not_equal(cmp)) {
1063           // Possibly same address
1064           _dg.make_edge(s1, s2);
1065           sink_dependent = false;
1066         }
1067       }
1068       if (sink_dependent) {
1069         _dg.make_edge(s1, slice_sink);
1070       }
1071     }
1072 
1073     if (TraceSuperWord) {
1074       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
1075       for (int q = 0; q < _nlist.length(); q++) {
1076         _dg.print(_nlist.at(q));
1077       }
1078       tty->cr();
1079     }
1080 
1081     _nlist.clear();
1082   }
1083 
1084   if (TraceSuperWord) {
1085     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
1086     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
1087       _disjoint_ptrs.at(r).print();
1088       tty->cr();
1089     }
1090     tty->cr();
1091   }
1092 
1093 }
1094 
1095 //---------------------------mem_slice_preds---------------------------
1096 // Return a memory slice (node list) in predecessor order starting at "start"
mem_slice_preds(Node * start,Node * stop,GrowableArray<Node * > & preds)1097 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
1098   assert(preds.length() == 0, "start empty");
1099   Node* n = start;
1100   Node* prev = NULL;
1101   while (true) {
1102     NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
1103     assert(in_bb(n), "must be in block");
1104     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1105       Node* out = n->fast_out(i);
1106       if (out->is_Load()) {
1107         if (in_bb(out)) {
1108           preds.push(out);
1109           if (TraceSuperWord && Verbose) {
1110             tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
1111           }
1112         }
1113       } else {
1114         // FIXME
1115         if (out->is_MergeMem() && !in_bb(out)) {
1116           // Either unrolling is causing a memory edge not to disappear,
1117           // or need to run igvn.optimize() again before SLP
1118         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
1119           // Ditto.  Not sure what else to check further.
1120         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
1121           // StoreCM has an input edge used as a precedence edge.
1122           // Maybe an issue when oop stores are vectorized.
1123         } else {
1124           assert(out == prev || prev == NULL, "no branches off of store slice");
1125         }
1126       }//else
1127     }//for
1128     if (n == stop) break;
1129     preds.push(n);
1130     if (TraceSuperWord && Verbose) {
1131       tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
1132     }
1133     prev = n;
1134     assert(n->is_Mem(), "unexpected node %s", n->Name());
1135     n = n->in(MemNode::Memory);
1136   }
1137 }
1138 
1139 //------------------------------stmts_can_pack---------------------------
1140 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
1141 // s1 aligned at "align"
stmts_can_pack(Node * s1,Node * s2,int align)1142 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
1143 
1144   // Do not use superword for non-primitives
1145   BasicType bt1 = velt_basic_type(s1);
1146   BasicType bt2 = velt_basic_type(s2);
1147   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
1148     return false;
1149   if (Matcher::max_vector_size(bt1) < 2) {
1150     return false; // No vectors for this type
1151   }
1152 
1153   if (isomorphic(s1, s2)) {
1154     if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) {
1155       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
1156         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
1157           int s1_align = alignment(s1);
1158           int s2_align = alignment(s2);
1159           if (s1_align == top_align || s1_align == align) {
1160             if (s2_align == top_align || s2_align == align + data_size(s1)) {
1161               return true;
1162             }
1163           }
1164         }
1165       }
1166     }
1167   }
1168   return false;
1169 }
1170 
1171 //------------------------------exists_at---------------------------
1172 // Does s exist in a pack at position pos?
exists_at(Node * s,uint pos)1173 bool SuperWord::exists_at(Node* s, uint pos) {
1174   for (int i = 0; i < _packset.length(); i++) {
1175     Node_List* p = _packset.at(i);
1176     if (p->at(pos) == s) {
1177       return true;
1178     }
1179   }
1180   return false;
1181 }
1182 
1183 //------------------------------are_adjacent_refs---------------------------
1184 // Is s1 immediately before s2 in memory?
are_adjacent_refs(Node * s1,Node * s2)1185 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
1186   if (!s1->is_Mem() || !s2->is_Mem()) return false;
1187   if (!in_bb(s1)    || !in_bb(s2))    return false;
1188 
1189   // Do not use superword for non-primitives
1190   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
1191       !is_java_primitive(s2->as_Mem()->memory_type())) {
1192     return false;
1193   }
1194 
1195   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
1196   // only pack memops that are in the same alias set until that's fixed.
1197   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
1198       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
1199     return false;
1200   SWPointer p1(s1->as_Mem(), this, NULL, false);
1201   SWPointer p2(s2->as_Mem(), this, NULL, false);
1202   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
1203   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
1204   return diff == data_size(s1);
1205 }
1206 
1207 //------------------------------isomorphic---------------------------
1208 // Are s1 and s2 similar?
isomorphic(Node * s1,Node * s2)1209 bool SuperWord::isomorphic(Node* s1, Node* s2) {
1210   if (s1->Opcode() != s2->Opcode()) return false;
1211   if (s1->req() != s2->req()) return false;
1212   if (!same_velt_type(s1, s2)) return false;
1213   Node* s1_ctrl = s1->in(0);
1214   Node* s2_ctrl = s2->in(0);
1215   // If the control nodes are equivalent, no further checks are required to test for isomorphism.
1216   if (s1_ctrl == s2_ctrl) {
1217     return true;
1218   } else {
1219     bool s1_ctrl_inv = ((s1_ctrl == NULL) ? true : lpt()->is_invariant(s1_ctrl));
1220     bool s2_ctrl_inv = ((s2_ctrl == NULL) ? true : lpt()->is_invariant(s2_ctrl));
1221     // If the control nodes are not invariant for the loop, fail isomorphism test.
1222     if (!s1_ctrl_inv || !s2_ctrl_inv) {
1223       return false;
1224     }
1225     if(s1_ctrl != NULL && s2_ctrl != NULL) {
1226       if (s1_ctrl->is_Proj()) {
1227         s1_ctrl = s1_ctrl->in(0);
1228         assert(lpt()->is_invariant(s1_ctrl), "must be invariant");
1229       }
1230       if (s2_ctrl->is_Proj()) {
1231         s2_ctrl = s2_ctrl->in(0);
1232         assert(lpt()->is_invariant(s2_ctrl), "must be invariant");
1233       }
1234       if (!s1_ctrl->is_RangeCheck() || !s2_ctrl->is_RangeCheck()) {
1235         return false;
1236       }
1237     }
1238     // Control nodes are invariant. However, we have no way of checking whether they resolve
1239     // in an equivalent manner. But, we know that invariant range checks are guaranteed to
1240     // throw before the loop (if they would have thrown). Thus, the loop would not have been reached.
1241     // Therefore, if the control nodes for both are range checks, we accept them to be isomorphic.
1242     for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1243       Node* t1 = s1->fast_out(i);
1244       for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1245         Node* t2 = s2->fast_out(j);
1246         if (VectorNode::is_muladds2i(t1) && VectorNode::is_muladds2i(t2)) {
1247           return true;
1248         }
1249       }
1250     }
1251   }
1252   return false;
1253 }
1254 
1255 //------------------------------independent---------------------------
1256 // Is there no data path from s1 to s2 or s2 to s1?
independent(Node * s1,Node * s2)1257 bool SuperWord::independent(Node* s1, Node* s2) {
1258   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
1259   int d1 = depth(s1);
1260   int d2 = depth(s2);
1261   if (d1 == d2) return s1 != s2;
1262   Node* deep    = d1 > d2 ? s1 : s2;
1263   Node* shallow = d1 > d2 ? s2 : s1;
1264 
1265   visited_clear();
1266 
1267   return independent_path(shallow, deep);
1268 }
1269 
1270 //--------------------------have_similar_inputs-----------------------
1271 // For a node pair (s1, s2) which is isomorphic and independent,
1272 // do s1 and s2 have similar input edges?
have_similar_inputs(Node * s1,Node * s2)1273 bool SuperWord::have_similar_inputs(Node* s1, Node* s2) {
1274   // assert(isomorphic(s1, s2) == true, "check isomorphic");
1275   // assert(independent(s1, s2) == true, "check independent");
1276   if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) {
1277     for (uint i = 1; i < s1->req(); i++) {
1278       if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false;
1279     }
1280   }
1281   return true;
1282 }
1283 
1284 //------------------------------reduction---------------------------
1285 // Is there a data path between s1 and s2 and the nodes reductions?
reduction(Node * s1,Node * s2)1286 bool SuperWord::reduction(Node* s1, Node* s2) {
1287   bool retValue = false;
1288   int d1 = depth(s1);
1289   int d2 = depth(s2);
1290   if (d1 + 1 == d2) {
1291     if (s1->is_reduction() && s2->is_reduction()) {
1292       // This is an ordered set, so s1 should define s2
1293       for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1294         Node* t1 = s1->fast_out(i);
1295         if (t1 == s2) {
1296           // both nodes are reductions and connected
1297           retValue = true;
1298         }
1299       }
1300     }
1301   }
1302 
1303   return retValue;
1304 }
1305 
1306 //------------------------------independent_path------------------------------
1307 // Helper for independent
independent_path(Node * shallow,Node * deep,uint dp)1308 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
1309   if (dp >= 1000) return false; // stop deep recursion
1310   visited_set(deep);
1311   int shal_depth = depth(shallow);
1312   assert(shal_depth <= depth(deep), "must be");
1313   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
1314     Node* pred = preds.current();
1315     if (in_bb(pred) && !visited_test(pred)) {
1316       if (shallow == pred) {
1317         return false;
1318       }
1319       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
1320         return false;
1321       }
1322     }
1323   }
1324   return true;
1325 }
1326 
1327 //------------------------------set_alignment---------------------------
set_alignment(Node * s1,Node * s2,int align)1328 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
1329   set_alignment(s1, align);
1330   if (align == top_align || align == bottom_align) {
1331     set_alignment(s2, align);
1332   } else {
1333     set_alignment(s2, align + data_size(s1));
1334   }
1335 }
1336 
1337 //------------------------------data_size---------------------------
data_size(Node * s)1338 int SuperWord::data_size(Node* s) {
1339   Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov
1340   if (UseVectorCmov) {
1341     use = _cmovev_kit.is_Bool_candidate(s);
1342     if (use != NULL) {
1343       return data_size(use);
1344     }
1345     use = _cmovev_kit.is_CmpD_candidate(s);
1346     if (use != NULL) {
1347       return data_size(use);
1348     }
1349   }
1350 
1351   int bsize = type2aelembytes(velt_basic_type(s));
1352   assert(bsize != 0, "valid size");
1353   return bsize;
1354 }
1355 
1356 //------------------------------extend_packlist---------------------------
1357 // Extend packset by following use->def and def->use links from pack members.
extend_packlist()1358 void SuperWord::extend_packlist() {
1359   bool changed;
1360   do {
1361     packset_sort(_packset.length());
1362     changed = false;
1363     for (int i = 0; i < _packset.length(); i++) {
1364       Node_List* p = _packset.at(i);
1365       changed |= follow_use_defs(p);
1366       changed |= follow_def_uses(p);
1367     }
1368   } while (changed);
1369 
1370   if (_race_possible) {
1371     for (int i = 0; i < _packset.length(); i++) {
1372       Node_List* p = _packset.at(i);
1373       order_def_uses(p);
1374     }
1375   }
1376 
1377   if (TraceSuperWord) {
1378     tty->print_cr("\nAfter extend_packlist");
1379     print_packset();
1380   }
1381 }
1382 
1383 //------------------------------follow_use_defs---------------------------
1384 // Extend the packset by visiting operand definitions of nodes in pack p
follow_use_defs(Node_List * p)1385 bool SuperWord::follow_use_defs(Node_List* p) {
1386   assert(p->size() == 2, "just checking");
1387   Node* s1 = p->at(0);
1388   Node* s2 = p->at(1);
1389   assert(s1->req() == s2->req(), "just checking");
1390   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1391 
1392   if (s1->is_Load()) return false;
1393 
1394   int align = alignment(s1);
1395   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
1396   bool changed = false;
1397   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
1398   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
1399   for (int j = start; j < end; j++) {
1400     Node* t1 = s1->in(j);
1401     Node* t2 = s2->in(j);
1402     if (!in_bb(t1) || !in_bb(t2))
1403       continue;
1404     if (stmts_can_pack(t1, t2, align)) {
1405       if (est_savings(t1, t2) >= 0) {
1406         Node_List* pair = new Node_List();
1407         pair->push(t1);
1408         pair->push(t2);
1409         _packset.append(pair);
1410         NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
1411         set_alignment(t1, t2, align);
1412         changed = true;
1413       }
1414     }
1415   }
1416   return changed;
1417 }
1418 
1419 //------------------------------follow_def_uses---------------------------
1420 // Extend the packset by visiting uses of nodes in pack p
follow_def_uses(Node_List * p)1421 bool SuperWord::follow_def_uses(Node_List* p) {
1422   bool changed = false;
1423   Node* s1 = p->at(0);
1424   Node* s2 = p->at(1);
1425   assert(p->size() == 2, "just checking");
1426   assert(s1->req() == s2->req(), "just checking");
1427   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1428 
1429   if (s1->is_Store()) return false;
1430 
1431   int align = alignment(s1);
1432   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
1433   int savings = -1;
1434   int num_s1_uses = 0;
1435   Node* u1 = NULL;
1436   Node* u2 = NULL;
1437   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1438     Node* t1 = s1->fast_out(i);
1439     num_s1_uses++;
1440     if (!in_bb(t1)) continue;
1441     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1442       Node* t2 = s2->fast_out(j);
1443       if (!in_bb(t2)) continue;
1444       if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv
1445       if (!opnd_positions_match(s1, t1, s2, t2))
1446         continue;
1447       if (stmts_can_pack(t1, t2, align)) {
1448         int my_savings = est_savings(t1, t2);
1449         if (my_savings > savings) {
1450           savings = my_savings;
1451           u1 = t1;
1452           u2 = t2;
1453         }
1454       }
1455     }
1456   }
1457   if (num_s1_uses > 1) {
1458     _race_possible = true;
1459   }
1460   if (savings >= 0) {
1461     Node_List* pair = new Node_List();
1462     pair->push(u1);
1463     pair->push(u2);
1464     _packset.append(pair);
1465     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
1466     set_alignment(u1, u2, align);
1467     changed = true;
1468   }
1469   return changed;
1470 }
1471 
1472 //------------------------------order_def_uses---------------------------
1473 // For extended packsets, ordinally arrange uses packset by major component
order_def_uses(Node_List * p)1474 void SuperWord::order_def_uses(Node_List* p) {
1475   Node* s1 = p->at(0);
1476 
1477   if (s1->is_Store()) return;
1478 
1479   // reductions are always managed beforehand
1480   if (s1->is_reduction()) return;
1481 
1482   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1483     Node* t1 = s1->fast_out(i);
1484 
1485     // Only allow operand swap on commuting operations
1486     if (!t1->is_Add() && !t1->is_Mul() && !VectorNode::is_muladds2i(t1)) {
1487       break;
1488     }
1489 
1490     // Now find t1's packset
1491     Node_List* p2 = NULL;
1492     for (int j = 0; j < _packset.length(); j++) {
1493       p2 = _packset.at(j);
1494       Node* first = p2->at(0);
1495       if (t1 == first) {
1496         break;
1497       }
1498       p2 = NULL;
1499     }
1500     // Arrange all sub components by the major component
1501     if (p2 != NULL) {
1502       for (uint j = 1; j < p->size(); j++) {
1503         Node* d1 = p->at(j);
1504         Node* u1 = p2->at(j);
1505         opnd_positions_match(s1, t1, d1, u1);
1506       }
1507     }
1508   }
1509 }
1510 
1511 //---------------------------opnd_positions_match-------------------------
1512 // Is the use of d1 in u1 at the same operand position as d2 in u2?
opnd_positions_match(Node * d1,Node * u1,Node * d2,Node * u2)1513 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
1514   // check reductions to see if they are marshalled to represent the reduction
1515   // operator in a specified opnd
1516   if (u1->is_reduction() && u2->is_reduction()) {
1517     // ensure reductions have phis and reduction definitions feeding the 1st operand
1518     Node* first = u1->in(2);
1519     if (first->is_Phi() || first->is_reduction()) {
1520       u1->swap_edges(1, 2);
1521     }
1522     // ensure reductions have phis and reduction definitions feeding the 1st operand
1523     first = u2->in(2);
1524     if (first->is_Phi() || first->is_reduction()) {
1525       u2->swap_edges(1, 2);
1526     }
1527     return true;
1528   }
1529 
1530   uint ct = u1->req();
1531   if (ct != u2->req()) return false;
1532   uint i1 = 0;
1533   uint i2 = 0;
1534   do {
1535     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
1536     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
1537     if (i1 != i2) {
1538       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
1539         // Further analysis relies on operands position matching.
1540         u2->swap_edges(i1, i2);
1541       } else if (VectorNode::is_muladds2i(u2) && u1 != u2) {
1542         if (i1 == 5 - i2) { // ((i1 == 3 && i2 == 2) || (i1 == 2 && i2 == 3) || (i1 == 1 && i2 == 4) || (i1 == 4 && i2 == 1))
1543           u2->swap_edges(1, 2);
1544           u2->swap_edges(3, 4);
1545         }
1546         if (i1 == 3 - i2 || i1 == 7 - i2) { // ((i1 == 1 && i2 == 2) || (i1 == 2 && i2 == 1) || (i1 == 3 && i2 == 4) || (i1 == 4 && i2 == 3))
1547           u2->swap_edges(2, 3);
1548           u2->swap_edges(1, 4);
1549         }
1550         return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs
1551       } else {
1552         return false;
1553       }
1554     } else if (i1 == i2 && VectorNode::is_muladds2i(u2) && u1 != u2) {
1555       u2->swap_edges(1, 3);
1556       u2->swap_edges(2, 4);
1557       return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs
1558     }
1559   } while (i1 < ct);
1560   return true;
1561 }
1562 
1563 //------------------------------est_savings---------------------------
1564 // Estimate the savings from executing s1 and s2 as a pack
est_savings(Node * s1,Node * s2)1565 int SuperWord::est_savings(Node* s1, Node* s2) {
1566   int save_in = 2 - 1; // 2 operations per instruction in packed form
1567 
1568   // inputs
1569   for (uint i = 1; i < s1->req(); i++) {
1570     Node* x1 = s1->in(i);
1571     Node* x2 = s2->in(i);
1572     if (x1 != x2) {
1573       if (are_adjacent_refs(x1, x2)) {
1574         save_in += adjacent_profit(x1, x2);
1575       } else if (!in_packset(x1, x2)) {
1576         save_in -= pack_cost(2);
1577       } else {
1578         save_in += unpack_cost(2);
1579       }
1580     }
1581   }
1582 
1583   // uses of result
1584   uint ct = 0;
1585   int save_use = 0;
1586   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1587     Node* s1_use = s1->fast_out(i);
1588     for (int j = 0; j < _packset.length(); j++) {
1589       Node_List* p = _packset.at(j);
1590       if (p->at(0) == s1_use) {
1591         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1592           Node* s2_use = s2->fast_out(k);
1593           if (p->at(p->size()-1) == s2_use) {
1594             ct++;
1595             if (are_adjacent_refs(s1_use, s2_use)) {
1596               save_use += adjacent_profit(s1_use, s2_use);
1597             }
1598           }
1599         }
1600       }
1601     }
1602   }
1603 
1604   if (ct < s1->outcnt()) save_use += unpack_cost(1);
1605   if (ct < s2->outcnt()) save_use += unpack_cost(1);
1606 
1607   return MAX2(save_in, save_use);
1608 }
1609 
1610 //------------------------------costs---------------------------
adjacent_profit(Node * s1,Node * s2)1611 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
pack_cost(int ct)1612 int SuperWord::pack_cost(int ct)   { return ct; }
unpack_cost(int ct)1613 int SuperWord::unpack_cost(int ct) { return ct; }
1614 
1615 //------------------------------combine_packs---------------------------
1616 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
combine_packs()1617 void SuperWord::combine_packs() {
1618   bool changed = true;
1619   // Combine packs regardless max vector size.
1620   while (changed) {
1621     changed = false;
1622     for (int i = 0; i < _packset.length(); i++) {
1623       Node_List* p1 = _packset.at(i);
1624       if (p1 == NULL) continue;
1625       // Because of sorting we can start at i + 1
1626       for (int j = i + 1; j < _packset.length(); j++) {
1627         Node_List* p2 = _packset.at(j);
1628         if (p2 == NULL) continue;
1629         if (i == j) continue;
1630         if (p1->at(p1->size()-1) == p2->at(0)) {
1631           for (uint k = 1; k < p2->size(); k++) {
1632             p1->push(p2->at(k));
1633           }
1634           _packset.at_put(j, NULL);
1635           changed = true;
1636         }
1637       }
1638     }
1639   }
1640 
1641   // Split packs which have size greater then max vector size.
1642   for (int i = 0; i < _packset.length(); i++) {
1643     Node_List* p1 = _packset.at(i);
1644     if (p1 != NULL) {
1645       BasicType bt = velt_basic_type(p1->at(0));
1646       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1647       assert(is_power_of_2(max_vlen), "sanity");
1648       uint psize = p1->size();
1649       if (!is_power_of_2(psize)) {
1650         // Skip pack which can't be vector.
1651         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
1652         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
1653         _packset.at_put(i, NULL);
1654         continue;
1655       }
1656       if (psize > max_vlen) {
1657         Node_List* pack = new Node_List();
1658         for (uint j = 0; j < psize; j++) {
1659           pack->push(p1->at(j));
1660           if (pack->size() >= max_vlen) {
1661             assert(is_power_of_2(pack->size()), "sanity");
1662             _packset.append(pack);
1663             pack = new Node_List();
1664           }
1665         }
1666         _packset.at_put(i, NULL);
1667       }
1668     }
1669   }
1670 
1671   // Compress list.
1672   for (int i = _packset.length() - 1; i >= 0; i--) {
1673     Node_List* p1 = _packset.at(i);
1674     if (p1 == NULL) {
1675       _packset.remove_at(i);
1676     }
1677   }
1678 
1679   if (TraceSuperWord) {
1680     tty->print_cr("\nAfter combine_packs");
1681     print_packset();
1682   }
1683 }
1684 
1685 //-----------------------------construct_my_pack_map--------------------------
1686 // Construct the map from nodes to packs.  Only valid after the
1687 // point where a node is only in one pack (after combine_packs).
construct_my_pack_map()1688 void SuperWord::construct_my_pack_map() {
1689   Node_List* rslt = NULL;
1690   for (int i = 0; i < _packset.length(); i++) {
1691     Node_List* p = _packset.at(i);
1692     for (uint j = 0; j < p->size(); j++) {
1693       Node* s = p->at(j);
1694       assert(my_pack(s) == NULL, "only in one pack");
1695       set_my_pack(s, p);
1696     }
1697   }
1698 }
1699 
1700 //------------------------------filter_packs---------------------------
1701 // Remove packs that are not implemented or not profitable.
filter_packs()1702 void SuperWord::filter_packs() {
1703   // Remove packs that are not implemented
1704   for (int i = _packset.length() - 1; i >= 0; i--) {
1705     Node_List* pk = _packset.at(i);
1706     bool impl = implemented(pk);
1707     if (!impl) {
1708 #ifndef PRODUCT
1709       if (TraceSuperWord && Verbose) {
1710         tty->print_cr("Unimplemented");
1711         pk->at(0)->dump();
1712       }
1713 #endif
1714       remove_pack_at(i);
1715     }
1716     Node *n = pk->at(0);
1717     if (n->is_reduction()) {
1718       _num_reductions++;
1719     } else {
1720       _num_work_vecs++;
1721     }
1722   }
1723 
1724   // Remove packs that are not profitable
1725   bool changed;
1726   do {
1727     changed = false;
1728     for (int i = _packset.length() - 1; i >= 0; i--) {
1729       Node_List* pk = _packset.at(i);
1730       bool prof = profitable(pk);
1731       if (!prof) {
1732 #ifndef PRODUCT
1733         if (TraceSuperWord && Verbose) {
1734           tty->print_cr("Unprofitable");
1735           pk->at(0)->dump();
1736         }
1737 #endif
1738         remove_pack_at(i);
1739         changed = true;
1740       }
1741     }
1742   } while (changed);
1743 
1744 #ifndef PRODUCT
1745   if (TraceSuperWord) {
1746     tty->print_cr("\nAfter filter_packs");
1747     print_packset();
1748     tty->cr();
1749   }
1750 #endif
1751 }
1752 
1753 //------------------------------merge_packs_to_cmovd---------------------------
1754 // Merge CMoveD into new vector-nodes
1755 // We want to catch this pattern and subsume CmpD and Bool into CMoveD
1756 //
1757 //                   SubD             ConD
1758 //                  /  |               /
1759 //                 /   |           /   /
1760 //                /    |       /      /
1761 //               /     |   /         /
1762 //              /      /            /
1763 //             /    /  |           /
1764 //            v /      |          /
1765 //         CmpD        |         /
1766 //          |          |        /
1767 //          v          |       /
1768 //         Bool        |      /
1769 //           \         |     /
1770 //             \       |    /
1771 //               \     |   /
1772 //                 \   |  /
1773 //                   \ v /
1774 //                   CMoveD
1775 //
1776 
merge_packs_to_cmovd()1777 void SuperWord::merge_packs_to_cmovd() {
1778   for (int i = _packset.length() - 1; i >= 0; i--) {
1779     _cmovev_kit.make_cmovevd_pack(_packset.at(i));
1780   }
1781   #ifndef PRODUCT
1782     if (TraceSuperWord) {
1783       tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
1784       print_packset();
1785       tty->cr();
1786     }
1787   #endif
1788 }
1789 
is_Bool_candidate(Node * def) const1790 Node* CMoveKit::is_Bool_candidate(Node* def) const {
1791   Node* use = NULL;
1792   if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
1793     return NULL;
1794   }
1795   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1796     use = def->fast_out(j);
1797     if (!_sw->same_generation(def, use) || !use->is_CMove()) {
1798       return NULL;
1799     }
1800   }
1801   return use;
1802 }
1803 
is_CmpD_candidate(Node * def) const1804 Node* CMoveKit::is_CmpD_candidate(Node* def) const {
1805   Node* use = NULL;
1806   if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
1807     return NULL;
1808   }
1809   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1810     use = def->fast_out(j);
1811     if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
1812       return NULL;
1813     }
1814   }
1815   return use;
1816 }
1817 
make_cmovevd_pack(Node_List * cmovd_pk)1818 Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
1819   Node *cmovd = cmovd_pk->at(0);
1820   if (!cmovd->is_CMove()) {
1821     return NULL;
1822   }
1823   if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) {
1824     return NULL;
1825   }
1826   if (pack(cmovd) != NULL) { // already in the cmov pack
1827     return NULL;
1828   }
1829   if (cmovd->in(0) != NULL) {
1830     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
1831     return NULL;
1832   }
1833 
1834   Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
1835   if (!bol->is_Bool()
1836       || bol->outcnt() != 1
1837       || !_sw->same_generation(bol, cmovd)
1838       || bol->in(0) != NULL  // BoolNode has control flow!!
1839       || _sw->my_pack(bol) == NULL) {
1840       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
1841       return NULL;
1842   }
1843   Node_List* bool_pk = _sw->my_pack(bol);
1844   if (bool_pk->size() != cmovd_pk->size() ) {
1845     return NULL;
1846   }
1847 
1848   Node* cmpd = bol->in(1);
1849   if (!cmpd->is_Cmp()
1850       || cmpd->outcnt() != 1
1851       || !_sw->same_generation(cmpd, cmovd)
1852       || cmpd->in(0) != NULL  // CmpDNode has control flow!!
1853       || _sw->my_pack(cmpd) == NULL) {
1854       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
1855       return NULL;
1856   }
1857   Node_List* cmpd_pk = _sw->my_pack(cmpd);
1858   if (cmpd_pk->size() != cmovd_pk->size() ) {
1859     return NULL;
1860   }
1861 
1862   if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
1863     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
1864     return NULL;
1865   }
1866 
1867   Node_List* new_cmpd_pk = new Node_List();
1868   uint sz = cmovd_pk->size() - 1;
1869   for (uint i = 0; i <= sz; ++i) {
1870     Node* cmov = cmovd_pk->at(i);
1871     Node* bol  = bool_pk->at(i);
1872     Node* cmp  = cmpd_pk->at(i);
1873 
1874     new_cmpd_pk->insert(i, cmov);
1875 
1876     map(cmov, new_cmpd_pk);
1877     map(bol, new_cmpd_pk);
1878     map(cmp, new_cmpd_pk);
1879 
1880     _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
1881   }
1882   _sw->_packset.remove(cmovd_pk);
1883   _sw->_packset.remove(bool_pk);
1884   _sw->_packset.remove(cmpd_pk);
1885   _sw->_packset.append(new_cmpd_pk);
1886   NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
1887   return new_cmpd_pk;
1888 }
1889 
test_cmpd_pack(Node_List * cmpd_pk,Node_List * cmovd_pk)1890 bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
1891   Node* cmpd0 = cmpd_pk->at(0);
1892   assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
1893   assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
1894   assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
1895   Node* in1 = cmpd0->in(1);
1896   Node* in2 = cmpd0->in(2);
1897   Node_List* in1_pk = _sw->my_pack(in1);
1898   Node_List* in2_pk = _sw->my_pack(in2);
1899 
1900   if (  (in1_pk != NULL && in1_pk->size() != cmpd_pk->size())
1901      || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) {
1902     return false;
1903   }
1904 
1905   // test if "all" in1 are in the same pack or the same node
1906   if (in1_pk == NULL) {
1907     for (uint j = 1; j < cmpd_pk->size(); j++) {
1908       if (cmpd_pk->at(j)->in(1) != in1) {
1909         return false;
1910       }
1911     }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
1912   }
1913   // test if "all" in2 are in the same pack or the same node
1914   if (in2_pk == NULL) {
1915     for (uint j = 1; j < cmpd_pk->size(); j++) {
1916       if (cmpd_pk->at(j)->in(2) != in2) {
1917         return false;
1918       }
1919     }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
1920   }
1921   //now check if cmpd_pk may be subsumed in vector built for cmovd_pk
1922   int cmovd_ind1, cmovd_ind2;
1923   if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1924    && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1925       cmovd_ind1 = CMoveNode::IfFalse;
1926       cmovd_ind2 = CMoveNode::IfTrue;
1927   } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1928           && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1929       cmovd_ind2 = CMoveNode::IfFalse;
1930       cmovd_ind1 = CMoveNode::IfTrue;
1931   }
1932   else {
1933     return false;
1934   }
1935 
1936   for (uint j = 1; j < cmpd_pk->size(); j++) {
1937     if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
1938         || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
1939         return false;
1940     }//if
1941   }
1942   NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
1943   return true;
1944 }
1945 
1946 //------------------------------implemented---------------------------
1947 // Can code be generated for pack p?
implemented(Node_List * p)1948 bool SuperWord::implemented(Node_List* p) {
1949   bool retValue = false;
1950   Node* p0 = p->at(0);
1951   if (p0 != NULL) {
1952     int opc = p0->Opcode();
1953     uint size = p->size();
1954     if (p0->is_reduction()) {
1955       const Type *arith_type = p0->bottom_type();
1956       // Length 2 reductions of INT/LONG do not offer performance benefits
1957       if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
1958         retValue = false;
1959       } else {
1960         retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1961       }
1962     } else {
1963       retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1964     }
1965     if (!retValue) {
1966       if (is_cmov_pack(p)) {
1967         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
1968         return true;
1969       }
1970     }
1971   }
1972   return retValue;
1973 }
1974 
is_cmov_pack(Node_List * p)1975 bool SuperWord::is_cmov_pack(Node_List* p) {
1976   return _cmovev_kit.pack(p->at(0)) != NULL;
1977 }
1978 //------------------------------same_inputs--------------------------
1979 // For pack p, are all idx operands the same?
same_inputs(Node_List * p,int idx)1980 bool SuperWord::same_inputs(Node_List* p, int idx) {
1981   Node* p0 = p->at(0);
1982   uint vlen = p->size();
1983   Node* p0_def = p0->in(idx);
1984   for (uint i = 1; i < vlen; i++) {
1985     Node* pi = p->at(i);
1986     Node* pi_def = pi->in(idx);
1987     if (p0_def != pi_def) {
1988       return false;
1989     }
1990   }
1991   return true;
1992 }
1993 
1994 //------------------------------profitable---------------------------
1995 // For pack p, are all operands and all uses (with in the block) vector?
profitable(Node_List * p)1996 bool SuperWord::profitable(Node_List* p) {
1997   Node* p0 = p->at(0);
1998   uint start, end;
1999   VectorNode::vector_operands(p0, &start, &end);
2000 
2001   // Return false if some inputs are not vectors or vectors with different
2002   // size or alignment.
2003   // Also, for now, return false if not scalar promotion case when inputs are
2004   // the same. Later, implement PackNode and allow differing, non-vector inputs
2005   // (maybe just the ones from outside the block.)
2006   for (uint i = start; i < end; i++) {
2007     if (!is_vector_use(p0, i)) {
2008       return false;
2009     }
2010   }
2011   // Check if reductions are connected
2012   if (p0->is_reduction()) {
2013     Node* second_in = p0->in(2);
2014     Node_List* second_pk = my_pack(second_in);
2015     if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
2016       // Remove reduction flag if no parent pack or if not enough work
2017       // to cover reduction expansion overhead
2018       p0->remove_flag(Node::Flag_is_reduction);
2019       return false;
2020     } else if (second_pk->size() != p->size()) {
2021       return false;
2022     }
2023   }
2024   if (VectorNode::is_shift(p0)) {
2025     // For now, return false if shift count is vector or not scalar promotion
2026     // case (different shift counts) because it is not supported yet.
2027     Node* cnt = p0->in(2);
2028     Node_List* cnt_pk = my_pack(cnt);
2029     if (cnt_pk != NULL)
2030       return false;
2031     if (!same_inputs(p, 2))
2032       return false;
2033   }
2034   if (!p0->is_Store()) {
2035     // For now, return false if not all uses are vector.
2036     // Later, implement ExtractNode and allow non-vector uses (maybe
2037     // just the ones outside the block.)
2038     for (uint i = 0; i < p->size(); i++) {
2039       Node* def = p->at(i);
2040       if (is_cmov_pack_internal_node(p, def)) {
2041         continue;
2042       }
2043       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2044         Node* use = def->fast_out(j);
2045         for (uint k = 0; k < use->req(); k++) {
2046           Node* n = use->in(k);
2047           if (def == n) {
2048             // Reductions should only have a Phi use at the loop head or a non-phi use
2049             // outside of the loop if it is the last element of the pack (e.g. SafePoint).
2050             if (def->is_reduction() &&
2051                 ((use->is_Phi() && use->in(0) == _lpt->_head) ||
2052                  (!_lpt->is_member(_phase->get_loop(_phase->ctrl_or_self(use))) && i == p->size()-1))) {
2053               continue;
2054             }
2055             if (!is_vector_use(use, k)) {
2056               return false;
2057             }
2058           }
2059         }
2060       }
2061     }
2062   }
2063   return true;
2064 }
2065 
2066 //------------------------------schedule---------------------------
2067 // Adjust the memory graph for the packed operations
schedule()2068 void SuperWord::schedule() {
2069 
2070   // Co-locate in the memory graph the members of each memory pack
2071   for (int i = 0; i < _packset.length(); i++) {
2072     co_locate_pack(_packset.at(i));
2073   }
2074 }
2075 
2076 //-------------------------------remove_and_insert-------------------
2077 // Remove "current" from its current position in the memory graph and insert
2078 // it after the appropriate insertion point (lip or uip).
remove_and_insert(MemNode * current,MemNode * prev,MemNode * lip,Node * uip,Unique_Node_List & sched_before)2079 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
2080                                   Node *uip, Unique_Node_List &sched_before) {
2081   Node* my_mem = current->in(MemNode::Memory);
2082   bool sched_up = sched_before.member(current);
2083 
2084   // remove current_store from its current position in the memmory graph
2085   for (DUIterator i = current->outs(); current->has_out(i); i++) {
2086     Node* use = current->out(i);
2087     if (use->is_Mem()) {
2088       assert(use->in(MemNode::Memory) == current, "must be");
2089       if (use == prev) { // connect prev to my_mem
2090           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
2091           --i; //deleted this edge; rescan position
2092       } else if (sched_before.member(use)) {
2093         if (!sched_up) { // Will be moved together with current
2094           _igvn.replace_input_of(use, MemNode::Memory, uip);
2095           --i; //deleted this edge; rescan position
2096         }
2097       } else {
2098         if (sched_up) { // Will be moved together with current
2099           _igvn.replace_input_of(use, MemNode::Memory, lip);
2100           --i; //deleted this edge; rescan position
2101         }
2102       }
2103     }
2104   }
2105 
2106   Node *insert_pt =  sched_up ?  uip : lip;
2107 
2108   // all uses of insert_pt's memory state should use current's instead
2109   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
2110     Node* use = insert_pt->out(i);
2111     if (use->is_Mem()) {
2112       assert(use->in(MemNode::Memory) == insert_pt, "must be");
2113       _igvn.replace_input_of(use, MemNode::Memory, current);
2114       --i; //deleted this edge; rescan position
2115     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
2116       uint pos; //lip (lower insert point) must be the last one in the memory slice
2117       for (pos=1; pos < use->req(); pos++) {
2118         if (use->in(pos) == insert_pt) break;
2119       }
2120       _igvn.replace_input_of(use, pos, current);
2121       --i;
2122     }
2123   }
2124 
2125   //connect current to insert_pt
2126   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
2127 }
2128 
2129 //------------------------------co_locate_pack----------------------------------
2130 // To schedule a store pack, we need to move any sandwiched memory ops either before
2131 // or after the pack, based upon dependence information:
2132 // (1) If any store in the pack depends on the sandwiched memory op, the
2133 //     sandwiched memory op must be scheduled BEFORE the pack;
2134 // (2) If a sandwiched memory op depends on any store in the pack, the
2135 //     sandwiched memory op must be scheduled AFTER the pack;
2136 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
2137 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
2138 //     scheduled before the pack, memB must also be scheduled before the pack;
2139 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
2140 //     schedule this store AFTER the pack
2141 // (5) We know there is no dependence cycle, so there in no other case;
2142 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
2143 //
2144 // To schedule a load pack, we use the memory state of either the first or the last load in
2145 // the pack, based on the dependence constraint.
co_locate_pack(Node_List * pk)2146 void SuperWord::co_locate_pack(Node_List* pk) {
2147   if (pk->at(0)->is_Store()) {
2148     MemNode* first     = executed_first(pk)->as_Mem();
2149     MemNode* last      = executed_last(pk)->as_Mem();
2150     Unique_Node_List schedule_before_pack;
2151     Unique_Node_List memops;
2152 
2153     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
2154     MemNode* previous  = last;
2155     while (true) {
2156       assert(in_bb(current), "stay in block");
2157       memops.push(previous);
2158       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2159         Node* use = current->out(i);
2160         if (use->is_Mem() && use != previous)
2161           memops.push(use);
2162       }
2163       if (current == first) break;
2164       previous = current;
2165       current  = current->in(MemNode::Memory)->as_Mem();
2166     }
2167 
2168     // determine which memory operations should be scheduled before the pack
2169     for (uint i = 1; i < memops.size(); i++) {
2170       Node *s1 = memops.at(i);
2171       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
2172         for (uint j = 0; j< i; j++) {
2173           Node *s2 = memops.at(j);
2174           if (!independent(s1, s2)) {
2175             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
2176               schedule_before_pack.push(s1); // s1 must be scheduled before
2177               Node_List* mem_pk = my_pack(s1);
2178               if (mem_pk != NULL) {
2179                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
2180                   Node* s = mem_pk->at(ii);  // follow partner
2181                   if (memops.member(s) && !schedule_before_pack.member(s))
2182                     schedule_before_pack.push(s);
2183                 }
2184               }
2185               break;
2186             }
2187           }
2188         }
2189       }
2190     }
2191 
2192     Node*    upper_insert_pt = first->in(MemNode::Memory);
2193     // Following code moves loads connected to upper_insert_pt below aliased stores.
2194     // Collect such loads here and reconnect them back to upper_insert_pt later.
2195     memops.clear();
2196     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
2197       Node* use = upper_insert_pt->out(i);
2198       if (use->is_Mem() && !use->is_Store()) {
2199         memops.push(use);
2200       }
2201     }
2202 
2203     MemNode* lower_insert_pt = last;
2204     previous                 = last; //previous store in pk
2205     current                  = last->in(MemNode::Memory)->as_Mem();
2206 
2207     // start scheduling from "last" to "first"
2208     while (true) {
2209       assert(in_bb(current), "stay in block");
2210       assert(in_pack(previous, pk), "previous stays in pack");
2211       Node* my_mem = current->in(MemNode::Memory);
2212 
2213       if (in_pack(current, pk)) {
2214         // Forward users of my memory state (except "previous) to my input memory state
2215         for (DUIterator i = current->outs(); current->has_out(i); i++) {
2216           Node* use = current->out(i);
2217           if (use->is_Mem() && use != previous) {
2218             assert(use->in(MemNode::Memory) == current, "must be");
2219             if (schedule_before_pack.member(use)) {
2220               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
2221             } else {
2222               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
2223             }
2224             --i; // deleted this edge; rescan position
2225           }
2226         }
2227         previous = current;
2228       } else { // !in_pack(current, pk) ==> a sandwiched store
2229         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
2230       }
2231 
2232       if (current == first) break;
2233       current = my_mem->as_Mem();
2234     } // end while
2235 
2236     // Reconnect loads back to upper_insert_pt.
2237     for (uint i = 0; i < memops.size(); i++) {
2238       Node *ld = memops.at(i);
2239       if (ld->in(MemNode::Memory) != upper_insert_pt) {
2240         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
2241       }
2242     }
2243   } else if (pk->at(0)->is_Load()) { // Load pack
2244     // All loads in the pack should have the same memory state. By default,
2245     // we use the memory state of the last load. However, if any load could
2246     // not be moved down due to the dependence constraint, we use the memory
2247     // state of the first load.
2248     Node* mem_input = pick_mem_state(pk);
2249     _igvn.hash_delete(mem_input);
2250     // Give each load the same memory state
2251     for (uint i = 0; i < pk->size(); i++) {
2252       LoadNode* ld = pk->at(i)->as_Load();
2253       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
2254     }
2255   }
2256 }
2257 
2258 // Finds the first and last memory state and then picks either of them by checking dependence constraints.
2259 // If a store is dependent on an earlier load then we need to pick the memory state of the first load and cannot
2260 // pick the memory state of the last load.
pick_mem_state(Node_List * pk)2261 Node* SuperWord::pick_mem_state(Node_List* pk) {
2262   Node* first_mem = find_first_mem_state(pk);
2263   Node* last_mem  = find_last_mem_state(pk, first_mem);
2264 
2265   for (uint i = 0; i < pk->size(); i++) {
2266     Node* ld = pk->at(i);
2267     for (Node* current = last_mem; current != ld->in(MemNode::Memory); current = current->in(MemNode::Memory)) {
2268       assert(current->is_Mem() && in_bb(current), "unexpected memory");
2269       assert(current != first_mem, "corrupted memory graph");
2270       if (!independent(current, ld)) {
2271 #ifdef ASSERT
2272         // Added assertion code since no case has been observed that should pick the first memory state.
2273         // Remove the assertion code whenever we find a (valid) case that really needs the first memory state.
2274         pk->dump();
2275         first_mem->dump();
2276         last_mem->dump();
2277         current->dump();
2278         ld->dump();
2279         ld->in(MemNode::Memory)->dump();
2280         assert(false, "never observed that first memory should be picked");
2281 #endif
2282         return first_mem; // A later store depends on this load, pick memory state of first load
2283       }
2284     }
2285   }
2286   return last_mem;
2287 }
2288 
2289 // Walk the memory graph from the current first load until the
2290 // start of the loop and check if nodes on the way are memory
2291 // edges of loads in the pack. The last one we encounter is the
2292 // first load.
find_first_mem_state(Node_List * pk)2293 Node* SuperWord::find_first_mem_state(Node_List* pk) {
2294   Node* first_mem = pk->at(0)->in(MemNode::Memory);
2295   for (Node* current = first_mem; in_bb(current); current = current->is_Phi() ? current->in(LoopNode::EntryControl) : current->in(MemNode::Memory)) {
2296     assert(current->is_Mem() || (current->is_Phi() && current->in(0) == bb()), "unexpected memory");
2297     for (uint i = 1; i < pk->size(); i++) {
2298       Node* ld = pk->at(i);
2299       if (ld->in(MemNode::Memory) == current) {
2300         first_mem = current;
2301         break;
2302       }
2303     }
2304   }
2305   return first_mem;
2306 }
2307 
2308 // Find the last load by going over the pack again and walking
2309 // the memory graph from the loads of the pack to the memory of
2310 // the first load. If we encounter the memory of the current last
2311 // load, then we started from further down in the memory graph and
2312 // the load we started from is the last load.
find_last_mem_state(Node_List * pk,Node * first_mem)2313 Node* SuperWord::find_last_mem_state(Node_List* pk, Node* first_mem) {
2314   Node* last_mem = pk->at(0)->in(MemNode::Memory);
2315   for (uint i = 0; i < pk->size(); i++) {
2316     Node* ld = pk->at(i);
2317     for (Node* current = ld->in(MemNode::Memory); current != first_mem; current = current->in(MemNode::Memory)) {
2318       assert(current->is_Mem() && in_bb(current), "unexpected memory");
2319       if (current->in(MemNode::Memory) == last_mem) {
2320         last_mem = ld->in(MemNode::Memory);
2321       }
2322     }
2323   }
2324   return last_mem;
2325 }
2326 
2327 #ifndef PRODUCT
print_loop(bool whole)2328 void SuperWord::print_loop(bool whole) {
2329   Node_Stack stack(_arena, _phase->C->unique() >> 2);
2330   Node_List rpo_list;
2331   VectorSet visited(_arena);
2332   visited.set(lpt()->_head->_idx);
2333   _phase->rpo(lpt()->_head, stack, visited, rpo_list);
2334   _phase->dump(lpt(), rpo_list.size(), rpo_list );
2335   if(whole) {
2336     tty->print_cr("\n Whole loop tree");
2337     _phase->dump();
2338     tty->print_cr(" End of whole loop tree\n");
2339   }
2340 }
2341 #endif
2342 
2343 //------------------------------output---------------------------
2344 // Convert packs into vector node operations
output()2345 void SuperWord::output() {
2346   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2347   Compile* C = _phase->C;
2348   if (_packset.length() == 0) {
2349     if (cl->is_main_loop()) {
2350       // Instigate more unrolling for optimization when vectorization fails.
2351       C->set_major_progress();
2352       cl->set_notpassed_slp();
2353       cl->mark_do_unroll_only();
2354     }
2355     return;
2356   }
2357 
2358 #ifndef PRODUCT
2359   if (TraceLoopOpts) {
2360     tty->print("SuperWord::output    ");
2361     lpt()->dump_head();
2362   }
2363 #endif
2364 
2365   if (cl->is_main_loop()) {
2366     // MUST ENSURE main loop's initial value is properly aligned:
2367     //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
2368 
2369     align_initial_loop_index(align_to_ref());
2370 
2371     // Insert extract (unpack) operations for scalar uses
2372     for (int i = 0; i < _packset.length(); i++) {
2373       insert_extracts(_packset.at(i));
2374     }
2375   }
2376 
2377   uint max_vlen_in_bytes = 0;
2378   uint max_vlen = 0;
2379   bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
2380 
2381   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
2382 
2383   CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
2384 
2385   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
2386 
2387   if (do_reserve_copy() && !make_reversable.has_reserved()) {
2388     NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
2389     return;
2390   }
2391 
2392   for (int i = 0; i < _block.length(); i++) {
2393     Node* n = _block.at(i);
2394     Node_List* p = my_pack(n);
2395     if (p && n == executed_last(p)) {
2396       uint vlen = p->size();
2397       uint vlen_in_bytes = 0;
2398       Node* vn = NULL;
2399       Node* low_adr = p->at(0);
2400       Node* first   = executed_first(p);
2401       if (can_process_post_loop) {
2402         // override vlen with the main loops vector length
2403         vlen = cl->slp_max_unroll();
2404       }
2405       NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
2406       int   opc = n->Opcode();
2407       if (n->is_Load()) {
2408         Node* ctl = n->in(MemNode::Control);
2409         Node* mem = first->in(MemNode::Memory);
2410         SWPointer p1(n->as_Mem(), this, NULL, false);
2411         // Identify the memory dependency for the new loadVector node by
2412         // walking up through memory chain.
2413         // This is done to give flexibility to the new loadVector node so that
2414         // it can move above independent storeVector nodes.
2415         while (mem->is_StoreVector()) {
2416           SWPointer p2(mem->as_Mem(), this, NULL, false);
2417           int cmp = p1.cmp(p2);
2418           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
2419             mem = mem->in(MemNode::Memory);
2420           } else {
2421             break; // dependent memory
2422           }
2423         }
2424         Node* adr = low_adr->in(MemNode::Address);
2425         const TypePtr* atyp = n->adr_type();
2426         vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
2427         vlen_in_bytes = vn->as_LoadVector()->memory_size();
2428       } else if (n->is_Store()) {
2429         // Promote value to be stored to vector
2430         Node* val = vector_opd(p, MemNode::ValueIn);
2431         if (val == NULL) {
2432           if (do_reserve_copy()) {
2433             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
2434             return; //and reverse to backup IG
2435           }
2436           ShouldNotReachHere();
2437         }
2438 
2439         Node* ctl = n->in(MemNode::Control);
2440         Node* mem = first->in(MemNode::Memory);
2441         Node* adr = low_adr->in(MemNode::Address);
2442         const TypePtr* atyp = n->adr_type();
2443         vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
2444         vlen_in_bytes = vn->as_StoreVector()->memory_size();
2445       } else if (VectorNode::is_roundopD(n)) {
2446         Node* in1 = vector_opd(p, 1);
2447         Node* in2 = low_adr->in(2);
2448         assert(in2->is_Con(), "Constant rounding mode expected.");
2449         vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2450         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2451       } else if (VectorNode::is_muladds2i(n)) {
2452         assert(n->req() == 5u, "MulAddS2I should have 4 operands.");
2453         Node* in1 = vector_opd(p, 1);
2454         Node* in2 = vector_opd(p, 2);
2455         vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2456         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2457       } else if (n->req() == 3 && !is_cmov_pack(p)) {
2458         // Promote operands to vector
2459         Node* in1 = NULL;
2460         bool node_isa_reduction = n->is_reduction();
2461         if (node_isa_reduction) {
2462           // the input to the first reduction operation is retained
2463           in1 = low_adr->in(1);
2464         } else {
2465           in1 = vector_opd(p, 1);
2466           if (in1 == NULL) {
2467             if (do_reserve_copy()) {
2468               NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
2469               return; //and reverse to backup IG
2470             }
2471             ShouldNotReachHere();
2472           }
2473         }
2474         Node* in2 = vector_opd(p, 2);
2475         if (in2 == NULL) {
2476           if (do_reserve_copy()) {
2477             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
2478             return; //and reverse to backup IG
2479           }
2480           ShouldNotReachHere();
2481         }
2482         if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
2483           // Move invariant vector input into second position to avoid register spilling.
2484           Node* tmp = in1;
2485           in1 = in2;
2486           in2 = tmp;
2487         }
2488         if (node_isa_reduction) {
2489           const Type *arith_type = n->bottom_type();
2490           vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
2491           if (in2->is_Load()) {
2492             vlen_in_bytes = in2->as_LoadVector()->memory_size();
2493           } else {
2494             vlen_in_bytes = in2->as_Vector()->length_in_bytes();
2495           }
2496         } else {
2497           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2498           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2499         }
2500       } else if (opc == Op_SqrtF || opc == Op_SqrtD ||
2501                  opc == Op_AbsF || opc == Op_AbsD ||
2502                  opc == Op_AbsI || opc == Op_AbsL ||
2503                  opc == Op_NegF || opc == Op_NegD ||
2504                  opc == Op_PopCountI) {
2505         assert(n->req() == 2, "only one input expected");
2506         Node* in = vector_opd(p, 1);
2507         vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
2508         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2509       } else if (is_cmov_pack(p)) {
2510         if (can_process_post_loop) {
2511           // do not refactor of flow in post loop context
2512           return;
2513         }
2514         if (!n->is_CMove()) {
2515           continue;
2516         }
2517         // place here CMoveVDNode
2518         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
2519         Node* bol = n->in(CMoveNode::Condition);
2520         if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
2521           NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
2522           bol = bol->in(1); //may be ExtractNode
2523         }
2524 
2525         assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
2526         if (!bol->is_Bool()) {
2527           if (do_reserve_copy()) {
2528             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
2529             return; //and reverse to backup IG
2530           }
2531           ShouldNotReachHere();
2532         }
2533 
2534         int cond = (int)bol->as_Bool()->_test._test;
2535         Node* in_cc  = _igvn.intcon(cond);
2536         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
2537         Node* cc = bol->clone();
2538         cc->set_req(1, in_cc);
2539         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
2540 
2541         Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
2542         if (src1 == NULL) {
2543           if (do_reserve_copy()) {
2544             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
2545             return; //and reverse to backup IG
2546           }
2547           ShouldNotReachHere();
2548         }
2549         Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
2550         if (src2 == NULL) {
2551           if (do_reserve_copy()) {
2552             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
2553             return; //and reverse to backup IG
2554           }
2555           ShouldNotReachHere();
2556         }
2557         BasicType bt = velt_basic_type(n);
2558         const TypeVect* vt = TypeVect::make(bt, vlen);
2559         assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported");
2560         if (bt == T_FLOAT) {
2561           vn = new CMoveVFNode(cc, src1, src2, vt);
2562         } else {
2563           assert(bt == T_DOUBLE, "Expected double");
2564           vn = new CMoveVDNode(cc, src1, src2, vt);
2565         }
2566         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
2567       } else if (opc == Op_FmaD || opc == Op_FmaF) {
2568         // Promote operands to vector
2569         Node* in1 = vector_opd(p, 1);
2570         Node* in2 = vector_opd(p, 2);
2571         Node* in3 = vector_opd(p, 3);
2572         vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n));
2573         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2574       } else {
2575         if (do_reserve_copy()) {
2576           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
2577           return; //and reverse to backup IG
2578         }
2579         ShouldNotReachHere();
2580       }
2581 
2582       assert(vn != NULL, "sanity");
2583       if (vn == NULL) {
2584         if (do_reserve_copy()){
2585           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
2586           return; //and reverse to backup IG
2587         }
2588         ShouldNotReachHere();
2589       }
2590 
2591       _block.at_put(i, vn);
2592       _igvn.register_new_node_with_optimizer(vn);
2593       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
2594       for (uint j = 0; j < p->size(); j++) {
2595         Node* pm = p->at(j);
2596         _igvn.replace_node(pm, vn);
2597       }
2598       _igvn._worklist.push(vn);
2599 
2600       if (can_process_post_loop) {
2601         // first check if the vector size if the maximum vector which we can use on the machine,
2602         // other vector size have reduced values for predicated data mapping.
2603         if (vlen_in_bytes != (uint)MaxVectorSize) {
2604           return;
2605         }
2606       }
2607 
2608       if (vlen > max_vlen) {
2609         max_vlen = vlen;
2610       }
2611       if (vlen_in_bytes > max_vlen_in_bytes) {
2612         max_vlen_in_bytes = vlen_in_bytes;
2613       }
2614 #ifdef ASSERT
2615       if (TraceNewVectors) {
2616         tty->print("new Vector node: ");
2617         vn->dump();
2618       }
2619 #endif
2620     }
2621   }//for (int i = 0; i < _block.length(); i++)
2622 
2623   if (max_vlen_in_bytes > C->max_vector_size()) {
2624     C->set_max_vector_size(max_vlen_in_bytes);
2625   }
2626   if (max_vlen_in_bytes > 0) {
2627     cl->mark_loop_vectorized();
2628   }
2629 
2630   if (SuperWordLoopUnrollAnalysis) {
2631     if (cl->has_passed_slp()) {
2632       uint slp_max_unroll_factor = cl->slp_max_unroll();
2633       if (slp_max_unroll_factor == max_vlen) {
2634         if (TraceSuperWordLoopUnrollAnalysis) {
2635           tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
2636         }
2637 
2638         // For atomic unrolled loops which are vector mapped, instigate more unrolling
2639         cl->set_notpassed_slp();
2640         if (cl->is_main_loop()) {
2641           // if vector resources are limited, do not allow additional unrolling, also
2642           // do not unroll more on pure vector loops which were not reduced so that we can
2643           // program the post loop to single iteration execution.
2644           if (FLOATPRESSURE > 8) {
2645             C->set_major_progress();
2646             cl->mark_do_unroll_only();
2647           }
2648         }
2649 
2650         if (do_reserve_copy()) {
2651           if (can_process_post_loop) {
2652             // Now create the difference of trip and limit and use it as our mask index.
2653             // Note: We limited the unroll of the vectorized loop so that
2654             //       only vlen-1 size iterations can remain to be mask programmed.
2655             Node *incr = cl->incr();
2656             SubINode *index = new SubINode(cl->limit(), cl->init_trip());
2657             _igvn.register_new_node_with_optimizer(index);
2658             SetVectMaskINode  *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index);
2659             _igvn.register_new_node_with_optimizer(mask);
2660             // make this a single iteration loop
2661             AddINode *new_incr = new AddINode(incr->in(1), mask);
2662             _igvn.register_new_node_with_optimizer(new_incr);
2663             _phase->set_ctrl(new_incr, _phase->get_ctrl(incr));
2664             _igvn.replace_node(incr, new_incr);
2665             cl->mark_is_multiversioned();
2666             cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set);
2667           }
2668         }
2669       }
2670     }
2671   }
2672 
2673   if (do_reserve_copy()) {
2674     make_reversable.use_new();
2675   }
2676   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
2677   return;
2678 }
2679 
2680 //------------------------------vector_opd---------------------------
2681 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
vector_opd(Node_List * p,int opd_idx)2682 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
2683   Node* p0 = p->at(0);
2684   uint vlen = p->size();
2685   Node* opd = p0->in(opd_idx);
2686   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2687 
2688   if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) {
2689     // override vlen with the main loops vector length
2690     vlen = cl->slp_max_unroll();
2691   }
2692 
2693   if (same_inputs(p, opd_idx)) {
2694     if (opd->is_Vector() || opd->is_LoadVector()) {
2695       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
2696       if (opd_idx == 2 && VectorNode::is_shift(p0)) {
2697         NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
2698         return NULL;
2699       }
2700       return opd; // input is matching vector
2701     }
2702     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
2703       Compile* C = _phase->C;
2704       Node* cnt = opd;
2705       // Vector instructions do not mask shift count, do it here.
2706       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2707       const TypeInt* t = opd->find_int_type();
2708       if (t != NULL && t->is_con()) {
2709         juint shift = t->get_con();
2710         if (shift > mask) { // Unsigned cmp
2711           cnt = ConNode::make(TypeInt::make(shift & mask));
2712         }
2713       } else {
2714         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2715           cnt = ConNode::make(TypeInt::make(mask));
2716           _igvn.register_new_node_with_optimizer(cnt);
2717           cnt = new AndINode(opd, cnt);
2718           _igvn.register_new_node_with_optimizer(cnt);
2719           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2720         }
2721         assert(opd->bottom_type()->isa_int(), "int type only");
2722         if (!opd->bottom_type()->isa_int()) {
2723           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
2724           return NULL;
2725         }
2726         // Move non constant shift count into vector register.
2727         cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
2728       }
2729       if (cnt != opd) {
2730         _igvn.register_new_node_with_optimizer(cnt);
2731         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2732       }
2733       return cnt;
2734     }
2735     assert(!opd->is_StoreVector(), "such vector is not expected here");
2736     if (opd->is_StoreVector()) {
2737       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
2738       return NULL;
2739     }
2740     // Convert scalar input to vector with the same number of elements as
2741     // p0's vector. Use p0's type because size of operand's container in
2742     // vector should match p0's size regardless operand's size.
2743     const Type* p0_t = velt_type(p0);
2744     VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
2745 
2746     _igvn.register_new_node_with_optimizer(vn);
2747     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
2748 #ifdef ASSERT
2749     if (TraceNewVectors) {
2750       tty->print("new Vector node: ");
2751       vn->dump();
2752     }
2753 #endif
2754     return vn;
2755   }
2756 
2757   // Insert pack operation
2758   BasicType bt = velt_basic_type(p0);
2759   PackNode* pk = PackNode::make(opd, vlen, bt);
2760   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
2761 
2762   for (uint i = 1; i < vlen; i++) {
2763     Node* pi = p->at(i);
2764     Node* in = pi->in(opd_idx);
2765     assert(my_pack(in) == NULL, "Should already have been unpacked");
2766     if (my_pack(in) != NULL) {
2767       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
2768       return NULL;
2769     }
2770     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
2771     pk->add_opd(in);
2772     if (VectorNode::is_muladds2i(pi)) {
2773       Node* in2 = pi->in(opd_idx + 2);
2774       assert(my_pack(in2) == NULL, "Should already have been unpacked");
2775       if (my_pack(in2) != NULL) {
2776         NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked"); })
2777           return NULL;
2778       }
2779       assert(opd_bt == in2->bottom_type()->basic_type(), "all same type");
2780       pk->add_opd(in2);
2781     }
2782   }
2783   _igvn.register_new_node_with_optimizer(pk);
2784   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
2785 #ifdef ASSERT
2786   if (TraceNewVectors) {
2787     tty->print("new Vector node: ");
2788     pk->dump();
2789   }
2790 #endif
2791   return pk;
2792 }
2793 
2794 //------------------------------insert_extracts---------------------------
2795 // If a use of pack p is not a vector use, then replace the
2796 // use with an extract operation.
insert_extracts(Node_List * p)2797 void SuperWord::insert_extracts(Node_List* p) {
2798   if (p->at(0)->is_Store()) return;
2799   assert(_n_idx_list.is_empty(), "empty (node,index) list");
2800 
2801   // Inspect each use of each pack member.  For each use that is
2802   // not a vector use, replace the use with an extract operation.
2803 
2804   for (uint i = 0; i < p->size(); i++) {
2805     Node* def = p->at(i);
2806     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2807       Node* use = def->fast_out(j);
2808       for (uint k = 0; k < use->req(); k++) {
2809         Node* n = use->in(k);
2810         if (def == n) {
2811           Node_List* u_pk = my_pack(use);
2812           if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
2813               _n_idx_list.push(use, k);
2814           }
2815         }
2816       }
2817     }
2818   }
2819 
2820   while (_n_idx_list.is_nonempty()) {
2821     Node* use = _n_idx_list.node();
2822     int   idx = _n_idx_list.index();
2823     _n_idx_list.pop();
2824     Node* def = use->in(idx);
2825 
2826     if (def->is_reduction()) continue;
2827 
2828     // Insert extract operation
2829     _igvn.hash_delete(def);
2830     int def_pos = alignment(def) / data_size(def);
2831 
2832     Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
2833     _igvn.register_new_node_with_optimizer(ex);
2834     _phase->set_ctrl(ex, _phase->get_ctrl(def));
2835     _igvn.replace_input_of(use, idx, ex);
2836     _igvn._worklist.push(def);
2837 
2838     bb_insert_after(ex, bb_idx(def));
2839     set_velt_type(ex, velt_type(def));
2840   }
2841 }
2842 
2843 //------------------------------is_vector_use---------------------------
2844 // Is use->in(u_idx) a vector use?
is_vector_use(Node * use,int u_idx)2845 bool SuperWord::is_vector_use(Node* use, int u_idx) {
2846   Node_List* u_pk = my_pack(use);
2847   if (u_pk == NULL) return false;
2848   if (use->is_reduction()) return true;
2849   Node* def = use->in(u_idx);
2850   Node_List* d_pk = my_pack(def);
2851   if (d_pk == NULL) {
2852     // check for scalar promotion
2853     Node* n = u_pk->at(0)->in(u_idx);
2854     for (uint i = 1; i < u_pk->size(); i++) {
2855       if (u_pk->at(i)->in(u_idx) != n) return false;
2856     }
2857     return true;
2858   }
2859   if (VectorNode::is_muladds2i(use)) {
2860     // MulAddS2I takes shorts and produces ints - hence the special checks
2861     // on alignment and size.
2862     if (u_pk->size() * 2 != d_pk->size()) {
2863       return false;
2864     }
2865     for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) {
2866       Node* ui = u_pk->at(i);
2867       Node* di = d_pk->at(i);
2868       if (alignment(ui) != alignment(di) * 2) {
2869         return false;
2870       }
2871     }
2872     return true;
2873   }
2874   if (u_pk->size() != d_pk->size())
2875     return false;
2876   for (uint i = 0; i < u_pk->size(); i++) {
2877     Node* ui = u_pk->at(i);
2878     Node* di = d_pk->at(i);
2879     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
2880       return false;
2881   }
2882   return true;
2883 }
2884 
2885 //------------------------------construct_bb---------------------------
2886 // Construct reverse postorder list of block members
construct_bb()2887 bool SuperWord::construct_bb() {
2888   Node* entry = bb();
2889 
2890   assert(_stk.length() == 0,            "stk is empty");
2891   assert(_block.length() == 0,          "block is empty");
2892   assert(_data_entry.length() == 0,     "data_entry is empty");
2893   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
2894   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
2895 
2896   // Find non-control nodes with no inputs from within block,
2897   // create a temporary map from node _idx to bb_idx for use
2898   // by the visited and post_visited sets,
2899   // and count number of nodes in block.
2900   int bb_ct = 0;
2901   for (uint i = 0; i < lpt()->_body.size(); i++) {
2902     Node *n = lpt()->_body.at(i);
2903     set_bb_idx(n, i); // Create a temporary map
2904     if (in_bb(n)) {
2905       if (n->is_LoadStore() || n->is_MergeMem() ||
2906           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
2907         // Bailout if the loop has LoadStore, MergeMem or data Proj
2908         // nodes. Superword optimization does not work with them.
2909         return false;
2910       }
2911       bb_ct++;
2912       if (!n->is_CFG()) {
2913         bool found = false;
2914         for (uint j = 0; j < n->req(); j++) {
2915           Node* def = n->in(j);
2916           if (def && in_bb(def)) {
2917             found = true;
2918             break;
2919           }
2920         }
2921         if (!found) {
2922           assert(n != entry, "can't be entry");
2923           _data_entry.push(n);
2924         }
2925       }
2926     }
2927   }
2928 
2929   // Find memory slices (head and tail)
2930   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
2931     Node *n = lp()->fast_out(i);
2932     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
2933       Node* n_tail  = n->in(LoopNode::LoopBackControl);
2934       if (n_tail != n->in(LoopNode::EntryControl)) {
2935         if (!n_tail->is_Mem()) {
2936           assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
2937           return false; // Bailout
2938         }
2939         _mem_slice_head.push(n);
2940         _mem_slice_tail.push(n_tail);
2941       }
2942     }
2943   }
2944 
2945   // Create an RPO list of nodes in block
2946 
2947   visited_clear();
2948   post_visited_clear();
2949 
2950   // Push all non-control nodes with no inputs from within block, then control entry
2951   for (int j = 0; j < _data_entry.length(); j++) {
2952     Node* n = _data_entry.at(j);
2953     visited_set(n);
2954     _stk.push(n);
2955   }
2956   visited_set(entry);
2957   _stk.push(entry);
2958 
2959   // Do a depth first walk over out edges
2960   int rpo_idx = bb_ct - 1;
2961   int size;
2962   int reduction_uses = 0;
2963   while ((size = _stk.length()) > 0) {
2964     Node* n = _stk.top(); // Leave node on stack
2965     if (!visited_test_set(n)) {
2966       // forward arc in graph
2967     } else if (!post_visited_test(n)) {
2968       // cross or back arc
2969       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2970         Node *use = n->fast_out(i);
2971         if (in_bb(use) && !visited_test(use) &&
2972             // Don't go around backedge
2973             (!use->is_Phi() || n == entry)) {
2974           if (use->is_reduction()) {
2975             // First see if we can map the reduction on the given system we are on, then
2976             // make a data entry operation for each reduction we see.
2977             BasicType bt = use->bottom_type()->basic_type();
2978             if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
2979               reduction_uses++;
2980             }
2981           }
2982           _stk.push(use);
2983         }
2984       }
2985       if (_stk.length() == size) {
2986         // There were no additional uses, post visit node now
2987         _stk.pop(); // Remove node from stack
2988         assert(rpo_idx >= 0, "");
2989         _block.at_put_grow(rpo_idx, n);
2990         rpo_idx--;
2991         post_visited_set(n);
2992         assert(rpo_idx >= 0 || _stk.is_empty(), "");
2993       }
2994     } else {
2995       _stk.pop(); // Remove post-visited node from stack
2996     }
2997   }//while
2998 
2999   int ii_current = -1;
3000   unsigned int load_idx = (unsigned int)-1;
3001   _ii_order.clear();
3002   // Create real map of block indices for nodes
3003   for (int j = 0; j < _block.length(); j++) {
3004     Node* n = _block.at(j);
3005     set_bb_idx(n, j);
3006     if (_do_vector_loop && n->is_Load()) {
3007       if (ii_current == -1) {
3008         ii_current = _clone_map.gen(n->_idx);
3009         _ii_order.push(ii_current);
3010         load_idx = _clone_map.idx(n->_idx);
3011       } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
3012         ii_current = _clone_map.gen(n->_idx);
3013         _ii_order.push(ii_current);
3014       }
3015     }
3016   }//for
3017 
3018   // Ensure extra info is allocated.
3019   initialize_bb();
3020 
3021 #ifndef PRODUCT
3022   if (_vector_loop_debug && _ii_order.length() > 0) {
3023     tty->print("SuperWord::construct_bb: List of generations: ");
3024     for (int jj = 0; jj < _ii_order.length(); ++jj) {
3025       tty->print("  %d:%d", jj, _ii_order.at(jj));
3026     }
3027     tty->print_cr(" ");
3028   }
3029   if (TraceSuperWord) {
3030     print_bb();
3031     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
3032     for (int m = 0; m < _data_entry.length(); m++) {
3033       tty->print("%3d ", m);
3034       _data_entry.at(m)->dump();
3035     }
3036     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
3037     for (int m = 0; m < _mem_slice_head.length(); m++) {
3038       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
3039       tty->print("    ");    _mem_slice_tail.at(m)->dump();
3040     }
3041   }
3042 #endif
3043   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
3044   return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
3045 }
3046 
3047 //------------------------------initialize_bb---------------------------
3048 // Initialize per node info
initialize_bb()3049 void SuperWord::initialize_bb() {
3050   Node* last = _block.at(_block.length() - 1);
3051   grow_node_info(bb_idx(last));
3052 }
3053 
3054 //------------------------------bb_insert_after---------------------------
3055 // Insert n into block after pos
bb_insert_after(Node * n,int pos)3056 void SuperWord::bb_insert_after(Node* n, int pos) {
3057   int n_pos = pos + 1;
3058   // Make room
3059   for (int i = _block.length() - 1; i >= n_pos; i--) {
3060     _block.at_put_grow(i+1, _block.at(i));
3061   }
3062   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
3063     _node_info.at_put_grow(j+1, _node_info.at(j));
3064   }
3065   // Set value
3066   _block.at_put_grow(n_pos, n);
3067   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
3068   // Adjust map from node->_idx to _block index
3069   for (int i = n_pos; i < _block.length(); i++) {
3070     set_bb_idx(_block.at(i), i);
3071   }
3072 }
3073 
3074 //------------------------------compute_max_depth---------------------------
3075 // Compute max depth for expressions from beginning of block
3076 // Use to prune search paths during test for independence.
compute_max_depth()3077 void SuperWord::compute_max_depth() {
3078   int ct = 0;
3079   bool again;
3080   do {
3081     again = false;
3082     for (int i = 0; i < _block.length(); i++) {
3083       Node* n = _block.at(i);
3084       if (!n->is_Phi()) {
3085         int d_orig = depth(n);
3086         int d_in   = 0;
3087         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
3088           Node* pred = preds.current();
3089           if (in_bb(pred)) {
3090             d_in = MAX2(d_in, depth(pred));
3091           }
3092         }
3093         if (d_in + 1 != d_orig) {
3094           set_depth(n, d_in + 1);
3095           again = true;
3096         }
3097       }
3098     }
3099     ct++;
3100   } while (again);
3101 
3102   if (TraceSuperWord && Verbose) {
3103     tty->print_cr("compute_max_depth iterated: %d times", ct);
3104   }
3105 }
3106 
3107 //-------------------------compute_vector_element_type-----------------------
3108 // Compute necessary vector element type for expressions
3109 // This propagates backwards a narrower integer type when the
3110 // upper bits of the value are not needed.
3111 // Example:  char a,b,c;  a = b + c;
3112 // Normally the type of the add is integer, but for packed character
3113 // operations the type of the add needs to be char.
compute_vector_element_type()3114 void SuperWord::compute_vector_element_type() {
3115   if (TraceSuperWord && Verbose) {
3116     tty->print_cr("\ncompute_velt_type:");
3117   }
3118 
3119   // Initial type
3120   for (int i = 0; i < _block.length(); i++) {
3121     Node* n = _block.at(i);
3122     set_velt_type(n, container_type(n));
3123   }
3124 
3125   // Propagate integer narrowed type backwards through operations
3126   // that don't depend on higher order bits
3127   for (int i = _block.length() - 1; i >= 0; i--) {
3128     Node* n = _block.at(i);
3129     // Only integer types need be examined
3130     const Type* vtn = velt_type(n);
3131     if (vtn->basic_type() == T_INT) {
3132       uint start, end;
3133       VectorNode::vector_operands(n, &start, &end);
3134 
3135       for (uint j = start; j < end; j++) {
3136         Node* in  = n->in(j);
3137         // Don't propagate through a memory
3138         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
3139             data_size(n) < data_size(in)) {
3140           bool same_type = true;
3141           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
3142             Node *use = in->fast_out(k);
3143             if (!in_bb(use) || !same_velt_type(use, n)) {
3144               same_type = false;
3145               break;
3146             }
3147           }
3148           if (same_type) {
3149             // In any Java arithmetic operation, operands of small integer types
3150             // (boolean, byte, char & short) should be promoted to int first. As
3151             // vector elements of small types don't have upper bits of int, for
3152             // RShiftI or AbsI operations, the compiler has to know the precise
3153             // signedness info of the 1st operand. These operations shouldn't be
3154             // vectorized if the signedness info is imprecise.
3155             const Type* vt = vtn;
3156             int op = in->Opcode();
3157             if (VectorNode::is_shift(in) || op == Op_AbsI) {
3158               Node* load = in->in(1);
3159               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
3160                 // Only Load nodes distinguish signed (LoadS/LoadB) and unsigned
3161                 // (LoadUS/LoadUB) values. Store nodes only have one version.
3162                 vt = velt_type(load);
3163               } else if (op != Op_LShiftI) {
3164                 // Widen type to int to avoid the creation of vector nodes. Note
3165                 // that left shifts work regardless of the signedness.
3166                 vt = TypeInt::INT;
3167               }
3168             }
3169             set_velt_type(in, vt);
3170           }
3171         }
3172       }
3173     }
3174   }
3175 #ifndef PRODUCT
3176   if (TraceSuperWord && Verbose) {
3177     for (int i = 0; i < _block.length(); i++) {
3178       Node* n = _block.at(i);
3179       velt_type(n)->dump();
3180       tty->print("\t");
3181       n->dump();
3182     }
3183   }
3184 #endif
3185 }
3186 
3187 //------------------------------memory_alignment---------------------------
3188 // Alignment within a vector memory reference
memory_alignment(MemNode * s,int iv_adjust)3189 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
3190   #ifndef PRODUCT
3191     if(TraceSuperWord && Verbose) {
3192       tty->print("SuperWord::memory_alignment within a vector memory reference for %d:  ", s->_idx); s->dump();
3193     }
3194   #endif
3195   NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
3196   SWPointer p(s, this, NULL, false);
3197   if (!p.valid()) {
3198     NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
3199     return bottom_align;
3200   }
3201   int vw = get_vw_bytes_special(s);
3202   if (vw < 2) {
3203     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
3204     return bottom_align; // No vectors for this type
3205   }
3206   int offset  = p.offset_in_bytes();
3207   offset     += iv_adjust*p.memory_size();
3208   int off_rem = offset % vw;
3209   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
3210   if (TraceSuperWord && Verbose) {
3211     tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
3212   }
3213   return off_mod;
3214 }
3215 
3216 //---------------------------container_type---------------------------
3217 // Smallest type containing range of values
container_type(Node * n)3218 const Type* SuperWord::container_type(Node* n) {
3219   if (n->is_Mem()) {
3220     BasicType bt = n->as_Mem()->memory_type();
3221     if (n->is_Store() && (bt == T_CHAR)) {
3222       // Use T_SHORT type instead of T_CHAR for stored values because any
3223       // preceding arithmetic operation extends values to signed Int.
3224       bt = T_SHORT;
3225     }
3226     if (n->Opcode() == Op_LoadUB) {
3227       // Adjust type for unsigned byte loads, it is important for right shifts.
3228       // T_BOOLEAN is used because there is no basic type representing type
3229       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
3230       // size (one byte) and sign is important.
3231       bt = T_BOOLEAN;
3232     }
3233     return Type::get_const_basic_type(bt);
3234   }
3235   const Type* t = _igvn.type(n);
3236   if (t->basic_type() == T_INT) {
3237     // A narrow type of arithmetic operations will be determined by
3238     // propagating the type of memory operations.
3239     return TypeInt::INT;
3240   }
3241   return t;
3242 }
3243 
same_velt_type(Node * n1,Node * n2)3244 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
3245   const Type* vt1 = velt_type(n1);
3246   const Type* vt2 = velt_type(n2);
3247   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
3248     // Compare vectors element sizes for integer types.
3249     return data_size(n1) == data_size(n2);
3250   }
3251   return vt1 == vt2;
3252 }
3253 
3254 //------------------------------in_packset---------------------------
3255 // Are s1 and s2 in a pack pair and ordered as s1,s2?
in_packset(Node * s1,Node * s2)3256 bool SuperWord::in_packset(Node* s1, Node* s2) {
3257   for (int i = 0; i < _packset.length(); i++) {
3258     Node_List* p = _packset.at(i);
3259     assert(p->size() == 2, "must be");
3260     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
3261       return true;
3262     }
3263   }
3264   return false;
3265 }
3266 
3267 //------------------------------in_pack---------------------------
3268 // Is s in pack p?
in_pack(Node * s,Node_List * p)3269 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
3270   for (uint i = 0; i < p->size(); i++) {
3271     if (p->at(i) == s) {
3272       return p;
3273     }
3274   }
3275   return NULL;
3276 }
3277 
3278 //------------------------------remove_pack_at---------------------------
3279 // Remove the pack at position pos in the packset
remove_pack_at(int pos)3280 void SuperWord::remove_pack_at(int pos) {
3281   Node_List* p = _packset.at(pos);
3282   for (uint i = 0; i < p->size(); i++) {
3283     Node* s = p->at(i);
3284     set_my_pack(s, NULL);
3285   }
3286   _packset.remove_at(pos);
3287 }
3288 
packset_sort(int n)3289 void SuperWord::packset_sort(int n) {
3290   // simple bubble sort so that we capitalize with O(n) when its already sorted
3291   while (n != 0) {
3292     bool swapped = false;
3293     for (int i = 1; i < n; i++) {
3294       Node_List* q_low = _packset.at(i-1);
3295       Node_List* q_i = _packset.at(i);
3296 
3297       // only swap when we find something to swap
3298       if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
3299         Node_List* t = q_i;
3300         *(_packset.adr_at(i)) = q_low;
3301         *(_packset.adr_at(i-1)) = q_i;
3302         swapped = true;
3303       }
3304     }
3305     if (swapped == false) break;
3306     n--;
3307   }
3308 }
3309 
3310 //------------------------------executed_first---------------------------
3311 // Return the node executed first in pack p.  Uses the RPO block list
3312 // to determine order.
executed_first(Node_List * p)3313 Node* SuperWord::executed_first(Node_List* p) {
3314   Node* n = p->at(0);
3315   int n_rpo = bb_idx(n);
3316   for (uint i = 1; i < p->size(); i++) {
3317     Node* s = p->at(i);
3318     int s_rpo = bb_idx(s);
3319     if (s_rpo < n_rpo) {
3320       n = s;
3321       n_rpo = s_rpo;
3322     }
3323   }
3324   return n;
3325 }
3326 
3327 //------------------------------executed_last---------------------------
3328 // Return the node executed last in pack p.
executed_last(Node_List * p)3329 Node* SuperWord::executed_last(Node_List* p) {
3330   Node* n = p->at(0);
3331   int n_rpo = bb_idx(n);
3332   for (uint i = 1; i < p->size(); i++) {
3333     Node* s = p->at(i);
3334     int s_rpo = bb_idx(s);
3335     if (s_rpo > n_rpo) {
3336       n = s;
3337       n_rpo = s_rpo;
3338     }
3339   }
3340   return n;
3341 }
3342 
control_dependency(Node_List * p)3343 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
3344   LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
3345   for (uint i = 0; i < p->size(); i++) {
3346     Node* n = p->at(i);
3347     assert(n->is_Load(), "only meaningful for loads");
3348     if (!n->depends_only_on_test()) {
3349       if (n->as_Load()->has_unknown_control_dependency() &&
3350           dep != LoadNode::Pinned) {
3351         // Upgrade to unknown control...
3352         dep = LoadNode::UnknownControl;
3353       } else {
3354         // Otherwise, we must pin it.
3355         dep = LoadNode::Pinned;
3356       }
3357     }
3358   }
3359   return dep;
3360 }
3361 
3362 
3363 //----------------------------align_initial_loop_index---------------------------
3364 // Adjust pre-loop limit so that in main loop, a load/store reference
3365 // to align_to_ref will be a position zero in the vector.
3366 //   (iv + k) mod vector_align == 0
align_initial_loop_index(MemNode * align_to_ref)3367 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
3368   CountedLoopNode *main_head = lp()->as_CountedLoop();
3369   assert(main_head->is_main_loop(), "");
3370   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
3371   assert(pre_end != NULL, "we must have a correct pre-loop");
3372   Node *pre_opaq1 = pre_end->limit();
3373   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
3374   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
3375   Node *lim0 = pre_opaq->in(1);
3376 
3377   // Where we put new limit calculations
3378   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
3379 
3380   // Ensure the original loop limit is available from the
3381   // pre-loop Opaque1 node.
3382   Node *orig_limit = pre_opaq->original_loop_limit();
3383   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
3384 
3385   SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
3386   assert(align_to_ref_p.valid(), "sanity");
3387 
3388   // Given:
3389   //     lim0 == original pre loop limit
3390   //     V == v_align (power of 2)
3391   //     invar == extra invariant piece of the address expression
3392   //     e == offset [ +/- invar ]
3393   //
3394   // When reassociating expressions involving '%' the basic rules are:
3395   //     (a - b) % k == 0   =>  a % k == b % k
3396   // and:
3397   //     (a + b) % k == 0   =>  a % k == (k - b) % k
3398   //
3399   // For stride > 0 && scale > 0,
3400   //   Derive the new pre-loop limit "lim" such that the two constraints:
3401   //     (1) lim = lim0 + N           (where N is some positive integer < V)
3402   //     (2) (e + lim) % V == 0
3403   //   are true.
3404   //
3405   //   Substituting (1) into (2),
3406   //     (e + lim0 + N) % V == 0
3407   //   solve for N:
3408   //     N = (V - (e + lim0)) % V
3409   //   substitute back into (1), so that new limit
3410   //     lim = lim0 + (V - (e + lim0)) % V
3411   //
3412   // For stride > 0 && scale < 0
3413   //   Constraints:
3414   //     lim = lim0 + N
3415   //     (e - lim) % V == 0
3416   //   Solving for lim:
3417   //     (e - lim0 - N) % V == 0
3418   //     N = (e - lim0) % V
3419   //     lim = lim0 + (e - lim0) % V
3420   //
3421   // For stride < 0 && scale > 0
3422   //   Constraints:
3423   //     lim = lim0 - N
3424   //     (e + lim) % V == 0
3425   //   Solving for lim:
3426   //     (e + lim0 - N) % V == 0
3427   //     N = (e + lim0) % V
3428   //     lim = lim0 - (e + lim0) % V
3429   //
3430   // For stride < 0 && scale < 0
3431   //   Constraints:
3432   //     lim = lim0 - N
3433   //     (e - lim) % V == 0
3434   //   Solving for lim:
3435   //     (e - lim0 + N) % V == 0
3436   //     N = (V - (e - lim0)) % V
3437   //     lim = lim0 - (V - (e - lim0)) % V
3438 
3439   int vw = vector_width_in_bytes(align_to_ref);
3440   int stride   = iv_stride();
3441   int scale    = align_to_ref_p.scale_in_bytes();
3442   int elt_size = align_to_ref_p.memory_size();
3443   int v_align  = vw / elt_size;
3444   assert(v_align > 1, "sanity");
3445   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
3446   Node *offsn  = _igvn.intcon(offset);
3447 
3448   Node *e = offsn;
3449   if (align_to_ref_p.invar() != NULL) {
3450     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
3451     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3452     Node* invar = align_to_ref_p.invar();
3453     if (_igvn.type(invar)->isa_long()) {
3454       // Computations are done % (vector width/element size) so it's
3455       // safe to simply convert invar to an int and loose the upper 32
3456       // bit half.
3457       invar = new ConvL2INode(invar);
3458       _igvn.register_new_node_with_optimizer(invar);
3459     }
3460     Node* aref = new URShiftINode(invar, log2_elt);
3461     _igvn.register_new_node_with_optimizer(aref);
3462     _phase->set_ctrl(aref, pre_ctrl);
3463     if (align_to_ref_p.negate_invar()) {
3464       e = new SubINode(e, aref);
3465     } else {
3466       e = new AddINode(e, aref);
3467     }
3468     _igvn.register_new_node_with_optimizer(e);
3469     _phase->set_ctrl(e, pre_ctrl);
3470   }
3471   if (vw > ObjectAlignmentInBytes || align_to_ref_p.base()->is_top()) {
3472     // incorporate base e +/- base && Mask >>> log2(elt)
3473     Node* xbase = new CastP2XNode(NULL, align_to_ref_p.adr());
3474     _igvn.register_new_node_with_optimizer(xbase);
3475 #ifdef _LP64
3476     xbase  = new ConvL2INode(xbase);
3477     _igvn.register_new_node_with_optimizer(xbase);
3478 #endif
3479     Node* mask = _igvn.intcon(vw-1);
3480     Node* masked_xbase  = new AndINode(xbase, mask);
3481     _igvn.register_new_node_with_optimizer(masked_xbase);
3482     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3483     Node* bref     = new URShiftINode(masked_xbase, log2_elt);
3484     _igvn.register_new_node_with_optimizer(bref);
3485     _phase->set_ctrl(bref, pre_ctrl);
3486     e = new AddINode(e, bref);
3487     _igvn.register_new_node_with_optimizer(e);
3488     _phase->set_ctrl(e, pre_ctrl);
3489   }
3490 
3491   // compute e +/- lim0
3492   if (scale < 0) {
3493     e = new SubINode(e, lim0);
3494   } else {
3495     e = new AddINode(e, lim0);
3496   }
3497   _igvn.register_new_node_with_optimizer(e);
3498   _phase->set_ctrl(e, pre_ctrl);
3499 
3500   if (stride * scale > 0) {
3501     // compute V - (e +/- lim0)
3502     Node* va  = _igvn.intcon(v_align);
3503     e = new SubINode(va, e);
3504     _igvn.register_new_node_with_optimizer(e);
3505     _phase->set_ctrl(e, pre_ctrl);
3506   }
3507   // compute N = (exp) % V
3508   Node* va_msk = _igvn.intcon(v_align - 1);
3509   Node* N = new AndINode(e, va_msk);
3510   _igvn.register_new_node_with_optimizer(N);
3511   _phase->set_ctrl(N, pre_ctrl);
3512 
3513   //   substitute back into (1), so that new limit
3514   //     lim = lim0 + N
3515   Node* lim;
3516   if (stride < 0) {
3517     lim = new SubINode(lim0, N);
3518   } else {
3519     lim = new AddINode(lim0, N);
3520   }
3521   _igvn.register_new_node_with_optimizer(lim);
3522   _phase->set_ctrl(lim, pre_ctrl);
3523   Node* constrained =
3524     (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
3525                  : (Node*) new MaxINode(lim, orig_limit);
3526   _igvn.register_new_node_with_optimizer(constrained);
3527   _phase->set_ctrl(constrained, pre_ctrl);
3528   _igvn.replace_input_of(pre_opaq, 1, constrained);
3529 }
3530 
3531 //----------------------------get_pre_loop_end---------------------------
3532 // Find pre loop end from main loop.  Returns null if none.
get_pre_loop_end(CountedLoopNode * cl)3533 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
3534   // The loop cannot be optimized if the graph shape at
3535   // the loop entry is inappropriate.
3536   if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
3537     return NULL;
3538   }
3539 
3540   Node* p_f = cl->skip_predicates()->in(0)->in(0);
3541   if (!p_f->is_IfFalse()) return NULL;
3542   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
3543   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
3544   CountedLoopNode* loop_node = pre_end->loopnode();
3545   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
3546   return pre_end;
3547 }
3548 
3549 //------------------------------init---------------------------
init()3550 void SuperWord::init() {
3551   _dg.init();
3552   _packset.clear();
3553   _disjoint_ptrs.clear();
3554   _block.clear();
3555   _post_block.clear();
3556   _data_entry.clear();
3557   _mem_slice_head.clear();
3558   _mem_slice_tail.clear();
3559   _iteration_first.clear();
3560   _iteration_last.clear();
3561   _node_info.clear();
3562   _align_to_ref = NULL;
3563   _lpt = NULL;
3564   _lp = NULL;
3565   _bb = NULL;
3566   _iv = NULL;
3567   _race_possible = 0;
3568   _early_return = false;
3569   _num_work_vecs = 0;
3570   _num_reductions = 0;
3571 }
3572 
3573 //------------------------------restart---------------------------
restart()3574 void SuperWord::restart() {
3575   _dg.init();
3576   _packset.clear();
3577   _disjoint_ptrs.clear();
3578   _block.clear();
3579   _post_block.clear();
3580   _data_entry.clear();
3581   _mem_slice_head.clear();
3582   _mem_slice_tail.clear();
3583   _node_info.clear();
3584 }
3585 
3586 //------------------------------print_packset---------------------------
print_packset()3587 void SuperWord::print_packset() {
3588 #ifndef PRODUCT
3589   tty->print_cr("packset");
3590   for (int i = 0; i < _packset.length(); i++) {
3591     tty->print_cr("Pack: %d", i);
3592     Node_List* p = _packset.at(i);
3593     print_pack(p);
3594   }
3595 #endif
3596 }
3597 
3598 //------------------------------print_pack---------------------------
print_pack(Node_List * p)3599 void SuperWord::print_pack(Node_List* p) {
3600   for (uint i = 0; i < p->size(); i++) {
3601     print_stmt(p->at(i));
3602   }
3603 }
3604 
3605 //------------------------------print_bb---------------------------
print_bb()3606 void SuperWord::print_bb() {
3607 #ifndef PRODUCT
3608   tty->print_cr("\nBlock");
3609   for (int i = 0; i < _block.length(); i++) {
3610     Node* n = _block.at(i);
3611     tty->print("%d ", i);
3612     if (n) {
3613       n->dump();
3614     }
3615   }
3616 #endif
3617 }
3618 
3619 //------------------------------print_stmt---------------------------
print_stmt(Node * s)3620 void SuperWord::print_stmt(Node* s) {
3621 #ifndef PRODUCT
3622   tty->print(" align: %d \t", alignment(s));
3623   s->dump();
3624 #endif
3625 }
3626 
3627 //------------------------------blank---------------------------
blank(uint depth)3628 char* SuperWord::blank(uint depth) {
3629   static char blanks[101];
3630   assert(depth < 101, "too deep");
3631   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
3632   blanks[depth] = '\0';
3633   return blanks;
3634 }
3635 
3636 
3637 //==============================SWPointer===========================
3638 #ifndef PRODUCT
3639 int SWPointer::Tracer::_depth = 0;
3640 #endif
3641 //----------------------------SWPointer------------------------
SWPointer(MemNode * mem,SuperWord * slp,Node_Stack * nstack,bool analyze_only)3642 SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
3643   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
3644   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3645   _nstack(nstack), _analyze_only(analyze_only),
3646   _stack_idx(0)
3647 #ifndef PRODUCT
3648   , _tracer(slp)
3649 #endif
3650 {
3651   NOT_PRODUCT(_tracer.ctor_1(mem);)
3652 
3653   Node* adr = mem->in(MemNode::Address);
3654   if (!adr->is_AddP()) {
3655     assert(!valid(), "too complex");
3656     return;
3657   }
3658   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
3659   Node* base = adr->in(AddPNode::Base);
3660   // The base address should be loop invariant
3661   if (!invariant(base)) {
3662     assert(!valid(), "base address is loop variant");
3663     return;
3664   }
3665   // unsafe references require misaligned vector access support
3666   if (base->is_top() && !Matcher::misaligned_vectors_ok()) {
3667     assert(!valid(), "unsafe access");
3668     return;
3669   }
3670 
3671   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
3672   NOT_PRODUCT(_tracer.ctor_2(adr);)
3673 
3674   int i;
3675   for (i = 0; i < 3; i++) {
3676     NOT_PRODUCT(_tracer.ctor_3(adr, i);)
3677 
3678     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
3679       assert(!valid(), "too complex");
3680       return;
3681     }
3682     adr = adr->in(AddPNode::Address);
3683     NOT_PRODUCT(_tracer.ctor_4(adr, i);)
3684 
3685     if (base == adr || !adr->is_AddP()) {
3686       NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
3687       break; // stop looking at addp's
3688     }
3689   }
3690   if (!invariant(adr)) {
3691     assert(!valid(), "adr is loop variant");
3692     return;
3693   }
3694 
3695   if (!base->is_top() && adr != base) {
3696     assert(!valid(), "adr and base differ");
3697     return;
3698   }
3699 
3700   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
3701   NOT_PRODUCT(_tracer.ctor_6(mem);)
3702 
3703   _base = base;
3704   _adr  = adr;
3705   assert(valid(), "Usable");
3706 }
3707 
3708 // Following is used to create a temporary object during
3709 // the pattern match of an address expression.
SWPointer(SWPointer * p)3710 SWPointer::SWPointer(SWPointer* p) :
3711   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
3712   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3713   _nstack(p->_nstack), _analyze_only(p->_analyze_only),
3714   _stack_idx(p->_stack_idx)
3715   #ifndef PRODUCT
3716   , _tracer(p->_slp)
3717   #endif
3718 {}
3719 
3720 
invariant(Node * n)3721 bool SWPointer::invariant(Node* n) {
3722   NOT_PRODUCT(Tracer::Depth dd;)
3723   Node *n_c = phase()->get_ctrl(n);
3724   NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
3725   return !lpt()->is_member(phase()->get_loop(n_c));
3726 }
3727 //------------------------scaled_iv_plus_offset--------------------
3728 // Match: k*iv + offset
3729 // where: k is a constant that maybe zero, and
3730 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
scaled_iv_plus_offset(Node * n)3731 bool SWPointer::scaled_iv_plus_offset(Node* n) {
3732   NOT_PRODUCT(Tracer::Depth ddd;)
3733   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
3734 
3735   if (scaled_iv(n)) {
3736     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
3737     return true;
3738   }
3739 
3740   if (offset_plus_k(n)) {
3741     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
3742     return true;
3743   }
3744 
3745   int opc = n->Opcode();
3746   if (opc == Op_AddI) {
3747     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
3748       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
3749       return true;
3750     }
3751     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3752       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
3753       return true;
3754     }
3755   } else if (opc == Op_SubI) {
3756     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
3757       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
3758       return true;
3759     }
3760     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3761       _scale *= -1;
3762       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
3763       return true;
3764     }
3765   }
3766 
3767   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
3768   return false;
3769 }
3770 
3771 //----------------------------scaled_iv------------------------
3772 // Match: k*iv where k is a constant that's not zero
scaled_iv(Node * n)3773 bool SWPointer::scaled_iv(Node* n) {
3774   NOT_PRODUCT(Tracer::Depth ddd;)
3775   NOT_PRODUCT(_tracer.scaled_iv_1(n);)
3776 
3777   if (_scale != 0) { // already found a scale
3778     NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
3779     return false;
3780   }
3781 
3782   if (n == iv()) {
3783     _scale = 1;
3784     NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
3785     return true;
3786   }
3787   if (_analyze_only && (invariant(n) == false)) {
3788     _nstack->push(n, _stack_idx++);
3789   }
3790 
3791   int opc = n->Opcode();
3792   if (opc == Op_MulI) {
3793     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3794       _scale = n->in(2)->get_int();
3795       NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
3796       return true;
3797     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
3798       _scale = n->in(1)->get_int();
3799       NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
3800       return true;
3801     }
3802   } else if (opc == Op_LShiftI) {
3803     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3804       _scale = 1 << n->in(2)->get_int();
3805       NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
3806       return true;
3807     }
3808   } else if (opc == Op_ConvI2L) {
3809     if (n->in(1)->Opcode() == Op_CastII &&
3810         n->in(1)->as_CastII()->has_range_check()) {
3811       // Skip range check dependent CastII nodes
3812       n = n->in(1);
3813     }
3814     if (scaled_iv_plus_offset(n->in(1))) {
3815       NOT_PRODUCT(_tracer.scaled_iv_7(n);)
3816       return true;
3817     }
3818   } else if (opc == Op_LShiftL) {
3819     if (!has_iv() && _invar == NULL) {
3820       // Need to preserve the current _offset value, so
3821       // create a temporary object for this expression subtree.
3822       // Hacky, so should re-engineer the address pattern match.
3823       NOT_PRODUCT(Tracer::Depth dddd;)
3824       SWPointer tmp(this);
3825       NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
3826 
3827       if (tmp.scaled_iv_plus_offset(n->in(1))) {
3828         if (tmp._invar == NULL || _slp->do_vector_loop()) {
3829           int mult = 1 << n->in(2)->get_int();
3830           _scale   = tmp._scale  * mult;
3831           _offset += tmp._offset * mult;
3832           NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
3833           return true;
3834         }
3835       }
3836     }
3837   }
3838   NOT_PRODUCT(_tracer.scaled_iv_10(n);)
3839   return false;
3840 }
3841 
3842 //----------------------------offset_plus_k------------------------
3843 // Match: offset is (k [+/- invariant])
3844 // where k maybe zero and invariant is optional, but not both.
offset_plus_k(Node * n,bool negate)3845 bool SWPointer::offset_plus_k(Node* n, bool negate) {
3846   NOT_PRODUCT(Tracer::Depth ddd;)
3847   NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
3848 
3849   int opc = n->Opcode();
3850   if (opc == Op_ConI) {
3851     _offset += negate ? -(n->get_int()) : n->get_int();
3852     NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
3853     return true;
3854   } else if (opc == Op_ConL) {
3855     // Okay if value fits into an int
3856     const TypeLong* t = n->find_long_type();
3857     if (t->higher_equal(TypeLong::INT)) {
3858       jlong loff = n->get_long();
3859       jint  off  = (jint)loff;
3860       _offset += negate ? -off : loff;
3861       NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
3862       return true;
3863     }
3864     NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
3865     return false;
3866   }
3867   if (_invar != NULL) { // already has an invariant
3868     NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
3869     return false;
3870   }
3871 
3872   if (_analyze_only && (invariant(n) == false)) {
3873     _nstack->push(n, _stack_idx++);
3874   }
3875   if (opc == Op_AddI) {
3876     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3877       _negate_invar = negate;
3878       _invar = n->in(1);
3879       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3880       NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
3881       return true;
3882     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3883       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3884       _negate_invar = negate;
3885       _invar = n->in(2);
3886       NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
3887       return true;
3888     }
3889   }
3890   if (opc == Op_SubI) {
3891     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3892       _negate_invar = negate;
3893       _invar = n->in(1);
3894       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3895       NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
3896       return true;
3897     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3898       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3899       _negate_invar = !negate;
3900       _invar = n->in(2);
3901       NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
3902       return true;
3903     }
3904   }
3905   if (invariant(n)) {
3906     if (opc == Op_ConvI2L) {
3907       n = n->in(1);
3908       if (n->Opcode() == Op_CastII &&
3909           n->as_CastII()->has_range_check()) {
3910         // Skip range check dependent CastII nodes
3911         assert(invariant(n), "sanity");
3912         n = n->in(1);
3913       }
3914     }
3915     _negate_invar = negate;
3916     _invar = n;
3917     NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
3918     return true;
3919   }
3920 
3921   NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
3922   return false;
3923 }
3924 
3925 //----------------------------print------------------------
print()3926 void SWPointer::print() {
3927 #ifndef PRODUCT
3928   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
3929              _base != NULL ? _base->_idx : 0,
3930              _adr  != NULL ? _adr->_idx  : 0,
3931              _scale, _offset,
3932              _negate_invar?'-':'+',
3933              _invar != NULL ? _invar->_idx : 0);
3934 #endif
3935 }
3936 
3937 //----------------------------tracing------------------------
3938 #ifndef PRODUCT
print_depth()3939 void SWPointer::Tracer::print_depth() {
3940   for (int ii = 0; ii<_depth; ++ii) tty->print("  ");
3941 }
3942 
ctor_1(Node * mem)3943 void SWPointer::Tracer::ctor_1 (Node* mem) {
3944   if(_slp->is_trace_alignment()) {
3945     print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
3946   }
3947 }
3948 
ctor_2(Node * adr)3949 void SWPointer::Tracer::ctor_2(Node* adr) {
3950   if(_slp->is_trace_alignment()) {
3951     //store_depth();
3952     inc_depth();
3953     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
3954     inc_depth();
3955     print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
3956   }
3957 }
3958 
ctor_3(Node * adr,int i)3959 void SWPointer::Tracer::ctor_3(Node* adr, int i) {
3960   if(_slp->is_trace_alignment()) {
3961     inc_depth();
3962     Node* offset = adr->in(AddPNode::Offset);
3963     print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
3964   }
3965 }
3966 
ctor_4(Node * adr,int i)3967 void SWPointer::Tracer::ctor_4(Node* adr, int i) {
3968   if(_slp->is_trace_alignment()) {
3969     inc_depth();
3970     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
3971   }
3972 }
3973 
ctor_5(Node * adr,Node * base,int i)3974 void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
3975   if(_slp->is_trace_alignment()) {
3976     inc_depth();
3977     if (base == adr) {
3978       print_depth(); tty->print_cr("  \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
3979     } else if (!adr->is_AddP()) {
3980       print_depth(); tty->print_cr("  \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
3981     }
3982   }
3983 }
3984 
ctor_6(Node * mem)3985 void SWPointer::Tracer::ctor_6(Node* mem) {
3986   if(_slp->is_trace_alignment()) {
3987     //restore_depth();
3988     print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
3989   }
3990 }
3991 
invariant_1(Node * n,Node * n_c)3992 void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
3993   if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
3994     int is_member =  _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
3995     int in_bb     =  _slp->in_bb(n);
3996     print_depth(); tty->print("  \\ ");  tty->print_cr(" %d SWPointer::invariant  conditions differ: n_c %d", n->_idx, n_c->_idx);
3997     print_depth(); tty->print("  \\ ");  tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
3998     print_depth(); tty->print("  \\ ");  n->dump();
3999     print_depth(); tty->print("  \\ ");  n_c->dump();
4000   }
4001 }
4002 
scaled_iv_plus_offset_1(Node * n)4003 void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
4004   if(_slp->is_trace_alignment()) {
4005     print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
4006     n->dump();
4007   }
4008 }
4009 
scaled_iv_plus_offset_2(Node * n)4010 void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
4011   if(_slp->is_trace_alignment()) {
4012     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
4013   }
4014 }
4015 
scaled_iv_plus_offset_3(Node * n)4016 void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
4017   if(_slp->is_trace_alignment()) {
4018     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
4019   }
4020 }
4021 
scaled_iv_plus_offset_4(Node * n)4022 void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
4023   if(_slp->is_trace_alignment()) {
4024     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
4025     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
4026     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
4027   }
4028 }
4029 
scaled_iv_plus_offset_5(Node * n)4030 void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
4031   if(_slp->is_trace_alignment()) {
4032     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
4033     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
4034     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
4035   }
4036 }
4037 
scaled_iv_plus_offset_6(Node * n)4038 void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
4039   if(_slp->is_trace_alignment()) {
4040     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
4041     print_depth(); tty->print("  \\  %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
4042     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
4043   }
4044 }
4045 
scaled_iv_plus_offset_7(Node * n)4046 void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
4047   if(_slp->is_trace_alignment()) {
4048     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
4049     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
4050     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
4051   }
4052 }
4053 
scaled_iv_plus_offset_8(Node * n)4054 void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
4055   if(_slp->is_trace_alignment()) {
4056     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
4057   }
4058 }
4059 
scaled_iv_1(Node * n)4060 void SWPointer::Tracer::scaled_iv_1(Node* n) {
4061   if(_slp->is_trace_alignment()) {
4062     print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
4063   }
4064 }
4065 
scaled_iv_2(Node * n,int scale)4066 void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
4067   if(_slp->is_trace_alignment()) {
4068     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
4069     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
4070   }
4071 }
4072 
scaled_iv_3(Node * n,int scale)4073 void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
4074   if(_slp->is_trace_alignment()) {
4075     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
4076   }
4077 }
4078 
scaled_iv_4(Node * n,int scale)4079 void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
4080   if(_slp->is_trace_alignment()) {
4081     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
4082     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
4083     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4084   }
4085 }
4086 
scaled_iv_5(Node * n,int scale)4087 void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
4088   if(_slp->is_trace_alignment()) {
4089     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
4090     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
4091     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4092   }
4093 }
4094 
scaled_iv_6(Node * n,int scale)4095 void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
4096   if(_slp->is_trace_alignment()) {
4097     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
4098     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
4099     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4100   }
4101 }
4102 
scaled_iv_7(Node * n)4103 void SWPointer::Tracer::scaled_iv_7(Node* n) {
4104   if(_slp->is_trace_alignment()) {
4105     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
4106     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
4107     inc_depth(); inc_depth();
4108     print_depth(); n->in(1)->dump();
4109     dec_depth(); dec_depth();
4110   }
4111 }
4112 
scaled_iv_8(Node * n,SWPointer * tmp)4113 void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
4114   if(_slp->is_trace_alignment()) {
4115     print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
4116   }
4117 }
4118 
scaled_iv_9(Node * n,int scale,int _offset,int mult)4119 void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
4120   if(_slp->is_trace_alignment()) {
4121     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
4122     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
4123     n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
4124     inc_depth(); inc_depth();
4125     print_depth(); n->in(1)->dump();
4126     print_depth(); n->in(2)->dump();
4127     dec_depth(); dec_depth();
4128   }
4129 }
4130 
scaled_iv_10(Node * n)4131 void SWPointer::Tracer::scaled_iv_10(Node* n) {
4132   if(_slp->is_trace_alignment()) {
4133     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
4134   }
4135 }
4136 
offset_plus_k_1(Node * n)4137 void SWPointer::Tracer::offset_plus_k_1(Node* n) {
4138   if(_slp->is_trace_alignment()) {
4139     print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
4140   }
4141 }
4142 
offset_plus_k_2(Node * n,int _offset)4143 void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
4144   if(_slp->is_trace_alignment()) {
4145     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
4146   }
4147 }
4148 
offset_plus_k_3(Node * n,int _offset)4149 void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
4150   if(_slp->is_trace_alignment()) {
4151     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
4152   }
4153 }
4154 
offset_plus_k_4(Node * n)4155 void SWPointer::Tracer::offset_plus_k_4(Node* n) {
4156   if(_slp->is_trace_alignment()) {
4157     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
4158     print_depth(); tty->print_cr("  \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
4159   }
4160 }
4161 
offset_plus_k_5(Node * n,Node * _invar)4162 void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
4163   if(_slp->is_trace_alignment()) {
4164     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
4165     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
4166   }
4167 }
4168 
offset_plus_k_6(Node * n,Node * _invar,bool _negate_invar,int _offset)4169 void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4170   if(_slp->is_trace_alignment()) {
4171     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4172     n->_idx, _negate_invar, _invar->_idx, _offset);
4173     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4174     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
4175   }
4176 }
4177 
offset_plus_k_7(Node * n,Node * _invar,bool _negate_invar,int _offset)4178 void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4179   if(_slp->is_trace_alignment()) {
4180     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4181     n->_idx, _negate_invar, _invar->_idx, _offset);
4182     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4183     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
4184   }
4185 }
4186 
offset_plus_k_8(Node * n,Node * _invar,bool _negate_invar,int _offset)4187 void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4188   if(_slp->is_trace_alignment()) {
4189     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4190     n->_idx, _negate_invar, _invar->_idx, _offset);
4191     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4192     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
4193   }
4194 }
4195 
offset_plus_k_9(Node * n,Node * _invar,bool _negate_invar,int _offset)4196 void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4197   if(_slp->is_trace_alignment()) {
4198     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
4199     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4200     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
4201   }
4202 }
4203 
offset_plus_k_10(Node * n,Node * _invar,bool _negate_invar,int _offset)4204 void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4205   if(_slp->is_trace_alignment()) {
4206     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
4207     print_depth(); tty->print_cr("  \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
4208   }
4209 }
4210 
offset_plus_k_11(Node * n)4211 void SWPointer::Tracer::offset_plus_k_11(Node* n) {
4212   if(_slp->is_trace_alignment()) {
4213     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
4214   }
4215 }
4216 
4217 #endif
4218 // ========================= OrderedPair =====================
4219 
4220 const OrderedPair OrderedPair::initial;
4221 
4222 // ========================= SWNodeInfo =====================
4223 
4224 const SWNodeInfo SWNodeInfo::initial;
4225 
4226 
4227 // ============================ DepGraph ===========================
4228 
4229 //------------------------------make_node---------------------------
4230 // Make a new dependence graph node for an ideal node.
make_node(Node * node)4231 DepMem* DepGraph::make_node(Node* node) {
4232   DepMem* m = new (_arena) DepMem(node);
4233   if (node != NULL) {
4234     assert(_map.at_grow(node->_idx) == NULL, "one init only");
4235     _map.at_put_grow(node->_idx, m);
4236   }
4237   return m;
4238 }
4239 
4240 //------------------------------make_edge---------------------------
4241 // Make a new dependence graph edge from dpred -> dsucc
make_edge(DepMem * dpred,DepMem * dsucc)4242 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
4243   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
4244   dpred->set_out_head(e);
4245   dsucc->set_in_head(e);
4246   return e;
4247 }
4248 
4249 // ========================== DepMem ========================
4250 
4251 //------------------------------in_cnt---------------------------
in_cnt()4252 int DepMem::in_cnt() {
4253   int ct = 0;
4254   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
4255   return ct;
4256 }
4257 
4258 //------------------------------out_cnt---------------------------
out_cnt()4259 int DepMem::out_cnt() {
4260   int ct = 0;
4261   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
4262   return ct;
4263 }
4264 
4265 //------------------------------print-----------------------------
print()4266 void DepMem::print() {
4267 #ifndef PRODUCT
4268   tty->print("  DepNode %d (", _node->_idx);
4269   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
4270     Node* pred = p->pred()->node();
4271     tty->print(" %d", pred != NULL ? pred->_idx : 0);
4272   }
4273   tty->print(") [");
4274   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
4275     Node* succ = s->succ()->node();
4276     tty->print(" %d", succ != NULL ? succ->_idx : 0);
4277   }
4278   tty->print_cr(" ]");
4279 #endif
4280 }
4281 
4282 // =========================== DepEdge =========================
4283 
4284 //------------------------------DepPreds---------------------------
print()4285 void DepEdge::print() {
4286 #ifndef PRODUCT
4287   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
4288 #endif
4289 }
4290 
4291 // =========================== DepPreds =========================
4292 // Iterator over predecessor edges in the dependence graph.
4293 
4294 //------------------------------DepPreds---------------------------
DepPreds(Node * n,DepGraph & dg)4295 DepPreds::DepPreds(Node* n, DepGraph& dg) {
4296   _n = n;
4297   _done = false;
4298   if (_n->is_Store() || _n->is_Load()) {
4299     _next_idx = MemNode::Address;
4300     _end_idx  = n->req();
4301     _dep_next = dg.dep(_n)->in_head();
4302   } else if (_n->is_Mem()) {
4303     _next_idx = 0;
4304     _end_idx  = 0;
4305     _dep_next = dg.dep(_n)->in_head();
4306   } else {
4307     _next_idx = 1;
4308     _end_idx  = _n->req();
4309     _dep_next = NULL;
4310   }
4311   next();
4312 }
4313 
4314 //------------------------------next---------------------------
next()4315 void DepPreds::next() {
4316   if (_dep_next != NULL) {
4317     _current  = _dep_next->pred()->node();
4318     _dep_next = _dep_next->next_in();
4319   } else if (_next_idx < _end_idx) {
4320     _current  = _n->in(_next_idx++);
4321   } else {
4322     _done = true;
4323   }
4324 }
4325 
4326 // =========================== DepSuccs =========================
4327 // Iterator over successor edges in the dependence graph.
4328 
4329 //------------------------------DepSuccs---------------------------
DepSuccs(Node * n,DepGraph & dg)4330 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
4331   _n = n;
4332   _done = false;
4333   if (_n->is_Load()) {
4334     _next_idx = 0;
4335     _end_idx  = _n->outcnt();
4336     _dep_next = dg.dep(_n)->out_head();
4337   } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) {
4338     _next_idx = 0;
4339     _end_idx  = 0;
4340     _dep_next = dg.dep(_n)->out_head();
4341   } else {
4342     _next_idx = 0;
4343     _end_idx  = _n->outcnt();
4344     _dep_next = NULL;
4345   }
4346   next();
4347 }
4348 
4349 //-------------------------------next---------------------------
next()4350 void DepSuccs::next() {
4351   if (_dep_next != NULL) {
4352     _current  = _dep_next->succ()->node();
4353     _dep_next = _dep_next->next_out();
4354   } else if (_next_idx < _end_idx) {
4355     _current  = _n->raw_out(_next_idx++);
4356   } else {
4357     _done = true;
4358   }
4359 }
4360 
4361 //
4362 // --------------------------------- vectorization/simd -----------------------------------
4363 //
same_origin_idx(Node * a,Node * b) const4364 bool SuperWord::same_origin_idx(Node* a, Node* b) const {
4365   return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
4366 }
same_generation(Node * a,Node * b) const4367 bool SuperWord::same_generation(Node* a, Node* b) const {
4368   return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
4369 }
4370 
find_phi_for_mem_dep(LoadNode * ld)4371 Node*  SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
4372   assert(in_bb(ld), "must be in block");
4373   if (_clone_map.gen(ld->_idx) == _ii_first) {
4374 #ifndef PRODUCT
4375     if (_vector_loop_debug) {
4376       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
4377         _clone_map.gen(ld->_idx));
4378     }
4379 #endif
4380     return NULL; //we think that any ld in the first gen being vectorizable
4381   }
4382 
4383   Node* mem = ld->in(MemNode::Memory);
4384   if (mem->outcnt() <= 1) {
4385     // we don't want to remove the only edge from mem node to load
4386 #ifndef PRODUCT
4387     if (_vector_loop_debug) {
4388       tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
4389         mem->_idx, ld->_idx);
4390       ld->dump();
4391       mem->dump();
4392     }
4393 #endif
4394     return NULL;
4395   }
4396   if (!in_bb(mem) || same_generation(mem, ld)) {
4397 #ifndef PRODUCT
4398     if (_vector_loop_debug) {
4399       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
4400         _clone_map.gen(mem->_idx));
4401     }
4402 #endif
4403     return NULL; // does not depend on loop volatile node or depends on the same generation
4404   }
4405 
4406   //otherwise first node should depend on mem-phi
4407   Node* first = first_node(ld);
4408   assert(first->is_Load(), "must be Load");
4409   Node* phi = first->as_Load()->in(MemNode::Memory);
4410   if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
4411 #ifndef PRODUCT
4412     if (_vector_loop_debug) {
4413       tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
4414       ld->dump();
4415       first->dump();
4416     }
4417 #endif
4418     return NULL;
4419   }
4420 
4421   Node* tail = 0;
4422   for (int m = 0; m < _mem_slice_head.length(); m++) {
4423     if (_mem_slice_head.at(m) == phi) {
4424       tail = _mem_slice_tail.at(m);
4425     }
4426   }
4427   if (tail == 0) { //test that found phi is in the list  _mem_slice_head
4428 #ifndef PRODUCT
4429     if (_vector_loop_debug) {
4430       tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
4431         ld->_idx, phi->_idx);
4432       ld->dump();
4433       phi->dump();
4434     }
4435 #endif
4436     return NULL;
4437   }
4438 
4439   // now all conditions are met
4440   return phi;
4441 }
4442 
first_node(Node * nd)4443 Node* SuperWord::first_node(Node* nd) {
4444   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4445     Node* nnn = _iteration_first.at(ii);
4446     if (same_origin_idx(nnn, nd)) {
4447 #ifndef PRODUCT
4448       if (_vector_loop_debug) {
4449         tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
4450           nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
4451       }
4452 #endif
4453       return nnn;
4454     }
4455   }
4456 
4457 #ifndef PRODUCT
4458   if (_vector_loop_debug) {
4459     tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
4460       nd->_idx, _clone_map.idx(nd->_idx));
4461   }
4462 #endif
4463   return 0;
4464 }
4465 
last_node(Node * nd)4466 Node* SuperWord::last_node(Node* nd) {
4467   for (int ii = 0; ii < _iteration_last.length(); ii++) {
4468     Node* nnn = _iteration_last.at(ii);
4469     if (same_origin_idx(nnn, nd)) {
4470 #ifndef PRODUCT
4471       if (_vector_loop_debug) {
4472         tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
4473           _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
4474       }
4475 #endif
4476       return nnn;
4477     }
4478   }
4479   return 0;
4480 }
4481 
mark_generations()4482 int SuperWord::mark_generations() {
4483   Node *ii_err = NULL, *tail_err = NULL;
4484   for (int i = 0; i < _mem_slice_head.length(); i++) {
4485     Node* phi  = _mem_slice_head.at(i);
4486     assert(phi->is_Phi(), "must be phi");
4487 
4488     Node* tail = _mem_slice_tail.at(i);
4489     if (_ii_last == -1) {
4490       tail_err = tail;
4491       _ii_last = _clone_map.gen(tail->_idx);
4492     }
4493     else if (_ii_last != _clone_map.gen(tail->_idx)) {
4494 #ifndef PRODUCT
4495       if (TraceSuperWord && Verbose) {
4496         tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
4497         tail->dump();
4498         tail_err->dump();
4499       }
4500 #endif
4501       return -1;
4502     }
4503 
4504     // find first iteration in the loop
4505     for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
4506       Node* ii = phi->fast_out(i);
4507       if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
4508         if (_ii_first == -1) {
4509           ii_err = ii;
4510           _ii_first = _clone_map.gen(ii->_idx);
4511         } else if (_ii_first != _clone_map.gen(ii->_idx)) {
4512 #ifndef PRODUCT
4513           if (TraceSuperWord && Verbose) {
4514             tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
4515             ii->dump();
4516             if (ii_err!= 0) {
4517               ii_err->dump();
4518             }
4519           }
4520 #endif
4521           return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
4522         }
4523       }
4524     }//for (DUIterator_Fast imax,
4525   }//for (int i...
4526 
4527   if (_ii_first == -1 || _ii_last == -1) {
4528     if (TraceSuperWord && Verbose) {
4529       tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
4530     }
4531     return -1; // something vent wrong
4532   }
4533   // collect nodes in the first and last generations
4534   assert(_iteration_first.length() == 0, "_iteration_first must be empty");
4535   assert(_iteration_last.length() == 0, "_iteration_last must be empty");
4536   for (int j = 0; j < _block.length(); j++) {
4537     Node* n = _block.at(j);
4538     node_idx_t gen = _clone_map.gen(n->_idx);
4539     if ((signed)gen == _ii_first) {
4540       _iteration_first.push(n);
4541     } else if ((signed)gen == _ii_last) {
4542       _iteration_last.push(n);
4543     }
4544   }
4545 
4546   // building order of iterations
4547   if (_ii_order.length() == 0 && ii_err != 0) {
4548     assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
4549     Node* nd = ii_err;
4550     while(_clone_map.gen(nd->_idx) != _ii_last) {
4551       _ii_order.push(_clone_map.gen(nd->_idx));
4552       bool found = false;
4553       for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
4554         Node* use = nd->fast_out(i);
4555         if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
4556           found = true;
4557           nd = use;
4558           break;
4559         }
4560       }//for
4561 
4562       if (found == false) {
4563         if (TraceSuperWord && Verbose) {
4564           tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
4565         }
4566         _ii_order.clear();
4567         return -1;
4568       }
4569     } //while
4570     _ii_order.push(_clone_map.gen(nd->_idx));
4571   }
4572 
4573 #ifndef PRODUCT
4574   if (_vector_loop_debug) {
4575     tty->print_cr("SuperWord::mark_generations");
4576     tty->print_cr("First generation (%d) nodes:", _ii_first);
4577     for (int ii = 0; ii < _iteration_first.length(); ii++)  _iteration_first.at(ii)->dump();
4578     tty->print_cr("Last generation (%d) nodes:", _ii_last);
4579     for (int ii = 0; ii < _iteration_last.length(); ii++)  _iteration_last.at(ii)->dump();
4580     tty->print_cr(" ");
4581 
4582     tty->print("SuperWord::List of generations: ");
4583     for (int jj = 0; jj < _ii_order.length(); ++jj) {
4584       tty->print("%d:%d ", jj, _ii_order.at(jj));
4585     }
4586     tty->print_cr(" ");
4587   }
4588 #endif
4589 
4590   return _ii_first;
4591 }
4592 
fix_commutative_inputs(Node * gold,Node * fix)4593 bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
4594   assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
4595   assert(same_origin_idx(gold, fix), "should be clones of the same node");
4596   Node* gin1 = gold->in(1);
4597   Node* gin2 = gold->in(2);
4598   Node* fin1 = fix->in(1);
4599   Node* fin2 = fix->in(2);
4600   bool swapped = false;
4601 
4602   if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
4603     if (same_origin_idx(gin1, fin1) &&
4604         same_origin_idx(gin2, fin2)) {
4605       return true; // nothing to fix
4606     }
4607     if (same_origin_idx(gin1, fin2) &&
4608         same_origin_idx(gin2, fin1)) {
4609       fix->swap_edges(1, 2);
4610       swapped = true;
4611     }
4612   }
4613   // at least one input comes from outside of bb
4614   if (gin1->_idx == fin1->_idx)  {
4615     return true; // nothing to fix
4616   }
4617   if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx))  { //swapping is expensive, check condition first
4618     fix->swap_edges(1, 2);
4619     swapped = true;
4620   }
4621 
4622   if (swapped) {
4623 #ifndef PRODUCT
4624     if (_vector_loop_debug) {
4625       tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
4626     }
4627 #endif
4628     return true;
4629   }
4630 
4631   if (TraceSuperWord && Verbose) {
4632     tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
4633   }
4634 
4635   return false;
4636 }
4637 
pack_parallel()4638 bool SuperWord::pack_parallel() {
4639 #ifndef PRODUCT
4640   if (_vector_loop_debug) {
4641     tty->print_cr("SuperWord::pack_parallel: START");
4642   }
4643 #endif
4644 
4645   _packset.clear();
4646 
4647   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4648     Node* nd = _iteration_first.at(ii);
4649     if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
4650       Node_List* pk = new Node_List();
4651       pk->push(nd);
4652       for (int gen = 1; gen < _ii_order.length(); ++gen) {
4653         for (int kk = 0; kk < _block.length(); kk++) {
4654           Node* clone = _block.at(kk);
4655           if (same_origin_idx(clone, nd) &&
4656               _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
4657             if (nd->is_Add() || nd->is_Mul()) {
4658               fix_commutative_inputs(nd, clone);
4659             }
4660             pk->push(clone);
4661             if (pk->size() == 4) {
4662               _packset.append(pk);
4663 #ifndef PRODUCT
4664               if (_vector_loop_debug) {
4665                 tty->print_cr("SuperWord::pack_parallel: added pack ");
4666                 pk->dump();
4667               }
4668 #endif
4669               if (_clone_map.gen(clone->_idx) != _ii_last) {
4670                 pk = new Node_List();
4671               }
4672             }
4673             break;
4674           }
4675         }
4676       }//for
4677     }//if
4678   }//for
4679 
4680 #ifndef PRODUCT
4681   if (_vector_loop_debug) {
4682     tty->print_cr("SuperWord::pack_parallel: END");
4683   }
4684 #endif
4685 
4686   return true;
4687 }
4688 
hoist_loads_in_graph()4689 bool SuperWord::hoist_loads_in_graph() {
4690   GrowableArray<Node*> loads;
4691 
4692 #ifndef PRODUCT
4693   if (_vector_loop_debug) {
4694     tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
4695   }
4696 #endif
4697 
4698   for (int i = 0; i < _mem_slice_head.length(); i++) {
4699     Node* n = _mem_slice_head.at(i);
4700     if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
4701       if (TraceSuperWord && Verbose) {
4702         tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
4703       }
4704       continue;
4705     }
4706 
4707 #ifndef PRODUCT
4708     if (_vector_loop_debug) {
4709       tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d  = _mem_slice_head.at(%d);", n->_idx, i);
4710     }
4711 #endif
4712 
4713     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4714       Node* ld = n->fast_out(i);
4715       if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
4716         for (int i = 0; i < _block.length(); i++) {
4717           Node* ld2 = _block.at(i);
4718           if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
4719               !same_generation(ld, ld2)) { // <= do not collect the first generation ld
4720 #ifndef PRODUCT
4721             if (_vector_loop_debug) {
4722               tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
4723                 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
4724             }
4725 #endif
4726             // could not do on-the-fly, since iterator is immutable
4727             loads.push(ld2);
4728           }
4729         }// for
4730       }//if
4731     }//for (DUIterator_Fast imax,
4732   }//for (int i = 0; i
4733 
4734   for (int i = 0; i < loads.length(); i++) {
4735     LoadNode* ld = loads.at(i)->as_Load();
4736     Node* phi = find_phi_for_mem_dep(ld);
4737     if (phi != NULL) {
4738 #ifndef PRODUCT
4739       if (_vector_loop_debug) {
4740         tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
4741           MemNode::Memory, ld->_idx, phi->_idx);
4742       }
4743 #endif
4744       _igvn.replace_input_of(ld, MemNode::Memory, phi);
4745     }
4746   }//for
4747 
4748   restart(); // invalidate all basic structures, since we rebuilt the graph
4749 
4750   if (TraceSuperWord && Verbose) {
4751     tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
4752   }
4753 
4754   return true;
4755 }
4756