1 /*
2  * Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 import jdk.internal.perf.PerfCounter;
29 import jdk.internal.vm.annotation.DontInline;
30 import jdk.internal.vm.annotation.Hidden;
31 import jdk.internal.vm.annotation.Stable;
32 import sun.invoke.util.Wrapper;
33 
34 import java.lang.annotation.ElementType;
35 import java.lang.annotation.Retention;
36 import java.lang.annotation.RetentionPolicy;
37 import java.lang.annotation.Target;
38 import java.lang.reflect.Method;
39 import java.util.Arrays;
40 import java.util.HashMap;
41 
42 import static java.lang.invoke.LambdaForm.BasicType.*;
43 import static java.lang.invoke.MethodHandleNatives.Constants.REF_invokeStatic;
44 import static java.lang.invoke.MethodHandleStatics.*;
45 
46 /**
47  * The symbolic, non-executable form of a method handle's invocation semantics.
48  * It consists of a series of names.
49  * The first N (N=arity) names are parameters,
50  * while any remaining names are temporary values.
51  * Each temporary specifies the application of a function to some arguments.
52  * The functions are method handles, while the arguments are mixes of
53  * constant values and local names.
54  * The result of the lambda is defined as one of the names, often the last one.
55  * <p>
56  * Here is an approximate grammar:
57  * <blockquote><pre>{@code
58  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
59  * ArgName = "a" N ":" T
60  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
61  * Function = ConstantValue
62  * Argument = NameRef | ConstantValue
63  * Result = NameRef | "void"
64  * NameRef = "a" N | "t" N
65  * N = (any whole number)
66  * T = "L" | "I" | "J" | "F" | "D" | "V"
67  * }</pre></blockquote>
68  * Names are numbered consecutively from left to right starting at zero.
69  * (The letters are merely a taste of syntax sugar.)
70  * Thus, the first temporary (if any) is always numbered N (where N=arity).
71  * Every occurrence of a name reference in an argument list must refer to
72  * a name previously defined within the same lambda.
73  * A lambda has a void result if and only if its result index is -1.
74  * If a temporary has the type "V", it cannot be the subject of a NameRef,
75  * even though possesses a number.
76  * Note that all reference types are erased to "L", which stands for {@code Object}.
77  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
78  * The other types stand for the usual primitive types.
79  * <p>
80  * Function invocation closely follows the static rules of the Java verifier.
81  * Arguments and return values must exactly match when their "Name" types are
82  * considered.
83  * Conversions are allowed only if they do not change the erased type.
84  * <ul>
85  * <li>L = Object: casts are used freely to convert into and out of reference types
86  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
87  * <li>J = long: no implicit conversions
88  * <li>F = float: no implicit conversions
89  * <li>D = double: no implicit conversions
90  * <li>V = void: a function result may be void if and only if its Name is of type "V"
91  * </ul>
92  * Although implicit conversions are not allowed, explicit ones can easily be
93  * encoded by using temporary expressions which call type-transformed identity functions.
94  * <p>
95  * Examples:
96  * <blockquote><pre>{@code
97  * (a0:J)=>{ a0 }
98  *     == identity(long)
99  * (a0:I)=>{ t1:V = System.out#println(a0); void }
100  *     == System.out#println(int)
101  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
102  *     == identity, with printing side-effect
103  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
104  *                 t3:L = BoundMethodHandle#target(a0);
105  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
106  *     == general invoker for unary insertArgument combination
107  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
108  *                 t3:L = MethodHandle#invoke(t2, a1);
109  *                 t4:L = FilterMethodHandle#target(a0);
110  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
111  *     == general invoker for unary filterArgument combination
112  * (a0:L, a1:L)=>{ ...(same as previous example)...
113  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
114  *     == general invoker for unary/unary foldArgument combination
115  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
116  *     == invoker for identity method handle which performs i2l
117  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
118  *                 t3:L = Class#cast(t2,a1); t3 }
119  *     == invoker for identity method handle which performs cast
120  * }</pre></blockquote>
121  * <p>
122  * @author John Rose, JSR 292 EG
123  */
124 class LambdaForm {
125     final int arity;
126     final int result;
127     final boolean forceInline;
128     final MethodHandle customized;
129     @Stable final Name[] names;
130     final Kind kind;
131     MemberName vmentry;   // low-level behavior, or null if not yet prepared
132     private boolean isCompiled;
133 
134     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
135     volatile Object transformCache;
136 
137     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
138 
139     enum BasicType {
140         L_TYPE('L', Object.class, Wrapper.OBJECT),  // all reference types
141         I_TYPE('I', int.class,    Wrapper.INT),
142         J_TYPE('J', long.class,   Wrapper.LONG),
143         F_TYPE('F', float.class,  Wrapper.FLOAT),
144         D_TYPE('D', double.class, Wrapper.DOUBLE),  // all primitive types
145         V_TYPE('V', void.class,   Wrapper.VOID);    // not valid in all contexts
146 
147         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
148         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
149 
150         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
151         static final int TYPE_LIMIT = ALL_TYPES.length;
152 
153         // Derived int constants, which (unlike the enums) can be constant folded.
154         // We can remove them when JDK-8161245 is fixed.
155         static final byte
156                 L_TYPE_NUM = (byte) L_TYPE.ordinal(),
157                 I_TYPE_NUM = (byte) I_TYPE.ordinal(),
158                 J_TYPE_NUM = (byte) J_TYPE.ordinal(),
159                 F_TYPE_NUM = (byte) F_TYPE.ordinal(),
160                 D_TYPE_NUM = (byte) D_TYPE.ordinal(),
161                 V_TYPE_NUM = (byte) V_TYPE.ordinal();
162 
163         final char btChar;
164         final Class<?> btClass;
165         final Wrapper btWrapper;
166 
BasicType(char btChar, Class<?> btClass, Wrapper wrapper)167         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper) {
168             this.btChar = btChar;
169             this.btClass = btClass;
170             this.btWrapper = wrapper;
171         }
172 
basicTypeChar()173         char basicTypeChar() {
174             return btChar;
175         }
basicTypeClass()176         Class<?> basicTypeClass() {
177             return btClass;
178         }
basicTypeWrapper()179         Wrapper basicTypeWrapper() {
180             return btWrapper;
181         }
basicTypeSlots()182         int basicTypeSlots() {
183             return btWrapper.stackSlots();
184         }
185 
basicType(byte type)186         static BasicType basicType(byte type) {
187             return ALL_TYPES[type];
188         }
basicType(char type)189         static BasicType basicType(char type) {
190             switch (type) {
191                 case 'L': return L_TYPE;
192                 case 'I': return I_TYPE;
193                 case 'J': return J_TYPE;
194                 case 'F': return F_TYPE;
195                 case 'D': return D_TYPE;
196                 case 'V': return V_TYPE;
197                 // all subword types are represented as ints
198                 case 'Z':
199                 case 'B':
200                 case 'S':
201                 case 'C':
202                     return I_TYPE;
203                 default:
204                     throw newInternalError("Unknown type char: '"+type+"'");
205             }
206         }
basicType(Wrapper type)207         static BasicType basicType(Wrapper type) {
208             char c = type.basicTypeChar();
209             return basicType(c);
210         }
basicType(Class<?> type)211         static BasicType basicType(Class<?> type) {
212             if (!type.isPrimitive())  return L_TYPE;
213             return basicType(Wrapper.forPrimitiveType(type));
214         }
basicTypes(String types)215         static BasicType[] basicTypes(String types) {
216             BasicType[] btypes = new BasicType[types.length()];
217             for (int i = 0; i < btypes.length; i++) {
218                 btypes[i] = basicType(types.charAt(i));
219             }
220             return btypes;
221         }
basicTypeDesc(BasicType[] types)222         static String basicTypeDesc(BasicType[] types) {
223             if (types == null) {
224                 return null;
225             }
226             if (types.length == 0) {
227                 return "";
228             }
229             StringBuilder sb = new StringBuilder();
230             for (BasicType bt : types) {
231                 sb.append(bt.basicTypeChar());
232             }
233             return sb.toString();
234         }
basicTypeOrds(BasicType[] types)235         static int[] basicTypeOrds(BasicType[] types) {
236             if (types == null) {
237                 return null;
238             }
239             int[] a = new int[types.length];
240             for(int i = 0; i < types.length; ++i) {
241                 a[i] = types[i].ordinal();
242             }
243             return a;
244         }
245 
basicTypeChar(Class<?> type)246         static char basicTypeChar(Class<?> type) {
247             return basicType(type).btChar;
248         }
249 
basicTypesOrd(Class<?>[] types)250         static byte[] basicTypesOrd(Class<?>[] types) {
251             byte[] ords = new byte[types.length];
252             for (int i = 0; i < ords.length; i++) {
253                 ords[i] = (byte)basicType(types[i]).ordinal();
254             }
255             return ords;
256         }
257 
isBasicTypeChar(char c)258         static boolean isBasicTypeChar(char c) {
259             return "LIJFDV".indexOf(c) >= 0;
260         }
isArgBasicTypeChar(char c)261         static boolean isArgBasicTypeChar(char c) {
262             return "LIJFD".indexOf(c) >= 0;
263         }
264 
checkBasicType()265         static { assert(checkBasicType()); }
checkBasicType()266         private static boolean checkBasicType() {
267             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
268                 assert ARG_TYPES[i].ordinal() == i;
269                 assert ARG_TYPES[i] == ALL_TYPES[i];
270             }
271             for (int i = 0; i < TYPE_LIMIT; i++) {
272                 assert ALL_TYPES[i].ordinal() == i;
273             }
274             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
275             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
276             return true;
277         }
278     }
279 
280     enum Kind {
281         GENERIC("invoke"),
282         ZERO("zero"),
283         IDENTITY("identity"),
284         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
285         REINVOKER("MH.reinvoke", "reinvoke"),
286         DELEGATE("MH.delegate", "delegate"),
287         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
288         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
289         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
290         GENERIC_INVOKER("MH.invoker", "invoker"),
291         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
292         LINK_TO_CALL_SITE("linkToCallSite"),
293         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
294         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
295         DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"),
296         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
297         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
298         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
299         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
300         GET_REFERENCE("getReference"),
301         PUT_REFERENCE("putReference"),
302         GET_REFERENCE_VOLATILE("getReferenceVolatile"),
303         PUT_REFERENCE_VOLATILE("putReferenceVolatile"),
304         GET_INT("getInt"),
305         PUT_INT("putInt"),
306         GET_INT_VOLATILE("getIntVolatile"),
307         PUT_INT_VOLATILE("putIntVolatile"),
308         GET_BOOLEAN("getBoolean"),
309         PUT_BOOLEAN("putBoolean"),
310         GET_BOOLEAN_VOLATILE("getBooleanVolatile"),
311         PUT_BOOLEAN_VOLATILE("putBooleanVolatile"),
312         GET_BYTE("getByte"),
313         PUT_BYTE("putByte"),
314         GET_BYTE_VOLATILE("getByteVolatile"),
315         PUT_BYTE_VOLATILE("putByteVolatile"),
316         GET_CHAR("getChar"),
317         PUT_CHAR("putChar"),
318         GET_CHAR_VOLATILE("getCharVolatile"),
319         PUT_CHAR_VOLATILE("putCharVolatile"),
320         GET_SHORT("getShort"),
321         PUT_SHORT("putShort"),
322         GET_SHORT_VOLATILE("getShortVolatile"),
323         PUT_SHORT_VOLATILE("putShortVolatile"),
324         GET_LONG("getLong"),
325         PUT_LONG("putLong"),
326         GET_LONG_VOLATILE("getLongVolatile"),
327         PUT_LONG_VOLATILE("putLongVolatile"),
328         GET_FLOAT("getFloat"),
329         PUT_FLOAT("putFloat"),
330         GET_FLOAT_VOLATILE("getFloatVolatile"),
331         PUT_FLOAT_VOLATILE("putFloatVolatile"),
332         GET_DOUBLE("getDouble"),
333         PUT_DOUBLE("putDouble"),
334         GET_DOUBLE_VOLATILE("getDoubleVolatile"),
335         PUT_DOUBLE_VOLATILE("putDoubleVolatile"),
336         TRY_FINALLY("tryFinally"),
337         COLLECT("collect"),
338         CONVERT("convert"),
339         SPREAD("spread"),
340         LOOP("loop"),
341         FIELD("field"),
342         GUARD("guard"),
343         GUARD_WITH_CATCH("guardWithCatch"),
344         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
345         VARHANDLE_INVOKER("VH.invoker", "invoker"),
346         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
347 
348         final String defaultLambdaName;
349         final String methodName;
350 
Kind(String defaultLambdaName)351         private Kind(String defaultLambdaName) {
352             this(defaultLambdaName, defaultLambdaName);
353         }
354 
Kind(String defaultLambdaName, String methodName)355         private Kind(String defaultLambdaName, String methodName) {
356             this.defaultLambdaName = defaultLambdaName;
357             this.methodName = methodName;
358         }
359     }
360 
LambdaForm(int arity, Name[] names, int result)361     LambdaForm(int arity, Name[] names, int result) {
362         this(arity, names, result, /*forceInline=*/true, /*customized=*/null, Kind.GENERIC);
363     }
LambdaForm(int arity, Name[] names, int result, Kind kind)364     LambdaForm(int arity, Name[] names, int result, Kind kind) {
365         this(arity, names, result, /*forceInline=*/true, /*customized=*/null, kind);
366     }
LambdaForm(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized)367     LambdaForm(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized) {
368         this(arity, names, result, forceInline, customized, Kind.GENERIC);
369     }
LambdaForm(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind)370     LambdaForm(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
371         assert(namesOK(arity, names));
372         this.arity = arity;
373         this.result = fixResult(result, names);
374         this.names = names.clone();
375         this.forceInline = forceInline;
376         this.customized = customized;
377         this.kind = kind;
378         int maxOutArity = normalize();
379         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
380             // Cannot use LF interpreter on very high arity expressions.
381             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
382             compileToBytecode();
383         }
384     }
LambdaForm(int arity, Name[] names)385     LambdaForm(int arity, Name[] names) {
386         this(arity, names, LAST_RESULT, /*forceInline=*/true, /*customized=*/null, Kind.GENERIC);
387     }
LambdaForm(int arity, Name[] names, Kind kind)388     LambdaForm(int arity, Name[] names, Kind kind) {
389         this(arity, names, LAST_RESULT, /*forceInline=*/true, /*customized=*/null, kind);
390     }
LambdaForm(int arity, Name[] names, boolean forceInline)391     LambdaForm(int arity, Name[] names, boolean forceInline) {
392         this(arity, names, LAST_RESULT, forceInline, /*customized=*/null, Kind.GENERIC);
393     }
LambdaForm(int arity, Name[] names, boolean forceInline, Kind kind)394     LambdaForm(int arity, Name[] names, boolean forceInline, Kind kind) {
395         this(arity, names, LAST_RESULT, forceInline, /*customized=*/null, kind);
396     }
LambdaForm(Name[] formals, Name[] temps, Name result)397     LambdaForm(Name[] formals, Name[] temps, Name result) {
398         this(formals.length, buildNames(formals, temps, result), LAST_RESULT, /*forceInline=*/true, /*customized=*/null);
399     }
LambdaForm(Name[] formals, Name[] temps, Name result, boolean forceInline)400     LambdaForm(Name[] formals, Name[] temps, Name result, boolean forceInline) {
401         this(formals.length, buildNames(formals, temps, result), LAST_RESULT, forceInline, /*customized=*/null);
402     }
403 
buildNames(Name[] formals, Name[] temps, Name result)404     private static Name[] buildNames(Name[] formals, Name[] temps, Name result) {
405         int arity = formals.length;
406         int length = arity + temps.length + (result == null ? 0 : 1);
407         Name[] names = Arrays.copyOf(formals, length);
408         System.arraycopy(temps, 0, names, arity, temps.length);
409         if (result != null)
410             names[length - 1] = result;
411         return names;
412     }
413 
LambdaForm(MethodType mt)414     private LambdaForm(MethodType mt) {
415         // Make a blank lambda form, which returns a constant zero or null.
416         // It is used as a template for managing the invocation of similar forms that are non-empty.
417         // Called only from getPreparedForm.
418         this.arity = mt.parameterCount();
419         this.result = (mt.returnType() == void.class || mt.returnType() == Void.class) ? -1 : arity;
420         this.names = buildEmptyNames(arity, mt, result == -1);
421         this.forceInline = true;
422         this.customized = null;
423         this.kind = Kind.ZERO;
424         assert(nameRefsAreLegal());
425         assert(isEmpty());
426         String sig = null;
427         assert(isValidSignature(sig = basicTypeSignature()));
428         assert(sig.equals(basicTypeSignature())) : sig + " != " + basicTypeSignature();
429     }
430 
buildEmptyNames(int arity, MethodType mt, boolean isVoid)431     private static Name[] buildEmptyNames(int arity, MethodType mt, boolean isVoid) {
432         Name[] names = arguments(isVoid ? 0 : 1, mt);
433         if (!isVoid) {
434             Name zero = new Name(constantZero(basicType(mt.returnType())));
435             names[arity] = zero.newIndex(arity);
436         }
437         return names;
438     }
439 
fixResult(int result, Name[] names)440     private static int fixResult(int result, Name[] names) {
441         if (result == LAST_RESULT)
442             result = names.length - 1;  // might still be void
443         if (result >= 0 && names[result].type == V_TYPE)
444             result = VOID_RESULT;
445         return result;
446     }
447 
debugNames()448     static boolean debugNames() {
449         return DEBUG_NAME_COUNTERS != null;
450     }
451 
associateWithDebugName(LambdaForm form, String name)452     static void associateWithDebugName(LambdaForm form, String name) {
453         assert (debugNames());
454         synchronized (DEBUG_NAMES) {
455             DEBUG_NAMES.put(form, name);
456         }
457     }
458 
lambdaName()459     String lambdaName() {
460         if (DEBUG_NAMES != null) {
461             synchronized (DEBUG_NAMES) {
462                 String name = DEBUG_NAMES.get(this);
463                 if (name == null) {
464                     name = generateDebugName();
465                 }
466                 return name;
467             }
468         }
469         return kind.defaultLambdaName;
470     }
471 
generateDebugName()472     private String generateDebugName() {
473         assert (debugNames());
474         String debugNameStem = kind.defaultLambdaName;
475         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
476         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
477         StringBuilder buf = new StringBuilder(debugNameStem);
478         int leadingZero = buf.length();
479         buf.append((int) ctr);
480         for (int i = buf.length() - leadingZero; i < 3; i++) {
481             buf.insert(leadingZero, '0');
482         }
483         buf.append('_');
484         buf.append(basicTypeSignature());
485         String name = buf.toString();
486         associateWithDebugName(this, name);
487         return name;
488     }
489 
namesOK(int arity, Name[] names)490     private static boolean namesOK(int arity, Name[] names) {
491         for (int i = 0; i < names.length; i++) {
492             Name n = names[i];
493             assert(n != null) : "n is null";
494             if (i < arity)
495                 assert( n.isParam()) : n + " is not param at " + i;
496             else
497                 assert(!n.isParam()) : n + " is param at " + i;
498         }
499         return true;
500     }
501 
502     /** Customize LambdaForm for a particular MethodHandle */
customize(MethodHandle mh)503     LambdaForm customize(MethodHandle mh) {
504         LambdaForm customForm = new LambdaForm(arity, names, result, forceInline, mh, kind);
505         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
506             // If shared LambdaForm has been compiled, compile customized version as well.
507             customForm.compileToBytecode();
508         }
509         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
510         return customForm;
511     }
512 
513     /** Get uncustomized flavor of the LambdaForm */
uncustomize()514     LambdaForm uncustomize() {
515         if (customized == null) {
516             return this;
517         }
518         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
519         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
520         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
521             // If customized LambdaForm has been compiled, compile uncustomized version as well.
522             uncustomizedForm.compileToBytecode();
523         }
524         return uncustomizedForm;
525     }
526 
527     /** Renumber and/or replace params so that they are interned and canonically numbered.
528      *  @return maximum argument list length among the names (since we have to pass over them anyway)
529      */
normalize()530     private int normalize() {
531         Name[] oldNames = null;
532         int maxOutArity = 0;
533         int changesStart = 0;
534         for (int i = 0; i < names.length; i++) {
535             Name n = names[i];
536             if (!n.initIndex(i)) {
537                 if (oldNames == null) {
538                     oldNames = names.clone();
539                     changesStart = i;
540                 }
541                 names[i] = n.cloneWithIndex(i);
542             }
543             if (n.arguments != null && maxOutArity < n.arguments.length)
544                 maxOutArity = n.arguments.length;
545         }
546         if (oldNames != null) {
547             int startFixing = arity;
548             if (startFixing <= changesStart)
549                 startFixing = changesStart+1;
550             for (int i = startFixing; i < names.length; i++) {
551                 Name fixed = names[i].replaceNames(oldNames, names, changesStart, i);
552                 names[i] = fixed.newIndex(i);
553             }
554         }
555         assert(nameRefsAreLegal());
556         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
557         boolean needIntern = false;
558         for (int i = 0; i < maxInterned; i++) {
559             Name n = names[i], n2 = internArgument(n);
560             if (n != n2) {
561                 names[i] = n2;
562                 needIntern = true;
563             }
564         }
565         if (needIntern) {
566             for (int i = arity; i < names.length; i++) {
567                 names[i].internArguments();
568             }
569         }
570         assert(nameRefsAreLegal());
571         return maxOutArity;
572     }
573 
574     /**
575      * Check that all embedded Name references are localizable to this lambda,
576      * and are properly ordered after their corresponding definitions.
577      * <p>
578      * Note that a Name can be local to multiple lambdas, as long as
579      * it possesses the same index in each use site.
580      * This allows Name references to be freely reused to construct
581      * fresh lambdas, without confusion.
582      */
nameRefsAreLegal()583     boolean nameRefsAreLegal() {
584         assert(arity >= 0 && arity <= names.length);
585         assert(result >= -1 && result < names.length);
586         // Do all names possess an index consistent with their local definition order?
587         for (int i = 0; i < arity; i++) {
588             Name n = names[i];
589             assert(n.index() == i) : Arrays.asList(n.index(), i);
590             assert(n.isParam());
591         }
592         // Also, do all local name references
593         for (int i = arity; i < names.length; i++) {
594             Name n = names[i];
595             assert(n.index() == i);
596             for (Object arg : n.arguments) {
597                 if (arg instanceof Name) {
598                     Name n2 = (Name) arg;
599                     int i2 = n2.index;
600                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
601                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
602                     assert(i2 < i);  // ref must come after def!
603                 }
604             }
605         }
606         return true;
607     }
608 
609     /** Invoke this form on the given arguments. */
610     // final Object invoke(Object... args) throws Throwable {
611     //     // NYI: fit this into the fast path?
612     //     return interpretWithArguments(args);
613     // }
614 
615     /** Report the return type. */
616     BasicType returnType() {
617         if (result < 0)  return V_TYPE;
618         Name n = names[result];
619         return n.type;
620     }
621 
622     /** Report the N-th argument type. */
623     BasicType parameterType(int n) {
624         return parameter(n).type;
625     }
626 
627     /** Report the N-th argument name. */
628     Name parameter(int n) {
629         assert(n < arity);
630         Name param = names[n];
631         assert(param.isParam());
632         return param;
633     }
634 
635     /** Report the N-th argument type constraint. */
636     Object parameterConstraint(int n) {
637         return parameter(n).constraint;
638     }
639 
640     /** Report the arity. */
641     int arity() {
642         return arity;
643     }
644 
645     /** Report the number of expressions (non-parameter names). */
646     int expressionCount() {
647         return names.length - arity;
648     }
649 
650     /** Return the method type corresponding to my basic type signature. */
651     MethodType methodType() {
652         Class<?>[] ptypes = new Class<?>[arity];
653         for (int i = 0; i < arity; ++i) {
654             ptypes[i] = parameterType(i).btClass;
655         }
656         return MethodType.makeImpl(returnType().btClass, ptypes, true);
657     }
658 
659     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
660     final String basicTypeSignature() {
661         StringBuilder buf = new StringBuilder(arity() + 3);
662         for (int i = 0, a = arity(); i < a; i++)
663             buf.append(parameterType(i).basicTypeChar());
664         return buf.append('_').append(returnType().basicTypeChar()).toString();
665     }
666     static int signatureArity(String sig) {
667         assert(isValidSignature(sig));
668         return sig.indexOf('_');
669     }
670     static BasicType signatureReturn(String sig) {
671         return basicType(sig.charAt(signatureArity(sig) + 1));
672     }
673     static boolean isValidSignature(String sig) {
674         int arity = sig.indexOf('_');
675         if (arity < 0)  return false;  // must be of the form *_*
676         int siglen = sig.length();
677         if (siglen != arity + 2)  return false;  // *_X
678         for (int i = 0; i < siglen; i++) {
679             if (i == arity)  continue;  // skip '_'
680             char c = sig.charAt(i);
681             if (c == 'V')
682                 return (i == siglen - 1 && arity == siglen - 2);
683             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
684         }
685         return true;  // [LIJFD]*_[LIJFDV]
686     }
687     static MethodType signatureType(String sig) {
688         Class<?>[] ptypes = new Class<?>[signatureArity(sig)];
689         for (int i = 0; i < ptypes.length; i++)
690             ptypes[i] = basicType(sig.charAt(i)).btClass;
691         Class<?> rtype = signatureReturn(sig).btClass;
692         return MethodType.makeImpl(rtype, ptypes, true);
693     }
694     static MethodType basicMethodType(MethodType mt) {
695         return signatureType(basicTypeSignature(mt));
696     }
697 
698     /**
699      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
700      */
701     boolean isSelectAlternative(int pos) {
702         // selectAlternative idiom:
703         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
704         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
705         if (pos+1 >= names.length)  return false;
706         Name name0 = names[pos];
707         Name name1 = names[pos+1];
708         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
709                 name1.isInvokeBasic() &&
710                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
711                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
712     }
713 
714     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
715         if (pos+2 >= names.length)  return false;
716         Name name0 = names[pos];
717         Name name1 = names[pos+1];
718         Name name2 = names[pos+2];
719         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
720                 name0.isInvokeBasic() &&
721                 name2.isInvokeBasic() &&
722                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
723                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
724                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
725                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
726     }
727 
728     /**
729      * Check if i-th name is a start of GuardWithCatch idiom.
730      */
731     boolean isGuardWithCatch(int pos) {
732         // GuardWithCatch idiom:
733         //   t_{n}:L=MethodHandle.invokeBasic(...)
734         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
735         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
736         return isMatchingIdiom(pos, "guardWithCatch", 3);
737     }
738 
739     /**
740      * Check if i-th name is a start of the tryFinally idiom.
741      */
742     boolean isTryFinally(int pos) {
743         // tryFinally idiom:
744         //   t_{n}:L=MethodHandle.invokeBasic(...)
745         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
746         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
747         return isMatchingIdiom(pos, "tryFinally", 2);
748     }
749 
750     /**
751      * Check if i-th name is a start of the loop idiom.
752      */
753     boolean isLoop(int pos) {
754         // loop idiom:
755         //   t_{n}:L=MethodHandle.invokeBasic(...)
756         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
757         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
758         return isMatchingIdiom(pos, "loop", 2);
759     }
760 
761     /*
762      * Code generation issues:
763      *
764      * Compiled LFs should be reusable in general.
765      * The biggest issue is how to decide when to pull a name into
766      * the bytecode, versus loading a reified form from the MH data.
767      *
768      * For example, an asType wrapper may require execution of a cast
769      * after a call to a MH.  The target type of the cast can be placed
770      * as a constant in the LF itself.  This will force the cast type
771      * to be compiled into the bytecodes and native code for the MH.
772      * Or, the target type of the cast can be erased in the LF, and
773      * loaded from the MH data.  (Later on, if the MH as a whole is
774      * inlined, the data will flow into the inlined instance of the LF,
775      * as a constant, and the end result will be an optimal cast.)
776      *
777      * This erasure of cast types can be done with any use of
778      * reference types.  It can also be done with whole method
779      * handles.  Erasing a method handle might leave behind
780      * LF code that executes correctly for any MH of a given
781      * type, and load the required MH from the enclosing MH's data.
782      * Or, the erasure might even erase the expected MT.
783      *
784      * Also, for direct MHs, the MemberName of the target
785      * could be erased, and loaded from the containing direct MH.
786      * As a simple case, a LF for all int-valued non-static
787      * field getters would perform a cast on its input argument
788      * (to non-constant base type derived from the MemberName)
789      * and load an integer value from the input object
790      * (at a non-constant offset also derived from the MemberName).
791      * Such MN-erased LFs would be inlinable back to optimized
792      * code, whenever a constant enclosing DMH is available
793      * to supply a constant MN from its data.
794      *
795      * The main problem here is to keep LFs reasonably generic,
796      * while ensuring that hot spots will inline good instances.
797      * "Reasonably generic" means that we don't end up with
798      * repeated versions of bytecode or machine code that do
799      * not differ in their optimized form.  Repeated versions
800      * of machine would have the undesirable overheads of
801      * (a) redundant compilation work and (b) extra I$ pressure.
802      * To control repeated versions, we need to be ready to
803      * erase details from LFs and move them into MH data,
804      * whevener those details are not relevant to significant
805      * optimization.  "Significant" means optimization of
806      * code that is actually hot.
807      *
808      * Achieving this may require dynamic splitting of MHs, by replacing
809      * a generic LF with a more specialized one, on the same MH,
810      * if (a) the MH is frequently executed and (b) the MH cannot
811      * be inlined into a containing caller, such as an invokedynamic.
812      *
813      * Compiled LFs that are no longer used should be GC-able.
814      * If they contain non-BCP references, they should be properly
815      * interlinked with the class loader(s) that their embedded types
816      * depend on.  This probably means that reusable compiled LFs
817      * will be tabulated (indexed) on relevant class loaders,
818      * or else that the tables that cache them will have weak links.
819      */
820 
821     /**
822      * Make this LF directly executable, as part of a MethodHandle.
823      * Invariant:  Every MH which is invoked must prepare its LF
824      * before invocation.
825      * (In principle, the JVM could do this very lazily,
826      * as a sort of pre-invocation linkage step.)
827      */
828     public void prepare() {
829         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
830             compileToBytecode();
831         }
832         if (this.vmentry != null) {
833             // already prepared (e.g., a primitive DMH invoker form)
834             return;
835         }
836         MethodType mtype = methodType();
837         LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
838         if (prep == null) {
839             assert (isValidSignature(basicTypeSignature()));
840             prep = new LambdaForm(mtype);
841             prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
842             prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
843         }
844         this.vmentry = prep.vmentry;
845         // TO DO: Maybe add invokeGeneric, invokeWithArguments
846     }
847 
848     private static @Stable PerfCounter LF_FAILED;
849 
850     private static PerfCounter failedCompilationCounter() {
851         if (LF_FAILED == null) {
852             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
853         }
854         return LF_FAILED;
855     }
856 
857     /** Generate optimizable bytecode for this form. */
858     void compileToBytecode() {
859         if (forceInterpretation()) {
860             return; // this should not be compiled
861         }
862         if (vmentry != null && isCompiled) {
863             return;  // already compiled somehow
864         }
865 
866         // Obtain the invoker MethodType outside of the following try block.
867         // This ensures that an IllegalArgumentException is directly thrown if the
868         // type would have 256 or more parameters
869         MethodType invokerType = methodType();
870         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
871         try {
872             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
873             if (TRACE_INTERPRETER)
874                 traceInterpreter("compileToBytecode", this);
875             isCompiled = true;
876         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
877             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
878             invocationCounter = -1;
879             failedCompilationCounter().increment();
880             if (LOG_LF_COMPILATION_FAILURE) {
881                 System.out.println("LambdaForm compilation failed: " + this);
882                 bge.printStackTrace(System.out);
883             }
884         } catch (Error e) {
885             // Pass through any error
886             throw e;
887         } catch (Exception e) {
888             // Wrap any exception
889             throw newInternalError(this.toString(), e);
890         }
891     }
892 
893     // The next few routines are called only from assert expressions
894     // They verify that the built-in invokers process the correct raw data types.
895     private static boolean argumentTypesMatch(String sig, Object[] av) {
896         int arity = signatureArity(sig);
897         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
898         assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0];
899         MethodHandle mh = (MethodHandle) av[0];
900         MethodType mt = mh.type();
901         assert(mt.parameterCount() == arity-1);
902         for (int i = 0; i < av.length; i++) {
903             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
904             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
905         }
906         return true;
907     }
908     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
909         // The following line is needed because (...)void method handles can use non-void invokers
910         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
911         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
912         switch (tc) {
913         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
914         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
915         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
916         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
917         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
918         case V_TYPE: break;  // allow anything here; will be dropped
919         default:  assert(false);
920         }
921         return true;
922     }
923     private static boolean checkInt(Class<?> type, Object x) {
924         assert(x instanceof Integer);
925         if (type == int.class)  return true;
926         Wrapper w = Wrapper.forBasicType(type);
927         assert(w.isSubwordOrInt());
928         Object x1 = Wrapper.INT.wrap(w.wrap(x));
929         return x.equals(x1);
930     }
931     private static boolean checkRef(Class<?> type, Object x) {
932         assert(!type.isPrimitive());
933         if (x == null)  return true;
934         if (type.isInterface())  return true;
935         return type.isInstance(x);
936     }
937 
938     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
939     private static final int COMPILE_THRESHOLD;
940     static {
941         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
942     }
943     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
944 
945     private boolean forceInterpretation() {
946         return invocationCounter == -1;
947     }
948 
949     @Hidden
950     @DontInline
951     /** Interpretively invoke this form on the given arguments. */
952     Object interpretWithArguments(Object... argumentValues) throws Throwable {
953         if (TRACE_INTERPRETER)
954             return interpretWithArgumentsTracing(argumentValues);
955         checkInvocationCounter();
956         assert(arityCheck(argumentValues));
957         Object[] values = Arrays.copyOf(argumentValues, names.length);
958         for (int i = argumentValues.length; i < values.length; i++) {
959             values[i] = interpretName(names[i], values);
960         }
961         Object rv = (result < 0) ? null : values[result];
962         assert(resultCheck(argumentValues, rv));
963         return rv;
964     }
965 
966     @Hidden
967     @DontInline
968     /** Evaluate a single Name within this form, applying its function to its arguments. */
969     Object interpretName(Name name, Object[] values) throws Throwable {
970         if (TRACE_INTERPRETER)
971             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
972         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
973         for (int i = 0; i < arguments.length; i++) {
974             Object a = arguments[i];
975             if (a instanceof Name) {
976                 int i2 = ((Name)a).index();
977                 assert(names[i2] == a);
978                 a = values[i2];
979                 arguments[i] = a;
980             }
981         }
982         return name.function.invokeWithArguments(arguments);
983     }
984 
985     private void checkInvocationCounter() {
986         if (COMPILE_THRESHOLD != 0 &&
987             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
988             invocationCounter++;  // benign race
989             if (invocationCounter >= COMPILE_THRESHOLD) {
990                 // Replace vmentry with a bytecode version of this LF.
991                 compileToBytecode();
992             }
993         }
994     }
995     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
996         traceInterpreter("[ interpretWithArguments", this, argumentValues);
997         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
998             int ctr = invocationCounter++;  // benign race
999             traceInterpreter("| invocationCounter", ctr);
1000             if (invocationCounter >= COMPILE_THRESHOLD) {
1001                 compileToBytecode();
1002             }
1003         }
1004         Object rval;
1005         try {
1006             assert(arityCheck(argumentValues));
1007             Object[] values = Arrays.copyOf(argumentValues, names.length);
1008             for (int i = argumentValues.length; i < values.length; i++) {
1009                 values[i] = interpretName(names[i], values);
1010             }
1011             rval = (result < 0) ? null : values[result];
1012         } catch (Throwable ex) {
1013             traceInterpreter("] throw =>", ex);
1014             throw ex;
1015         }
1016         traceInterpreter("] return =>", rval);
1017         return rval;
1018     }
1019 
1020     static void traceInterpreter(String event, Object obj, Object... args) {
1021         if (TRACE_INTERPRETER) {
1022             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
1023         }
1024     }
1025     static void traceInterpreter(String event, Object obj) {
1026         traceInterpreter(event, obj, (Object[])null);
1027     }
1028     private boolean arityCheck(Object[] argumentValues) {
1029         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
1030         // also check that the leading (receiver) argument is somehow bound to this LF:
1031         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
1032         MethodHandle mh = (MethodHandle) argumentValues[0];
1033         assert(mh.internalForm() == this);
1034         // note:  argument #0 could also be an interface wrapper, in the future
1035         argumentTypesMatch(basicTypeSignature(), argumentValues);
1036         return true;
1037     }
1038     private boolean resultCheck(Object[] argumentValues, Object result) {
1039         MethodHandle mh = (MethodHandle) argumentValues[0];
1040         MethodType mt = mh.type();
1041         assert(valueMatches(returnType(), mt.returnType(), result));
1042         return true;
1043     }
1044 
1045     private boolean isEmpty() {
1046         if (result < 0)
1047             return (names.length == arity);
1048         else if (result == arity && names.length == arity + 1)
1049             return names[arity].isConstantZero();
1050         else
1051             return false;
1052     }
1053 
1054     public String toString() {
1055         String lambdaName = lambdaName();
1056         StringBuilder buf = new StringBuilder(lambdaName + "=Lambda(");
1057         for (int i = 0; i < names.length; i++) {
1058             if (i == arity)  buf.append(")=>{");
1059             Name n = names[i];
1060             if (i >= arity)  buf.append("\n    ");
1061             buf.append(n.paramString());
1062             if (i < arity) {
1063                 if (i+1 < arity)  buf.append(",");
1064                 continue;
1065             }
1066             buf.append("=").append(n.exprString());
1067             buf.append(";");
1068         }
1069         if (arity == names.length)  buf.append(")=>{");
1070         buf.append(result < 0 ? "void" : names[result]).append("}");
1071         if (TRACE_INTERPRETER) {
1072             // Extra verbosity:
1073             buf.append(":").append(basicTypeSignature());
1074             buf.append("/").append(vmentry);
1075         }
1076         return buf.toString();
1077     }
1078 
1079     @Override
1080     public boolean equals(Object obj) {
1081         return obj instanceof LambdaForm && equals((LambdaForm)obj);
1082     }
1083     public boolean equals(LambdaForm that) {
1084         if (this.result != that.result)  return false;
1085         return Arrays.equals(this.names, that.names);
1086     }
1087     public int hashCode() {
1088         return result + 31 * Arrays.hashCode(names);
1089     }
1090     LambdaFormEditor editor() {
1091         return LambdaFormEditor.lambdaFormEditor(this);
1092     }
1093 
1094     boolean contains(Name name) {
1095         int pos = name.index();
1096         if (pos >= 0) {
1097             return pos < names.length && name.equals(names[pos]);
1098         }
1099         for (int i = arity; i < names.length; i++) {
1100             if (name.equals(names[i]))
1101                 return true;
1102         }
1103         return false;
1104     }
1105 
1106     static class NamedFunction {
1107         final MemberName member;
1108         private @Stable MethodHandle resolvedHandle;
1109         @Stable MethodHandle invoker;
1110         private final MethodHandleImpl.Intrinsic intrinsicName;
1111 
1112         NamedFunction(MethodHandle resolvedHandle) {
1113             this(resolvedHandle.internalMemberName(), resolvedHandle, MethodHandleImpl.Intrinsic.NONE);
1114         }
1115         NamedFunction(MethodHandle resolvedHandle, MethodHandleImpl.Intrinsic intrinsic) {
1116             this(resolvedHandle.internalMemberName(), resolvedHandle, intrinsic);
1117         }
1118         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1119             this(member, resolvedHandle, MethodHandleImpl.Intrinsic.NONE);
1120         }
1121         NamedFunction(MemberName member, MethodHandle resolvedHandle, MethodHandleImpl.Intrinsic intrinsic) {
1122             this.member = member;
1123             this.resolvedHandle = resolvedHandle;
1124             this.intrinsicName = intrinsic;
1125             assert(resolvedHandle == null ||
1126                    resolvedHandle.intrinsicName() == MethodHandleImpl.Intrinsic.NONE ||
1127                    resolvedHandle.intrinsicName() == intrinsic) : resolvedHandle.intrinsicName() + " != " + intrinsic;
1128              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1129              //assert(!isInvokeBasic(member));
1130         }
1131         NamedFunction(MethodType basicInvokerType) {
1132             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1133             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1134                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1135                 this.member = resolvedHandle.internalMemberName();
1136             } else {
1137                 // necessary to pass BigArityTest
1138                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1139             }
1140             this.intrinsicName = MethodHandleImpl.Intrinsic.NONE;
1141             assert(isInvokeBasic(member));
1142         }
1143 
1144         private static boolean isInvokeBasic(MemberName member) {
1145             return member != null &&
1146                    member.getDeclaringClass() == MethodHandle.class &&
1147                   "invokeBasic".equals(member.getName());
1148         }
1149 
1150         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1151         // Any LambdaForm containing such a member is not interpretable.
1152         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1153         // And even without the resolvedHandle, the name can still be compiled and optimized.
1154         NamedFunction(Method method) {
1155             this(new MemberName(method));
1156         }
1157         NamedFunction(MemberName member) {
1158             this(member, null);
1159         }
1160 
1161         MethodHandle resolvedHandle() {
1162             if (resolvedHandle == null)  resolve();
1163             return resolvedHandle;
1164         }
1165 
1166         synchronized void resolve() {
1167             if (resolvedHandle == null) {
1168                 resolvedHandle = DirectMethodHandle.make(member);
1169             }
1170         }
1171 
1172         @Override
1173         public boolean equals(Object other) {
1174             if (this == other) return true;
1175             if (other == null) return false;
1176             if (!(other instanceof NamedFunction)) return false;
1177             NamedFunction that = (NamedFunction) other;
1178             return this.member != null && this.member.equals(that.member);
1179         }
1180 
1181         @Override
1182         public int hashCode() {
1183             if (member != null)
1184                 return member.hashCode();
1185             return super.hashCode();
1186         }
1187 
1188         static final MethodType INVOKER_METHOD_TYPE =
1189             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1190 
1191         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1192             typeForm = typeForm.basicType().form();  // normalize to basic type
1193             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1194             if (mh != null)  return mh;
1195             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1196             mh = DirectMethodHandle.make(invoker);
1197             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1198             if (mh2 != null)  return mh2;  // benign race
1199             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1200                 throw newInternalError(mh.debugString());
1201             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1202         }
1203 
1204         @Hidden
1205         Object invokeWithArguments(Object... arguments) throws Throwable {
1206             // If we have a cached invoker, call it right away.
1207             // NOTE: The invoker always returns a reference value.
1208             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1209             return invoker().invokeBasic(resolvedHandle(), arguments);
1210         }
1211 
1212         @Hidden
1213         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1214             Object rval;
1215             try {
1216                 traceInterpreter("[ call", this, arguments);
1217                 if (invoker == null) {
1218                     traceInterpreter("| getInvoker", this);
1219                     invoker();
1220                 }
1221                 // resolvedHandle might be uninitialized, ok for tracing
1222                 if (resolvedHandle == null) {
1223                     traceInterpreter("| resolve", this);
1224                     resolvedHandle();
1225                 }
1226                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1227             } catch (Throwable ex) {
1228                 traceInterpreter("] throw =>", ex);
1229                 throw ex;
1230             }
1231             traceInterpreter("] return =>", rval);
1232             return rval;
1233         }
1234 
1235         private MethodHandle invoker() {
1236             if (invoker != null)  return invoker;
1237             // Get an invoker and cache it.
1238             return invoker = computeInvoker(methodType().form());
1239         }
1240 
1241         MethodType methodType() {
1242             if (resolvedHandle != null)
1243                 return resolvedHandle.type();
1244             else
1245                 // only for certain internal LFs during bootstrapping
1246                 return member.getInvocationType();
1247         }
1248 
1249         MemberName member() {
1250             assert(assertMemberIsConsistent());
1251             return member;
1252         }
1253 
1254         // Called only from assert.
1255         private boolean assertMemberIsConsistent() {
1256             if (resolvedHandle instanceof DirectMethodHandle) {
1257                 MemberName m = resolvedHandle.internalMemberName();
1258                 assert(m.equals(member));
1259             }
1260             return true;
1261         }
1262 
1263         Class<?> memberDeclaringClassOrNull() {
1264             return (member == null) ? null : member.getDeclaringClass();
1265         }
1266 
1267         BasicType returnType() {
1268             return basicType(methodType().returnType());
1269         }
1270 
1271         BasicType parameterType(int n) {
1272             return basicType(methodType().parameterType(n));
1273         }
1274 
1275         int arity() {
1276             return methodType().parameterCount();
1277         }
1278 
1279         public String toString() {
1280             if (member == null)  return String.valueOf(resolvedHandle);
1281             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1282         }
1283 
1284         public boolean isIdentity() {
1285             return this.equals(identity(returnType()));
1286         }
1287 
1288         public boolean isConstantZero() {
1289             return this.equals(constantZero(returnType()));
1290         }
1291 
1292         public MethodHandleImpl.Intrinsic intrinsicName() {
1293             return intrinsicName;
1294         }
1295     }
1296 
1297     public static String basicTypeSignature(MethodType type) {
1298         int params = type.parameterCount();
1299         char[] sig = new char[params + 2];
1300         int sigp = 0;
1301         while (sigp < params) {
1302             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1303         }
1304         sig[sigp++] = '_';
1305         sig[sigp++] = basicTypeChar(type.returnType());
1306         assert(sigp == sig.length);
1307         return String.valueOf(sig);
1308     }
1309 
1310     /** Hack to make signatures more readable when they show up in method names.
1311      * Signature should start with a sequence of uppercase ASCII letters.
1312      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1313      * A tail of anything other than uppercase ASCII is passed through unchanged.
1314      * @param signature sequence of uppercase ASCII letters with possible repetitions
1315      * @return same sequence, with repetitions counted by decimal numerals
1316      */
1317     public static String shortenSignature(String signature) {
1318         final int NO_CHAR = -1, MIN_RUN = 3;
1319         int c0, c1 = NO_CHAR, c1reps = 0;
1320         StringBuilder buf = null;
1321         int len = signature.length();
1322         if (len < MIN_RUN)  return signature;
1323         for (int i = 0; i <= len; i++) {
1324             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1325                 // wrong kind of char; bail out here
1326                 if (buf != null) {
1327                     buf.append(signature.substring(i - c1reps, len));
1328                 }
1329                 break;
1330             }
1331             // shift in the next char:
1332             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1333             if (c1 == c0) { ++c1reps; continue; }
1334             // shift in the next count:
1335             int c0reps = c1reps; c1reps = 1;
1336             // end of a  character run
1337             if (c0reps < MIN_RUN) {
1338                 if (buf != null) {
1339                     while (--c0reps >= 0)
1340                         buf.append((char)c0);
1341                 }
1342                 continue;
1343             }
1344             // found three or more in a row
1345             if (buf == null)
1346                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1347             buf.append((char)c0).append(c0reps);
1348         }
1349         return (buf == null) ? signature : buf.toString();
1350     }
1351 
1352     static final class Name {
1353         final BasicType type;
1354         @Stable short index;
1355         final NamedFunction function;
1356         final Object constraint;  // additional type information, if not null
1357         @Stable final Object[] arguments;
1358 
1359         private Name(int index, BasicType type, NamedFunction function, Object[] arguments) {
1360             this.index = (short)index;
1361             this.type = type;
1362             this.function = function;
1363             this.arguments = arguments;
1364             this.constraint = null;
1365             assert(this.index == index);
1366         }
1367         private Name(Name that, Object constraint) {
1368             this.index = that.index;
1369             this.type = that.type;
1370             this.function = that.function;
1371             this.arguments = that.arguments;
1372             this.constraint = constraint;
1373             assert(constraint == null || isParam());  // only params have constraints
1374             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1375         }
1376         Name(MethodHandle function, Object... arguments) {
1377             this(new NamedFunction(function), arguments);
1378         }
1379         Name(MethodType functionType, Object... arguments) {
1380             this(new NamedFunction(functionType), arguments);
1381             assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == L_TYPE);
1382         }
1383         Name(MemberName function, Object... arguments) {
1384             this(new NamedFunction(function), arguments);
1385         }
1386         Name(NamedFunction function, Object... arguments) {
1387             this(-1, function.returnType(), function, arguments = Arrays.copyOf(arguments, arguments.length, Object[].class));
1388             assert(typesMatch(function, arguments));
1389         }
1390         /** Create a raw parameter of the given type, with an expected index. */
1391         Name(int index, BasicType type) {
1392             this(index, type, null, null);
1393         }
1394         /** Create a raw parameter of the given type. */
1395         Name(BasicType type) { this(-1, type); }
1396 
1397         BasicType type() { return type; }
1398         int index() { return index; }
1399         boolean initIndex(int i) {
1400             if (index != i) {
1401                 if (index != -1)  return false;
1402                 index = (short)i;
1403             }
1404             return true;
1405         }
1406         char typeChar() {
1407             return type.btChar;
1408         }
1409 
1410         void resolve() {
1411             if (function != null)
1412                 function.resolve();
1413         }
1414 
1415         Name newIndex(int i) {
1416             if (initIndex(i))  return this;
1417             return cloneWithIndex(i);
1418         }
1419         Name cloneWithIndex(int i) {
1420             Object[] newArguments = (arguments == null) ? null : arguments.clone();
1421             return new Name(i, type, function, newArguments).withConstraint(constraint);
1422         }
1423         Name withConstraint(Object constraint) {
1424             if (constraint == this.constraint)  return this;
1425             return new Name(this, constraint);
1426         }
1427         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1428             if (oldName == newName)  return this;
1429             @SuppressWarnings("LocalVariableHidesMemberVariable")
1430             Object[] arguments = this.arguments;
1431             if (arguments == null)  return this;
1432             boolean replaced = false;
1433             for (int j = 0; j < arguments.length; j++) {
1434                 if (arguments[j] == oldName) {
1435                     if (!replaced) {
1436                         replaced = true;
1437                         arguments = arguments.clone();
1438                     }
1439                     arguments[j] = newName;
1440                 }
1441             }
1442             if (!replaced)  return this;
1443             return new Name(function, arguments);
1444         }
1445         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1446          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1447          */
1448         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1449             if (start >= end)  return this;
1450             @SuppressWarnings("LocalVariableHidesMemberVariable")
1451             Object[] arguments = this.arguments;
1452             boolean replaced = false;
1453         eachArg:
1454             for (int j = 0; j < arguments.length; j++) {
1455                 if (arguments[j] instanceof Name) {
1456                     Name n = (Name) arguments[j];
1457                     int check = n.index;
1458                     // harmless check to see if the thing is already in newNames:
1459                     if (check >= 0 && check < newNames.length && n == newNames[check])
1460                         continue eachArg;
1461                     // n might not have the correct index: n != oldNames[n.index].
1462                     for (int i = start; i < end; i++) {
1463                         if (n == oldNames[i]) {
1464                             if (n == newNames[i])
1465                                 continue eachArg;
1466                             if (!replaced) {
1467                                 replaced = true;
1468                                 arguments = arguments.clone();
1469                             }
1470                             arguments[j] = newNames[i];
1471                             continue eachArg;
1472                         }
1473                     }
1474                 }
1475             }
1476             if (!replaced)  return this;
1477             return new Name(function, arguments);
1478         }
1479         void internArguments() {
1480             @SuppressWarnings("LocalVariableHidesMemberVariable")
1481             Object[] arguments = this.arguments;
1482             for (int j = 0; j < arguments.length; j++) {
1483                 if (arguments[j] instanceof Name) {
1484                     Name n = (Name) arguments[j];
1485                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1486                         arguments[j] = internArgument(n);
1487                 }
1488             }
1489         }
1490         boolean isParam() {
1491             return function == null;
1492         }
1493         boolean isConstantZero() {
1494             return !isParam() && arguments.length == 0 && function.isConstantZero();
1495         }
1496 
1497         boolean refersTo(Class<?> declaringClass, String methodName) {
1498             return function != null &&
1499                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1500         }
1501 
1502         /**
1503          * Check if MemberName is a call to MethodHandle.invokeBasic.
1504          */
1505         boolean isInvokeBasic() {
1506             if (function == null)
1507                 return false;
1508             if (arguments.length < 1)
1509                 return false;  // must have MH argument
1510             MemberName member = function.member();
1511             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1512                     !member.isPublic() && !member.isStatic();
1513         }
1514 
1515         /**
1516          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1517          */
1518         boolean isLinkerMethodInvoke() {
1519             if (function == null)
1520                 return false;
1521             if (arguments.length < 1)
1522                 return false;  // must have MH argument
1523             MemberName member = function.member();
1524             return member != null &&
1525                     member.getDeclaringClass() == MethodHandle.class &&
1526                     !member.isPublic() && member.isStatic() &&
1527                     member.getName().startsWith("linkTo");
1528         }
1529 
1530         public String toString() {
1531             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1532         }
1533         public String debugString() {
1534             String s = paramString();
1535             return (function == null) ? s : s + "=" + exprString();
1536         }
1537         public String paramString() {
1538             String s = toString();
1539             Object c = constraint;
1540             if (c == null)
1541                 return s;
1542             if (c instanceof Class)  c = ((Class<?>)c).getSimpleName();
1543             return s + "/" + c;
1544         }
1545         public String exprString() {
1546             if (function == null)  return toString();
1547             StringBuilder buf = new StringBuilder(function.toString());
1548             buf.append("(");
1549             String cma = "";
1550             for (Object a : arguments) {
1551                 buf.append(cma); cma = ",";
1552                 if (a instanceof Name || a instanceof Integer)
1553                     buf.append(a);
1554                 else
1555                     buf.append("(").append(a).append(")");
1556             }
1557             buf.append(")");
1558             return buf.toString();
1559         }
1560 
1561         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1562             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1563             for (int i = 0; i < arguments.length; i++) {
1564                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1565             }
1566             return true;
1567         }
1568 
1569         private static boolean typesMatch(BasicType parameterType, Object object) {
1570             if (object instanceof Name) {
1571                 return ((Name)object).type == parameterType;
1572             }
1573             switch (parameterType) {
1574                 case I_TYPE:  return object instanceof Integer;
1575                 case J_TYPE:  return object instanceof Long;
1576                 case F_TYPE:  return object instanceof Float;
1577                 case D_TYPE:  return object instanceof Double;
1578             }
1579             assert(parameterType == L_TYPE);
1580             return true;
1581         }
1582 
1583         /** Return the index of the last occurrence of n in the argument array.
1584          *  Return -1 if the name is not used.
1585          */
1586         int lastUseIndex(Name n) {
1587             if (arguments == null)  return -1;
1588             for (int i = arguments.length; --i >= 0; ) {
1589                 if (arguments[i] == n)  return i;
1590             }
1591             return -1;
1592         }
1593 
1594         /** Return the number of occurrences of n in the argument array.
1595          *  Return 0 if the name is not used.
1596          */
1597         int useCount(Name n) {
1598             if (arguments == null)  return 0;
1599             int count = 0;
1600             for (int i = arguments.length; --i >= 0; ) {
1601                 if (arguments[i] == n)  ++count;
1602             }
1603             return count;
1604         }
1605 
1606         boolean contains(Name n) {
1607             return this == n || lastUseIndex(n) >= 0;
1608         }
1609 
1610         public boolean equals(Name that) {
1611             if (this == that)  return true;
1612             if (isParam())
1613                 // each parameter is a unique atom
1614                 return false;  // this != that
1615             return
1616                 //this.index == that.index &&
1617                 this.type == that.type &&
1618                 this.function.equals(that.function) &&
1619                 Arrays.equals(this.arguments, that.arguments);
1620         }
1621         @Override
1622         public boolean equals(Object x) {
1623             return x instanceof Name && equals((Name)x);
1624         }
1625         @Override
1626         public int hashCode() {
1627             if (isParam())
1628                 return index | (type.ordinal() << 8);
1629             return function.hashCode() ^ Arrays.hashCode(arguments);
1630         }
1631     }
1632 
1633     /** Return the index of the last name which contains n as an argument.
1634      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1635      */
1636     int lastUseIndex(Name n) {
1637         int ni = n.index, nmax = names.length;
1638         assert(names[ni] == n);
1639         if (result == ni)  return nmax;  // live all the way beyond the end
1640         for (int i = nmax; --i > ni; ) {
1641             if (names[i].lastUseIndex(n) >= 0)
1642                 return i;
1643         }
1644         return -1;
1645     }
1646 
1647     /** Return the number of times n is used as an argument or return value. */
1648     int useCount(Name n) {
1649         int nmax = names.length;
1650         int end = lastUseIndex(n);
1651         if (end < 0)  return 0;
1652         int count = 0;
1653         if (end == nmax) { count++; end--; }
1654         int beg = n.index() + 1;
1655         if (beg < arity)  beg = arity;
1656         for (int i = beg; i <= end; i++) {
1657             count += names[i].useCount(n);
1658         }
1659         return count;
1660     }
1661 
1662     static Name argument(int which, BasicType type) {
1663         if (which >= INTERNED_ARGUMENT_LIMIT)
1664             return new Name(which, type);
1665         return INTERNED_ARGUMENTS[type.ordinal()][which];
1666     }
1667     static Name internArgument(Name n) {
1668         assert(n.isParam()) : "not param: " + n;
1669         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1670         if (n.constraint != null)  return n;
1671         return argument(n.index, n.type);
1672     }
1673     static Name[] arguments(int extra, MethodType types) {
1674         int length = types.parameterCount();
1675         Name[] names = new Name[length + extra];
1676         for (int i = 0; i < length; i++)
1677             names[i] = argument(i, basicType(types.parameterType(i)));
1678         return names;
1679     }
1680     static final int INTERNED_ARGUMENT_LIMIT = 10;
1681     private static final Name[][] INTERNED_ARGUMENTS
1682             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1683     static {
1684         for (BasicType type : BasicType.ARG_TYPES) {
1685             int ord = type.ordinal();
1686             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1687                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1688             }
1689         }
1690     }
1691 
1692     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1693 
1694     static LambdaForm identityForm(BasicType type) {
1695         int ord = type.ordinal();
1696         LambdaForm form = LF_identity[ord];
1697         if (form != null) {
1698             return form;
1699         }
1700         createFormsFor(type);
1701         return LF_identity[ord];
1702     }
1703 
1704     static LambdaForm zeroForm(BasicType type) {
1705         int ord = type.ordinal();
1706         LambdaForm form = LF_zero[ord];
1707         if (form != null) {
1708             return form;
1709         }
1710         createFormsFor(type);
1711         return LF_zero[ord];
1712     }
1713 
1714     static NamedFunction identity(BasicType type) {
1715         int ord = type.ordinal();
1716         NamedFunction function = NF_identity[ord];
1717         if (function != null) {
1718             return function;
1719         }
1720         createFormsFor(type);
1721         return NF_identity[ord];
1722     }
1723 
1724     static NamedFunction constantZero(BasicType type) {
1725         int ord = type.ordinal();
1726         NamedFunction function = NF_zero[ord];
1727         if (function != null) {
1728             return function;
1729         }
1730         createFormsFor(type);
1731         return NF_zero[ord];
1732     }
1733 
1734     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1735     private static final @Stable LambdaForm[] LF_zero = new LambdaForm[TYPE_LIMIT];
1736     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1737     private static final @Stable NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT];
1738 
1739     private static final Object createFormsLock = new Object();
1740     private static void createFormsFor(BasicType type) {
1741         // Avoid racy initialization during bootstrap
1742         UNSAFE.ensureClassInitialized(BoundMethodHandle.class);
1743         synchronized (createFormsLock) {
1744             final int ord = type.ordinal();
1745             LambdaForm idForm = LF_identity[ord];
1746             if (idForm != null) {
1747                 return;
1748             }
1749             char btChar = type.basicTypeChar();
1750             boolean isVoid = (type == V_TYPE);
1751             Class<?> btClass = type.btClass;
1752             MethodType zeType = MethodType.methodType(btClass);
1753             MethodType idType = (isVoid) ? zeType : MethodType.methodType(btClass, btClass);
1754 
1755             // Look up symbolic names.  It might not be necessary to have these,
1756             // but if we need to emit direct references to bytecodes, it helps.
1757             // Zero is built from a call to an identity function with a constant zero input.
1758             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1759             MemberName zeMem = null;
1760             try {
1761                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, NoSuchMethodException.class);
1762                 if (!isVoid) {
1763                     zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic);
1764                     zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, NoSuchMethodException.class);
1765                 }
1766             } catch (IllegalAccessException|NoSuchMethodException ex) {
1767                 throw newInternalError(ex);
1768             }
1769 
1770             NamedFunction idFun;
1771             LambdaForm zeForm;
1772             NamedFunction zeFun;
1773 
1774             // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1775             // bootstrap dependency on this method in case we're interpreting LFs
1776             if (isVoid) {
1777                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1778                 idForm = new LambdaForm(1, idNames, VOID_RESULT, Kind.IDENTITY);
1779                 idForm.compileToBytecode();
1780                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1781 
1782                 zeForm = idForm;
1783                 zeFun = idFun;
1784             } else {
1785                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1786                 idForm = new LambdaForm(2, idNames, 1, Kind.IDENTITY);
1787                 idForm.compileToBytecode();
1788                 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm),
1789                             MethodHandleImpl.Intrinsic.IDENTITY);
1790 
1791                 Object zeValue = Wrapper.forBasicType(btChar).zero();
1792                 Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) };
1793                 zeForm = new LambdaForm(1, zeNames, 1, Kind.ZERO);
1794                 zeForm.compileToBytecode();
1795                 zeFun = new NamedFunction(zeMem, SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm),
1796                         MethodHandleImpl.Intrinsic.ZERO);
1797             }
1798 
1799             LF_zero[ord] = zeForm;
1800             NF_zero[ord] = zeFun;
1801             LF_identity[ord] = idForm;
1802             NF_identity[ord] = idFun;
1803 
1804             assert(idFun.isIdentity());
1805             assert(zeFun.isConstantZero());
1806             assert(new Name(zeFun).isConstantZero());
1807         }
1808     }
1809 
1810     // Avoid appealing to ValueConversions at bootstrap time:
1811     private static int identity_I(int x) { return x; }
1812     private static long identity_J(long x) { return x; }
1813     private static float identity_F(float x) { return x; }
1814     private static double identity_D(double x) { return x; }
1815     private static Object identity_L(Object x) { return x; }
1816     private static void identity_V() { return; }
1817     private static int zero_I() { return 0; }
1818     private static long zero_J() { return 0; }
1819     private static float zero_F() { return 0; }
1820     private static double zero_D() { return 0; }
1821     private static Object zero_L() { return null; }
1822 
1823     /**
1824      * Internal marker for byte-compiled LambdaForms.
1825      */
1826     /*non-public*/
1827     @Target(ElementType.METHOD)
1828     @Retention(RetentionPolicy.RUNTIME)
1829     @interface Compiled {
1830     }
1831 
1832     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1833     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1834     static {
1835         if (debugEnabled()) {
1836             DEBUG_NAME_COUNTERS = new HashMap<>();
1837             DEBUG_NAMES = new HashMap<>();
1838         } else {
1839             DEBUG_NAME_COUNTERS = null;
1840             DEBUG_NAMES = null;
1841         }
1842     }
1843 
1844     static {
1845         // The Holder class will contain pre-generated forms resolved
1846         // using MemberName.getFactory(). However, that doesn't initialize the
1847         // class, which subtly breaks inlining etc. By forcing
1848         // initialization of the Holder class we avoid these issues.
1849         UNSAFE.ensureClassInitialized(Holder.class);
1850     }
1851 
1852     /* Placeholder class for zero and identity forms generated ahead of time */
1853     final class Holder {}
1854 
1855     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1856     // during execution of the static initializes of this class.
1857     // Turning on TRACE_INTERPRETER too early will cause
1858     // stack overflows and other misbehavior during attempts to trace events
1859     // that occur during LambdaForm.<clinit>.
1860     // Therefore, do not move this line higher in this file, and do not remove.
1861     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1862 }
1863