1 /*
2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 import java.lang.constant.ClassDesc;
29 import java.lang.constant.Constable;
30 import java.lang.constant.MethodTypeDesc;
31 import java.lang.ref.Reference;
32 import java.lang.ref.ReferenceQueue;
33 import java.lang.ref.WeakReference;
34 import java.util.Arrays;
35 import java.util.Collections;
36 import java.util.List;
37 import java.util.NoSuchElementException;
38 import java.util.Objects;
39 import java.util.Optional;
40 import java.util.StringJoiner;
41 import java.util.concurrent.ConcurrentHashMap;
42 import java.util.concurrent.ConcurrentMap;
43 import java.util.stream.Stream;
44 
45 import jdk.internal.vm.annotation.Stable;
46 import sun.invoke.util.BytecodeDescriptor;
47 import sun.invoke.util.VerifyType;
48 import sun.invoke.util.Wrapper;
49 
50 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
51 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
52 
53 /**
54  * A method type represents the arguments and return type accepted and
55  * returned by a method handle, or the arguments and return type passed
56  * and expected  by a method handle caller.  Method types must be properly
57  * matched between a method handle and all its callers,
58  * and the JVM's operations enforce this matching at, specifically
59  * during calls to {@link MethodHandle#invokeExact MethodHandle.invokeExact}
60  * and {@link MethodHandle#invoke MethodHandle.invoke}, and during execution
61  * of {@code invokedynamic} instructions.
62  * <p>
63  * The structure is a return type accompanied by any number of parameter types.
64  * The types (primitive, {@code void}, and reference) are represented by {@link Class} objects.
65  * (For ease of exposition, we treat {@code void} as if it were a type.
66  * In fact, it denotes the absence of a return type.)
67  * <p>
68  * All instances of {@code MethodType} are immutable.
69  * Two instances are completely interchangeable if they compare equal.
70  * Equality depends on pairwise correspondence of the return and parameter types and on nothing else.
71  * <p>
72  * This type can be created only by factory methods.
73  * All factory methods may cache values, though caching is not guaranteed.
74  * Some factory methods are static, while others are virtual methods which
75  * modify precursor method types, e.g., by changing a selected parameter.
76  * <p>
77  * Factory methods which operate on groups of parameter types
78  * are systematically presented in two versions, so that both Java arrays and
79  * Java lists can be used to work with groups of parameter types.
80  * The query methods {@code parameterArray} and {@code parameterList}
81  * also provide a choice between arrays and lists.
82  * <p>
83  * {@code MethodType} objects are sometimes derived from bytecode instructions
84  * such as {@code invokedynamic}, specifically from the type descriptor strings associated
85  * with the instructions in a class file's constant pool.
86  * <p>
87  * Like classes and strings, method types can also be represented directly
88  * in a class file's constant pool as constants.
89  * A method type may be loaded by an {@code ldc} instruction which refers
90  * to a suitable {@code CONSTANT_MethodType} constant pool entry.
91  * The entry refers to a {@code CONSTANT_Utf8} spelling for the descriptor string.
92  * (For full details on method type constants,
93  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
94  * <p>
95  * When the JVM materializes a {@code MethodType} from a descriptor string,
96  * all classes named in the descriptor must be accessible, and will be loaded.
97  * (But the classes need not be initialized, as is the case with a {@code CONSTANT_Class}.)
98  * This loading may occur at any time before the {@code MethodType} object is first derived.
99  * @author John Rose, JSR 292 EG
100  * @since 1.7
101  */
102 public final
103 class MethodType
104         implements Constable,
105                    TypeDescriptor.OfMethod<Class<?>, MethodType>,
106                    java.io.Serializable {
107     private static final long serialVersionUID = 292L;  // {rtype, {ptype...}}
108 
109     // The rtype and ptypes fields define the structural identity of the method type:
110     private final @Stable Class<?>   rtype;
111     private final @Stable Class<?>[] ptypes;
112 
113     // The remaining fields are caches of various sorts:
114     private @Stable MethodTypeForm form; // erased form, plus cached data about primitives
115     private @Stable Object wrapAlt;  // alternative wrapped/unwrapped version and
116                                      // private communication for readObject and readResolve
117     private @Stable Invokers invokers;   // cache of handy higher-order adapters
118     private @Stable String methodDescriptor;  // cache for toMethodDescriptorString
119 
120     /**
121      * Constructor that performs no copying or validation.
122      * Should only be called from the factory method makeImpl
123      */
MethodType(Class<?> rtype, Class<?>[] ptypes)124     private MethodType(Class<?> rtype, Class<?>[] ptypes) {
125         this.rtype = rtype;
126         this.ptypes = ptypes;
127     }
128 
form()129     /*trusted*/ MethodTypeForm form() { return form; }
rtype()130     /*trusted*/ Class<?> rtype() { return rtype; }
ptypes()131     /*trusted*/ Class<?>[] ptypes() { return ptypes; }
132 
setForm(MethodTypeForm f)133     void setForm(MethodTypeForm f) { form = f; }
134 
135     /** This number, mandated by the JVM spec as 255,
136      *  is the maximum number of <em>slots</em>
137      *  that any Java method can receive in its argument list.
138      *  It limits both JVM signatures and method type objects.
139      *  The longest possible invocation will look like
140      *  {@code staticMethod(arg1, arg2, ..., arg255)} or
141      *  {@code x.virtualMethod(arg1, arg2, ..., arg254)}.
142      */
143     /*non-public*/ static final int MAX_JVM_ARITY = 255;  // this is mandated by the JVM spec.
144 
145     /** This number is the maximum arity of a method handle, 254.
146      *  It is derived from the absolute JVM-imposed arity by subtracting one,
147      *  which is the slot occupied by the method handle itself at the
148      *  beginning of the argument list used to invoke the method handle.
149      *  The longest possible invocation will look like
150      *  {@code mh.invoke(arg1, arg2, ..., arg254)}.
151      */
152     // Issue:  Should we allow MH.invokeWithArguments to go to the full 255?
153     /*non-public*/ static final int MAX_MH_ARITY = MAX_JVM_ARITY-1;  // deduct one for mh receiver
154 
155     /** This number is the maximum arity of a method handle invoker, 253.
156      *  It is derived from the absolute JVM-imposed arity by subtracting two,
157      *  which are the slots occupied by invoke method handle, and the
158      *  target method handle, which are both at the beginning of the argument
159      *  list used to invoke the target method handle.
160      *  The longest possible invocation will look like
161      *  {@code invokermh.invoke(targetmh, arg1, arg2, ..., arg253)}.
162      */
163     /*non-public*/ static final int MAX_MH_INVOKER_ARITY = MAX_MH_ARITY-1;  // deduct one more for invoker
164 
checkRtype(Class<?> rtype)165     private static void checkRtype(Class<?> rtype) {
166         Objects.requireNonNull(rtype);
167     }
checkPtype(Class<?> ptype)168     private static void checkPtype(Class<?> ptype) {
169         Objects.requireNonNull(ptype);
170         if (ptype == void.class)
171             throw newIllegalArgumentException("parameter type cannot be void");
172     }
173     /** Return number of extra slots (count of long/double args). */
checkPtypes(Class<?>[] ptypes)174     private static int checkPtypes(Class<?>[] ptypes) {
175         int slots = 0;
176         for (Class<?> ptype : ptypes) {
177             checkPtype(ptype);
178             if (ptype == double.class || ptype == long.class) {
179                 slots++;
180             }
181         }
182         checkSlotCount(ptypes.length + slots);
183         return slots;
184     }
185 
186     static {
187         // MAX_JVM_ARITY must be power of 2 minus 1 for following code trick to work:
assert(MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0188         assert((MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0);
189     }
checkSlotCount(int count)190     static void checkSlotCount(int count) {
191         if ((count & MAX_JVM_ARITY) != count)
192             throw newIllegalArgumentException("bad parameter count "+count);
193     }
newIndexOutOfBoundsException(Object num)194     private static IndexOutOfBoundsException newIndexOutOfBoundsException(Object num) {
195         if (num instanceof Integer)  num = "bad index: "+num;
196         return new IndexOutOfBoundsException(num.toString());
197     }
198 
199     static final ConcurrentWeakInternSet<MethodType> internTable = new ConcurrentWeakInternSet<>();
200 
201     static final Class<?>[] NO_PTYPES = {};
202 
203     /**
204      * Finds or creates an instance of the given method type.
205      * @param rtype  the return type
206      * @param ptypes the parameter types
207      * @return a method type with the given components
208      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
209      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
210      */
211     public static
methodType(Class<?> rtype, Class<?>[] ptypes)212     MethodType methodType(Class<?> rtype, Class<?>[] ptypes) {
213         return makeImpl(rtype, ptypes, false);
214     }
215 
216     /**
217      * Finds or creates a method type with the given components.
218      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
219      * @param rtype  the return type
220      * @param ptypes the parameter types
221      * @return a method type with the given components
222      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
223      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
224      */
225     public static
methodType(Class<?> rtype, List<Class<?>> ptypes)226     MethodType methodType(Class<?> rtype, List<Class<?>> ptypes) {
227         boolean notrust = false;  // random List impl. could return evil ptypes array
228         return makeImpl(rtype, listToArray(ptypes), notrust);
229     }
230 
listToArray(List<Class<?>> ptypes)231     private static Class<?>[] listToArray(List<Class<?>> ptypes) {
232         // sanity check the size before the toArray call, since size might be huge
233         checkSlotCount(ptypes.size());
234         return ptypes.toArray(NO_PTYPES);
235     }
236 
237     /**
238      * Finds or creates a method type with the given components.
239      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
240      * The leading parameter type is prepended to the remaining array.
241      * @param rtype  the return type
242      * @param ptype0 the first parameter type
243      * @param ptypes the remaining parameter types
244      * @return a method type with the given components
245      * @throws NullPointerException if {@code rtype} or {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is null
246      * @throws IllegalArgumentException if {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is {@code void.class}
247      */
248     public static
methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes)249     MethodType methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes) {
250         Class<?>[] ptypes1 = new Class<?>[1+ptypes.length];
251         ptypes1[0] = ptype0;
252         System.arraycopy(ptypes, 0, ptypes1, 1, ptypes.length);
253         return makeImpl(rtype, ptypes1, true);
254     }
255 
256     /**
257      * Finds or creates a method type with the given components.
258      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
259      * The resulting method has no parameter types.
260      * @param rtype  the return type
261      * @return a method type with the given return value
262      * @throws NullPointerException if {@code rtype} is null
263      */
264     public static
methodType(Class<?> rtype)265     MethodType methodType(Class<?> rtype) {
266         return makeImpl(rtype, NO_PTYPES, true);
267     }
268 
269     /**
270      * Finds or creates a method type with the given components.
271      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
272      * The resulting method has the single given parameter type.
273      * @param rtype  the return type
274      * @param ptype0 the parameter type
275      * @return a method type with the given return value and parameter type
276      * @throws NullPointerException if {@code rtype} or {@code ptype0} is null
277      * @throws IllegalArgumentException if {@code ptype0} is {@code void.class}
278      */
279     public static
methodType(Class<?> rtype, Class<?> ptype0)280     MethodType methodType(Class<?> rtype, Class<?> ptype0) {
281         return makeImpl(rtype, new Class<?>[]{ ptype0 }, true);
282     }
283 
284     /**
285      * Finds or creates a method type with the given components.
286      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
287      * The resulting method has the same parameter types as {@code ptypes},
288      * and the specified return type.
289      * @param rtype  the return type
290      * @param ptypes the method type which supplies the parameter types
291      * @return a method type with the given components
292      * @throws NullPointerException if {@code rtype} or {@code ptypes} is null
293      */
294     public static
methodType(Class<?> rtype, MethodType ptypes)295     MethodType methodType(Class<?> rtype, MethodType ptypes) {
296         return makeImpl(rtype, ptypes.ptypes, true);
297     }
298 
299     /**
300      * Sole factory method to find or create an interned method type.
301      * @param rtype desired return type
302      * @param ptypes desired parameter types
303      * @param trusted whether the ptypes can be used without cloning
304      * @return the unique method type of the desired structure
305      */
306     /*trusted*/ static
makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted)307     MethodType makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
308         if (ptypes.length == 0) {
309             ptypes = NO_PTYPES; trusted = true;
310         }
311         MethodType primordialMT = new MethodType(rtype, ptypes);
312         MethodType mt = internTable.get(primordialMT);
313         if (mt != null)
314             return mt;
315 
316         // promote the object to the Real Thing, and reprobe
317         MethodType.checkRtype(rtype);
318         if (trusted) {
319             MethodType.checkPtypes(ptypes);
320             mt = primordialMT;
321         } else {
322             // Make defensive copy then validate
323             ptypes = Arrays.copyOf(ptypes, ptypes.length);
324             MethodType.checkPtypes(ptypes);
325             mt = new MethodType(rtype, ptypes);
326         }
327         mt.form = MethodTypeForm.findForm(mt);
328         return internTable.add(mt);
329     }
330     private static final @Stable MethodType[] objectOnlyTypes = new MethodType[20];
331 
332     /**
333      * Finds or creates a method type whose components are {@code Object} with an optional trailing {@code Object[]} array.
334      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
335      * All parameters and the return type will be {@code Object},
336      * except the final array parameter if any, which will be {@code Object[]}.
337      * @param objectArgCount number of parameters (excluding the final array parameter if any)
338      * @param finalArray whether there will be a trailing array parameter, of type {@code Object[]}
339      * @return a generally applicable method type, for all calls of the given fixed argument count and a collected array of further arguments
340      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255 (or 254, if {@code finalArray} is true)
341      * @see #genericMethodType(int)
342      */
343     public static
genericMethodType(int objectArgCount, boolean finalArray)344     MethodType genericMethodType(int objectArgCount, boolean finalArray) {
345         MethodType mt;
346         checkSlotCount(objectArgCount);
347         int ivarargs = (!finalArray ? 0 : 1);
348         int ootIndex = objectArgCount*2 + ivarargs;
349         if (ootIndex < objectOnlyTypes.length) {
350             mt = objectOnlyTypes[ootIndex];
351             if (mt != null)  return mt;
352         }
353         Class<?>[] ptypes = new Class<?>[objectArgCount + ivarargs];
354         Arrays.fill(ptypes, Object.class);
355         if (ivarargs != 0)  ptypes[objectArgCount] = Object[].class;
356         mt = makeImpl(Object.class, ptypes, true);
357         if (ootIndex < objectOnlyTypes.length) {
358             objectOnlyTypes[ootIndex] = mt;     // cache it here also!
359         }
360         return mt;
361     }
362 
363     /**
364      * Finds or creates a method type whose components are all {@code Object}.
365      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
366      * All parameters and the return type will be Object.
367      * @param objectArgCount number of parameters
368      * @return a generally applicable method type, for all calls of the given argument count
369      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
370      * @see #genericMethodType(int, boolean)
371      */
372     public static
genericMethodType(int objectArgCount)373     MethodType genericMethodType(int objectArgCount) {
374         return genericMethodType(objectArgCount, false);
375     }
376 
377     /**
378      * Finds or creates a method type with a single different parameter type.
379      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
380      * @param num    the index (zero-based) of the parameter type to change
381      * @param nptype a new parameter type to replace the old one with
382      * @return the same type, except with the selected parameter changed
383      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
384      * @throws IllegalArgumentException if {@code nptype} is {@code void.class}
385      * @throws NullPointerException if {@code nptype} is null
386      */
changeParameterType(int num, Class<?> nptype)387     public MethodType changeParameterType(int num, Class<?> nptype) {
388         if (parameterType(num) == nptype)  return this;
389         checkPtype(nptype);
390         Class<?>[] nptypes = ptypes.clone();
391         nptypes[num] = nptype;
392         return makeImpl(rtype, nptypes, true);
393     }
394 
395     /**
396      * Finds or creates a method type with additional parameter types.
397      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
398      * @param num    the position (zero-based) of the inserted parameter type(s)
399      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
400      * @return the same type, except with the selected parameter(s) inserted
401      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
402      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
403      *                                  or if the resulting method type would have more than 255 parameter slots
404      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
405      */
insertParameterTypes(int num, Class<?>... ptypesToInsert)406     public MethodType insertParameterTypes(int num, Class<?>... ptypesToInsert) {
407         int len = ptypes.length;
408         if (num < 0 || num > len)
409             throw newIndexOutOfBoundsException(num);
410         int ins = checkPtypes(ptypesToInsert);
411         checkSlotCount(parameterSlotCount() + ptypesToInsert.length + ins);
412         int ilen = ptypesToInsert.length;
413         if (ilen == 0)  return this;
414         Class<?>[] nptypes = new Class<?>[len + ilen];
415         if (num > 0) {
416             System.arraycopy(ptypes, 0, nptypes, 0, num);
417         }
418         System.arraycopy(ptypesToInsert, 0, nptypes, num, ilen);
419         if (num < len) {
420             System.arraycopy(ptypes, num, nptypes, num+ilen, len-num);
421         }
422         return makeImpl(rtype, nptypes, true);
423     }
424 
425     /**
426      * Finds or creates a method type with additional parameter types.
427      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
428      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
429      * @return the same type, except with the selected parameter(s) appended
430      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
431      *                                  or if the resulting method type would have more than 255 parameter slots
432      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
433      */
appendParameterTypes(Class<?>.... ptypesToInsert)434     public MethodType appendParameterTypes(Class<?>... ptypesToInsert) {
435         return insertParameterTypes(parameterCount(), ptypesToInsert);
436     }
437 
438     /**
439      * Finds or creates a method type with additional parameter types.
440      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
441      * @param num    the position (zero-based) of the inserted parameter type(s)
442      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
443      * @return the same type, except with the selected parameter(s) inserted
444      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
445      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
446      *                                  or if the resulting method type would have more than 255 parameter slots
447      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
448      */
insertParameterTypes(int num, List<Class<?>> ptypesToInsert)449     public MethodType insertParameterTypes(int num, List<Class<?>> ptypesToInsert) {
450         return insertParameterTypes(num, listToArray(ptypesToInsert));
451     }
452 
453     /**
454      * Finds or creates a method type with additional parameter types.
455      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
456      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
457      * @return the same type, except with the selected parameter(s) appended
458      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
459      *                                  or if the resulting method type would have more than 255 parameter slots
460      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
461      */
appendParameterTypes(List<Class<?>> ptypesToInsert)462     public MethodType appendParameterTypes(List<Class<?>> ptypesToInsert) {
463         return insertParameterTypes(parameterCount(), ptypesToInsert);
464     }
465 
466      /**
467      * Finds or creates a method type with modified parameter types.
468      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
469      * @param start  the position (zero-based) of the first replaced parameter type(s)
470      * @param end    the position (zero-based) after the last replaced parameter type(s)
471      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
472      * @return the same type, except with the selected parameter(s) replaced
473      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
474      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
475      *                                  or if {@code start} is greater than {@code end}
476      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
477      *                                  or if the resulting method type would have more than 255 parameter slots
478      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
479      */
replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert)480     /*non-public*/ MethodType replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert) {
481         if (start == end)
482             return insertParameterTypes(start, ptypesToInsert);
483         int len = ptypes.length;
484         if (!(0 <= start && start <= end && end <= len))
485             throw newIndexOutOfBoundsException("start="+start+" end="+end);
486         int ilen = ptypesToInsert.length;
487         if (ilen == 0)
488             return dropParameterTypes(start, end);
489         return dropParameterTypes(start, end).insertParameterTypes(start, ptypesToInsert);
490     }
491 
492     /** Replace the last arrayLength parameter types with the component type of arrayType.
493      * @param arrayType any array type
494      * @param pos position at which to spread
495      * @param arrayLength the number of parameter types to change
496      * @return the resulting type
497      */
asSpreaderType(Class<?> arrayType, int pos, int arrayLength)498     /*non-public*/ MethodType asSpreaderType(Class<?> arrayType, int pos, int arrayLength) {
499         assert(parameterCount() >= arrayLength);
500         int spreadPos = pos;
501         if (arrayLength == 0)  return this;  // nothing to change
502         if (arrayType == Object[].class) {
503             if (isGeneric())  return this;  // nothing to change
504             if (spreadPos == 0) {
505                 // no leading arguments to preserve; go generic
506                 MethodType res = genericMethodType(arrayLength);
507                 if (rtype != Object.class) {
508                     res = res.changeReturnType(rtype);
509                 }
510                 return res;
511             }
512         }
513         Class<?> elemType = arrayType.getComponentType();
514         assert(elemType != null);
515         for (int i = spreadPos; i < spreadPos + arrayLength; i++) {
516             if (ptypes[i] != elemType) {
517                 Class<?>[] fixedPtypes = ptypes.clone();
518                 Arrays.fill(fixedPtypes, i, spreadPos + arrayLength, elemType);
519                 return methodType(rtype, fixedPtypes);
520             }
521         }
522         return this;  // arguments check out; no change
523     }
524 
525     /** Return the leading parameter type, which must exist and be a reference.
526      *  @return the leading parameter type, after error checks
527      */
leadingReferenceParameter()528     /*non-public*/ Class<?> leadingReferenceParameter() {
529         Class<?> ptype;
530         if (ptypes.length == 0 ||
531             (ptype = ptypes[0]).isPrimitive())
532             throw newIllegalArgumentException("no leading reference parameter");
533         return ptype;
534     }
535 
536     /** Delete the last parameter type and replace it with arrayLength copies of the component type of arrayType.
537      * @param arrayType any array type
538      * @param pos position at which to insert parameters
539      * @param arrayLength the number of parameter types to insert
540      * @return the resulting type
541      */
asCollectorType(Class<?> arrayType, int pos, int arrayLength)542     /*non-public*/ MethodType asCollectorType(Class<?> arrayType, int pos, int arrayLength) {
543         assert(parameterCount() >= 1);
544         assert(pos < ptypes.length);
545         assert(ptypes[pos].isAssignableFrom(arrayType));
546         MethodType res;
547         if (arrayType == Object[].class) {
548             res = genericMethodType(arrayLength);
549             if (rtype != Object.class) {
550                 res = res.changeReturnType(rtype);
551             }
552         } else {
553             Class<?> elemType = arrayType.getComponentType();
554             assert(elemType != null);
555             res = methodType(rtype, Collections.nCopies(arrayLength, elemType));
556         }
557         if (ptypes.length == 1) {
558             return res;
559         } else {
560             // insert after (if need be), then before
561             if (pos < ptypes.length - 1) {
562                 res = res.insertParameterTypes(arrayLength, Arrays.copyOfRange(ptypes, pos + 1, ptypes.length));
563             }
564             return res.insertParameterTypes(0, Arrays.copyOf(ptypes, pos));
565         }
566     }
567 
568     /**
569      * Finds or creates a method type with some parameter types omitted.
570      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
571      * @param start  the index (zero-based) of the first parameter type to remove
572      * @param end    the index (greater than {@code start}) of the first parameter type after not to remove
573      * @return the same type, except with the selected parameter(s) removed
574      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
575      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
576      *                                  or if {@code start} is greater than {@code end}
577      */
578     public MethodType dropParameterTypes(int start, int end) {
579         int len = ptypes.length;
580         if (!(0 <= start && start <= end && end <= len))
581             throw newIndexOutOfBoundsException("start="+start+" end="+end);
582         if (start == end)  return this;
583         Class<?>[] nptypes;
584         if (start == 0) {
585             if (end == len) {
586                 // drop all parameters
587                 nptypes = NO_PTYPES;
588             } else {
589                 // drop initial parameter(s)
590                 nptypes = Arrays.copyOfRange(ptypes, end, len);
591             }
592         } else {
593             if (end == len) {
594                 // drop trailing parameter(s)
595                 nptypes = Arrays.copyOfRange(ptypes, 0, start);
596             } else {
597                 int tail = len - end;
598                 nptypes = Arrays.copyOfRange(ptypes, 0, start + tail);
599                 System.arraycopy(ptypes, end, nptypes, start, tail);
600             }
601         }
602         return makeImpl(rtype, nptypes, true);
603     }
604 
605     /**
606      * Finds or creates a method type with a different return type.
607      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
608      * @param nrtype a return parameter type to replace the old one with
609      * @return the same type, except with the return type change
610      * @throws NullPointerException if {@code nrtype} is null
611      */
612     public MethodType changeReturnType(Class<?> nrtype) {
613         if (returnType() == nrtype)  return this;
614         return makeImpl(nrtype, ptypes, true);
615     }
616 
617     /**
618      * Reports if this type contains a primitive argument or return value.
619      * The return type {@code void} counts as a primitive.
620      * @return true if any of the types are primitives
621      */
622     public boolean hasPrimitives() {
623         return form.hasPrimitives();
624     }
625 
626     /**
627      * Reports if this type contains a wrapper argument or return value.
628      * Wrappers are types which box primitive values, such as {@link Integer}.
629      * The reference type {@code java.lang.Void} counts as a wrapper,
630      * if it occurs as a return type.
631      * @return true if any of the types are wrappers
632      */
633     public boolean hasWrappers() {
634         return unwrap() != this;
635     }
636 
637     /**
638      * Erases all reference types to {@code Object}.
639      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
640      * All primitive types (including {@code void}) will remain unchanged.
641      * @return a version of the original type with all reference types replaced
642      */
643     public MethodType erase() {
644         return form.erasedType();
645     }
646 
647     /**
648      * Erases all reference types to {@code Object}, and all subword types to {@code int}.
649      * This is the reduced type polymorphism used by private methods
650      * such as {@link MethodHandle#invokeBasic invokeBasic}.
651      * @return a version of the original type with all reference and subword types replaced
652      */
653     /*non-public*/ MethodType basicType() {
654         return form.basicType();
655     }
656 
657     private static final @Stable Class<?>[] METHOD_HANDLE_ARRAY
658             = new Class<?>[] { MethodHandle.class };
659 
660     /**
661      * @return a version of the original type with MethodHandle prepended as the first argument
662      */
663     /*non-public*/ MethodType invokerType() {
664         return insertParameterTypes(0, METHOD_HANDLE_ARRAY);
665     }
666 
667     /**
668      * Converts all types, both reference and primitive, to {@code Object}.
669      * Convenience method for {@link #genericMethodType(int) genericMethodType}.
670      * The expression {@code type.wrap().erase()} produces the same value
671      * as {@code type.generic()}.
672      * @return a version of the original type with all types replaced
673      */
674     public MethodType generic() {
675         return genericMethodType(parameterCount());
676     }
677 
678     /*non-public*/ boolean isGeneric() {
679         return this == erase() && !hasPrimitives();
680     }
681 
682     /**
683      * Converts all primitive types to their corresponding wrapper types.
684      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
685      * All reference types (including wrapper types) will remain unchanged.
686      * A {@code void} return type is changed to the type {@code java.lang.Void}.
687      * The expression {@code type.wrap().erase()} produces the same value
688      * as {@code type.generic()}.
689      * @return a version of the original type with all primitive types replaced
690      */
691     public MethodType wrap() {
692         return hasPrimitives() ? wrapWithPrims(this) : this;
693     }
694 
695     /**
696      * Converts all wrapper types to their corresponding primitive types.
697      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
698      * All primitive types (including {@code void}) will remain unchanged.
699      * A return type of {@code java.lang.Void} is changed to {@code void}.
700      * @return a version of the original type with all wrapper types replaced
701      */
702     public MethodType unwrap() {
703         MethodType noprims = !hasPrimitives() ? this : wrapWithPrims(this);
704         return unwrapWithNoPrims(noprims);
705     }
706 
707     private static MethodType wrapWithPrims(MethodType pt) {
708         assert(pt.hasPrimitives());
709         MethodType wt = (MethodType)pt.wrapAlt;
710         if (wt == null) {
711             // fill in lazily
712             wt = MethodTypeForm.canonicalize(pt, MethodTypeForm.WRAP, MethodTypeForm.WRAP);
713             assert(wt != null);
714             pt.wrapAlt = wt;
715         }
716         return wt;
717     }
718 
719     private static MethodType unwrapWithNoPrims(MethodType wt) {
720         assert(!wt.hasPrimitives());
721         MethodType uwt = (MethodType)wt.wrapAlt;
722         if (uwt == null) {
723             // fill in lazily
724             uwt = MethodTypeForm.canonicalize(wt, MethodTypeForm.UNWRAP, MethodTypeForm.UNWRAP);
725             if (uwt == null)
726                 uwt = wt;    // type has no wrappers or prims at all
727             wt.wrapAlt = uwt;
728         }
729         return uwt;
730     }
731 
732     /**
733      * Returns the parameter type at the specified index, within this method type.
734      * @param num the index (zero-based) of the desired parameter type
735      * @return the selected parameter type
736      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
737      */
738     public Class<?> parameterType(int num) {
739         return ptypes[num];
740     }
741     /**
742      * Returns the number of parameter types in this method type.
743      * @return the number of parameter types
744      */
745     public int parameterCount() {
746         return ptypes.length;
747     }
748     /**
749      * Returns the return type of this method type.
750      * @return the return type
751      */
752     public Class<?> returnType() {
753         return rtype;
754     }
755 
756     /**
757      * Presents the parameter types as a list (a convenience method).
758      * The list will be immutable.
759      * @return the parameter types (as an immutable list)
760      */
761     public List<Class<?>> parameterList() {
762         return Collections.unmodifiableList(Arrays.asList(ptypes.clone()));
763     }
764 
765     /**
766      * Returns the last parameter type of this method type.
767      * If this type has no parameters, the sentinel value
768      * {@code void.class} is returned instead.
769      * @apiNote
770      * <p>
771      * The sentinel value is chosen so that reflective queries can be
772      * made directly against the result value.
773      * The sentinel value cannot be confused with a real parameter,
774      * since {@code void} is never acceptable as a parameter type.
775      * For variable arity invocation modes, the expression
776      * {@link Class#getComponentType lastParameterType().getComponentType()}
777      * is useful to query the type of the "varargs" parameter.
778      * @return the last parameter type if any, else {@code void.class}
779      * @since 10
780      */
781     public Class<?> lastParameterType() {
782         int len = ptypes.length;
783         return len == 0 ? void.class : ptypes[len-1];
784     }
785 
786     /**
787      * Presents the parameter types as an array (a convenience method).
788      * Changes to the array will not result in changes to the type.
789      * @return the parameter types (as a fresh copy if necessary)
790      */
791     public Class<?>[] parameterArray() {
792         return ptypes.clone();
793     }
794 
795     /**
796      * Compares the specified object with this type for equality.
797      * That is, it returns {@code true} if and only if the specified object
798      * is also a method type with exactly the same parameters and return type.
799      * @param x object to compare
800      * @see Object#equals(Object)
801      */
802     // This implementation may also return true if x is a WeakEntry containing
803     // a method type that is equal to this. This is an internal implementation
804     // detail to allow for faster method type lookups.
805     // See ConcurrentWeakInternSet.WeakEntry#equals(Object)
806     @Override
807     public boolean equals(Object x) {
808         if (this == x) {
809             return true;
810         }
811         if (x instanceof MethodType) {
812             return equals((MethodType)x);
813         }
814         if (x instanceof ConcurrentWeakInternSet.WeakEntry) {
815             Object o = ((ConcurrentWeakInternSet.WeakEntry)x).get();
816             if (o instanceof MethodType) {
817                 return equals((MethodType)o);
818             }
819         }
820         return false;
821     }
822 
823     private boolean equals(MethodType that) {
824         return this.rtype == that.rtype
825             && Arrays.equals(this.ptypes, that.ptypes);
826     }
827 
828     /**
829      * Returns the hash code value for this method type.
830      * It is defined to be the same as the hashcode of a List
831      * whose elements are the return type followed by the
832      * parameter types.
833      * @return the hash code value for this method type
834      * @see Object#hashCode()
835      * @see #equals(Object)
836      * @see List#hashCode()
837      */
838     @Override
839     public int hashCode() {
840         int hashCode = 31 + rtype.hashCode();
841         for (Class<?> ptype : ptypes)
842             hashCode = 31 * hashCode + ptype.hashCode();
843         return hashCode;
844     }
845 
846     /**
847      * Returns a string representation of the method type,
848      * of the form {@code "(PT0,PT1...)RT"}.
849      * The string representation of a method type is a
850      * parenthesis enclosed, comma separated list of type names,
851      * followed immediately by the return type.
852      * <p>
853      * Each type is represented by its
854      * {@link java.lang.Class#getSimpleName simple name}.
855      */
856     @Override
857     public String toString() {
858         StringJoiner sj = new StringJoiner(",", "(",
859                 ")" + rtype.getSimpleName());
860         for (int i = 0; i < ptypes.length; i++) {
861             sj.add(ptypes[i].getSimpleName());
862         }
863         return sj.toString();
864     }
865 
866     /** True if my parameter list is effectively identical to the given full list,
867      *  after skipping the given number of my own initial parameters.
868      *  In other words, after disregarding {@code skipPos} parameters,
869      *  my remaining parameter list is no longer than the {@code fullList}, and
870      *  is equal to the same-length initial sublist of {@code fullList}.
871      */
872     /*non-public*/
873     boolean effectivelyIdenticalParameters(int skipPos, List<Class<?>> fullList) {
874         int myLen = ptypes.length, fullLen = fullList.size();
875         if (skipPos > myLen || myLen - skipPos > fullLen)
876             return false;
877         List<Class<?>> myList = Arrays.asList(ptypes);
878         if (skipPos != 0) {
879             myList = myList.subList(skipPos, myLen);
880             myLen -= skipPos;
881         }
882         if (fullLen == myLen)
883             return myList.equals(fullList);
884         else
885             return myList.equals(fullList.subList(0, myLen));
886     }
887 
888     /** True if the old return type can always be viewed (w/o casting) under new return type,
889      *  and the new parameters can be viewed (w/o casting) under the old parameter types.
890      */
891     /*non-public*/
892     boolean isViewableAs(MethodType newType, boolean keepInterfaces) {
893         if (!VerifyType.isNullConversion(returnType(), newType.returnType(), keepInterfaces))
894             return false;
895         if (form == newType.form && form.erasedType == this)
896             return true;  // my reference parameters are all Object
897         if (ptypes == newType.ptypes)
898             return true;
899         int argc = parameterCount();
900         if (argc != newType.parameterCount())
901             return false;
902         for (int i = 0; i < argc; i++) {
903             if (!VerifyType.isNullConversion(newType.parameterType(i), parameterType(i), keepInterfaces))
904                 return false;
905         }
906         return true;
907     }
908     /*non-public*/
909     boolean isConvertibleTo(MethodType newType) {
910         MethodTypeForm oldForm = this.form();
911         MethodTypeForm newForm = newType.form();
912         if (oldForm == newForm)
913             // same parameter count, same primitive/object mix
914             return true;
915         if (!canConvert(returnType(), newType.returnType()))
916             return false;
917         Class<?>[] srcTypes = newType.ptypes;
918         Class<?>[] dstTypes = ptypes;
919         if (srcTypes == dstTypes)
920             return true;
921         int argc;
922         if ((argc = srcTypes.length) != dstTypes.length)
923             return false;
924         if (argc <= 1) {
925             if (argc == 1 && !canConvert(srcTypes[0], dstTypes[0]))
926                 return false;
927             return true;
928         }
929         if ((oldForm.primitiveParameterCount() == 0 && oldForm.erasedType == this) ||
930             (newForm.primitiveParameterCount() == 0 && newForm.erasedType == newType)) {
931             // Somewhat complicated test to avoid a loop of 2 or more trips.
932             // If either type has only Object parameters, we know we can convert.
933             assert(canConvertParameters(srcTypes, dstTypes));
934             return true;
935         }
936         return canConvertParameters(srcTypes, dstTypes);
937     }
938 
939     /** Returns true if MHs.explicitCastArguments produces the same result as MH.asType.
940      *  If the type conversion is impossible for either, the result should be false.
941      */
942     /*non-public*/
943     boolean explicitCastEquivalentToAsType(MethodType newType) {
944         if (this == newType)  return true;
945         if (!explicitCastEquivalentToAsType(rtype, newType.rtype)) {
946             return false;
947         }
948         Class<?>[] srcTypes = newType.ptypes;
949         Class<?>[] dstTypes = ptypes;
950         if (dstTypes == srcTypes) {
951             return true;
952         }
953         assert(dstTypes.length == srcTypes.length);
954         for (int i = 0; i < dstTypes.length; i++) {
955             if (!explicitCastEquivalentToAsType(srcTypes[i], dstTypes[i])) {
956                 return false;
957             }
958         }
959         return true;
960     }
961 
962     /** Reports true if the src can be converted to the dst, by both asType and MHs.eCE,
963      *  and with the same effect.
964      *  MHs.eCA has the following "upgrades" to MH.asType:
965      *  1. interfaces are unchecked (that is, treated as if aliased to Object)
966      *     Therefore, {@code Object->CharSequence} is possible in both cases but has different semantics
967      *  2. the full matrix of primitive-to-primitive conversions is supported
968      *     Narrowing like {@code long->byte} and basic-typing like {@code boolean->int}
969      *     are not supported by asType, but anything supported by asType is equivalent
970      *     with MHs.eCE.
971      *  3a. unboxing conversions can be followed by the full matrix of primitive conversions
972      *  3b. unboxing of null is permitted (creates a zero primitive value)
973      * Other than interfaces, reference-to-reference conversions are the same.
974      * Boxing primitives to references is the same for both operators.
975      */
976     private static boolean explicitCastEquivalentToAsType(Class<?> src, Class<?> dst) {
977         if (src == dst || dst == Object.class || dst == void.class)  return true;
978         if (src.isPrimitive()) {
979             // Could be a prim/prim conversion, where casting is a strict superset.
980             // Or a boxing conversion, which is always to an exact wrapper class.
981             return canConvert(src, dst);
982         } else if (dst.isPrimitive()) {
983             // Unboxing behavior is different between MHs.eCA & MH.asType (see 3b).
984             return false;
985         } else {
986             // R->R always works, but we have to avoid a check-cast to an interface.
987             return !dst.isInterface() || dst.isAssignableFrom(src);
988         }
989     }
990 
991     private boolean canConvertParameters(Class<?>[] srcTypes, Class<?>[] dstTypes) {
992         for (int i = 0; i < srcTypes.length; i++) {
993             if (!canConvert(srcTypes[i], dstTypes[i])) {
994                 return false;
995             }
996         }
997         return true;
998     }
999 
1000     /*non-public*/
1001     static boolean canConvert(Class<?> src, Class<?> dst) {
1002         // short-circuit a few cases:
1003         if (src == dst || src == Object.class || dst == Object.class)  return true;
1004         // the remainder of this logic is documented in MethodHandle.asType
1005         if (src.isPrimitive()) {
1006             // can force void to an explicit null, a la reflect.Method.invoke
1007             // can also force void to a primitive zero, by analogy
1008             if (src == void.class)  return true;  //or !dst.isPrimitive()?
1009             Wrapper sw = Wrapper.forPrimitiveType(src);
1010             if (dst.isPrimitive()) {
1011                 // P->P must widen
1012                 return Wrapper.forPrimitiveType(dst).isConvertibleFrom(sw);
1013             } else {
1014                 // P->R must box and widen
1015                 return dst.isAssignableFrom(sw.wrapperType());
1016             }
1017         } else if (dst.isPrimitive()) {
1018             // any value can be dropped
1019             if (dst == void.class)  return true;
1020             Wrapper dw = Wrapper.forPrimitiveType(dst);
1021             // R->P must be able to unbox (from a dynamically chosen type) and widen
1022             // For example:
1023             //   Byte/Number/Comparable/Object -> dw:Byte -> byte.
1024             //   Character/Comparable/Object -> dw:Character -> char
1025             //   Boolean/Comparable/Object -> dw:Boolean -> boolean
1026             // This means that dw must be cast-compatible with src.
1027             if (src.isAssignableFrom(dw.wrapperType())) {
1028                 return true;
1029             }
1030             // The above does not work if the source reference is strongly typed
1031             // to a wrapper whose primitive must be widened.  For example:
1032             //   Byte -> unbox:byte -> short/int/long/float/double
1033             //   Character -> unbox:char -> int/long/float/double
1034             if (Wrapper.isWrapperType(src) &&
1035                 dw.isConvertibleFrom(Wrapper.forWrapperType(src))) {
1036                 // can unbox from src and then widen to dst
1037                 return true;
1038             }
1039             // We have already covered cases which arise due to runtime unboxing
1040             // of a reference type which covers several wrapper types:
1041             //   Object -> cast:Integer -> unbox:int -> long/float/double
1042             //   Serializable -> cast:Byte -> unbox:byte -> byte/short/int/long/float/double
1043             // An marginal case is Number -> dw:Character -> char, which would be OK if there were a
1044             // subclass of Number which wraps a value that can convert to char.
1045             // Since there is none, we don't need an extra check here to cover char or boolean.
1046             return false;
1047         } else {
1048             // R->R always works, since null is always valid dynamically
1049             return true;
1050         }
1051     }
1052 
1053     /// Queries which have to do with the bytecode architecture
1054 
1055     /** Reports the number of JVM stack slots required to invoke a method
1056      * of this type.  Note that (for historical reasons) the JVM requires
1057      * a second stack slot to pass long and double arguments.
1058      * So this method returns {@link #parameterCount() parameterCount} plus the
1059      * number of long and double parameters (if any).
1060      * <p>
1061      * This method is included for the benefit of applications that must
1062      * generate bytecodes that process method handles and invokedynamic.
1063      * @return the number of JVM stack slots for this type's parameters
1064      */
1065     /*non-public*/ int parameterSlotCount() {
1066         return form.parameterSlotCount();
1067     }
1068 
1069     /*non-public*/ Invokers invokers() {
1070         Invokers inv = invokers;
1071         if (inv != null)  return inv;
1072         invokers = inv = new Invokers(this);
1073         return inv;
1074     }
1075 
1076     /** Reports the number of JVM stack slots which carry all parameters including and after
1077      * the given position, which must be in the range of 0 to
1078      * {@code parameterCount} inclusive.  Successive parameters are
1079      * more shallowly stacked, and parameters are indexed in the bytecodes
1080      * according to their trailing edge.  Thus, to obtain the depth
1081      * in the outgoing call stack of parameter {@code N}, obtain
1082      * the {@code parameterSlotDepth} of its trailing edge
1083      * at position {@code N+1}.
1084      * <p>
1085      * Parameters of type {@code long} and {@code double} occupy
1086      * two stack slots (for historical reasons) and all others occupy one.
1087      * Therefore, the number returned is the number of arguments
1088      * <em>including</em> and <em>after</em> the given parameter,
1089      * <em>plus</em> the number of long or double arguments
1090      * at or after the argument for the given parameter.
1091      * <p>
1092      * This method is included for the benefit of applications that must
1093      * generate bytecodes that process method handles and invokedynamic.
1094      * @param num an index (zero-based, inclusive) within the parameter types
1095      * @return the index of the (shallowest) JVM stack slot transmitting the
1096      *         given parameter
1097      * @throws IllegalArgumentException if {@code num} is negative or greater than {@code parameterCount()}
1098      */
1099     /*non-public*/ int parameterSlotDepth(int num) {
1100         if (num < 0 || num > ptypes.length)
1101             parameterType(num);  // force a range check
1102         return form.parameterToArgSlot(num-1);
1103     }
1104 
1105     /** Reports the number of JVM stack slots required to receive a return value
1106      * from a method of this type.
1107      * If the {@link #returnType() return type} is void, it will be zero,
1108      * else if the return type is long or double, it will be two, else one.
1109      * <p>
1110      * This method is included for the benefit of applications that must
1111      * generate bytecodes that process method handles and invokedynamic.
1112      * @return the number of JVM stack slots (0, 1, or 2) for this type's return value
1113      * Will be removed for PFD.
1114      */
1115     /*non-public*/ int returnSlotCount() {
1116         return form.returnSlotCount();
1117     }
1118 
1119     /**
1120      * Finds or creates an instance of a method type, given the spelling of its bytecode descriptor.
1121      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
1122      * Any class or interface name embedded in the descriptor string
1123      * will be resolved by calling {@link ClassLoader#loadClass(java.lang.String)}
1124      * on the given loader (or if it is null, on the system class loader).
1125      * <p>
1126      * Note that it is possible to encounter method types which cannot be
1127      * constructed by this method, because their component types are
1128      * not all reachable from a common class loader.
1129      * <p>
1130      * This method is included for the benefit of applications that must
1131      * generate bytecodes that process method handles and {@code invokedynamic}.
1132      * @param descriptor a bytecode-level type descriptor string "(T...)T"
1133      * @param loader the class loader in which to look up the types
1134      * @return a method type matching the bytecode-level type descriptor
1135      * @throws NullPointerException if the string is null
1136      * @throws IllegalArgumentException if the string is not well-formed
1137      * @throws TypeNotPresentException if a named type cannot be found
1138      */
1139     public static MethodType fromMethodDescriptorString(String descriptor, ClassLoader loader)
1140         throws IllegalArgumentException, TypeNotPresentException
1141     {
1142         return fromDescriptor(descriptor,
1143                               (loader == null) ? ClassLoader.getSystemClassLoader() : loader);
1144     }
1145 
1146     /**
1147      * Same as {@link #fromMethodDescriptorString(String, ClassLoader)}, but
1148      * {@code null} ClassLoader means the bootstrap loader is used here.
1149      * <p>
1150      * IMPORTANT: This method is preferable for JDK internal use as it more
1151      * correctly interprets {@code null} ClassLoader than
1152      * {@link #fromMethodDescriptorString(String, ClassLoader)}.
1153      * Use of this method also avoids early initialization issues when system
1154      * ClassLoader is not initialized yet.
1155      */
1156     static MethodType fromDescriptor(String descriptor, ClassLoader loader)
1157         throws IllegalArgumentException, TypeNotPresentException
1158     {
1159         if (!descriptor.startsWith("(") ||  // also generates NPE if needed
1160             descriptor.indexOf(')') < 0 ||
1161             descriptor.indexOf('.') >= 0)
1162             throw newIllegalArgumentException("not a method descriptor: "+descriptor);
1163         List<Class<?>> types = BytecodeDescriptor.parseMethod(descriptor, loader);
1164         Class<?> rtype = types.remove(types.size() - 1);
1165         Class<?>[] ptypes = listToArray(types);
1166         return makeImpl(rtype, ptypes, true);
1167     }
1168 
1169     /**
1170      * Produces a bytecode descriptor representation of the method type.
1171      * <p>
1172      * Note that this is not a strict inverse of {@link #fromMethodDescriptorString fromMethodDescriptorString}.
1173      * Two distinct classes which share a common name but have different class loaders
1174      * will appear identical when viewed within descriptor strings.
1175      * <p>
1176      * This method is included for the benefit of applications that must
1177      * generate bytecodes that process method handles and {@code invokedynamic}.
1178      * {@link #fromMethodDescriptorString(java.lang.String, java.lang.ClassLoader) fromMethodDescriptorString},
1179      * because the latter requires a suitable class loader argument.
1180      * @return the bytecode type descriptor representation
1181      */
1182     public String toMethodDescriptorString() {
1183         String desc = methodDescriptor;
1184         if (desc == null) {
1185             desc = BytecodeDescriptor.unparseMethod(this.rtype, this.ptypes);
1186             methodDescriptor = desc;
1187         }
1188         return desc;
1189     }
1190 
1191     /**
1192      * Return a field type descriptor string for this type
1193      *
1194      * @return the descriptor string
1195      * @jvms 4.3.2 Field Descriptors
1196      * @since 12
1197      */
1198     @Override
1199     public String descriptorString() {
1200         return toMethodDescriptorString();
1201     }
1202 
1203     /*non-public*/ static String toFieldDescriptorString(Class<?> cls) {
1204         return BytecodeDescriptor.unparse(cls);
1205     }
1206 
1207     /**
1208      * Return a nominal descriptor for this instance, if one can be
1209      * constructed, or an empty {@link Optional} if one cannot be.
1210      *
1211      * @return An {@link Optional} containing the resulting nominal descriptor,
1212      * or an empty {@link Optional} if one cannot be constructed.
1213      * @since 12
1214      */
1215     @Override
1216     public Optional<MethodTypeDesc> describeConstable() {
1217         try {
1218             return Optional.of(MethodTypeDesc.of(returnType().describeConstable().orElseThrow(),
1219                                                  Stream.of(parameterArray())
1220                                                       .map(p -> p.describeConstable().orElseThrow())
1221                                                       .toArray(ClassDesc[]::new)));
1222         }
1223         catch (NoSuchElementException e) {
1224             return Optional.empty();
1225         }
1226     }
1227 
1228     /// Serialization.
1229 
1230     /**
1231      * There are no serializable fields for {@code MethodType}.
1232      */
1233     private static final java.io.ObjectStreamField[] serialPersistentFields = { };
1234 
1235     /**
1236      * Save the {@code MethodType} instance to a stream.
1237      *
1238      * @serialData
1239      * For portability, the serialized format does not refer to named fields.
1240      * Instead, the return type and parameter type arrays are written directly
1241      * from the {@code writeObject} method, using two calls to {@code s.writeObject}
1242      * as follows:
1243      * <blockquote><pre>{@code
1244 s.writeObject(this.returnType());
1245 s.writeObject(this.parameterArray());
1246      * }</pre></blockquote>
1247      * <p>
1248      * The deserialized field values are checked as if they were
1249      * provided to the factory method {@link #methodType(Class,Class[]) methodType}.
1250      * For example, null values, or {@code void} parameter types,
1251      * will lead to exceptions during deserialization.
1252      * @param s the stream to write the object to
1253      * @throws java.io.IOException if there is a problem writing the object
1254      */
1255     private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
1256         s.defaultWriteObject();  // requires serialPersistentFields to be an empty array
1257         s.writeObject(returnType());
1258         s.writeObject(parameterArray());
1259     }
1260 
1261     /**
1262      * Reconstitute the {@code MethodType} instance from a stream (that is,
1263      * deserialize it).
1264      * This instance is a scratch object with bogus final fields.
1265      * It provides the parameters to the factory method called by
1266      * {@link #readResolve readResolve}.
1267      * After that call it is discarded.
1268      * @param s the stream to read the object from
1269      * @throws java.io.IOException if there is a problem reading the object
1270      * @throws ClassNotFoundException if one of the component classes cannot be resolved
1271      * @see #readResolve
1272      * @see #writeObject
1273      */
1274     private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
1275         // Assign defaults in case this object escapes
1276         UNSAFE.putReference(this, OffsetHolder.rtypeOffset, void.class);
1277         UNSAFE.putReference(this, OffsetHolder.ptypesOffset, NO_PTYPES);
1278 
1279         s.defaultReadObject();  // requires serialPersistentFields to be an empty array
1280 
1281         Class<?>   returnType     = (Class<?>)   s.readObject();
1282         Class<?>[] parameterArray = (Class<?>[]) s.readObject();
1283 
1284         // Verify all operands, and make sure ptypes is unshared
1285         // Cache the new MethodType for readResolve
1286         wrapAlt = new MethodType[]{MethodType.methodType(returnType, parameterArray)};
1287     }
1288 
1289     // Support for resetting final fields while deserializing. Implement Holder
1290     // pattern to make the rarely needed offset calculation lazy.
1291     private static class OffsetHolder {
1292         static final long rtypeOffset
1293                 = UNSAFE.objectFieldOffset(MethodType.class, "rtype");
1294 
1295         static final long ptypesOffset
1296                 = UNSAFE.objectFieldOffset(MethodType.class, "ptypes");
1297     }
1298 
1299     /**
1300      * Resolves and initializes a {@code MethodType} object
1301      * after serialization.
1302      * @return the fully initialized {@code MethodType} object
1303      */
1304     private Object readResolve() {
1305         // Do not use a trusted path for deserialization:
1306         //    return makeImpl(rtype, ptypes, true);
1307         // Verify all operands, and make sure ptypes is unshared:
1308         // Return a new validated MethodType for the rtype and ptypes passed from readObject.
1309         MethodType mt = ((MethodType[])wrapAlt)[0];
1310         wrapAlt = null;
1311         return mt;
1312     }
1313 
1314     /**
1315      * Simple implementation of weak concurrent intern set.
1316      *
1317      * @param <T> interned type
1318      */
1319     private static class ConcurrentWeakInternSet<T> {
1320 
1321         private final ConcurrentMap<WeakEntry<T>, WeakEntry<T>> map;
1322         private final ReferenceQueue<T> stale;
1323 
1324         public ConcurrentWeakInternSet() {
1325             this.map = new ConcurrentHashMap<>(512);
1326             this.stale = new ReferenceQueue<>();
1327         }
1328 
1329         /**
1330          * Get the existing interned element.
1331          * This method returns null if no element is interned.
1332          *
1333          * @param elem element to look up
1334          * @return the interned element
1335          */
1336         public T get(T elem) {
1337             if (elem == null) throw new NullPointerException();
1338             expungeStaleElements();
1339 
1340             WeakEntry<T> value = map.get(elem);
1341             if (value != null) {
1342                 T res = value.get();
1343                 if (res != null) {
1344                     return res;
1345                 }
1346             }
1347             return null;
1348         }
1349 
1350         /**
1351          * Interns the element.
1352          * Always returns non-null element, matching the one in the intern set.
1353          * Under the race against another add(), it can return <i>different</i>
1354          * element, if another thread beats us to interning it.
1355          *
1356          * @param elem element to add
1357          * @return element that was actually added
1358          */
1359         public T add(T elem) {
1360             if (elem == null) throw new NullPointerException();
1361 
1362             // Playing double race here, and so spinloop is required.
1363             // First race is with two concurrent updaters.
1364             // Second race is with GC purging weak ref under our feet.
1365             // Hopefully, we almost always end up with a single pass.
1366             T interned;
1367             WeakEntry<T> e = new WeakEntry<>(elem, stale);
1368             do {
1369                 expungeStaleElements();
1370                 WeakEntry<T> exist = map.putIfAbsent(e, e);
1371                 interned = (exist == null) ? elem : exist.get();
1372             } while (interned == null);
1373             return interned;
1374         }
1375 
1376         private void expungeStaleElements() {
1377             Reference<? extends T> reference;
1378             while ((reference = stale.poll()) != null) {
1379                 map.remove(reference);
1380             }
1381         }
1382 
1383         private static class WeakEntry<T> extends WeakReference<T> {
1384 
1385             public final int hashcode;
1386 
1387             public WeakEntry(T key, ReferenceQueue<T> queue) {
1388                 super(key, queue);
1389                 hashcode = key.hashCode();
1390             }
1391 
1392             /**
1393              * This implementation returns {@code true} if {@code obj} is another
1394              * {@code WeakEntry} whose referent is equals to this referent, or
1395              * if {@code obj} is equals to the referent of this. This allows
1396              * lookups to be made without wrapping in a {@code WeakEntry}.
1397              *
1398              * @param obj the object to compare
1399              * @return true if {@code obj} is equals to this or the referent of this
1400              * @see MethodType#equals(Object)
1401              * @see Object#equals(Object)
1402              */
1403             @Override
1404             public boolean equals(Object obj) {
1405                 Object mine = get();
1406                 if (obj instanceof WeakEntry) {
1407                     Object that = ((WeakEntry) obj).get();
1408                     return (that == null || mine == null) ? (this == obj) : mine.equals(that);
1409                 }
1410                 return (mine == null) ? (obj == null) : mine.equals(obj);
1411             }
1412 
1413             @Override
1414             public int hashCode() {
1415                 return hashcode;
1416             }
1417 
1418         }
1419     }
1420 
1421 }
1422