1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 
28 import java.util.function.Consumer;
29 
30 /**
31  * This class provides a skeletal implementation of the {@link List}
32  * interface to minimize the effort required to implement this interface
33  * backed by a "random access" data store (such as an array).  For sequential
34  * access data (such as a linked list), {@link AbstractSequentialList} should
35  * be used in preference to this class.
36  *
37  * <p>To implement an unmodifiable list, the programmer needs only to extend
38  * this class and provide implementations for the {@link #get(int)} and
39  * {@link List#size() size()} methods.
40  *
41  * <p>To implement a modifiable list, the programmer must additionally
42  * override the {@link #set(int, Object) set(int, E)} method (which otherwise
43  * throws an {@code UnsupportedOperationException}).  If the list is
44  * variable-size the programmer must additionally override the
45  * {@link #add(int, Object) add(int, E)} and {@link #remove(int)} methods.
46  *
47  * <p>The programmer should generally provide a void (no argument) and collection
48  * constructor, as per the recommendation in the {@link Collection} interface
49  * specification.
50  *
51  * <p>Unlike the other abstract collection implementations, the programmer does
52  * <i>not</i> have to provide an iterator implementation; the iterator and
53  * list iterator are implemented by this class, on top of the "random access"
54  * methods:
55  * {@link #get(int)},
56  * {@link #set(int, Object) set(int, E)},
57  * {@link #add(int, Object) add(int, E)} and
58  * {@link #remove(int)}.
59  *
60  * <p>The documentation for each non-abstract method in this class describes its
61  * implementation in detail.  Each of these methods may be overridden if the
62  * collection being implemented admits a more efficient implementation.
63  *
64  * <p>This class is a member of the
65  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
66  * Java Collections Framework</a>.
67  *
68  * @author  Josh Bloch
69  * @author  Neal Gafter
70  * @since 1.2
71  */
72 
73 public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
74     /**
75      * Sole constructor.  (For invocation by subclass constructors, typically
76      * implicit.)
77      */
AbstractList()78     protected AbstractList() {
79     }
80 
81     /**
82      * Appends the specified element to the end of this list (optional
83      * operation).
84      *
85      * <p>Lists that support this operation may place limitations on what
86      * elements may be added to this list.  In particular, some
87      * lists will refuse to add null elements, and others will impose
88      * restrictions on the type of elements that may be added.  List
89      * classes should clearly specify in their documentation any restrictions
90      * on what elements may be added.
91      *
92      * @implSpec
93      * This implementation calls {@code add(size(), e)}.
94      *
95      * <p>Note that this implementation throws an
96      * {@code UnsupportedOperationException} unless
97      * {@link #add(int, Object) add(int, E)} is overridden.
98      *
99      * @param e element to be appended to this list
100      * @return {@code true} (as specified by {@link Collection#add})
101      * @throws UnsupportedOperationException if the {@code add} operation
102      *         is not supported by this list
103      * @throws ClassCastException if the class of the specified element
104      *         prevents it from being added to this list
105      * @throws NullPointerException if the specified element is null and this
106      *         list does not permit null elements
107      * @throws IllegalArgumentException if some property of this element
108      *         prevents it from being added to this list
109      */
add(E e)110     public boolean add(E e) {
111         add(size(), e);
112         return true;
113     }
114 
115     /**
116      * {@inheritDoc}
117      *
118      * @throws IndexOutOfBoundsException {@inheritDoc}
119      */
get(int index)120     public abstract E get(int index);
121 
122     /**
123      * {@inheritDoc}
124      *
125      * @implSpec
126      * This implementation always throws an
127      * {@code UnsupportedOperationException}.
128      *
129      * @throws UnsupportedOperationException {@inheritDoc}
130      * @throws ClassCastException            {@inheritDoc}
131      * @throws NullPointerException          {@inheritDoc}
132      * @throws IllegalArgumentException      {@inheritDoc}
133      * @throws IndexOutOfBoundsException     {@inheritDoc}
134      */
set(int index, E element)135     public E set(int index, E element) {
136         throw new UnsupportedOperationException();
137     }
138 
139     /**
140      * {@inheritDoc}
141      *
142      * @implSpec
143      * This implementation always throws an
144      * {@code UnsupportedOperationException}.
145      *
146      * @throws UnsupportedOperationException {@inheritDoc}
147      * @throws ClassCastException            {@inheritDoc}
148      * @throws NullPointerException          {@inheritDoc}
149      * @throws IllegalArgumentException      {@inheritDoc}
150      * @throws IndexOutOfBoundsException     {@inheritDoc}
151      */
add(int index, E element)152     public void add(int index, E element) {
153         throw new UnsupportedOperationException();
154     }
155 
156     /**
157      * {@inheritDoc}
158      *
159      * @implSpec
160      * This implementation always throws an
161      * {@code UnsupportedOperationException}.
162      *
163      * @throws UnsupportedOperationException {@inheritDoc}
164      * @throws IndexOutOfBoundsException     {@inheritDoc}
165      */
remove(int index)166     public E remove(int index) {
167         throw new UnsupportedOperationException();
168     }
169 
170 
171     // Search Operations
172 
173     /**
174      * {@inheritDoc}
175      *
176      * @implSpec
177      * This implementation first gets a list iterator (with
178      * {@code listIterator()}).  Then, it iterates over the list until the
179      * specified element is found or the end of the list is reached.
180      *
181      * @throws ClassCastException   {@inheritDoc}
182      * @throws NullPointerException {@inheritDoc}
183      */
indexOf(Object o)184     public int indexOf(Object o) {
185         ListIterator<E> it = listIterator();
186         if (o==null) {
187             while (it.hasNext())
188                 if (it.next()==null)
189                     return it.previousIndex();
190         } else {
191             while (it.hasNext())
192                 if (o.equals(it.next()))
193                     return it.previousIndex();
194         }
195         return -1;
196     }
197 
198     /**
199      * {@inheritDoc}
200      *
201      * @implSpec
202      * This implementation first gets a list iterator that points to the end
203      * of the list (with {@code listIterator(size())}).  Then, it iterates
204      * backwards over the list until the specified element is found, or the
205      * beginning of the list is reached.
206      *
207      * @throws ClassCastException   {@inheritDoc}
208      * @throws NullPointerException {@inheritDoc}
209      */
lastIndexOf(Object o)210     public int lastIndexOf(Object o) {
211         ListIterator<E> it = listIterator(size());
212         if (o==null) {
213             while (it.hasPrevious())
214                 if (it.previous()==null)
215                     return it.nextIndex();
216         } else {
217             while (it.hasPrevious())
218                 if (o.equals(it.previous()))
219                     return it.nextIndex();
220         }
221         return -1;
222     }
223 
224 
225     // Bulk Operations
226 
227     /**
228      * Removes all of the elements from this list (optional operation).
229      * The list will be empty after this call returns.
230      *
231      * @implSpec
232      * This implementation calls {@code removeRange(0, size())}.
233      *
234      * <p>Note that this implementation throws an
235      * {@code UnsupportedOperationException} unless {@code remove(int
236      * index)} or {@code removeRange(int fromIndex, int toIndex)} is
237      * overridden.
238      *
239      * @throws UnsupportedOperationException if the {@code clear} operation
240      *         is not supported by this list
241      */
clear()242     public void clear() {
243         removeRange(0, size());
244     }
245 
246     /**
247      * {@inheritDoc}
248      *
249      * @implSpec
250      * This implementation gets an iterator over the specified collection
251      * and iterates over it, inserting the elements obtained from the
252      * iterator into this list at the appropriate position, one at a time,
253      * using {@code add(int, E)}.
254      * Many implementations will override this method for efficiency.
255      *
256      * <p>Note that this implementation throws an
257      * {@code UnsupportedOperationException} unless
258      * {@link #add(int, Object) add(int, E)} is overridden.
259      *
260      * @throws UnsupportedOperationException {@inheritDoc}
261      * @throws ClassCastException            {@inheritDoc}
262      * @throws NullPointerException          {@inheritDoc}
263      * @throws IllegalArgumentException      {@inheritDoc}
264      * @throws IndexOutOfBoundsException     {@inheritDoc}
265      */
addAll(int index, Collection<? extends E> c)266     public boolean addAll(int index, Collection<? extends E> c) {
267         rangeCheckForAdd(index);
268         boolean modified = false;
269         for (E e : c) {
270             add(index++, e);
271             modified = true;
272         }
273         return modified;
274     }
275 
276 
277     // Iterators
278 
279     /**
280      * Returns an iterator over the elements in this list in proper sequence.
281      *
282      * @implSpec
283      * This implementation returns a straightforward implementation of the
284      * iterator interface, relying on the backing list's {@code size()},
285      * {@code get(int)}, and {@code remove(int)} methods.
286      *
287      * <p>Note that the iterator returned by this method will throw an
288      * {@link UnsupportedOperationException} in response to its
289      * {@code remove} method unless the list's {@code remove(int)} method is
290      * overridden.
291      *
292      * <p>This implementation can be made to throw runtime exceptions in the
293      * face of concurrent modification, as described in the specification
294      * for the (protected) {@link #modCount} field.
295      *
296      * @return an iterator over the elements in this list in proper sequence
297      */
iterator()298     public Iterator<E> iterator() {
299         return new Itr();
300     }
301 
302     /**
303      * {@inheritDoc}
304      *
305      * @implSpec
306      * This implementation returns {@code listIterator(0)}.
307      *
308      * @see #listIterator(int)
309      */
listIterator()310     public ListIterator<E> listIterator() {
311         return listIterator(0);
312     }
313 
314     /**
315      * {@inheritDoc}
316      *
317      * @implSpec
318      * This implementation returns a straightforward implementation of the
319      * {@code ListIterator} interface that extends the implementation of the
320      * {@code Iterator} interface returned by the {@code iterator()} method.
321      * The {@code ListIterator} implementation relies on the backing list's
322      * {@code get(int)}, {@code set(int, E)}, {@code add(int, E)}
323      * and {@code remove(int)} methods.
324      *
325      * <p>Note that the list iterator returned by this implementation will
326      * throw an {@link UnsupportedOperationException} in response to its
327      * {@code remove}, {@code set} and {@code add} methods unless the
328      * list's {@code remove(int)}, {@code set(int, E)}, and
329      * {@code add(int, E)} methods are overridden.
330      *
331      * <p>This implementation can be made to throw runtime exceptions in the
332      * face of concurrent modification, as described in the specification for
333      * the (protected) {@link #modCount} field.
334      *
335      * @throws IndexOutOfBoundsException {@inheritDoc}
336      */
listIterator(final int index)337     public ListIterator<E> listIterator(final int index) {
338         rangeCheckForAdd(index);
339 
340         return new ListItr(index);
341     }
342 
343     private class Itr implements Iterator<E> {
344         /**
345          * Index of element to be returned by subsequent call to next.
346          */
347         int cursor = 0;
348 
349         /**
350          * Index of element returned by most recent call to next or
351          * previous.  Reset to -1 if this element is deleted by a call
352          * to remove.
353          */
354         int lastRet = -1;
355 
356         /**
357          * The modCount value that the iterator believes that the backing
358          * List should have.  If this expectation is violated, the iterator
359          * has detected concurrent modification.
360          */
361         int expectedModCount = modCount;
362 
hasNext()363         public boolean hasNext() {
364             return cursor != size();
365         }
366 
next()367         public E next() {
368             checkForComodification();
369             try {
370                 int i = cursor;
371                 E next = get(i);
372                 lastRet = i;
373                 cursor = i + 1;
374                 return next;
375             } catch (IndexOutOfBoundsException e) {
376                 checkForComodification();
377                 throw new NoSuchElementException();
378             }
379         }
380 
remove()381         public void remove() {
382             if (lastRet < 0)
383                 throw new IllegalStateException();
384             checkForComodification();
385 
386             try {
387                 AbstractList.this.remove(lastRet);
388                 if (lastRet < cursor)
389                     cursor--;
390                 lastRet = -1;
391                 expectedModCount = modCount;
392             } catch (IndexOutOfBoundsException e) {
393                 throw new ConcurrentModificationException();
394             }
395         }
396 
checkForComodification()397         final void checkForComodification() {
398             if (modCount != expectedModCount)
399                 throw new ConcurrentModificationException();
400         }
401     }
402 
403     private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index)404         ListItr(int index) {
405             cursor = index;
406         }
407 
hasPrevious()408         public boolean hasPrevious() {
409             return cursor != 0;
410         }
411 
previous()412         public E previous() {
413             checkForComodification();
414             try {
415                 int i = cursor - 1;
416                 E previous = get(i);
417                 lastRet = cursor = i;
418                 return previous;
419             } catch (IndexOutOfBoundsException e) {
420                 checkForComodification();
421                 throw new NoSuchElementException();
422             }
423         }
424 
nextIndex()425         public int nextIndex() {
426             return cursor;
427         }
428 
previousIndex()429         public int previousIndex() {
430             return cursor-1;
431         }
432 
set(E e)433         public void set(E e) {
434             if (lastRet < 0)
435                 throw new IllegalStateException();
436             checkForComodification();
437 
438             try {
439                 AbstractList.this.set(lastRet, e);
440                 expectedModCount = modCount;
441             } catch (IndexOutOfBoundsException ex) {
442                 throw new ConcurrentModificationException();
443             }
444         }
445 
add(E e)446         public void add(E e) {
447             checkForComodification();
448 
449             try {
450                 int i = cursor;
451                 AbstractList.this.add(i, e);
452                 lastRet = -1;
453                 cursor = i + 1;
454                 expectedModCount = modCount;
455             } catch (IndexOutOfBoundsException ex) {
456                 throw new ConcurrentModificationException();
457             }
458         }
459     }
460 
461     /**
462      * {@inheritDoc}
463      *
464      * @implSpec
465      * This implementation returns a list that subclasses
466      * {@code AbstractList}.  The subclass stores, in private fields, the
467      * size of the subList (which can change over its lifetime), and the
468      * expected {@code modCount} value of the backing list.  There are two
469      * variants of the subclass, one of which implements {@code RandomAccess}.
470      * If this list implements {@code RandomAccess} the returned list will
471      * be an instance of the subclass that implements {@code RandomAccess}.
472      *
473      * <p>The subclass's {@code set(int, E)}, {@code get(int)},
474      * {@code add(int, E)}, {@code remove(int)}, {@code addAll(int,
475      * Collection)} and {@code removeRange(int, int)} methods all
476      * delegate to the corresponding methods on the backing abstract list,
477      * after bounds-checking the index and adjusting for the offset.  The
478      * {@code addAll(Collection c)} method merely returns {@code addAll(size,
479      * c)}.
480      *
481      * <p>The {@code listIterator(int)} method returns a "wrapper object"
482      * over a list iterator on the backing list, which is created with the
483      * corresponding method on the backing list.  The {@code iterator} method
484      * merely returns {@code listIterator()}, and the {@code size} method
485      * merely returns the subclass's {@code size} field.
486      *
487      * <p>All methods first check to see if the actual {@code modCount} of
488      * the backing list is equal to its expected value, and throw a
489      * {@code ConcurrentModificationException} if it is not.
490      *
491      * @throws IndexOutOfBoundsException if an endpoint index value is out of range
492      *         {@code (fromIndex < 0 || toIndex > size)}
493      * @throws IllegalArgumentException if the endpoint indices are out of order
494      *         {@code (fromIndex > toIndex)}
495      */
subList(int fromIndex, int toIndex)496     public List<E> subList(int fromIndex, int toIndex) {
497         subListRangeCheck(fromIndex, toIndex, size());
498         return (this instanceof RandomAccess ?
499                 new RandomAccessSubList<>(this, fromIndex, toIndex) :
500                 new SubList<>(this, fromIndex, toIndex));
501     }
502 
subListRangeCheck(int fromIndex, int toIndex, int size)503     static void subListRangeCheck(int fromIndex, int toIndex, int size) {
504         if (fromIndex < 0)
505             throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
506         if (toIndex > size)
507             throw new IndexOutOfBoundsException("toIndex = " + toIndex);
508         if (fromIndex > toIndex)
509             throw new IllegalArgumentException("fromIndex(" + fromIndex +
510                                                ") > toIndex(" + toIndex + ")");
511     }
512 
513     // Comparison and hashing
514 
515     /**
516      * Compares the specified object with this list for equality.  Returns
517      * {@code true} if and only if the specified object is also a list, both
518      * lists have the same size, and all corresponding pairs of elements in
519      * the two lists are <i>equal</i>.  (Two elements {@code e1} and
520      * {@code e2} are <i>equal</i> if {@code (e1==null ? e2==null :
521      * e1.equals(e2))}.)  In other words, two lists are defined to be
522      * equal if they contain the same elements in the same order.
523      *
524      * @implSpec
525      * This implementation first checks if the specified object is this
526      * list. If so, it returns {@code true}; if not, it checks if the
527      * specified object is a list. If not, it returns {@code false}; if so,
528      * it iterates over both lists, comparing corresponding pairs of elements.
529      * If any comparison returns {@code false}, this method returns
530      * {@code false}.  If either iterator runs out of elements before the
531      * other it returns {@code false} (as the lists are of unequal length);
532      * otherwise it returns {@code true} when the iterations complete.
533      *
534      * @param o the object to be compared for equality with this list
535      * @return {@code true} if the specified object is equal to this list
536      */
equals(Object o)537     public boolean equals(Object o) {
538         if (o == this)
539             return true;
540         if (!(o instanceof List))
541             return false;
542 
543         ListIterator<E> e1 = listIterator();
544         ListIterator<?> e2 = ((List<?>) o).listIterator();
545         while (e1.hasNext() && e2.hasNext()) {
546             E o1 = e1.next();
547             Object o2 = e2.next();
548             if (!(o1==null ? o2==null : o1.equals(o2)))
549                 return false;
550         }
551         return !(e1.hasNext() || e2.hasNext());
552     }
553 
554     /**
555      * Returns the hash code value for this list.
556      *
557      * @implSpec
558      * This implementation uses exactly the code that is used to define the
559      * list hash function in the documentation for the {@link List#hashCode}
560      * method.
561      *
562      * @return the hash code value for this list
563      */
hashCode()564     public int hashCode() {
565         int hashCode = 1;
566         for (E e : this)
567             hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
568         return hashCode;
569     }
570 
571     /**
572      * Removes from this list all of the elements whose index is between
573      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
574      * Shifts any succeeding elements to the left (reduces their index).
575      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
576      * (If {@code toIndex==fromIndex}, this operation has no effect.)
577      *
578      * <p>This method is called by the {@code clear} operation on this list
579      * and its subLists.  Overriding this method to take advantage of
580      * the internals of the list implementation can <i>substantially</i>
581      * improve the performance of the {@code clear} operation on this list
582      * and its subLists.
583      *
584      * @implSpec
585      * This implementation gets a list iterator positioned before
586      * {@code fromIndex}, and repeatedly calls {@code ListIterator.next}
587      * followed by {@code ListIterator.remove} until the entire range has
588      * been removed.  <b>Note: if {@code ListIterator.remove} requires linear
589      * time, this implementation requires quadratic time.</b>
590      *
591      * @param fromIndex index of first element to be removed
592      * @param toIndex index after last element to be removed
593      */
removeRange(int fromIndex, int toIndex)594     protected void removeRange(int fromIndex, int toIndex) {
595         ListIterator<E> it = listIterator(fromIndex);
596         for (int i=0, n=toIndex-fromIndex; i<n; i++) {
597             it.next();
598             it.remove();
599         }
600     }
601 
602     /**
603      * The number of times this list has been <i>structurally modified</i>.
604      * Structural modifications are those that change the size of the
605      * list, or otherwise perturb it in such a fashion that iterations in
606      * progress may yield incorrect results.
607      *
608      * <p>This field is used by the iterator and list iterator implementation
609      * returned by the {@code iterator} and {@code listIterator} methods.
610      * If the value of this field changes unexpectedly, the iterator (or list
611      * iterator) will throw a {@code ConcurrentModificationException} in
612      * response to the {@code next}, {@code remove}, {@code previous},
613      * {@code set} or {@code add} operations.  This provides
614      * <i>fail-fast</i> behavior, rather than non-deterministic behavior in
615      * the face of concurrent modification during iteration.
616      *
617      * <p><b>Use of this field by subclasses is optional.</b> If a subclass
618      * wishes to provide fail-fast iterators (and list iterators), then it
619      * merely has to increment this field in its {@code add(int, E)} and
620      * {@code remove(int)} methods (and any other methods that it overrides
621      * that result in structural modifications to the list).  A single call to
622      * {@code add(int, E)} or {@code remove(int)} must add no more than
623      * one to this field, or the iterators (and list iterators) will throw
624      * bogus {@code ConcurrentModificationExceptions}.  If an implementation
625      * does not wish to provide fail-fast iterators, this field may be
626      * ignored.
627      */
628     protected transient int modCount = 0;
629 
rangeCheckForAdd(int index)630     private void rangeCheckForAdd(int index) {
631         if (index < 0 || index > size())
632             throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
633     }
634 
outOfBoundsMsg(int index)635     private String outOfBoundsMsg(int index) {
636         return "Index: "+index+", Size: "+size();
637     }
638 
639     /**
640      * An index-based split-by-two, lazily initialized Spliterator covering
641      * a List that access elements via {@link List#get}.
642      *
643      * If access results in an IndexOutOfBoundsException then a
644      * ConcurrentModificationException is thrown instead (since the list has
645      * been structurally modified while traversing).
646      *
647      * If the List is an instance of AbstractList then concurrent modification
648      * checking is performed using the AbstractList's modCount field.
649      */
650     static final class RandomAccessSpliterator<E> implements Spliterator<E> {
651 
652         private final List<E> list;
653         private int index; // current index, modified on advance/split
654         private int fence; // -1 until used; then one past last index
655 
656         // The following fields are valid if covering an AbstractList
657         private final AbstractList<E> alist;
658         private int expectedModCount; // initialized when fence set
659 
RandomAccessSpliterator(List<E> list)660         RandomAccessSpliterator(List<E> list) {
661             assert list instanceof RandomAccess;
662 
663             this.list = list;
664             this.index = 0;
665             this.fence = -1;
666 
667             this.alist = list instanceof AbstractList ? (AbstractList<E>) list : null;
668             this.expectedModCount = alist != null ? alist.modCount : 0;
669         }
670 
671         /** Create new spliterator covering the given  range */
RandomAccessSpliterator(RandomAccessSpliterator<E> parent, int origin, int fence)672         private RandomAccessSpliterator(RandomAccessSpliterator<E> parent,
673                                 int origin, int fence) {
674             this.list = parent.list;
675             this.index = origin;
676             this.fence = fence;
677 
678             this.alist = parent.alist;
679             this.expectedModCount = parent.expectedModCount;
680         }
681 
getFence()682         private int getFence() { // initialize fence to size on first use
683             int hi;
684             List<E> lst = list;
685             if ((hi = fence) < 0) {
686                 if (alist != null) {
687                     expectedModCount = alist.modCount;
688                 }
689                 hi = fence = lst.size();
690             }
691             return hi;
692         }
693 
trySplit()694         public Spliterator<E> trySplit() {
695             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
696             return (lo >= mid) ? null : // divide range in half unless too small
697                     new RandomAccessSpliterator<>(this, lo, index = mid);
698         }
699 
tryAdvance(Consumer<? super E> action)700         public boolean tryAdvance(Consumer<? super E> action) {
701             if (action == null)
702                 throw new NullPointerException();
703             int hi = getFence(), i = index;
704             if (i < hi) {
705                 index = i + 1;
706                 action.accept(get(list, i));
707                 checkAbstractListModCount(alist, expectedModCount);
708                 return true;
709             }
710             return false;
711         }
712 
forEachRemaining(Consumer<? super E> action)713         public void forEachRemaining(Consumer<? super E> action) {
714             Objects.requireNonNull(action);
715             List<E> lst = list;
716             int hi = getFence();
717             int i = index;
718             index = hi;
719             for (; i < hi; i++) {
720                 action.accept(get(lst, i));
721             }
722             checkAbstractListModCount(alist, expectedModCount);
723         }
724 
estimateSize()725         public long estimateSize() {
726             return (long) (getFence() - index);
727         }
728 
characteristics()729         public int characteristics() {
730             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
731         }
732 
get(List<E> list, int i)733         private static <E> E get(List<E> list, int i) {
734             try {
735                 return list.get(i);
736             } catch (IndexOutOfBoundsException ex) {
737                 throw new ConcurrentModificationException();
738             }
739         }
740 
checkAbstractListModCount(AbstractList<?> alist, int expectedModCount)741         static void checkAbstractListModCount(AbstractList<?> alist, int expectedModCount) {
742             if (alist != null && alist.modCount != expectedModCount) {
743                 throw new ConcurrentModificationException();
744             }
745         }
746     }
747 
748     private static class SubList<E> extends AbstractList<E> {
749         private final AbstractList<E> root;
750         private final SubList<E> parent;
751         private final int offset;
752         protected int size;
753 
754         /**
755          * Constructs a sublist of an arbitrary AbstractList, which is
756          * not a SubList itself.
757          */
SubList(AbstractList<E> root, int fromIndex, int toIndex)758         public SubList(AbstractList<E> root, int fromIndex, int toIndex) {
759             this.root = root;
760             this.parent = null;
761             this.offset = fromIndex;
762             this.size = toIndex - fromIndex;
763             this.modCount = root.modCount;
764         }
765 
766         /**
767          * Constructs a sublist of another SubList.
768          */
SubList(SubList<E> parent, int fromIndex, int toIndex)769         protected SubList(SubList<E> parent, int fromIndex, int toIndex) {
770             this.root = parent.root;
771             this.parent = parent;
772             this.offset = parent.offset + fromIndex;
773             this.size = toIndex - fromIndex;
774             this.modCount = root.modCount;
775         }
776 
set(int index, E element)777         public E set(int index, E element) {
778             Objects.checkIndex(index, size);
779             checkForComodification();
780             return root.set(offset + index, element);
781         }
782 
get(int index)783         public E get(int index) {
784             Objects.checkIndex(index, size);
785             checkForComodification();
786             return root.get(offset + index);
787         }
788 
size()789         public int size() {
790             checkForComodification();
791             return size;
792         }
793 
add(int index, E element)794         public void add(int index, E element) {
795             rangeCheckForAdd(index);
796             checkForComodification();
797             root.add(offset + index, element);
798             updateSizeAndModCount(1);
799         }
800 
remove(int index)801         public E remove(int index) {
802             Objects.checkIndex(index, size);
803             checkForComodification();
804             E result = root.remove(offset + index);
805             updateSizeAndModCount(-1);
806             return result;
807         }
808 
removeRange(int fromIndex, int toIndex)809         protected void removeRange(int fromIndex, int toIndex) {
810             checkForComodification();
811             root.removeRange(offset + fromIndex, offset + toIndex);
812             updateSizeAndModCount(fromIndex - toIndex);
813         }
814 
addAll(Collection<? extends E> c)815         public boolean addAll(Collection<? extends E> c) {
816             return addAll(size, c);
817         }
818 
addAll(int index, Collection<? extends E> c)819         public boolean addAll(int index, Collection<? extends E> c) {
820             rangeCheckForAdd(index);
821             int cSize = c.size();
822             if (cSize==0)
823                 return false;
824             checkForComodification();
825             root.addAll(offset + index, c);
826             updateSizeAndModCount(cSize);
827             return true;
828         }
829 
iterator()830         public Iterator<E> iterator() {
831             return listIterator();
832         }
833 
listIterator(int index)834         public ListIterator<E> listIterator(int index) {
835             checkForComodification();
836             rangeCheckForAdd(index);
837 
838             return new ListIterator<E>() {
839                 private final ListIterator<E> i =
840                         root.listIterator(offset + index);
841 
842                 public boolean hasNext() {
843                     return nextIndex() < size;
844                 }
845 
846                 public E next() {
847                     if (hasNext())
848                         return i.next();
849                     else
850                         throw new NoSuchElementException();
851                 }
852 
853                 public boolean hasPrevious() {
854                     return previousIndex() >= 0;
855                 }
856 
857                 public E previous() {
858                     if (hasPrevious())
859                         return i.previous();
860                     else
861                         throw new NoSuchElementException();
862                 }
863 
864                 public int nextIndex() {
865                     return i.nextIndex() - offset;
866                 }
867 
868                 public int previousIndex() {
869                     return i.previousIndex() - offset;
870                 }
871 
872                 public void remove() {
873                     i.remove();
874                     updateSizeAndModCount(-1);
875                 }
876 
877                 public void set(E e) {
878                     i.set(e);
879                 }
880 
881                 public void add(E e) {
882                     i.add(e);
883                     updateSizeAndModCount(1);
884                 }
885             };
886         }
887 
subList(int fromIndex, int toIndex)888         public List<E> subList(int fromIndex, int toIndex) {
889             subListRangeCheck(fromIndex, toIndex, size);
890             return new SubList<>(this, fromIndex, toIndex);
891         }
892 
rangeCheckForAdd(int index)893         private void rangeCheckForAdd(int index) {
894             if (index < 0 || index > size)
895                 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
896         }
897 
outOfBoundsMsg(int index)898         private String outOfBoundsMsg(int index) {
899             return "Index: "+index+", Size: "+size;
900         }
901 
checkForComodification()902         private void checkForComodification() {
903             if (root.modCount != this.modCount)
904                 throw new ConcurrentModificationException();
905         }
906 
updateSizeAndModCount(int sizeChange)907         private void updateSizeAndModCount(int sizeChange) {
908             SubList<E> slist = this;
909             do {
910                 slist.size += sizeChange;
911                 slist.modCount = root.modCount;
912                 slist = slist.parent;
913             } while (slist != null);
914         }
915     }
916 
917     private static class RandomAccessSubList<E>
918             extends SubList<E> implements RandomAccess {
919 
920         /**
921          * Constructs a sublist of an arbitrary AbstractList, which is
922          * not a RandomAccessSubList itself.
923          */
RandomAccessSubList(AbstractList<E> root, int fromIndex, int toIndex)924         RandomAccessSubList(AbstractList<E> root,
925                 int fromIndex, int toIndex) {
926             super(root, fromIndex, toIndex);
927         }
928 
929         /**
930          * Constructs a sublist of another RandomAccessSubList.
931          */
RandomAccessSubList(RandomAccessSubList<E> parent, int fromIndex, int toIndex)932         RandomAccessSubList(RandomAccessSubList<E> parent,
933                 int fromIndex, int toIndex) {
934             super(parent, fromIndex, toIndex);
935         }
936 
subList(int fromIndex, int toIndex)937         public List<E> subList(int fromIndex, int toIndex) {
938             subListRangeCheck(fromIndex, toIndex, size);
939             return new RandomAccessSubList<>(this, fromIndex, toIndex);
940         }
941     }
942 }
943