1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "code/compiledIC.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "nativeInst_x86.hpp"
30 #include "oops/oop.inline.hpp"
31 #include "runtime/handles.hpp"
32 #include "runtime/sharedRuntime.hpp"
33 #include "runtime/stubRoutines.hpp"
34 #include "utilities/ostream.hpp"
35 #ifdef COMPILER1
36 #include "c1/c1_Runtime1.hpp"
37 #endif
38 
wrote(int offset)39 void NativeInstruction::wrote(int offset) {
40   ICache::invalidate_word(addr_at(offset));
41 }
42 
report_and_fail() const43 void NativeLoadGot::report_and_fail() const {
44   tty->print_cr("Addr: " INTPTR_FORMAT, p2i(instruction_address()));
45   fatal("not a indirect rip mov to rbx");
46 }
47 
verify() const48 void NativeLoadGot::verify() const {
49   if (has_rex) {
50     int rex = ubyte_at(0);
51     if (rex != rex_prefix) {
52       report_and_fail();
53     }
54   }
55 
56   int inst = ubyte_at(rex_size);
57   if (inst != instruction_code) {
58     report_and_fail();
59   }
60   int modrm = ubyte_at(rex_size + 1);
61   if (modrm != modrm_rbx_code && modrm != modrm_rax_code) {
62     report_and_fail();
63   }
64 }
65 
data() const66 intptr_t NativeLoadGot::data() const {
67   return *(intptr_t *) got_address();
68 }
69 
destination() const70 address NativePltCall::destination() const {
71   NativeGotJump* jump = nativeGotJump_at(plt_jump());
72   return jump->destination();
73 }
74 
plt_entry() const75 address NativePltCall::plt_entry() const {
76   return return_address() + displacement();
77 }
78 
plt_jump() const79 address NativePltCall::plt_jump() const {
80   address entry = plt_entry();
81   // Virtual PLT code has move instruction first
82   if (((NativeGotJump*)entry)->is_GotJump()) {
83     return entry;
84   } else {
85     return nativeLoadGot_at(entry)->next_instruction_address();
86   }
87 }
88 
plt_load_got() const89 address NativePltCall::plt_load_got() const {
90   address entry = plt_entry();
91   if (!((NativeGotJump*)entry)->is_GotJump()) {
92     // Virtual PLT code has move instruction first
93     return entry;
94   } else {
95     // Static PLT code has move instruction second (from c2i stub)
96     return nativeGotJump_at(entry)->next_instruction_address();
97   }
98 }
99 
plt_c2i_stub() const100 address NativePltCall::plt_c2i_stub() const {
101   address entry = plt_load_got();
102   // This method should be called only for static calls which has C2I stub.
103   NativeLoadGot* load = nativeLoadGot_at(entry);
104   return entry;
105 }
106 
plt_resolve_call() const107 address NativePltCall::plt_resolve_call() const {
108   NativeGotJump* jump = nativeGotJump_at(plt_jump());
109   address entry = jump->next_instruction_address();
110   if (((NativeGotJump*)entry)->is_GotJump()) {
111     return entry;
112   } else {
113     // c2i stub 2 instructions
114     entry = nativeLoadGot_at(entry)->next_instruction_address();
115     return nativeGotJump_at(entry)->next_instruction_address();
116   }
117 }
118 
reset_to_plt_resolve_call()119 void NativePltCall::reset_to_plt_resolve_call() {
120   set_destination_mt_safe(plt_resolve_call());
121 }
122 
set_destination_mt_safe(address dest)123 void NativePltCall::set_destination_mt_safe(address dest) {
124   // rewriting the value in the GOT, it should always be aligned
125   NativeGotJump* jump = nativeGotJump_at(plt_jump());
126   address* got = (address *) jump->got_address();
127   *got = dest;
128 }
129 
set_stub_to_clean()130 void NativePltCall::set_stub_to_clean() {
131   NativeLoadGot* method_loader = nativeLoadGot_at(plt_c2i_stub());
132   NativeGotJump* jump          = nativeGotJump_at(method_loader->next_instruction_address());
133   method_loader->set_data(0);
134   jump->set_jump_destination((address)-1);
135 }
136 
verify() const137 void NativePltCall::verify() const {
138   // Make sure code pattern is actually a call rip+off32 instruction.
139   int inst = ubyte_at(0);
140   if (inst != instruction_code) {
141     tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", p2i(instruction_address()),
142                                                         inst);
143     fatal("not a call rip+off32");
144   }
145 }
146 
destination() const147 address NativeGotJump::destination() const {
148   address *got_entry = (address *) got_address();
149   return *got_entry;
150 }
151 
verify() const152 void NativeGotJump::verify() const {
153   int inst = ubyte_at(0);
154   if (inst != instruction_code) {
155     tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", p2i(instruction_address()),
156                                                         inst);
157     fatal("not a indirect rip jump");
158   }
159 }
160 
verify()161 void NativeCall::verify() {
162   // Make sure code pattern is actually a call imm32 instruction.
163   int inst = ubyte_at(0);
164   if (inst != instruction_code) {
165     tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", p2i(instruction_address()),
166                                                         inst);
167     fatal("not a call disp32");
168   }
169 }
170 
destination() const171 address NativeCall::destination() const {
172   // Getting the destination of a call isn't safe because that call can
173   // be getting patched while you're calling this.  There's only special
174   // places where this can be called but not automatically verifiable by
175   // checking which locks are held.  The solution is true atomic patching
176   // on x86, nyi.
177   return return_address() + displacement();
178 }
179 
print()180 void NativeCall::print() {
181   tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
182                 p2i(instruction_address()), p2i(destination()));
183 }
184 
185 // Inserts a native call instruction at a given pc
insert(address code_pos,address entry)186 void NativeCall::insert(address code_pos, address entry) {
187   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
188 #ifdef AMD64
189   guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
190 #endif // AMD64
191   *code_pos = instruction_code;
192   *((int32_t *)(code_pos+1)) = (int32_t) disp;
193   ICache::invalidate_range(code_pos, instruction_size);
194 }
195 
196 // MT-safe patching of a call instruction.
197 // First patches first word of instruction to two jmp's that jmps to them
198 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
199 // the jmp's with the first 4 byte of the new instruction.
replace_mt_safe(address instr_addr,address code_buffer)200 void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
201   assert(Patching_lock->is_locked() ||
202          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
203   assert (instr_addr != NULL, "illegal address for code patching");
204 
205   NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
206   guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
207 
208   // First patch dummy jmp in place
209   unsigned char patch[4];
210   assert(sizeof(patch)==sizeof(jint), "sanity check");
211   patch[0] = 0xEB;       // jmp rel8
212   patch[1] = 0xFE;       // jmp to self
213   patch[2] = 0xEB;
214   patch[3] = 0xFE;
215 
216   // First patch dummy jmp in place
217   *(jint*)instr_addr = *(jint *)patch;
218 
219   // Invalidate.  Opteron requires a flush after every write.
220   n_call->wrote(0);
221 
222   // Patch 4th byte
223   instr_addr[4] = code_buffer[4];
224 
225   n_call->wrote(4);
226 
227   // Patch bytes 0-3
228   *(jint*)instr_addr = *(jint *)code_buffer;
229 
230   n_call->wrote(0);
231 
232 #ifdef ASSERT
233    // verify patching
234    for ( int i = 0; i < instruction_size; i++) {
235      address ptr = (address)((intptr_t)code_buffer + i);
236      int a_byte = (*ptr) & 0xFF;
237      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
238    }
239 #endif
240 
241 }
242 
243 
244 // Similar to replace_mt_safe, but just changes the destination.  The
245 // important thing is that free-running threads are able to execute this
246 // call instruction at all times.  If the displacement field is aligned
247 // we can simply rely on atomicity of 32-bit writes to make sure other threads
248 // will see no intermediate states.  Otherwise, the first two bytes of the
249 // call are guaranteed to be aligned, and can be atomically patched to a
250 // self-loop to guard the instruction while we change the other bytes.
251 
252 // We cannot rely on locks here, since the free-running threads must run at
253 // full speed.
254 //
255 // Used in the runtime linkage of calls; see class CompiledIC.
256 // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
set_destination_mt_safe(address dest)257 void NativeCall::set_destination_mt_safe(address dest) {
258   debug_only(verify());
259   // Make sure patching code is locked.  No two threads can patch at the same
260   // time but one may be executing this code.
261   assert(Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint() ||
262          CompiledICLocker::is_safe(instruction_address()), "concurrent code patching");
263   // Both C1 and C2 should now be generating code which aligns the patched address
264   // to be within a single cache line.
265   bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
266                     ((uintptr_t)displacement_address() + 3) / cache_line_size;
267 
268   guarantee(is_aligned, "destination must be aligned");
269 
270   // The destination lies within a single cache line.
271   set_destination(dest);
272 }
273 
274 
verify()275 void NativeMovConstReg::verify() {
276 #ifdef AMD64
277   // make sure code pattern is actually a mov reg64, imm64 instruction
278   if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
279       (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
280     print();
281     fatal("not a REX.W[B] mov reg64, imm64");
282   }
283 #else
284   // make sure code pattern is actually a mov reg, imm32 instruction
285   u_char test_byte = *(u_char*)instruction_address();
286   u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
287   if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
288 #endif // AMD64
289 }
290 
291 
print()292 void NativeMovConstReg::print() {
293   tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
294                 p2i(instruction_address()), data());
295 }
296 
297 //-------------------------------------------------------------------
298 
instruction_start() const299 int NativeMovRegMem::instruction_start() const {
300   int off = 0;
301   u_char instr_0 = ubyte_at(off);
302 
303   // See comment in Assembler::locate_operand() about VEX prefixes.
304   if (instr_0 == instruction_VEX_prefix_2bytes) {
305     assert((UseAVX > 0), "shouldn't have VEX prefix");
306     NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
307     return 2;
308   }
309   if (instr_0 == instruction_VEX_prefix_3bytes) {
310     assert((UseAVX > 0), "shouldn't have VEX prefix");
311     NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
312     return 3;
313   }
314   if (instr_0 == instruction_EVEX_prefix_4bytes) {
315     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
316     return 4;
317   }
318 
319   // First check to see if we have a (prefixed or not) xor
320   if (instr_0 >= instruction_prefix_wide_lo && // 0x40
321       instr_0 <= instruction_prefix_wide_hi) { // 0x4f
322     off++;
323     instr_0 = ubyte_at(off);
324   }
325 
326   if (instr_0 == instruction_code_xor) {
327     off += 2;
328     instr_0 = ubyte_at(off);
329   }
330 
331   // Now look for the real instruction and the many prefix/size specifiers.
332 
333   if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
334     off++; // Not SSE instructions
335     instr_0 = ubyte_at(off);
336   }
337 
338   if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3
339        instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
340     off++;
341     instr_0 = ubyte_at(off);
342   }
343 
344   if ( instr_0 >= instruction_prefix_wide_lo && // 0x40
345        instr_0 <= instruction_prefix_wide_hi) { // 0x4f
346     off++;
347     instr_0 = ubyte_at(off);
348   }
349 
350 
351   if (instr_0 == instruction_extended_prefix ) {  // 0x0f
352     off++;
353   }
354 
355   return off;
356 }
357 
patch_offset() const358 int NativeMovRegMem::patch_offset() const {
359   int off = data_offset + instruction_start();
360   u_char mod_rm = *(u_char*)(instruction_address() + 1);
361   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
362   // the encoding to use an SIB byte. Which will have the nnnn
363   // field off by one byte
364   if ((mod_rm & 7) == 0x4) {
365     off++;
366   }
367   return off;
368 }
369 
verify()370 void NativeMovRegMem::verify() {
371   // make sure code pattern is actually a mov [reg+offset], reg instruction
372   u_char test_byte = *(u_char*)instruction_address();
373   switch (test_byte) {
374     case instruction_code_reg2memb:  // 0x88 movb a, r
375     case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
376     case instruction_code_mem2regb:  // 0x8a movb r, a
377     case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
378       break;
379 
380     case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
381     case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
382     case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
383     case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
384     case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
385       break;
386 
387     case instruction_code_float_s:   // 0xd9 fld_s a
388     case instruction_code_float_d:   // 0xdd fld_d a
389     case instruction_code_xmm_load:  // 0x10 movsd xmm, a
390     case instruction_code_xmm_store: // 0x11 movsd a, xmm
391     case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
392       break;
393 
394     case instruction_code_lea:       // 0x8d lea r, a
395       break;
396 
397     default:
398           fatal ("not a mov [reg+offs], reg instruction");
399   }
400 }
401 
402 
print()403 void NativeMovRegMem::print() {
404   tty->print_cr(PTR_FORMAT ": mov reg, [reg + %x]", p2i(instruction_address()), offset());
405 }
406 
407 //-------------------------------------------------------------------
408 
verify()409 void NativeLoadAddress::verify() {
410   // make sure code pattern is actually a mov [reg+offset], reg instruction
411   u_char test_byte = *(u_char*)instruction_address();
412 #ifdef _LP64
413   if ( (test_byte == instruction_prefix_wide ||
414         test_byte == instruction_prefix_wide_extended) ) {
415     test_byte = *(u_char*)(instruction_address() + 1);
416   }
417 #endif // _LP64
418   if ( ! ((test_byte == lea_instruction_code)
419           LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
420     fatal ("not a lea reg, [reg+offs] instruction");
421   }
422 }
423 
424 
print()425 void NativeLoadAddress::print() {
426   tty->print_cr(PTR_FORMAT ": lea [reg + %x], reg", p2i(instruction_address()), offset());
427 }
428 
429 //--------------------------------------------------------------------------------
430 
verify()431 void NativeJump::verify() {
432   if (*(u_char*)instruction_address() != instruction_code) {
433     // far jump
434     NativeMovConstReg* mov = nativeMovConstReg_at(instruction_address());
435     NativeInstruction* jmp = nativeInstruction_at(mov->next_instruction_address());
436     if (!jmp->is_jump_reg()) {
437       fatal("not a jump instruction");
438     }
439   }
440 }
441 
442 
insert(address code_pos,address entry)443 void NativeJump::insert(address code_pos, address entry) {
444   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
445 #ifdef AMD64
446   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
447 #endif // AMD64
448 
449   *code_pos = instruction_code;
450   *((int32_t*)(code_pos + 1)) = (int32_t)disp;
451 
452   ICache::invalidate_range(code_pos, instruction_size);
453 }
454 
check_verified_entry_alignment(address entry,address verified_entry)455 void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
456   // Patching to not_entrant can happen while activations of the method are
457   // in use. The patching in that instance must happen only when certain
458   // alignment restrictions are true. These guarantees check those
459   // conditions.
460 #ifdef AMD64
461   const int linesize = 64;
462 #else
463   const int linesize = 32;
464 #endif // AMD64
465 
466   // Must be wordSize aligned
467   guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
468             "illegal address for code patching 2");
469   // First 5 bytes must be within the same cache line - 4827828
470   guarantee((uintptr_t) verified_entry / linesize ==
471             ((uintptr_t) verified_entry + 4) / linesize,
472             "illegal address for code patching 3");
473 }
474 
475 
476 // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
477 // The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
478 // First patches the first word atomically to be a jump to itself.
479 // Then patches the last byte  and then atomically patches the first word (4-bytes),
480 // thus inserting the desired jump
481 // This code is mt-safe with the following conditions: entry point is 4 byte aligned,
482 // entry point is in same cache line as unverified entry point, and the instruction being
483 // patched is >= 5 byte (size of patch).
484 //
485 // In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
486 // In C1 the restriction is enforced by CodeEmitter::method_entry
487 // In JVMCI, the restriction is enforced by HotSpotFrameContext.enter(...)
488 //
patch_verified_entry(address entry,address verified_entry,address dest)489 void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
490   // complete jump instruction (to be inserted) is in code_buffer;
491   unsigned char code_buffer[5];
492   code_buffer[0] = instruction_code;
493   intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
494 #ifdef AMD64
495   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
496 #endif // AMD64
497   *(int32_t*)(code_buffer + 1) = (int32_t)disp;
498 
499   check_verified_entry_alignment(entry, verified_entry);
500 
501   // Can't call nativeJump_at() because it's asserts jump exists
502   NativeJump* n_jump = (NativeJump*) verified_entry;
503 
504   //First patch dummy jmp in place
505 
506   unsigned char patch[4];
507   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
508   patch[0] = 0xEB;       // jmp rel8
509   patch[1] = 0xFE;       // jmp to self
510   patch[2] = 0xEB;
511   patch[3] = 0xFE;
512 
513   // First patch dummy jmp in place
514   *(int32_t*)verified_entry = *(int32_t *)patch;
515 
516   n_jump->wrote(0);
517 
518   // Patch 5th byte (from jump instruction)
519   verified_entry[4] = code_buffer[4];
520 
521   n_jump->wrote(4);
522 
523   // Patch bytes 0-3 (from jump instruction)
524   *(int32_t*)verified_entry = *(int32_t *)code_buffer;
525   // Invalidate.  Opteron requires a flush after every write.
526   n_jump->wrote(0);
527 
528 }
529 
jump_destination() const530 address NativeFarJump::jump_destination() const          {
531   NativeMovConstReg* mov = nativeMovConstReg_at(addr_at(0));
532   return (address)mov->data();
533 }
534 
verify()535 void NativeFarJump::verify() {
536   if (is_far_jump()) {
537     NativeMovConstReg* mov = nativeMovConstReg_at(addr_at(0));
538     NativeInstruction* jmp = nativeInstruction_at(mov->next_instruction_address());
539     if (jmp->is_jump_reg()) return;
540   }
541   fatal("not a jump instruction");
542 }
543 
insert(address code_pos,Register reg)544 void NativePopReg::insert(address code_pos, Register reg) {
545   assert(reg->encoding() < 8, "no space for REX");
546   assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
547   *code_pos = (u_char)(instruction_code | reg->encoding());
548   ICache::invalidate_range(code_pos, instruction_size);
549 }
550 
551 
insert(address code_pos)552 void NativeIllegalInstruction::insert(address code_pos) {
553   assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
554   *(short *)code_pos = instruction_code;
555   ICache::invalidate_range(code_pos, instruction_size);
556 }
557 
verify()558 void NativeGeneralJump::verify() {
559   assert(((NativeInstruction *)this)->is_jump() ||
560          ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
561 }
562 
563 
insert_unconditional(address code_pos,address entry)564 void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
565   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
566 #ifdef AMD64
567   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
568 #endif // AMD64
569 
570   *code_pos = unconditional_long_jump;
571   *((int32_t *)(code_pos+1)) = (int32_t) disp;
572   ICache::invalidate_range(code_pos, instruction_size);
573 }
574 
575 
576 // MT-safe patching of a long jump instruction.
577 // First patches first word of instruction to two jmp's that jmps to them
578 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
579 // the jmp's with the first 4 byte of the new instruction.
replace_mt_safe(address instr_addr,address code_buffer)580 void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
581    assert (instr_addr != NULL, "illegal address for code patching (4)");
582    NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
583 
584    // Temporary code
585    unsigned char patch[4];
586    assert(sizeof(patch)==sizeof(int32_t), "sanity check");
587    patch[0] = 0xEB;       // jmp rel8
588    patch[1] = 0xFE;       // jmp to self
589    patch[2] = 0xEB;
590    patch[3] = 0xFE;
591 
592    // First patch dummy jmp in place
593    *(int32_t*)instr_addr = *(int32_t *)patch;
594     n_jump->wrote(0);
595 
596    // Patch 4th byte
597    instr_addr[4] = code_buffer[4];
598 
599     n_jump->wrote(4);
600 
601    // Patch bytes 0-3
602    *(jint*)instr_addr = *(jint *)code_buffer;
603 
604     n_jump->wrote(0);
605 
606 #ifdef ASSERT
607    // verify patching
608    for ( int i = 0; i < instruction_size; i++) {
609      address ptr = (address)((intptr_t)code_buffer + i);
610      int a_byte = (*ptr) & 0xFF;
611      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
612    }
613 #endif
614 
615 }
616 
617 
618 
jump_destination() const619 address NativeGeneralJump::jump_destination() const {
620   int op_code = ubyte_at(0);
621   bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
622   int  offset  = (op_code == 0x0F)  ? 2 : 1;
623   int  length  = offset + ((is_rel32off) ? 4 : 1);
624 
625   if (is_rel32off)
626     return addr_at(0) + length + int_at(offset);
627   else
628     return addr_at(0) + length + sbyte_at(offset);
629 }
630