1 /*
2 * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 // output_c.cpp - Class CPP file output routines for architecture definition
26
27 #include "adlc.hpp"
28
29 // Utilities to characterize effect statements
is_def(int usedef)30 static bool is_def(int usedef) {
31 switch(usedef) {
32 case Component::DEF:
33 case Component::USE_DEF: return true; break;
34 }
35 return false;
36 }
37
38 // Define an array containing the machine register names, strings.
defineRegNames(FILE * fp,RegisterForm * registers)39 static void defineRegNames(FILE *fp, RegisterForm *registers) {
40 if (registers) {
41 fprintf(fp,"\n");
42 fprintf(fp,"// An array of character pointers to machine register names.\n");
43 fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
44
45 // Output the register name for each register in the allocation classes
46 RegDef *reg_def = NULL;
47 RegDef *next = NULL;
48 registers->reset_RegDefs();
49 for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
50 next = registers->iter_RegDefs();
51 const char *comma = (next != NULL) ? "," : " // no trailing comma";
52 fprintf(fp," \"%s\"%s\n", reg_def->_regname, comma);
53 }
54
55 // Finish defining enumeration
56 fprintf(fp,"};\n");
57
58 fprintf(fp,"\n");
59 fprintf(fp,"// An array of character pointers to machine register names.\n");
60 fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
61 reg_def = NULL;
62 next = NULL;
63 registers->reset_RegDefs();
64 for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
65 next = registers->iter_RegDefs();
66 const char *comma = (next != NULL) ? "," : " // no trailing comma";
67 fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
68 }
69 // Finish defining array
70 fprintf(fp,"\t};\n");
71 fprintf(fp,"\n");
72
73 fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
74
75 }
76 }
77
78 // Define an array containing the machine register encoding values
defineRegEncodes(FILE * fp,RegisterForm * registers)79 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
80 if (registers) {
81 fprintf(fp,"\n");
82 fprintf(fp,"// An array of the machine register encode values\n");
83 fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
84
85 // Output the register encoding for each register in the allocation classes
86 RegDef *reg_def = NULL;
87 RegDef *next = NULL;
88 registers->reset_RegDefs();
89 for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
90 next = registers->iter_RegDefs();
91 const char* register_encode = reg_def->register_encode();
92 const char *comma = (next != NULL) ? "," : " // no trailing comma";
93 int encval;
94 if (!ADLParser::is_int_token(register_encode, encval)) {
95 fprintf(fp," %s%s // %s\n", register_encode, comma, reg_def->_regname);
96 } else {
97 // Output known constants in hex char format (backward compatibility).
98 assert(encval < 256, "Exceeded supported width for register encoding");
99 fprintf(fp," (unsigned char)'\\x%X'%s // %s\n", encval, comma, reg_def->_regname);
100 }
101 }
102 // Finish defining enumeration
103 fprintf(fp,"};\n");
104
105 } // Done defining array
106 }
107
108 // Output an enumeration of register class names
defineRegClassEnum(FILE * fp,RegisterForm * registers)109 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
110 if (registers) {
111 // Output an enumeration of register class names
112 fprintf(fp,"\n");
113 fprintf(fp,"// Enumeration of register class names\n");
114 fprintf(fp, "enum machRegisterClass {\n");
115 registers->_rclasses.reset();
116 for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
117 const char * class_name_to_upper = toUpper(class_name);
118 fprintf(fp," %s,\n", class_name_to_upper);
119 delete[] class_name_to_upper;
120 }
121 // Finish defining enumeration
122 fprintf(fp, " _last_Mach_Reg_Class\n");
123 fprintf(fp, "};\n");
124 }
125 }
126
127 // Declare an enumeration of user-defined register classes
128 // and a list of register masks, one for each class.
declare_register_masks(FILE * fp_hpp)129 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
130 const char *rc_name;
131
132 if (_register) {
133 // Build enumeration of user-defined register classes.
134 defineRegClassEnum(fp_hpp, _register);
135
136 // Generate a list of register masks, one for each class.
137 fprintf(fp_hpp,"\n");
138 fprintf(fp_hpp,"// Register masks, one for each register class.\n");
139 _register->_rclasses.reset();
140 for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
141 RegClass *reg_class = _register->getRegClass(rc_name);
142 assert(reg_class, "Using an undefined register class");
143 reg_class->declare_register_masks(fp_hpp);
144 }
145 }
146 }
147
148 // Generate an enumeration of user-defined register classes
149 // and a list of register masks, one for each class.
build_register_masks(FILE * fp_cpp)150 void ArchDesc::build_register_masks(FILE *fp_cpp) {
151 const char *rc_name;
152
153 if (_register) {
154 // Generate a list of register masks, one for each class.
155 fprintf(fp_cpp,"\n");
156 fprintf(fp_cpp,"// Register masks, one for each register class.\n");
157 _register->_rclasses.reset();
158 for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
159 RegClass *reg_class = _register->getRegClass(rc_name);
160 assert(reg_class, "Using an undefined register class");
161 reg_class->build_register_masks(fp_cpp);
162 }
163 }
164 }
165
166 // Compute an index for an array in the pipeline_reads_NNN arrays
pipeline_reads_initializer(FILE * fp_cpp,NameList & pipeline_reads,PipeClassForm * pipeclass)167 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
168 {
169 int templen = 1;
170 int paramcount = 0;
171 const char *paramname;
172
173 if (pipeclass->_parameters.count() == 0)
174 return -1;
175
176 pipeclass->_parameters.reset();
177 paramname = pipeclass->_parameters.iter();
178 const PipeClassOperandForm *pipeopnd =
179 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
180 if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
181 pipeclass->_parameters.reset();
182
183 while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
184 const PipeClassOperandForm *tmppipeopnd =
185 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
186
187 if (tmppipeopnd)
188 templen += 10 + (int)strlen(tmppipeopnd->_stage);
189 else
190 templen += 19;
191
192 paramcount++;
193 }
194
195 // See if the count is zero
196 if (paramcount == 0) {
197 return -1;
198 }
199
200 char *operand_stages = new char [templen];
201 operand_stages[0] = 0;
202 int i = 0;
203 templen = 0;
204
205 pipeclass->_parameters.reset();
206 paramname = pipeclass->_parameters.iter();
207 pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
208 if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
209 pipeclass->_parameters.reset();
210
211 while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
212 const PipeClassOperandForm *tmppipeopnd =
213 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
214 templen += sprintf(&operand_stages[templen], " stage_%s%c\n",
215 tmppipeopnd ? tmppipeopnd->_stage : "undefined",
216 (++i < paramcount ? ',' : ' ') );
217 }
218
219 // See if the same string is in the table
220 int ndx = pipeline_reads.index(operand_stages);
221
222 // No, add it to the table
223 if (ndx < 0) {
224 pipeline_reads.addName(operand_stages);
225 ndx = pipeline_reads.index(operand_stages);
226
227 fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
228 ndx+1, paramcount, operand_stages);
229 }
230 else
231 delete [] operand_stages;
232
233 return (ndx);
234 }
235
236 // Compute an index for an array in the pipeline_res_stages_NNN arrays
pipeline_res_stages_initializer(FILE * fp_cpp,PipelineForm * pipeline,NameList & pipeline_res_stages,PipeClassForm * pipeclass)237 static int pipeline_res_stages_initializer(
238 FILE *fp_cpp,
239 PipelineForm *pipeline,
240 NameList &pipeline_res_stages,
241 PipeClassForm *pipeclass)
242 {
243 const PipeClassResourceForm *piperesource;
244 int * res_stages = new int [pipeline->_rescount];
245 int i;
246
247 for (i = 0; i < pipeline->_rescount; i++)
248 res_stages[i] = 0;
249
250 for (pipeclass->_resUsage.reset();
251 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
252 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
253 for (i = 0; i < pipeline->_rescount; i++)
254 if ((1 << i) & used_mask) {
255 int stage = pipeline->_stages.index(piperesource->_stage);
256 if (res_stages[i] < stage+1)
257 res_stages[i] = stage+1;
258 }
259 }
260
261 // Compute the length needed for the resource list
262 int commentlen = 0;
263 int max_stage = 0;
264 for (i = 0; i < pipeline->_rescount; i++) {
265 if (res_stages[i] == 0) {
266 if (max_stage < 9)
267 max_stage = 9;
268 }
269 else {
270 int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
271 if (max_stage < stagelen)
272 max_stage = stagelen;
273 }
274
275 commentlen += (int)strlen(pipeline->_reslist.name(i));
276 }
277
278 int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
279
280 // Allocate space for the resource list
281 char * resource_stages = new char [templen];
282
283 templen = 0;
284 for (i = 0; i < pipeline->_rescount; i++) {
285 const char * const resname =
286 res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
287
288 templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n",
289 resname, max_stage - (int)strlen(resname) + 1,
290 (i < pipeline->_rescount-1) ? "," : "",
291 pipeline->_reslist.name(i));
292 }
293
294 // See if the same string is in the table
295 int ndx = pipeline_res_stages.index(resource_stages);
296
297 // No, add it to the table
298 if (ndx < 0) {
299 pipeline_res_stages.addName(resource_stages);
300 ndx = pipeline_res_stages.index(resource_stages);
301
302 fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
303 ndx+1, pipeline->_rescount, resource_stages);
304 }
305 else
306 delete [] resource_stages;
307
308 delete [] res_stages;
309
310 return (ndx);
311 }
312
313 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
pipeline_res_cycles_initializer(FILE * fp_cpp,PipelineForm * pipeline,NameList & pipeline_res_cycles,PipeClassForm * pipeclass)314 static int pipeline_res_cycles_initializer(
315 FILE *fp_cpp,
316 PipelineForm *pipeline,
317 NameList &pipeline_res_cycles,
318 PipeClassForm *pipeclass)
319 {
320 const PipeClassResourceForm *piperesource;
321 int * res_cycles = new int [pipeline->_rescount];
322 int i;
323
324 for (i = 0; i < pipeline->_rescount; i++)
325 res_cycles[i] = 0;
326
327 for (pipeclass->_resUsage.reset();
328 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
329 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
330 for (i = 0; i < pipeline->_rescount; i++)
331 if ((1 << i) & used_mask) {
332 int cycles = piperesource->_cycles;
333 if (res_cycles[i] < cycles)
334 res_cycles[i] = cycles;
335 }
336 }
337
338 // Pre-compute the string length
339 int templen;
340 int cyclelen = 0, commentlen = 0;
341 int max_cycles = 0;
342 char temp[32];
343
344 for (i = 0; i < pipeline->_rescount; i++) {
345 if (max_cycles < res_cycles[i])
346 max_cycles = res_cycles[i];
347 templen = sprintf(temp, "%d", res_cycles[i]);
348 if (cyclelen < templen)
349 cyclelen = templen;
350 commentlen += (int)strlen(pipeline->_reslist.name(i));
351 }
352
353 templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
354
355 // Allocate space for the resource list
356 char * resource_cycles = new char [templen];
357
358 templen = 0;
359
360 for (i = 0; i < pipeline->_rescount; i++) {
361 templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n",
362 cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
363 }
364
365 // See if the same string is in the table
366 int ndx = pipeline_res_cycles.index(resource_cycles);
367
368 // No, add it to the table
369 if (ndx < 0) {
370 pipeline_res_cycles.addName(resource_cycles);
371 ndx = pipeline_res_cycles.index(resource_cycles);
372
373 fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
374 ndx+1, pipeline->_rescount, resource_cycles);
375 }
376 else
377 delete [] resource_cycles;
378
379 delete [] res_cycles;
380
381 return (ndx);
382 }
383
384 //typedef unsigned long long uint64_t;
385
386 // Compute an index for an array in the pipeline_res_mask_NNN arrays
pipeline_res_mask_initializer(FILE * fp_cpp,PipelineForm * pipeline,NameList & pipeline_res_mask,NameList & pipeline_res_args,PipeClassForm * pipeclass)387 static int pipeline_res_mask_initializer(
388 FILE *fp_cpp,
389 PipelineForm *pipeline,
390 NameList &pipeline_res_mask,
391 NameList &pipeline_res_args,
392 PipeClassForm *pipeclass)
393 {
394 const PipeClassResourceForm *piperesource;
395 const uint rescount = pipeline->_rescount;
396 const uint maxcycleused = pipeline->_maxcycleused;
397 const uint cyclemasksize = (maxcycleused + 31) >> 5;
398
399 int i, j;
400 int element_count = 0;
401 uint *res_mask = new uint [cyclemasksize];
402 uint resources_used = 0;
403 uint resources_used_exclusively = 0;
404
405 for (pipeclass->_resUsage.reset();
406 (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
407 element_count++;
408 }
409
410 // Pre-compute the string length
411 int templen;
412 int commentlen = 0;
413 int max_cycles = 0;
414
415 int cyclelen = ((maxcycleused + 3) >> 2);
416 int masklen = (rescount + 3) >> 2;
417
418 int cycledigit = 0;
419 for (i = maxcycleused; i > 0; i /= 10)
420 cycledigit++;
421
422 int maskdigit = 0;
423 for (i = rescount; i > 0; i /= 10)
424 maskdigit++;
425
426 static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
427 static const char* pipeline_use_element = "Pipeline_Use_Element";
428
429 templen = 1 +
430 (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
431 (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
432
433 // Allocate space for the resource list
434 char * resource_mask = new char [templen];
435 char * last_comma = NULL;
436
437 templen = 0;
438
439 for (pipeclass->_resUsage.reset();
440 (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
441 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
442
443 if (!used_mask) {
444 fprintf(stderr, "*** used_mask is 0 ***\n");
445 }
446
447 resources_used |= used_mask;
448
449 uint lb, ub;
450
451 for (lb = 0; (used_mask & (1 << lb)) == 0; lb++);
452 for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
453
454 if (lb == ub) {
455 resources_used_exclusively |= used_mask;
456 }
457
458 int formatlen =
459 sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(",
460 pipeline_use_element,
461 masklen, used_mask,
462 cycledigit, lb, cycledigit, ub,
463 ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
464 pipeline_use_cycle_mask);
465
466 templen += formatlen;
467
468 memset(res_mask, 0, cyclemasksize * sizeof(uint));
469
470 int cycles = piperesource->_cycles;
471 uint stage = pipeline->_stages.index(piperesource->_stage);
472 if ((uint)NameList::Not_in_list == stage) {
473 fprintf(stderr,
474 "pipeline_res_mask_initializer: "
475 "semantic error: "
476 "pipeline stage undeclared: %s\n",
477 piperesource->_stage);
478 exit(1);
479 }
480 uint upper_limit = stage + cycles - 1;
481 uint lower_limit = stage - 1;
482 uint upper_idx = upper_limit >> 5;
483 uint lower_idx = lower_limit >> 5;
484 uint upper_position = upper_limit & 0x1f;
485 uint lower_position = lower_limit & 0x1f;
486
487 uint mask = (((uint)1) << upper_position) - 1;
488
489 while (upper_idx > lower_idx) {
490 res_mask[upper_idx--] |= mask;
491 mask = (uint)-1;
492 }
493
494 mask -= (((uint)1) << lower_position) - 1;
495 res_mask[upper_idx] |= mask;
496
497 for (j = cyclemasksize-1; j >= 0; j--) {
498 formatlen =
499 sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
500 templen += formatlen;
501 }
502
503 resource_mask[templen++] = ')';
504 resource_mask[templen++] = ')';
505 last_comma = &resource_mask[templen];
506 resource_mask[templen++] = ',';
507 resource_mask[templen++] = '\n';
508 }
509
510 resource_mask[templen] = 0;
511 if (last_comma) {
512 last_comma[0] = ' ';
513 }
514
515 // See if the same string is in the table
516 int ndx = pipeline_res_mask.index(resource_mask);
517
518 // No, add it to the table
519 if (ndx < 0) {
520 pipeline_res_mask.addName(resource_mask);
521 ndx = pipeline_res_mask.index(resource_mask);
522
523 if (strlen(resource_mask) > 0)
524 fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
525 ndx+1, element_count, resource_mask);
526
527 char* args = new char [9 + 2*masklen + maskdigit];
528
529 sprintf(args, "0x%0*x, 0x%0*x, %*d",
530 masklen, resources_used,
531 masklen, resources_used_exclusively,
532 maskdigit, element_count);
533
534 pipeline_res_args.addName(args);
535 }
536 else {
537 delete [] resource_mask;
538 }
539
540 delete [] res_mask;
541 //delete [] res_masks;
542
543 return (ndx);
544 }
545
build_pipe_classes(FILE * fp_cpp)546 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
547 const char *classname;
548 const char *resourcename;
549 int resourcenamelen = 0;
550 NameList pipeline_reads;
551 NameList pipeline_res_stages;
552 NameList pipeline_res_cycles;
553 NameList pipeline_res_masks;
554 NameList pipeline_res_args;
555 const int default_latency = 1;
556 const int non_operand_latency = 0;
557 const int node_latency = 0;
558
559 if (!_pipeline) {
560 fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
561 fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
562 fprintf(fp_cpp, " return %d;\n", non_operand_latency);
563 fprintf(fp_cpp, "}\n");
564 return;
565 }
566
567 fprintf(fp_cpp, "\n");
568 fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
569 fprintf(fp_cpp, "#ifndef PRODUCT\n");
570 fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
571 fprintf(fp_cpp, " static const char * const _stage_names[] = {\n");
572 fprintf(fp_cpp, " \"undefined\"");
573
574 for (int s = 0; s < _pipeline->_stagecnt; s++)
575 fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
576
577 fprintf(fp_cpp, "\n };\n\n");
578 fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n",
579 _pipeline->_stagecnt);
580 fprintf(fp_cpp, "}\n");
581 fprintf(fp_cpp, "#endif\n\n");
582
583 fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
584 fprintf(fp_cpp, " // See if the functional units overlap\n");
585 #if 0
586 fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
587 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
588 fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
589 fprintf(fp_cpp, " }\n");
590 fprintf(fp_cpp, "#endif\n\n");
591 #endif
592 fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
593 fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n");
594 #if 0
595 fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
596 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
597 fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
598 fprintf(fp_cpp, " }\n");
599 fprintf(fp_cpp, "#endif\n\n");
600 #endif
601 fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
602 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
603 fprintf(fp_cpp, " if (predUse->multiple())\n");
604 fprintf(fp_cpp, " continue;\n\n");
605 fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n");
606 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
607 fprintf(fp_cpp, " if (currUse->multiple())\n");
608 fprintf(fp_cpp, " continue;\n\n");
609 fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n");
610 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
611 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
612 fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n");
613 fprintf(fp_cpp, " y <<= 1;\n");
614 fprintf(fp_cpp, " }\n");
615 fprintf(fp_cpp, " }\n");
616 fprintf(fp_cpp, " }\n\n");
617 fprintf(fp_cpp, " // There is the potential for overlap\n");
618 fprintf(fp_cpp, " return (start);\n");
619 fprintf(fp_cpp, "}\n\n");
620 fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
621 fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
622 fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
623 fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
624 fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
625 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
626 fprintf(fp_cpp, " if (predUse->_multiple) {\n");
627 fprintf(fp_cpp, " uint min_delay = %d;\n",
628 _pipeline->_maxcycleused+1);
629 fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
630 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
631 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
632 fprintf(fp_cpp, " uint curr_delay = delay;\n");
633 fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
634 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
635 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
636 fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
637 fprintf(fp_cpp, " y <<= 1;\n");
638 fprintf(fp_cpp, " }\n");
639 fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n");
640 fprintf(fp_cpp, " }\n");
641 fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n");
642 fprintf(fp_cpp, " }\n");
643 fprintf(fp_cpp, " else {\n");
644 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
645 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
646 fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
647 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
648 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
649 fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n");
650 fprintf(fp_cpp, " y <<= 1;\n");
651 fprintf(fp_cpp, " }\n");
652 fprintf(fp_cpp, " }\n");
653 fprintf(fp_cpp, " }\n");
654 fprintf(fp_cpp, " }\n\n");
655 fprintf(fp_cpp, " return (delay);\n");
656 fprintf(fp_cpp, "}\n\n");
657 fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
658 fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
659 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
660 fprintf(fp_cpp, " if (predUse->_multiple) {\n");
661 fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
662 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
663 fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
664 fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
665 fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
666 fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
667 fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
668 fprintf(fp_cpp, " break;\n");
669 fprintf(fp_cpp, " }\n");
670 fprintf(fp_cpp, " }\n");
671 fprintf(fp_cpp, " }\n");
672 fprintf(fp_cpp, " else {\n");
673 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
674 fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
675 fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
676 fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
677 fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
678 fprintf(fp_cpp, " }\n");
679 fprintf(fp_cpp, " }\n");
680 fprintf(fp_cpp, " }\n");
681 fprintf(fp_cpp, "}\n\n");
682
683 fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
684 fprintf(fp_cpp, " int const default_latency = 1;\n");
685 fprintf(fp_cpp, "\n");
686 #if 0
687 fprintf(fp_cpp, "#ifndef PRODUCT\n");
688 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
689 fprintf(fp_cpp, " tty->print(\"# operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
690 fprintf(fp_cpp, " }\n");
691 fprintf(fp_cpp, "#endif\n\n");
692 #endif
693 fprintf(fp_cpp, " assert(this, \"NULL pipeline info\");\n");
694 fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\");\n\n");
695 fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n");
696 fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n");
697 fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n");
698 fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n");
699 fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n");
700 #if 0
701 fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
702 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
703 fprintf(fp_cpp, " tty->print(\"# operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
704 fprintf(fp_cpp, " }\n");
705 fprintf(fp_cpp, "#endif\n\n");
706 #endif
707 fprintf(fp_cpp, "\n");
708 fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n");
709 fprintf(fp_cpp, " return (default_latency);\n");
710 fprintf(fp_cpp, "\n");
711 fprintf(fp_cpp, " int delta = writeStage - readStage;\n");
712 fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n");
713 #if 0
714 fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
715 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
716 fprintf(fp_cpp, " tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
717 fprintf(fp_cpp, " }\n");
718 fprintf(fp_cpp, "#endif\n\n");
719 #endif
720 fprintf(fp_cpp, " return (delta);\n");
721 fprintf(fp_cpp, "}\n\n");
722
723 if (!_pipeline)
724 /* Do Nothing */;
725
726 else if (_pipeline->_maxcycleused <=
727 #ifdef SPARC
728 64
729 #else
730 32
731 #endif
732 ) {
733 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
734 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
735 fprintf(fp_cpp, "}\n\n");
736 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
737 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
738 fprintf(fp_cpp, "}\n\n");
739 }
740 else {
741 uint l;
742 uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
743 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
744 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
745 for (l = 1; l <= masklen; l++)
746 fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
747 fprintf(fp_cpp, ");\n");
748 fprintf(fp_cpp, "}\n\n");
749 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
750 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
751 for (l = 1; l <= masklen; l++)
752 fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
753 fprintf(fp_cpp, ");\n");
754 fprintf(fp_cpp, "}\n\n");
755 fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
756 for (l = 1; l <= masklen; l++)
757 fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
758 fprintf(fp_cpp, "\n}\n\n");
759 }
760
761 /* Get the length of all the resource names */
762 for (_pipeline->_reslist.reset(), resourcenamelen = 0;
763 (resourcename = _pipeline->_reslist.iter()) != NULL;
764 resourcenamelen += (int)strlen(resourcename));
765
766 // Create the pipeline class description
767
768 fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
769 fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
770
771 fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
772 for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
773 fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
774 uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
775 for (int i2 = masklen-1; i2 >= 0; i2--)
776 fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
777 fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
778 }
779 fprintf(fp_cpp, "};\n\n");
780
781 fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
782 _pipeline->_rescount);
783
784 for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
785 fprintf(fp_cpp, "\n");
786 fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
787 PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
788 int maxWriteStage = -1;
789 int maxMoreInstrs = 0;
790 int paramcount = 0;
791 int i = 0;
792 const char *paramname;
793 int resource_count = (_pipeline->_rescount + 3) >> 2;
794
795 // Scan the operands, looking for last output stage and number of inputs
796 for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
797 const PipeClassOperandForm *pipeopnd =
798 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
799 if (pipeopnd) {
800 if (pipeopnd->_iswrite) {
801 int stagenum = _pipeline->_stages.index(pipeopnd->_stage);
802 int moreinsts = pipeopnd->_more_instrs;
803 if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
804 maxWriteStage = stagenum;
805 maxMoreInstrs = moreinsts;
806 }
807 }
808 }
809
810 if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
811 paramcount++;
812 }
813
814 // Create the list of stages for the operands that are read
815 // Note that we will build a NameList to reduce the number of copies
816
817 int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
818
819 int pipeline_res_stages_index = pipeline_res_stages_initializer(
820 fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
821
822 int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
823 fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
824
825 int pipeline_res_mask_index = pipeline_res_mask_initializer(
826 fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
827
828 #if 0
829 // Process the Resources
830 const PipeClassResourceForm *piperesource;
831
832 unsigned resources_used = 0;
833 unsigned exclusive_resources_used = 0;
834 unsigned resource_groups = 0;
835 for (pipeclass->_resUsage.reset();
836 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
837 int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
838 if (used_mask)
839 resource_groups++;
840 resources_used |= used_mask;
841 if ((used_mask & (used_mask-1)) == 0)
842 exclusive_resources_used |= used_mask;
843 }
844
845 if (resource_groups > 0) {
846 fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
847 pipeclass->_num, resource_groups);
848 for (pipeclass->_resUsage.reset(), i = 1;
849 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
850 i++ ) {
851 int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
852 if (used_mask) {
853 fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
854 }
855 }
856 fprintf(fp_cpp, "};\n\n");
857 }
858 #endif
859
860 // Create the pipeline class description
861 fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
862 pipeclass->_num);
863 if (maxWriteStage < 0)
864 fprintf(fp_cpp, "(uint)stage_undefined");
865 else if (maxMoreInstrs == 0)
866 fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
867 else
868 fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
869 fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
870 paramcount,
871 pipeclass->hasFixedLatency() ? "true" : "false",
872 pipeclass->fixedLatency(),
873 pipeclass->InstructionCount(),
874 pipeclass->hasBranchDelay() ? "true" : "false",
875 pipeclass->hasMultipleBundles() ? "true" : "false",
876 pipeclass->forceSerialization() ? "true" : "false",
877 pipeclass->mayHaveNoCode() ? "true" : "false" );
878 if (paramcount > 0) {
879 fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
880 pipeline_reads_index+1);
881 }
882 else
883 fprintf(fp_cpp, " NULL,");
884 fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
885 pipeline_res_stages_index+1);
886 fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n",
887 pipeline_res_cycles_index+1);
888 fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)",
889 pipeline_res_args.name(pipeline_res_mask_index));
890 if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
891 fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
892 pipeline_res_mask_index+1);
893 else
894 fprintf(fp_cpp, "NULL");
895 fprintf(fp_cpp, "));\n");
896 }
897
898 // Generate the Node::latency method if _pipeline defined
899 fprintf(fp_cpp, "\n");
900 fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
901 fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
902 if (_pipeline) {
903 #if 0
904 fprintf(fp_cpp, "#ifndef PRODUCT\n");
905 fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
906 fprintf(fp_cpp, " tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
907 fprintf(fp_cpp, " }\n");
908 fprintf(fp_cpp, "#endif\n");
909 #endif
910 fprintf(fp_cpp, " uint j;\n");
911 fprintf(fp_cpp, " // verify in legal range for inputs\n");
912 fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n");
913 fprintf(fp_cpp, " // verify input is not null\n");
914 fprintf(fp_cpp, " Node *pred = in(i);\n");
915 fprintf(fp_cpp, " if (!pred)\n return %d;\n\n",
916 non_operand_latency);
917 fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n");
918 fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n");
919 fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n");
920 fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n");
921 fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n");
922 fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n");
923 fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n");
924 fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n",
925 node_latency);
926 fprintf(fp_cpp, " const MachNode *m = as_Mach();\n");
927 fprintf(fp_cpp, " j = m->oper_input_base();\n");
928 fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n",
929 non_operand_latency);
930 fprintf(fp_cpp, " // determine which operand this is in\n");
931 fprintf(fp_cpp, " uint n = m->num_opnds();\n");
932 fprintf(fp_cpp, " int delta = %d;\n\n",
933 non_operand_latency);
934 fprintf(fp_cpp, " uint k;\n");
935 fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n");
936 fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n");
937 fprintf(fp_cpp, " if (i < j)\n");
938 fprintf(fp_cpp, " break;\n");
939 fprintf(fp_cpp, " }\n");
940 fprintf(fp_cpp, " if (k < n)\n");
941 fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n");
942 fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n");
943 }
944 else {
945 fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
946 fprintf(fp_cpp, " return %d;\n",
947 non_operand_latency);
948 }
949 fprintf(fp_cpp, "}\n\n");
950
951 // Output the list of nop nodes
952 fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
953 const char *nop;
954 int nopcnt = 0;
955 for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
956
957 fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
958 int i = 0;
959 for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
960 fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
961 }
962 fprintf(fp_cpp, "};\n\n");
963 fprintf(fp_cpp, "#ifndef PRODUCT\n");
964 fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
965 fprintf(fp_cpp, " static const char * bundle_flags[] = {\n");
966 fprintf(fp_cpp, " \"\",\n");
967 fprintf(fp_cpp, " \"use nop delay\",\n");
968 fprintf(fp_cpp, " \"use unconditional delay\",\n");
969 fprintf(fp_cpp, " \"use conditional delay\",\n");
970 fprintf(fp_cpp, " \"used in conditional delay\",\n");
971 fprintf(fp_cpp, " \"used in unconditional delay\",\n");
972 fprintf(fp_cpp, " \"used in all conditional delays\",\n");
973 fprintf(fp_cpp, " };\n\n");
974
975 fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount);
976 for (i = 0; i < _pipeline->_rescount; i++)
977 fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
978 fprintf(fp_cpp, "};\n\n");
979
980 // See if the same string is in the table
981 fprintf(fp_cpp, " bool needs_comma = false;\n\n");
982 fprintf(fp_cpp, " if (_flags) {\n");
983 fprintf(fp_cpp, " st->print(\"%%s\", bundle_flags[_flags]);\n");
984 fprintf(fp_cpp, " needs_comma = true;\n");
985 fprintf(fp_cpp, " };\n");
986 fprintf(fp_cpp, " if (instr_count()) {\n");
987 fprintf(fp_cpp, " st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
988 fprintf(fp_cpp, " needs_comma = true;\n");
989 fprintf(fp_cpp, " };\n");
990 fprintf(fp_cpp, " uint r = resources_used();\n");
991 fprintf(fp_cpp, " if (r) {\n");
992 fprintf(fp_cpp, " st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
993 fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
994 fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n");
995 fprintf(fp_cpp, " st->print(\" %%s\", resource_names[i]);\n");
996 fprintf(fp_cpp, " needs_comma = true;\n");
997 fprintf(fp_cpp, " };\n");
998 fprintf(fp_cpp, " st->print(\"\\n\");\n");
999 fprintf(fp_cpp, "}\n");
1000 fprintf(fp_cpp, "#endif\n");
1001 }
1002
1003 // ---------------------------------------------------------------------------
1004 //------------------------------Utilities to build Instruction Classes--------
1005 // ---------------------------------------------------------------------------
1006
defineOut_RegMask(FILE * fp,const char * node,const char * regMask)1007 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1008 fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1009 node, regMask);
1010 }
1011
print_block_index(FILE * fp,int inst_position)1012 static void print_block_index(FILE *fp, int inst_position) {
1013 assert( inst_position >= 0, "Instruction number less than zero");
1014 fprintf(fp, "block_index");
1015 if( inst_position != 0 ) {
1016 fprintf(fp, " - %d", inst_position);
1017 }
1018 }
1019
1020 // Scan the peepmatch and output a test for each instruction
check_peepmatch_instruction_sequence(FILE * fp,PeepMatch * pmatch,PeepConstraint * pconstraint)1021 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1022 int parent = -1;
1023 int inst_position = 0;
1024 const char* inst_name = NULL;
1025 int input = 0;
1026 fprintf(fp, " // Check instruction sub-tree\n");
1027 pmatch->reset();
1028 for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1029 inst_name != NULL;
1030 pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1031 // If this is not a placeholder
1032 if( ! pmatch->is_placeholder() ) {
1033 // Define temporaries 'inst#', based on parent and parent's input index
1034 if( parent != -1 ) { // root was initialized
1035 fprintf(fp, " // Identify previous instruction if inside this block\n");
1036 fprintf(fp, " if( ");
1037 print_block_index(fp, inst_position);
1038 fprintf(fp, " > 0 ) {\n Node *n = block->get_node(");
1039 print_block_index(fp, inst_position);
1040 fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position);
1041 fprintf(fp, "n->as_Mach() : NULL;\n }\n");
1042 }
1043
1044 // When not the root
1045 // Test we have the correct instruction by comparing the rule.
1046 if( parent != -1 ) {
1047 fprintf(fp, " matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1048 inst_position, inst_position, inst_name);
1049 }
1050 } else {
1051 // Check that user did not try to constrain a placeholder
1052 assert( ! pconstraint->constrains_instruction(inst_position),
1053 "fatal(): Can not constrain a placeholder instruction");
1054 }
1055 }
1056 }
1057
1058 // Build mapping for register indices, num_edges to input
build_instruction_index_mapping(FILE * fp,FormDict & globals,PeepMatch * pmatch)1059 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1060 int parent = -1;
1061 int inst_position = 0;
1062 const char* inst_name = NULL;
1063 int input = 0;
1064 fprintf(fp, " // Build map to register info\n");
1065 pmatch->reset();
1066 for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1067 inst_name != NULL;
1068 pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1069 // If this is not a placeholder
1070 if( ! pmatch->is_placeholder() ) {
1071 // Define temporaries 'inst#', based on self's inst_position
1072 InstructForm *inst = globals[inst_name]->is_instruction();
1073 if( inst != NULL ) {
1074 char inst_prefix[] = "instXXXX_";
1075 sprintf(inst_prefix, "inst%d_", inst_position);
1076 char receiver[] = "instXXXX->";
1077 sprintf(receiver, "inst%d->", inst_position);
1078 inst->index_temps( fp, globals, inst_prefix, receiver );
1079 }
1080 }
1081 }
1082 }
1083
1084 // Generate tests for the constraints
check_peepconstraints(FILE * fp,FormDict & globals,PeepMatch * pmatch,PeepConstraint * pconstraint)1085 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086 fprintf(fp, "\n");
1087 fprintf(fp, " // Check constraints on sub-tree-leaves\n");
1088
1089 // Build mapping from num_edges to local variables
1090 build_instruction_index_mapping( fp, globals, pmatch );
1091
1092 // Build constraint tests
1093 if( pconstraint != NULL ) {
1094 fprintf(fp, " matches = matches &&");
1095 bool first_constraint = true;
1096 while( pconstraint != NULL ) {
1097 // indentation and connecting '&&'
1098 const char *indentation = " ";
1099 fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " "));
1100
1101 // Only have '==' relation implemented
1102 if( strcmp(pconstraint->_relation,"==") != 0 ) {
1103 assert( false, "Unimplemented()" );
1104 }
1105
1106 // LEFT
1107 int left_index = pconstraint->_left_inst;
1108 const char *left_op = pconstraint->_left_op;
1109 // Access info on the instructions whose operands are compared
1110 InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1111 assert( inst_left, "Parser should guaranty this is an instruction");
1112 int left_op_base = inst_left->oper_input_base(globals);
1113 // Access info on the operands being compared
1114 int left_op_index = inst_left->operand_position(left_op, Component::USE);
1115 if( left_op_index == -1 ) {
1116 left_op_index = inst_left->operand_position(left_op, Component::DEF);
1117 if( left_op_index == -1 ) {
1118 left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1119 }
1120 }
1121 assert( left_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1122 ComponentList components_left = inst_left->_components;
1123 const char *left_comp_type = components_left.at(left_op_index)->_type;
1124 OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1125 Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1126
1127
1128 // RIGHT
1129 int right_op_index = -1;
1130 int right_index = pconstraint->_right_inst;
1131 const char *right_op = pconstraint->_right_op;
1132 if( right_index != -1 ) { // Match operand
1133 // Access info on the instructions whose operands are compared
1134 InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1135 assert( inst_right, "Parser should guaranty this is an instruction");
1136 int right_op_base = inst_right->oper_input_base(globals);
1137 // Access info on the operands being compared
1138 right_op_index = inst_right->operand_position(right_op, Component::USE);
1139 if( right_op_index == -1 ) {
1140 right_op_index = inst_right->operand_position(right_op, Component::DEF);
1141 if( right_op_index == -1 ) {
1142 right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1143 }
1144 }
1145 assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1146 ComponentList components_right = inst_right->_components;
1147 const char *right_comp_type = components_right.at(right_op_index)->_type;
1148 OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1149 Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1150 assert( right_interface_type == left_interface_type, "Both must be same interface");
1151
1152 } else { // Else match register
1153 // assert( false, "should be a register" );
1154 }
1155
1156 //
1157 // Check for equivalence
1158 //
1159 // fprintf(fp, "phase->eqv( ");
1160 // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1161 // left_index, left_op_base, left_op_index, left_op,
1162 // right_index, right_op_base, right_op_index, right_op );
1163 // fprintf(fp, ")");
1164 //
1165 switch( left_interface_type ) {
1166 case Form::register_interface: {
1167 // Check that they are allocated to the same register
1168 // Need parameter for index position if not result operand
1169 char left_reg_index[] = ",instXXXX_idxXXXX";
1170 if( left_op_index != 0 ) {
1171 assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1172 // Must have index into operands
1173 sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1174 } else {
1175 strcpy(left_reg_index, "");
1176 }
1177 fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */",
1178 left_index, left_op_index, left_index, left_reg_index, left_index, left_op );
1179 fprintf(fp, " == ");
1180
1181 if( right_index != -1 ) {
1182 char right_reg_index[18] = ",instXXXX_idxXXXX";
1183 if( right_op_index != 0 ) {
1184 assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1185 // Must have index into operands
1186 sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1187 } else {
1188 strcpy(right_reg_index, "");
1189 }
1190 fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1191 right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1192 } else {
1193 fprintf(fp, "%s_enc", right_op );
1194 }
1195 fprintf(fp,")");
1196 break;
1197 }
1198 case Form::constant_interface: {
1199 // Compare the '->constant()' values
1200 fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */",
1201 left_index, left_op_index, left_index, left_op );
1202 fprintf(fp, " == ");
1203 fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1204 right_index, right_op, right_index, right_op_index );
1205 break;
1206 }
1207 case Form::memory_interface: {
1208 // Compare 'base', 'index', 'scale', and 'disp'
1209 // base
1210 fprintf(fp, "( \n");
1211 fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */",
1212 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1213 fprintf(fp, " == ");
1214 fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1215 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1216 // index
1217 fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */",
1218 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1219 fprintf(fp, " == ");
1220 fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1221 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1222 // scale
1223 fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */",
1224 left_index, left_op_index, left_index, left_op );
1225 fprintf(fp, " == ");
1226 fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1227 right_index, right_op, right_index, right_op_index );
1228 // disp
1229 fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */",
1230 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1231 fprintf(fp, " == ");
1232 fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1233 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1234 fprintf(fp, ") \n");
1235 break;
1236 }
1237 case Form::conditional_interface: {
1238 // Compare the condition code being tested
1239 assert( false, "Unimplemented()" );
1240 break;
1241 }
1242 default: {
1243 assert( false, "ShouldNotReachHere()" );
1244 break;
1245 }
1246 }
1247
1248 // Advance to next constraint
1249 pconstraint = pconstraint->next();
1250 first_constraint = false;
1251 }
1252
1253 fprintf(fp, ";\n");
1254 }
1255 }
1256
1257 // // EXPERIMENTAL -- TEMPORARY code
1258 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1259 // int op_index = instr->operand_position(op_name, Component::USE);
1260 // if( op_index == -1 ) {
1261 // op_index = instr->operand_position(op_name, Component::DEF);
1262 // if( op_index == -1 ) {
1263 // op_index = instr->operand_position(op_name, Component::USE_DEF);
1264 // }
1265 // }
1266 // assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1267 //
1268 // ComponentList components_right = instr->_components;
1269 // char *right_comp_type = components_right.at(op_index)->_type;
1270 // OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1271 // Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1272 //
1273 // return;
1274 // }
1275
1276 // Construct the new sub-tree
generate_peepreplace(FILE * fp,FormDict & globals,PeepMatch * pmatch,PeepConstraint * pconstraint,PeepReplace * preplace,int max_position)1277 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1278 fprintf(fp, " // IF instructions and constraints matched\n");
1279 fprintf(fp, " if( matches ) {\n");
1280 fprintf(fp, " // generate the new sub-tree\n");
1281 fprintf(fp, " assert( true, \"Debug stopping point\");\n");
1282 if( preplace != NULL ) {
1283 // Get the root of the new sub-tree
1284 const char *root_inst = NULL;
1285 preplace->next_instruction(root_inst);
1286 InstructForm *root_form = globals[root_inst]->is_instruction();
1287 assert( root_form != NULL, "Replacement instruction was not previously defined");
1288 fprintf(fp, " %sNode *root = new %sNode();\n", root_inst, root_inst);
1289
1290 int inst_num;
1291 const char *op_name;
1292 int opnds_index = 0; // define result operand
1293 // Then install the use-operands for the new sub-tree
1294 // preplace->reset(); // reset breaks iteration
1295 for( preplace->next_operand( inst_num, op_name );
1296 op_name != NULL;
1297 preplace->next_operand( inst_num, op_name ) ) {
1298 InstructForm *inst_form;
1299 inst_form = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1300 assert( inst_form, "Parser should guaranty this is an instruction");
1301 int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1302 if( inst_op_num == NameList::Not_in_list )
1303 inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1304 assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1305 // find the name of the OperandForm from the local name
1306 const Form *form = inst_form->_localNames[op_name];
1307 OperandForm *op_form = form->is_operand();
1308 if( opnds_index == 0 ) {
1309 // Initial setup of new instruction
1310 fprintf(fp, " // ----- Initial setup -----\n");
1311 //
1312 // Add control edge for this node
1313 fprintf(fp, " root->add_req(_in[0]); // control edge\n");
1314 // Add unmatched edges from root of match tree
1315 int op_base = root_form->oper_input_base(globals);
1316 for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1317 fprintf(fp, " root->add_req(inst%d->in(%d)); // unmatched ideal edge\n",
1318 inst_num, unmatched_edge);
1319 }
1320 // If new instruction captures bottom type
1321 if( root_form->captures_bottom_type(globals) ) {
1322 // Get bottom type from instruction whose result we are replacing
1323 fprintf(fp, " root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1324 }
1325 // Define result register and result operand
1326 fprintf(fp, " ra_->add_reference(root, inst%d);\n", inst_num);
1327 fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1328 fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1329 fprintf(fp, " root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
1330 fprintf(fp, " // ----- Done with initial setup -----\n");
1331 } else {
1332 if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1333 // Do not have ideal edges for constants after matching
1334 fprintf(fp, " for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1335 inst_op_num, inst_num, inst_op_num,
1336 inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1337 fprintf(fp, " root->add_req( inst%d->in(x%d) );\n",
1338 inst_num, inst_op_num );
1339 } else {
1340 fprintf(fp, " // no ideal edge for constants after matching\n");
1341 }
1342 fprintf(fp, " root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
1343 opnds_index, inst_num, inst_op_num );
1344 }
1345 ++opnds_index;
1346 }
1347 }else {
1348 // Replacing subtree with empty-tree
1349 assert( false, "ShouldNotReachHere();");
1350 }
1351
1352 // Return the new sub-tree
1353 fprintf(fp, " deleted = %d;\n", max_position+1 /*zero to one based*/);
1354 fprintf(fp, " return root; // return new root;\n");
1355 fprintf(fp, " }\n");
1356 }
1357
1358
1359 // Define the Peephole method for an instruction node
definePeephole(FILE * fp,InstructForm * node)1360 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1361 // Generate Peephole function header
1362 fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
1363 fprintf(fp, " bool matches = true;\n");
1364
1365 // Identify the maximum instruction position,
1366 // generate temporaries that hold current instruction
1367 //
1368 // MachNode *inst0 = NULL;
1369 // ...
1370 // MachNode *instMAX = NULL;
1371 //
1372 int max_position = 0;
1373 Peephole *peep;
1374 for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1375 PeepMatch *pmatch = peep->match();
1376 assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1377 if( max_position < pmatch->max_position() ) max_position = pmatch->max_position();
1378 }
1379 for( int i = 0; i <= max_position; ++i ) {
1380 if( i == 0 ) {
1381 fprintf(fp, " MachNode *inst0 = this;\n");
1382 } else {
1383 fprintf(fp, " MachNode *inst%d = NULL;\n", i);
1384 }
1385 }
1386
1387 // For each peephole rule in architecture description
1388 // Construct a test for the desired instruction sub-tree
1389 // then check the constraints
1390 // If these match, Generate the new subtree
1391 for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1392 int peephole_number = peep->peephole_number();
1393 PeepMatch *pmatch = peep->match();
1394 PeepConstraint *pconstraint = peep->constraints();
1395 PeepReplace *preplace = peep->replacement();
1396
1397 // Root of this peephole is the current MachNode
1398 assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1399 "root of PeepMatch does not match instruction");
1400
1401 // Make each peephole rule individually selectable
1402 fprintf(fp, " if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1403 fprintf(fp, " matches = true;\n");
1404 // Scan the peepmatch and output a test for each instruction
1405 check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1406
1407 // Check constraints and build replacement inside scope
1408 fprintf(fp, " // If instruction subtree matches\n");
1409 fprintf(fp, " if( matches ) {\n");
1410
1411 // Generate tests for the constraints
1412 check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1413
1414 // Construct the new sub-tree
1415 generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1416
1417 // End of scope for this peephole's constraints
1418 fprintf(fp, " }\n");
1419 // Closing brace '}' to make each peephole rule individually selectable
1420 fprintf(fp, " } // end of peephole rule #%d\n", peephole_number);
1421 fprintf(fp, "\n");
1422 }
1423
1424 fprintf(fp, " return NULL; // No peephole rules matched\n");
1425 fprintf(fp, "}\n");
1426 fprintf(fp, "\n");
1427 }
1428
1429 // Define the Expand method for an instruction node
defineExpand(FILE * fp,InstructForm * node)1430 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1431 unsigned cnt = 0; // Count nodes we have expand into
1432 unsigned i;
1433
1434 // Generate Expand function header
1435 fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1436 fprintf(fp, " Compile* C = Compile::current();\n");
1437 // Generate expand code
1438 if( node->expands() ) {
1439 const char *opid;
1440 int new_pos, exp_pos;
1441 const char *new_id = NULL;
1442 const Form *frm = NULL;
1443 InstructForm *new_inst = NULL;
1444 OperandForm *new_oper = NULL;
1445 unsigned numo = node->num_opnds() +
1446 node->_exprule->_newopers.count();
1447
1448 // If necessary, generate any operands created in expand rule
1449 if (node->_exprule->_newopers.count()) {
1450 for(node->_exprule->_newopers.reset();
1451 (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1452 frm = node->_localNames[new_id];
1453 assert(frm, "Invalid entry in new operands list of expand rule");
1454 new_oper = frm->is_operand();
1455 char *tmp = (char *)node->_exprule->_newopconst[new_id];
1456 if (tmp == NULL) {
1457 fprintf(fp," MachOper *op%d = new %sOper();\n",
1458 cnt, new_oper->_ident);
1459 }
1460 else {
1461 fprintf(fp," MachOper *op%d = new %sOper(%s);\n",
1462 cnt, new_oper->_ident, tmp);
1463 }
1464 }
1465 }
1466 cnt = 0;
1467 // Generate the temps to use for DAG building
1468 for(i = 0; i < numo; i++) {
1469 if (i < node->num_opnds()) {
1470 fprintf(fp," MachNode *tmp%d = this;\n", i);
1471 }
1472 else {
1473 fprintf(fp," MachNode *tmp%d = NULL;\n", i);
1474 }
1475 }
1476 // Build mapping from num_edges to local variables
1477 fprintf(fp," unsigned num0 = 0;\n");
1478 for( i = 1; i < node->num_opnds(); i++ ) {
1479 fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1480 }
1481
1482 // Build a mapping from operand index to input edges
1483 fprintf(fp," unsigned idx0 = oper_input_base();\n");
1484
1485 // The order in which the memory input is added to a node is very
1486 // strange. Store nodes get a memory input before Expand is
1487 // called and other nodes get it afterwards or before depending on
1488 // match order so oper_input_base is wrong during expansion. This
1489 // code adjusts it so that expansion will work correctly.
1490 int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1491 if (has_memory_edge) {
1492 fprintf(fp," if (mem == (Node*)1) {\n");
1493 fprintf(fp," idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1494 fprintf(fp," }\n");
1495 }
1496
1497 for( i = 0; i < node->num_opnds(); i++ ) {
1498 fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
1499 i+1,i,i);
1500 }
1501
1502 // Declare variable to hold root of expansion
1503 fprintf(fp," MachNode *result = NULL;\n");
1504
1505 // Iterate over the instructions 'node' expands into
1506 ExpandRule *expand = node->_exprule;
1507 NameAndList *expand_instr = NULL;
1508 for (expand->reset_instructions();
1509 (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1510 new_id = expand_instr->name();
1511
1512 InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1513
1514 if (!expand_instruction) {
1515 globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1516 node->_ident, new_id);
1517 continue;
1518 }
1519
1520 // Build the node for the instruction
1521 fprintf(fp,"\n %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
1522 // Add control edge for this node
1523 fprintf(fp," n%d->add_req(_in[0]);\n", cnt);
1524 // Build the operand for the value this node defines.
1525 Form *form = (Form*)_globalNames[new_id];
1526 assert(form, "'new_id' must be a defined form name");
1527 // Grab the InstructForm for the new instruction
1528 new_inst = form->is_instruction();
1529 assert(new_inst, "'new_id' must be an instruction name");
1530 if (node->is_ideal_if() && new_inst->is_ideal_if()) {
1531 fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
1532 fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
1533 }
1534
1535 if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
1536 fprintf(fp, " ((MachFastLockNode*)n%d)->_counters = _counters;\n", cnt);
1537 fprintf(fp, " ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
1538 fprintf(fp, " ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
1539 }
1540
1541 // Fill in the bottom_type where requested
1542 if (node->captures_bottom_type(_globalNames) &&
1543 new_inst->captures_bottom_type(_globalNames)) {
1544 fprintf(fp, " ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1545 }
1546
1547 const char *resultOper = new_inst->reduce_result();
1548 fprintf(fp," n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
1549 cnt, machOperEnum(resultOper));
1550
1551 // get the formal operand NameList
1552 NameList *formal_lst = &new_inst->_parameters;
1553 formal_lst->reset();
1554
1555 // Handle any memory operand
1556 int memory_operand = new_inst->memory_operand(_globalNames);
1557 if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1558 int node_mem_op = node->memory_operand(_globalNames);
1559 assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1560 "expand rule member needs memory but top-level inst doesn't have any" );
1561 if (has_memory_edge) {
1562 // Copy memory edge
1563 fprintf(fp," if (mem != (Node*)1) {\n");
1564 fprintf(fp," n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1565 fprintf(fp," }\n");
1566 }
1567 }
1568
1569 // Iterate over the new instruction's operands
1570 int prev_pos = -1;
1571 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1572 // Use 'parameter' at current position in list of new instruction's formals
1573 // instead of 'opid' when looking up info internal to new_inst
1574 const char *parameter = formal_lst->iter();
1575 if (!parameter) {
1576 globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1577 " no equivalent in new instruction %s.",
1578 opid, node->_ident, new_inst->_ident);
1579 assert(0, "Wrong expand");
1580 }
1581
1582 // Check for an operand which is created in the expand rule
1583 if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1584 new_pos = new_inst->operand_position(parameter,Component::USE);
1585 exp_pos += node->num_opnds();
1586 // If there is no use of the created operand, just skip it
1587 if (new_pos != NameList::Not_in_list) {
1588 //Copy the operand from the original made above
1589 fprintf(fp," n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
1590 cnt, new_pos, exp_pos-node->num_opnds(), opid);
1591 // Check for who defines this operand & add edge if needed
1592 fprintf(fp," if(tmp%d != NULL)\n", exp_pos);
1593 fprintf(fp," n%d->add_req(tmp%d);\n", cnt, exp_pos);
1594 }
1595 }
1596 else {
1597 // Use operand name to get an index into instruction component list
1598 // ins = (InstructForm *) _globalNames[new_id];
1599 exp_pos = node->operand_position_format(opid);
1600 assert(exp_pos != -1, "Bad expand rule");
1601 if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1602 // For the add_req calls below to work correctly they need
1603 // to added in the same order that a match would add them.
1604 // This means that they would need to be in the order of
1605 // the components list instead of the formal parameters.
1606 // This is a sort of hidden invariant that previously
1607 // wasn't checked and could lead to incorrectly
1608 // constructed nodes.
1609 syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1610 node->_ident, new_inst->_ident);
1611 }
1612 prev_pos = exp_pos;
1613
1614 new_pos = new_inst->operand_position(parameter,Component::USE);
1615 if (new_pos != -1) {
1616 // Copy the operand from the ExpandNode to the new node
1617 fprintf(fp," n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1618 cnt, new_pos, exp_pos, opid);
1619 // For each operand add appropriate input edges by looking at tmp's
1620 fprintf(fp," if(tmp%d == this) {\n", exp_pos);
1621 // Grab corresponding edges from ExpandNode and insert them here
1622 fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1623 fprintf(fp," n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1624 fprintf(fp," }\n");
1625 fprintf(fp," }\n");
1626 // This value is generated by one of the new instructions
1627 fprintf(fp," else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1628 }
1629 }
1630
1631 // Update the DAG tmp's for values defined by this instruction
1632 int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1633 Effect *eform = (Effect *)new_inst->_effects[parameter];
1634 // If this operand is a definition in either an effects rule
1635 // or a match rule
1636 if((eform) && (is_def(eform->_use_def))) {
1637 // Update the temp associated with this operand
1638 fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
1639 }
1640 else if( new_def_pos != -1 ) {
1641 // Instruction defines a value but user did not declare it
1642 // in the 'effect' clause
1643 fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
1644 }
1645 } // done iterating over a new instruction's operands
1646
1647 // Fix number of operands, as we do not generate redundant ones.
1648 // The matcher generates some redundant operands, which are removed
1649 // in the expand function (of the node we generate here). We don't
1650 // generate the redundant operands here, so set the correct _num_opnds.
1651 if (expand_instruction->num_opnds() != expand_instruction->num_unique_opnds()) {
1652 fprintf(fp, " n%d->_num_opnds = %d; // Only unique opnds generated.\n",
1653 cnt, expand_instruction->num_unique_opnds());
1654 }
1655
1656 // Invoke Expand() for the newly created instruction.
1657 fprintf(fp," result = n%d->Expand( state, proj_list, mem );\n", cnt);
1658 assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1659 } // done iterating over new instructions
1660 fprintf(fp,"\n");
1661 } // done generating expand rule
1662
1663 // Generate projections for instruction's additional DEFs and KILLs
1664 if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1665 // Get string representing the MachNode that projections point at
1666 const char *machNode = "this";
1667 // Generate the projections
1668 fprintf(fp," // Add projection edges for additional defs or kills\n");
1669
1670 // Examine each component to see if it is a DEF or KILL
1671 node->_components.reset();
1672 // Skip the first component, if already handled as (SET dst (...))
1673 Component *comp = NULL;
1674 // For kills, the choice of projection numbers is arbitrary
1675 int proj_no = 1;
1676 bool declared_def = false;
1677 bool declared_kill = false;
1678
1679 while ((comp = node->_components.iter()) != NULL) {
1680 // Lookup register class associated with operand type
1681 Form *form = (Form*)_globalNames[comp->_type];
1682 assert(form, "component type must be a defined form");
1683 OperandForm *op = form->is_operand();
1684
1685 if (comp->is(Component::TEMP) ||
1686 comp->is(Component::TEMP_DEF)) {
1687 fprintf(fp, " // TEMP %s\n", comp->_name);
1688 if (!declared_def) {
1689 // Define the variable "def" to hold new MachProjNodes
1690 fprintf(fp, " MachTempNode *def;\n");
1691 declared_def = true;
1692 }
1693 if (op && op->_interface && op->_interface->is_RegInterface()) {
1694 fprintf(fp," def = new MachTempNode(state->MachOperGenerator(%s));\n",
1695 machOperEnum(op->_ident));
1696 fprintf(fp," add_req(def);\n");
1697 // The operand for TEMP is already constructed during
1698 // this mach node construction, see buildMachNode().
1699 //
1700 // int idx = node->operand_position_format(comp->_name);
1701 // fprintf(fp," set_opnd_array(%d, state->MachOperGenerator(%s));\n",
1702 // idx, machOperEnum(op->_ident));
1703 } else {
1704 assert(false, "can't have temps which aren't registers");
1705 }
1706 } else if (comp->isa(Component::KILL)) {
1707 fprintf(fp, " // DEF/KILL %s\n", comp->_name);
1708
1709 if (!declared_kill) {
1710 // Define the variable "kill" to hold new MachProjNodes
1711 fprintf(fp, " MachProjNode *kill;\n");
1712 declared_kill = true;
1713 }
1714
1715 assert(op, "Support additional KILLS for base operands");
1716 const char *regmask = reg_mask(*op);
1717 const char *ideal_type = op->ideal_type(_globalNames, _register);
1718
1719 if (!op->is_bound_register()) {
1720 syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1721 node->_ident, comp->_type, comp->_name);
1722 }
1723
1724 fprintf(fp," kill = ");
1725 fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
1726 machNode, proj_no++, regmask, ideal_type);
1727 fprintf(fp," proj_list.push(kill);\n");
1728 }
1729 }
1730 }
1731
1732 if( !node->expands() && node->_matrule != NULL ) {
1733 // Remove duplicated operands and inputs which use the same name.
1734 // Search through match operands for the same name usage.
1735 // The matcher generates these non-unique operands. If the node
1736 // was constructed by an expand rule, there are no unique operands.
1737 uint cur_num_opnds = node->num_opnds();
1738 if (cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds()) {
1739 Component *comp = NULL;
1740 fprintf(fp, " // Remove duplicated operands and inputs which use the same name.\n");
1741 fprintf(fp, " if (num_opnds() == %d) {\n", cur_num_opnds);
1742 // Build mapping from num_edges to local variables
1743 fprintf(fp," unsigned num0 = 0;\n");
1744 for (i = 1; i < cur_num_opnds; i++) {
1745 fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();", i, i);
1746 fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1747 }
1748 // Build a mapping from operand index to input edges
1749 fprintf(fp," unsigned idx0 = oper_input_base();\n");
1750 for (i = 0; i < cur_num_opnds; i++) {
1751 fprintf(fp," unsigned idx%d = idx%d + num%d;\n", i+1, i, i);
1752 }
1753
1754 uint new_num_opnds = 1;
1755 node->_components.reset();
1756 // Skip first unique operands.
1757 for (i = 1; i < cur_num_opnds; i++) {
1758 comp = node->_components.iter();
1759 if (i != node->unique_opnds_idx(i)) {
1760 break;
1761 }
1762 new_num_opnds++;
1763 }
1764 // Replace not unique operands with next unique operands.
1765 for ( ; i < cur_num_opnds; i++) {
1766 comp = node->_components.iter();
1767 uint j = node->unique_opnds_idx(i);
1768 // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1769 if (j != node->unique_opnds_idx(j)) {
1770 fprintf(fp," set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1771 new_num_opnds, i, comp->_name);
1772 // Delete not unique edges here.
1773 fprintf(fp," for (unsigned i = 0; i < num%d; i++) {\n", i);
1774 fprintf(fp," set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1775 fprintf(fp," }\n");
1776 fprintf(fp," num%d = num%d;\n", new_num_opnds, i);
1777 fprintf(fp," idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1778 new_num_opnds++;
1779 }
1780 }
1781 // Delete the rest of edges.
1782 fprintf(fp," for (int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1783 fprintf(fp," del_req(i);\n");
1784 fprintf(fp," }\n");
1785 fprintf(fp," _num_opnds = %d;\n", new_num_opnds);
1786 assert(new_num_opnds == node->num_unique_opnds(), "what?");
1787 fprintf(fp, " } else {\n");
1788 fprintf(fp, " assert(_num_opnds == %d, \"There should be either %d or %d operands.\");\n",
1789 new_num_opnds, new_num_opnds, cur_num_opnds);
1790 fprintf(fp, " }\n");
1791 }
1792 }
1793
1794 // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1795 // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1796 // There are nodes that don't use $constantablebase, but still require that it
1797 // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1798 if (node->is_mach_constant() || node->needs_constant_base()) {
1799 if (node->is_ideal_call() != Form::invalid_type &&
1800 node->is_ideal_call() != Form::JAVA_LEAF) {
1801 fprintf(fp, " // MachConstantBaseNode added in matcher.\n");
1802 _needs_clone_jvms = true;
1803 } else {
1804 fprintf(fp, " add_req(C->mach_constant_base_node());\n");
1805 }
1806 }
1807
1808 fprintf(fp, "\n");
1809 if (node->expands()) {
1810 fprintf(fp, " return result;\n");
1811 } else {
1812 fprintf(fp, " return this;\n");
1813 }
1814 fprintf(fp, "}\n");
1815 fprintf(fp, "\n");
1816 }
1817
1818
1819 //------------------------------Emit Routines----------------------------------
1820 // Special classes and routines for defining node emit routines which output
1821 // target specific instruction object encodings.
1822 // Define the ___Node::emit() routine
1823 //
1824 // (1) void ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1825 // (2) // ... encoding defined by user
1826 // (3)
1827 // (4) }
1828 //
1829
1830 class DefineEmitState {
1831 private:
1832 enum reloc_format { RELOC_NONE = -1,
1833 RELOC_IMMEDIATE = 0,
1834 RELOC_DISP = 1,
1835 RELOC_CALL_DISP = 2 };
1836 enum literal_status{ LITERAL_NOT_SEEN = 0,
1837 LITERAL_SEEN = 1,
1838 LITERAL_ACCESSED = 2,
1839 LITERAL_OUTPUT = 3 };
1840 // Temporaries that describe current operand
1841 bool _cleared;
1842 OpClassForm *_opclass;
1843 OperandForm *_operand;
1844 int _operand_idx;
1845 const char *_local_name;
1846 const char *_operand_name;
1847 bool _doing_disp;
1848 bool _doing_constant;
1849 Form::DataType _constant_type;
1850 DefineEmitState::literal_status _constant_status;
1851 DefineEmitState::literal_status _reg_status;
1852 bool _doing_emit8;
1853 bool _doing_emit_d32;
1854 bool _doing_emit_d16;
1855 bool _doing_emit_hi;
1856 bool _doing_emit_lo;
1857 bool _may_reloc;
1858 reloc_format _reloc_form;
1859 const char * _reloc_type;
1860 bool _processing_noninput;
1861
1862 NameList _strings_to_emit;
1863
1864 // Stable state, set by constructor
1865 ArchDesc &_AD;
1866 FILE *_fp;
1867 EncClass &_encoding;
1868 InsEncode &_ins_encode;
1869 InstructForm &_inst;
1870
1871 public:
DefineEmitState(FILE * fp,ArchDesc & AD,EncClass & encoding,InsEncode & ins_encode,InstructForm & inst)1872 DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1873 InsEncode &ins_encode, InstructForm &inst)
1874 : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1875 clear();
1876 }
1877
clear()1878 void clear() {
1879 _cleared = true;
1880 _opclass = NULL;
1881 _operand = NULL;
1882 _operand_idx = 0;
1883 _local_name = "";
1884 _operand_name = "";
1885 _doing_disp = false;
1886 _doing_constant= false;
1887 _constant_type = Form::none;
1888 _constant_status = LITERAL_NOT_SEEN;
1889 _reg_status = LITERAL_NOT_SEEN;
1890 _doing_emit8 = false;
1891 _doing_emit_d32= false;
1892 _doing_emit_d16= false;
1893 _doing_emit_hi = false;
1894 _doing_emit_lo = false;
1895 _may_reloc = false;
1896 _reloc_form = RELOC_NONE;
1897 _reloc_type = AdlcVMDeps::none_reloc_type();
1898 _strings_to_emit.clear();
1899 }
1900
1901 // Track necessary state when identifying a replacement variable
1902 // @arg rep_var: The formal parameter of the encoding.
update_state(const char * rep_var)1903 void update_state(const char *rep_var) {
1904 // A replacement variable or one of its subfields
1905 // Obtain replacement variable from list
1906 if ( (*rep_var) != '$' ) {
1907 // A replacement variable, '$' prefix
1908 // check_rep_var( rep_var );
1909 if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1910 // No state needed.
1911 assert( _opclass == NULL,
1912 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1913 }
1914 else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1915 (strcmp(rep_var, "constantoffset") == 0) ||
1916 (strcmp(rep_var, "constantaddress") == 0)) {
1917 if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1918 _AD.syntax_err(_encoding._linenum,
1919 "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1920 rep_var, _encoding._name);
1921 }
1922 }
1923 else {
1924 // Lookup its position in (formal) parameter list of encoding
1925 int param_no = _encoding.rep_var_index(rep_var);
1926 if ( param_no == -1 ) {
1927 _AD.syntax_err( _encoding._linenum,
1928 "Replacement variable %s not found in enc_class %s.\n",
1929 rep_var, _encoding._name);
1930 }
1931
1932 // Lookup the corresponding ins_encode parameter
1933 // This is the argument (actual parameter) to the encoding.
1934 const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1935 if (inst_rep_var == NULL) {
1936 _AD.syntax_err( _ins_encode._linenum,
1937 "Parameter %s not passed to enc_class %s from instruct %s.\n",
1938 rep_var, _encoding._name, _inst._ident);
1939 assert(false, "inst_rep_var == NULL, cannot continue.");
1940 }
1941
1942 // Check if instruction's actual parameter is a local name in the instruction
1943 const Form *local = _inst._localNames[inst_rep_var];
1944 OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
1945 // Note: assert removed to allow constant and symbolic parameters
1946 // assert( opc, "replacement variable was not found in local names");
1947 // Lookup the index position iff the replacement variable is a localName
1948 int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1949
1950 if ( idx != -1 ) {
1951 // This is a local in the instruction
1952 // Update local state info.
1953 _opclass = opc;
1954 _operand_idx = idx;
1955 _local_name = rep_var;
1956 _operand_name = inst_rep_var;
1957
1958 // !!!!!
1959 // Do not support consecutive operands.
1960 assert( _operand == NULL, "Unimplemented()");
1961 _operand = opc->is_operand();
1962 }
1963 else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1964 // Instruction provided a constant expression
1965 // Check later that encoding specifies $$$constant to resolve as constant
1966 _constant_status = LITERAL_SEEN;
1967 }
1968 else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1969 // Instruction provided an opcode: "primary", "secondary", "tertiary"
1970 // Check later that encoding specifies $$$constant to resolve as constant
1971 _constant_status = LITERAL_SEEN;
1972 }
1973 else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1974 // Instruction provided a literal register name for this parameter
1975 // Check that encoding specifies $$$reg to resolve.as register.
1976 _reg_status = LITERAL_SEEN;
1977 }
1978 else {
1979 // Check for unimplemented functionality before hard failure
1980 assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
1981 assert(false, "ShouldNotReachHere()");
1982 }
1983 } // done checking which operand this is.
1984 } else {
1985 //
1986 // A subfield variable, '$$' prefix
1987 // Check for fields that may require relocation information.
1988 // Then check that literal register parameters are accessed with 'reg' or 'constant'
1989 //
1990 if ( strcmp(rep_var,"$disp") == 0 ) {
1991 _doing_disp = true;
1992 assert( _opclass, "Must use operand or operand class before '$disp'");
1993 if( _operand == NULL ) {
1994 // Only have an operand class, generate run-time check for relocation
1995 _may_reloc = true;
1996 _reloc_form = RELOC_DISP;
1997 _reloc_type = AdlcVMDeps::oop_reloc_type();
1998 } else {
1999 // Do precise check on operand: is it a ConP or not
2000 //
2001 // Check interface for value of displacement
2002 assert( ( _operand->_interface != NULL ),
2003 "$disp can only follow memory interface operand");
2004 MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2005 assert( mem_interface != NULL,
2006 "$disp can only follow memory interface operand");
2007 const char *disp = mem_interface->_disp;
2008
2009 if( disp != NULL && (*disp == '$') ) {
2010 // MemInterface::disp contains a replacement variable,
2011 // Check if this matches a ConP
2012 //
2013 // Lookup replacement variable, in operand's component list
2014 const char *rep_var_name = disp + 1; // Skip '$'
2015 const Component *comp = _operand->_components.search(rep_var_name);
2016 assert( comp != NULL,"Replacement variable not found in components");
2017 const char *type = comp->_type;
2018 // Lookup operand form for replacement variable's type
2019 const Form *form = _AD.globalNames()[type];
2020 assert( form != NULL, "Replacement variable's type not found");
2021 OperandForm *op = form->is_operand();
2022 assert( op, "Attempting to emit a non-register or non-constant");
2023 // Check if this is a constant
2024 if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2025 // Check which constant this name maps to: _c0, _c1, ..., _cn
2026 // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2027 // assert( idx != -1, "Constant component not found in operand");
2028 Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2029 if ( dtype == Form::idealP ) {
2030 _may_reloc = true;
2031 // No longer true that idealP is always an oop
2032 _reloc_form = RELOC_DISP;
2033 _reloc_type = AdlcVMDeps::oop_reloc_type();
2034 }
2035 }
2036
2037 else if( _operand->is_user_name_for_sReg() != Form::none ) {
2038 // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2039 assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2040 _may_reloc = false;
2041 } else {
2042 assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2043 }
2044 }
2045 } // finished with precise check of operand for relocation.
2046 } // finished with subfield variable
2047 else if ( strcmp(rep_var,"$constant") == 0 ) {
2048 _doing_constant = true;
2049 if ( _constant_status == LITERAL_NOT_SEEN ) {
2050 // Check operand for type of constant
2051 assert( _operand, "Must use operand before '$$constant'");
2052 Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2053 _constant_type = dtype;
2054 if ( dtype == Form::idealP ) {
2055 _may_reloc = true;
2056 // No longer true that idealP is always an oop
2057 // // _must_reloc = true;
2058 _reloc_form = RELOC_IMMEDIATE;
2059 _reloc_type = AdlcVMDeps::oop_reloc_type();
2060 } else {
2061 // No relocation information needed
2062 }
2063 } else {
2064 // User-provided literals may not require relocation information !!!!!
2065 assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2066 }
2067 }
2068 else if ( strcmp(rep_var,"$label") == 0 ) {
2069 // Calls containing labels require relocation
2070 if ( _inst.is_ideal_call() ) {
2071 _may_reloc = true;
2072 // !!!!! !!!!!
2073 _reloc_type = AdlcVMDeps::none_reloc_type();
2074 }
2075 }
2076
2077 // literal register parameter must be accessed as a 'reg' field.
2078 if ( _reg_status != LITERAL_NOT_SEEN ) {
2079 assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2080 if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2081 _reg_status = LITERAL_ACCESSED;
2082 } else {
2083 _AD.syntax_err(_encoding._linenum,
2084 "Invalid access to literal register parameter '%s' in %s.\n",
2085 rep_var, _encoding._name);
2086 assert( false, "invalid access to literal register parameter");
2087 }
2088 }
2089 // literal constant parameters must be accessed as a 'constant' field
2090 if (_constant_status != LITERAL_NOT_SEEN) {
2091 assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2092 if (strcmp(rep_var,"$constant") == 0) {
2093 _constant_status = LITERAL_ACCESSED;
2094 } else {
2095 _AD.syntax_err(_encoding._linenum,
2096 "Invalid access to literal constant parameter '%s' in %s.\n",
2097 rep_var, _encoding._name);
2098 }
2099 }
2100 } // end replacement and/or subfield
2101
2102 }
2103
add_rep_var(const char * rep_var)2104 void add_rep_var(const char *rep_var) {
2105 // Handle subfield and replacement variables.
2106 if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2107 // Check for emit prefix, '$$emit32'
2108 assert( _cleared, "Can not nest $$$emit32");
2109 if ( strcmp(rep_var,"$$emit32") == 0 ) {
2110 _doing_emit_d32 = true;
2111 }
2112 else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2113 _doing_emit_d16 = true;
2114 }
2115 else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2116 _doing_emit_hi = true;
2117 }
2118 else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2119 _doing_emit_lo = true;
2120 }
2121 else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2122 _doing_emit8 = true;
2123 }
2124 else {
2125 _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2126 assert( false, "fatal();");
2127 }
2128 }
2129 else {
2130 // Update state for replacement variables
2131 update_state( rep_var );
2132 _strings_to_emit.addName(rep_var);
2133 }
2134 _cleared = false;
2135 }
2136
emit_replacement()2137 void emit_replacement() {
2138 // A replacement variable or one of its subfields
2139 // Obtain replacement variable from list
2140 // const char *ec_rep_var = encoding->_rep_vars.iter();
2141 const char *rep_var;
2142 _strings_to_emit.reset();
2143 while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2144
2145 if ( (*rep_var) == '$' ) {
2146 // A subfield variable, '$$' prefix
2147 emit_field( rep_var );
2148 } else {
2149 if (_strings_to_emit.peek() != NULL &&
2150 strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2151 fprintf(_fp, "Address::make_raw(");
2152
2153 emit_rep_var( rep_var );
2154 fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2155
2156 _reg_status = LITERAL_ACCESSED;
2157 emit_rep_var( rep_var );
2158 fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2159
2160 _reg_status = LITERAL_ACCESSED;
2161 emit_rep_var( rep_var );
2162 fprintf(_fp,"->scale(), ");
2163
2164 _reg_status = LITERAL_ACCESSED;
2165 emit_rep_var( rep_var );
2166 Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2167 if( _operand && _operand_idx==0 && stack_type != Form::none ) {
2168 fprintf(_fp,"->disp(ra_,this,0), ");
2169 } else {
2170 fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2171 }
2172
2173 _reg_status = LITERAL_ACCESSED;
2174 emit_rep_var( rep_var );
2175 fprintf(_fp,"->disp_reloc())");
2176
2177 // skip trailing $Address
2178 _strings_to_emit.iter();
2179 } else {
2180 // A replacement variable, '$' prefix
2181 const char* next = _strings_to_emit.peek();
2182 const char* next2 = _strings_to_emit.peek(2);
2183 if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2184 (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2185 // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2186 // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2187 fprintf(_fp, "as_Register(");
2188 // emit the operand reference
2189 emit_rep_var( rep_var );
2190 rep_var = _strings_to_emit.iter();
2191 assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2192 // handle base or index
2193 emit_field(rep_var);
2194 rep_var = _strings_to_emit.iter();
2195 assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2196 // close up the parens
2197 fprintf(_fp, ")");
2198 } else {
2199 emit_rep_var( rep_var );
2200 }
2201 }
2202 } // end replacement and/or subfield
2203 }
2204 }
2205
emit_reloc_type(const char * type)2206 void emit_reloc_type(const char* type) {
2207 fprintf(_fp, "%s", type)
2208 ;
2209 }
2210
2211
emit()2212 void emit() {
2213 //
2214 // "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2215 //
2216 // Emit the function name when generating an emit function
2217 if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2218 const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2219 // In general, relocatable isn't known at compiler compile time.
2220 // Check results of prior scan
2221 if ( ! _may_reloc ) {
2222 // Definitely don't need relocation information
2223 fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2224 emit_replacement(); fprintf(_fp, ")");
2225 }
2226 else {
2227 // Emit RUNTIME CHECK to see if value needs relocation info
2228 // If emitting a relocatable address, use 'emit_d32_reloc'
2229 const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2230 assert( (_doing_disp || _doing_constant)
2231 && !(_doing_disp && _doing_constant),
2232 "Must be emitting either a displacement or a constant");
2233 fprintf(_fp,"\n");
2234 fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2235 _operand_idx, disp_constant);
2236 fprintf(_fp," ");
2237 fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2238 emit_replacement(); fprintf(_fp,", ");
2239 fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2240 _operand_idx, disp_constant);
2241 fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2242 fprintf(_fp,"\n");
2243 fprintf(_fp,"} else {\n");
2244 fprintf(_fp," emit_%s(cbuf, ", d32_hi_lo);
2245 emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2246 }
2247 }
2248 else if ( _doing_emit_d16 ) {
2249 // Relocation of 16-bit values is not supported
2250 fprintf(_fp,"emit_d16(cbuf, ");
2251 emit_replacement(); fprintf(_fp, ")");
2252 // No relocation done for 16-bit values
2253 }
2254 else if ( _doing_emit8 ) {
2255 // Relocation of 8-bit values is not supported
2256 fprintf(_fp,"emit_d8(cbuf, ");
2257 emit_replacement(); fprintf(_fp, ")");
2258 // No relocation done for 8-bit values
2259 }
2260 else {
2261 // Not an emit# command, just output the replacement string.
2262 emit_replacement();
2263 }
2264
2265 // Get ready for next state collection.
2266 clear();
2267 }
2268
2269 private:
2270
2271 // recognizes names which represent MacroAssembler register types
2272 // and return the conversion function to build them from OptoReg
reg_conversion(const char * rep_var)2273 const char* reg_conversion(const char* rep_var) {
2274 if (strcmp(rep_var,"$Register") == 0) return "as_Register";
2275 if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2276 #if defined(IA32) || defined(AMD64)
2277 if (strcmp(rep_var,"$XMMRegister") == 0) return "as_XMMRegister";
2278 #endif
2279 if (strcmp(rep_var,"$CondRegister") == 0) return "as_ConditionRegister";
2280 #if defined(PPC64)
2281 if (strcmp(rep_var,"$VectorRegister") == 0) return "as_VectorRegister";
2282 if (strcmp(rep_var,"$VectorSRegister") == 0) return "as_VectorSRegister";
2283 #endif
2284 return NULL;
2285 }
2286
emit_field(const char * rep_var)2287 void emit_field(const char *rep_var) {
2288 const char* reg_convert = reg_conversion(rep_var);
2289
2290 // A subfield variable, '$$subfield'
2291 if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2292 // $reg form or the $Register MacroAssembler type conversions
2293 assert( _operand_idx != -1,
2294 "Must use this subfield after operand");
2295 if( _reg_status == LITERAL_NOT_SEEN ) {
2296 if (_processing_noninput) {
2297 const Form *local = _inst._localNames[_operand_name];
2298 OperandForm *oper = local->is_operand();
2299 const RegDef* first = oper->get_RegClass()->find_first_elem();
2300 if (reg_convert != NULL) {
2301 fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2302 } else {
2303 fprintf(_fp, "%s_enc", first->_regname);
2304 }
2305 } else {
2306 fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2307 // Add parameter for index position, if not result operand
2308 if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2309 fprintf(_fp,")");
2310 fprintf(_fp, "/* %s */", _operand_name);
2311 }
2312 } else {
2313 assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2314 // Register literal has already been sent to output file, nothing more needed
2315 }
2316 }
2317 else if ( strcmp(rep_var,"$base") == 0 ) {
2318 assert( _operand_idx != -1,
2319 "Must use this subfield after operand");
2320 assert( ! _may_reloc, "UnImplemented()");
2321 fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2322 }
2323 else if ( strcmp(rep_var,"$index") == 0 ) {
2324 assert( _operand_idx != -1,
2325 "Must use this subfield after operand");
2326 assert( ! _may_reloc, "UnImplemented()");
2327 fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2328 }
2329 else if ( strcmp(rep_var,"$scale") == 0 ) {
2330 assert( ! _may_reloc, "UnImplemented()");
2331 fprintf(_fp,"->scale()");
2332 }
2333 else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2334 assert( ! _may_reloc, "UnImplemented()");
2335 fprintf(_fp,"->ccode()");
2336 }
2337 else if ( strcmp(rep_var,"$constant") == 0 ) {
2338 if( _constant_status == LITERAL_NOT_SEEN ) {
2339 if ( _constant_type == Form::idealD ) {
2340 fprintf(_fp,"->constantD()");
2341 } else if ( _constant_type == Form::idealF ) {
2342 fprintf(_fp,"->constantF()");
2343 } else if ( _constant_type == Form::idealL ) {
2344 fprintf(_fp,"->constantL()");
2345 } else {
2346 fprintf(_fp,"->constant()");
2347 }
2348 } else {
2349 assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2350 // Constant literal has already been sent to output file, nothing more needed
2351 }
2352 }
2353 else if ( strcmp(rep_var,"$disp") == 0 ) {
2354 Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2355 if( _operand && _operand_idx==0 && stack_type != Form::none ) {
2356 fprintf(_fp,"->disp(ra_,this,0)");
2357 } else {
2358 fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2359 }
2360 }
2361 else if ( strcmp(rep_var,"$label") == 0 ) {
2362 fprintf(_fp,"->label()");
2363 }
2364 else if ( strcmp(rep_var,"$method") == 0 ) {
2365 fprintf(_fp,"->method()");
2366 }
2367 else {
2368 printf("emit_field: %s\n",rep_var);
2369 globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2370 rep_var, _inst._ident);
2371 assert( false, "UnImplemented()");
2372 }
2373 }
2374
2375
emit_rep_var(const char * rep_var)2376 void emit_rep_var(const char *rep_var) {
2377 _processing_noninput = false;
2378 // A replacement variable, originally '$'
2379 if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2380 if ((_inst._opcode == NULL) || !_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2381 // Missing opcode
2382 _AD.syntax_err( _inst._linenum,
2383 "Missing $%s opcode definition in %s, used by encoding %s\n",
2384 rep_var, _inst._ident, _encoding._name);
2385 }
2386 }
2387 else if (strcmp(rep_var, "constanttablebase") == 0) {
2388 fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2389 }
2390 else if (strcmp(rep_var, "constantoffset") == 0) {
2391 fprintf(_fp, "constant_offset()");
2392 }
2393 else if (strcmp(rep_var, "constantaddress") == 0) {
2394 fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2395 }
2396 else {
2397 // Lookup its position in parameter list
2398 int param_no = _encoding.rep_var_index(rep_var);
2399 if ( param_no == -1 ) {
2400 _AD.syntax_err( _encoding._linenum,
2401 "Replacement variable %s not found in enc_class %s.\n",
2402 rep_var, _encoding._name);
2403 }
2404 // Lookup the corresponding ins_encode parameter
2405 const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2406
2407 // Check if instruction's actual parameter is a local name in the instruction
2408 const Form *local = _inst._localNames[inst_rep_var];
2409 OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
2410 // Note: assert removed to allow constant and symbolic parameters
2411 // assert( opc, "replacement variable was not found in local names");
2412 // Lookup the index position iff the replacement variable is a localName
2413 int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2414 if( idx != -1 ) {
2415 if (_inst.is_noninput_operand(idx)) {
2416 // This operand isn't a normal input so printing it is done
2417 // specially.
2418 _processing_noninput = true;
2419 } else {
2420 // Output the emit code for this operand
2421 fprintf(_fp,"opnd_array(%d)",idx);
2422 }
2423 assert( _operand == opc->is_operand(),
2424 "Previous emit $operand does not match current");
2425 }
2426 else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2427 // else check if it is a constant expression
2428 // Removed following assert to allow primitive C types as arguments to encodings
2429 // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2430 fprintf(_fp,"(%s)", inst_rep_var);
2431 _constant_status = LITERAL_OUTPUT;
2432 }
2433 else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2434 // else check if "primary", "secondary", "tertiary"
2435 assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2436 if ((_inst._opcode == NULL) || !_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2437 // Missing opcode
2438 _AD.syntax_err( _inst._linenum,
2439 "Missing $%s opcode definition in %s\n",
2440 rep_var, _inst._ident);
2441
2442 }
2443 _constant_status = LITERAL_OUTPUT;
2444 }
2445 else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2446 // Instruction provided a literal register name for this parameter
2447 // Check that encoding specifies $$$reg to resolve.as register.
2448 assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2449 fprintf(_fp,"(%s_enc)", inst_rep_var);
2450 _reg_status = LITERAL_OUTPUT;
2451 }
2452 else {
2453 // Check for unimplemented functionality before hard failure
2454 assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
2455 assert(false, "ShouldNotReachHere()");
2456 }
2457 // all done
2458 }
2459 }
2460
2461 }; // end class DefineEmitState
2462
2463
defineSize(FILE * fp,InstructForm & inst)2464 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2465
2466 //(1)
2467 // Output instruction's emit prototype
2468 fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2469 inst._ident);
2470
2471 fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2472
2473 //(2)
2474 // Print the size
2475 fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2476
2477 // (3) and (4)
2478 fprintf(fp,"}\n\n");
2479 }
2480
2481 // Emit postalloc expand function.
define_postalloc_expand(FILE * fp,InstructForm & inst)2482 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2483 InsEncode *ins_encode = inst._insencode;
2484
2485 // Output instruction's postalloc_expand prototype.
2486 fprintf(fp, "void %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2487 inst._ident);
2488
2489 assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2490
2491 // Output each operand's offset into the array of registers.
2492 inst.index_temps(fp, _globalNames);
2493
2494 // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2495 // for each parameter <par_name> specified in the encoding.
2496 ins_encode->reset();
2497 const char *ec_name = ins_encode->encode_class_iter();
2498 assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2499
2500 EncClass *encoding = _encode->encClass(ec_name);
2501 if (encoding == NULL) {
2502 fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2503 abort();
2504 }
2505 if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2506 globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2507 inst._ident, ins_encode->current_encoding_num_args(),
2508 ec_name, encoding->num_args());
2509 }
2510
2511 fprintf(fp, " // Access to ins and operands for postalloc expand.\n");
2512 const int buflen = 2000;
2513 char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2514 char nbuf [buflen]; char *nb = nbuf; nbuf[0] = '\0';
2515 char opbuf [buflen]; char *ob = opbuf; opbuf[0] = '\0';
2516
2517 encoding->_parameter_type.reset();
2518 encoding->_parameter_name.reset();
2519 const char *type = encoding->_parameter_type.iter();
2520 const char *name = encoding->_parameter_name.iter();
2521 int param_no = 0;
2522 for (; (type != NULL) && (name != NULL);
2523 (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2524 const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2525 int idx = inst.operand_position_format(arg_name);
2526 if (strcmp(arg_name, "constanttablebase") == 0) {
2527 ib += sprintf(ib, " unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2528 name, type, arg_name);
2529 nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name);
2530 // There is no operand for the constanttablebase.
2531 } else if (inst.is_noninput_operand(idx)) {
2532 globalAD->syntax_err(inst._linenum,
2533 "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2534 inst._ident, arg_name);
2535 } else {
2536 ib += sprintf(ib, " unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2537 name, idx, type, arg_name);
2538 nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name);
2539 ob += sprintf(ob, " %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2540 }
2541 param_no++;
2542 }
2543 assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2544
2545 fprintf(fp, "%s", idxbuf);
2546 fprintf(fp, " Node *n_region = lookup(0);\n");
2547 fprintf(fp, "%s%s", nbuf, opbuf);
2548 fprintf(fp, " Compile *C = ra_->C;\n");
2549
2550 // Output this instruction's encodings.
2551 fprintf(fp, " {");
2552 const char *ec_code = NULL;
2553 const char *ec_rep_var = NULL;
2554 assert(encoding == _encode->encClass(ec_name), "");
2555
2556 DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2557 encoding->_code.reset();
2558 encoding->_rep_vars.reset();
2559 // Process list of user-defined strings,
2560 // and occurrences of replacement variables.
2561 // Replacement Vars are pushed into a list and then output.
2562 while ((ec_code = encoding->_code.iter()) != NULL) {
2563 if (! encoding->_code.is_signal(ec_code)) {
2564 // Emit pending code.
2565 pending.emit();
2566 pending.clear();
2567 // Emit this code section.
2568 fprintf(fp, "%s", ec_code);
2569 } else {
2570 // A replacement variable or one of its subfields.
2571 // Obtain replacement variable from list.
2572 ec_rep_var = encoding->_rep_vars.iter();
2573 pending.add_rep_var(ec_rep_var);
2574 }
2575 }
2576 // Emit pending code.
2577 pending.emit();
2578 pending.clear();
2579 fprintf(fp, " }\n");
2580
2581 fprintf(fp, "}\n\n");
2582
2583 ec_name = ins_encode->encode_class_iter();
2584 assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2585 }
2586
2587 // defineEmit -----------------------------------------------------------------
defineEmit(FILE * fp,InstructForm & inst)2588 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2589 InsEncode* encode = inst._insencode;
2590
2591 // (1)
2592 // Output instruction's emit prototype
2593 fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2594
2595 // If user did not define an encode section,
2596 // provide stub that does not generate any machine code.
2597 if( (_encode == NULL) || (encode == NULL) ) {
2598 fprintf(fp, " // User did not define an encode section.\n");
2599 fprintf(fp, "}\n");
2600 return;
2601 }
2602
2603 // Save current instruction's starting address (helps with relocation).
2604 fprintf(fp, " cbuf.set_insts_mark();\n");
2605
2606 // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2607 if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2608 fprintf(fp, " ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2609 }
2610
2611 // Output each operand's offset into the array of registers.
2612 inst.index_temps(fp, _globalNames);
2613
2614 // Output this instruction's encodings
2615 const char *ec_name;
2616 bool user_defined = false;
2617 encode->reset();
2618 while ((ec_name = encode->encode_class_iter()) != NULL) {
2619 fprintf(fp, " {\n");
2620 // Output user-defined encoding
2621 user_defined = true;
2622
2623 const char *ec_code = NULL;
2624 const char *ec_rep_var = NULL;
2625 EncClass *encoding = _encode->encClass(ec_name);
2626 if (encoding == NULL) {
2627 fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2628 abort();
2629 }
2630
2631 if (encode->current_encoding_num_args() != encoding->num_args()) {
2632 globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2633 inst._ident, encode->current_encoding_num_args(),
2634 ec_name, encoding->num_args());
2635 }
2636
2637 DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2638 encoding->_code.reset();
2639 encoding->_rep_vars.reset();
2640 // Process list of user-defined strings,
2641 // and occurrences of replacement variables.
2642 // Replacement Vars are pushed into a list and then output
2643 while ((ec_code = encoding->_code.iter()) != NULL) {
2644 if (!encoding->_code.is_signal(ec_code)) {
2645 // Emit pending code
2646 pending.emit();
2647 pending.clear();
2648 // Emit this code section
2649 fprintf(fp, "%s", ec_code);
2650 } else {
2651 // A replacement variable or one of its subfields
2652 // Obtain replacement variable from list
2653 ec_rep_var = encoding->_rep_vars.iter();
2654 pending.add_rep_var(ec_rep_var);
2655 }
2656 }
2657 // Emit pending code
2658 pending.emit();
2659 pending.clear();
2660 fprintf(fp, " }\n");
2661 } // end while instruction's encodings
2662
2663 // Check if user stated which encoding to user
2664 if ( user_defined == false ) {
2665 fprintf(fp, " // User did not define which encode class to use.\n");
2666 }
2667
2668 // (3) and (4)
2669 fprintf(fp, "}\n\n");
2670 }
2671
2672 // defineEvalConstant ---------------------------------------------------------
defineEvalConstant(FILE * fp,InstructForm & inst)2673 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2674 InsEncode* encode = inst._constant;
2675
2676 // (1)
2677 // Output instruction's emit prototype
2678 fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2679
2680 // For ideal jump nodes, add a jump-table entry.
2681 if (inst.is_ideal_jump()) {
2682 fprintf(fp, " _constant = C->constant_table().add_jump_table(this);\n");
2683 }
2684
2685 // If user did not define an encode section,
2686 // provide stub that does not generate any machine code.
2687 if ((_encode == NULL) || (encode == NULL)) {
2688 fprintf(fp, " // User did not define an encode section.\n");
2689 fprintf(fp, "}\n");
2690 return;
2691 }
2692
2693 // Output this instruction's encodings
2694 const char *ec_name;
2695 bool user_defined = false;
2696 encode->reset();
2697 while ((ec_name = encode->encode_class_iter()) != NULL) {
2698 fprintf(fp, " {\n");
2699 // Output user-defined encoding
2700 user_defined = true;
2701
2702 const char *ec_code = NULL;
2703 const char *ec_rep_var = NULL;
2704 EncClass *encoding = _encode->encClass(ec_name);
2705 if (encoding == NULL) {
2706 fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2707 abort();
2708 }
2709
2710 if (encode->current_encoding_num_args() != encoding->num_args()) {
2711 globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2712 inst._ident, encode->current_encoding_num_args(),
2713 ec_name, encoding->num_args());
2714 }
2715
2716 DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2717 encoding->_code.reset();
2718 encoding->_rep_vars.reset();
2719 // Process list of user-defined strings,
2720 // and occurrences of replacement variables.
2721 // Replacement Vars are pushed into a list and then output
2722 while ((ec_code = encoding->_code.iter()) != NULL) {
2723 if (!encoding->_code.is_signal(ec_code)) {
2724 // Emit pending code
2725 pending.emit();
2726 pending.clear();
2727 // Emit this code section
2728 fprintf(fp, "%s", ec_code);
2729 } else {
2730 // A replacement variable or one of its subfields
2731 // Obtain replacement variable from list
2732 ec_rep_var = encoding->_rep_vars.iter();
2733 pending.add_rep_var(ec_rep_var);
2734 }
2735 }
2736 // Emit pending code
2737 pending.emit();
2738 pending.clear();
2739 fprintf(fp, " }\n");
2740 } // end while instruction's encodings
2741
2742 // Check if user stated which encoding to user
2743 if (user_defined == false) {
2744 fprintf(fp, " // User did not define which encode class to use.\n");
2745 }
2746
2747 // (3) and (4)
2748 fprintf(fp, "}\n");
2749 }
2750
2751 // ---------------------------------------------------------------------------
2752 //--------Utilities to build MachOper and MachNode derived Classes------------
2753 // ---------------------------------------------------------------------------
2754
2755 //------------------------------Utilities to build Operand Classes------------
defineIn_RegMask(FILE * fp,FormDict & globals,OperandForm & oper)2756 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2757 uint num_edges = oper.num_edges(globals);
2758 if( num_edges != 0 ) {
2759 // Method header
2760 fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2761 oper._ident);
2762
2763 // Assert that the index is in range.
2764 fprintf(fp, " assert(0 <= index && index < %d, \"index out of range\");\n",
2765 num_edges);
2766
2767 // Figure out if all RegMasks are the same.
2768 const char* first_reg_class = oper.in_reg_class(0, globals);
2769 bool all_same = true;
2770 assert(first_reg_class != NULL, "did not find register mask");
2771
2772 for (uint index = 1; all_same && index < num_edges; index++) {
2773 const char* some_reg_class = oper.in_reg_class(index, globals);
2774 assert(some_reg_class != NULL, "did not find register mask");
2775 if (strcmp(first_reg_class, some_reg_class) != 0) {
2776 all_same = false;
2777 }
2778 }
2779
2780 if (all_same) {
2781 // Return the sole RegMask.
2782 if (strcmp(first_reg_class, "stack_slots") == 0) {
2783 fprintf(fp," return &(Compile::current()->FIRST_STACK_mask());\n");
2784 } else if (strcmp(first_reg_class, "dynamic") == 0) {
2785 fprintf(fp," return &RegMask::Empty;\n");
2786 } else {
2787 const char* first_reg_class_to_upper = toUpper(first_reg_class);
2788 fprintf(fp," return &%s_mask();\n", first_reg_class_to_upper);
2789 delete[] first_reg_class_to_upper;
2790 }
2791 } else {
2792 // Build a switch statement to return the desired mask.
2793 fprintf(fp," switch (index) {\n");
2794
2795 for (uint index = 0; index < num_edges; index++) {
2796 const char *reg_class = oper.in_reg_class(index, globals);
2797 assert(reg_class != NULL, "did not find register mask");
2798 if( !strcmp(reg_class, "stack_slots") ) {
2799 fprintf(fp, " case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2800 } else {
2801 const char* reg_class_to_upper = toUpper(reg_class);
2802 fprintf(fp, " case %d: return &%s_mask();\n", index, reg_class_to_upper);
2803 delete[] reg_class_to_upper;
2804 }
2805 }
2806 fprintf(fp," }\n");
2807 fprintf(fp," ShouldNotReachHere();\n");
2808 fprintf(fp," return NULL;\n");
2809 }
2810
2811 // Method close
2812 fprintf(fp, "}\n\n");
2813 }
2814 }
2815
2816 // generate code to create a clone for a class derived from MachOper
2817 //
2818 // (0) MachOper *MachOperXOper::clone() const {
2819 // (1) return new MachXOper( _ccode, _c0, _c1, ..., _cn);
2820 // (2) }
2821 //
defineClone(FILE * fp,FormDict & globalNames,OperandForm & oper)2822 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2823 fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
2824 // Check for constants that need to be copied over
2825 const int num_consts = oper.num_consts(globalNames);
2826 const bool is_ideal_bool = oper.is_ideal_bool();
2827 if( (num_consts > 0) ) {
2828 fprintf(fp," return new %sOper(", oper._ident);
2829 // generate parameters for constants
2830 int i = 0;
2831 fprintf(fp,"_c%d", i);
2832 for( i = 1; i < num_consts; ++i) {
2833 fprintf(fp,", _c%d", i);
2834 }
2835 // finish line (1)
2836 fprintf(fp,");\n");
2837 }
2838 else {
2839 assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2840 fprintf(fp," return new %sOper();\n", oper._ident);
2841 }
2842 // finish method
2843 fprintf(fp,"}\n");
2844 }
2845
2846 // Helper functions for bug 4796752, abstracted with minimal modification
2847 // from define_oper_interface()
rep_var_to_operand(const char * encoding,OperandForm & oper,FormDict & globals)2848 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2849 OperandForm *op = NULL;
2850 // Check for replacement variable
2851 if( *encoding == '$' ) {
2852 // Replacement variable
2853 const char *rep_var = encoding + 1;
2854 // Lookup replacement variable, rep_var, in operand's component list
2855 const Component *comp = oper._components.search(rep_var);
2856 assert( comp != NULL, "Replacement variable not found in components");
2857 // Lookup operand form for replacement variable's type
2858 const char *type = comp->_type;
2859 Form *form = (Form*)globals[type];
2860 assert( form != NULL, "Replacement variable's type not found");
2861 op = form->is_operand();
2862 assert( op, "Attempting to emit a non-register or non-constant");
2863 }
2864
2865 return op;
2866 }
2867
rep_var_to_constant_index(const char * encoding,OperandForm & oper,FormDict & globals)2868 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2869 int idx = -1;
2870 // Check for replacement variable
2871 if( *encoding == '$' ) {
2872 // Replacement variable
2873 const char *rep_var = encoding + 1;
2874 // Lookup replacement variable, rep_var, in operand's component list
2875 const Component *comp = oper._components.search(rep_var);
2876 assert( comp != NULL, "Replacement variable not found in components");
2877 // Lookup operand form for replacement variable's type
2878 const char *type = comp->_type;
2879 Form *form = (Form*)globals[type];
2880 assert( form != NULL, "Replacement variable's type not found");
2881 OperandForm *op = form->is_operand();
2882 assert( op, "Attempting to emit a non-register or non-constant");
2883 // Check that this is a constant and find constant's index:
2884 if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2885 idx = oper.constant_position(globals, comp);
2886 }
2887 }
2888
2889 return idx;
2890 }
2891
is_regI(const char * encoding,OperandForm & oper,FormDict & globals)2892 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2893 bool is_regI = false;
2894
2895 OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2896 if( op != NULL ) {
2897 // Check that this is a register
2898 if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2899 // Register
2900 const char* ideal = op->ideal_type(globals);
2901 is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2902 }
2903 }
2904
2905 return is_regI;
2906 }
2907
is_conP(const char * encoding,OperandForm & oper,FormDict & globals)2908 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2909 bool is_conP = false;
2910
2911 OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2912 if( op != NULL ) {
2913 // Check that this is a constant pointer
2914 if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2915 // Constant
2916 Form::DataType dtype = op->is_base_constant(globals);
2917 is_conP = (dtype == Form::idealP);
2918 }
2919 }
2920
2921 return is_conP;
2922 }
2923
2924
2925 // Define a MachOper interface methods
define_oper_interface(FILE * fp,OperandForm & oper,FormDict & globals,const char * name,const char * encoding)2926 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2927 const char *name, const char *encoding) {
2928 bool emit_position = false;
2929 int position = -1;
2930
2931 fprintf(fp," virtual int %s", name);
2932 // Generate access method for base, index, scale, disp, ...
2933 if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2934 fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2935 emit_position = true;
2936 } else if ( (strcmp(name,"disp") == 0) ) {
2937 fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2938 } else {
2939 fprintf(fp, "() const {\n");
2940 }
2941
2942 // Check for hexadecimal value OR replacement variable
2943 if( *encoding == '$' ) {
2944 // Replacement variable
2945 const char *rep_var = encoding + 1;
2946 fprintf(fp," // Replacement variable: %s\n", encoding+1);
2947 // Lookup replacement variable, rep_var, in operand's component list
2948 const Component *comp = oper._components.search(rep_var);
2949 assert( comp != NULL, "Replacement variable not found in components");
2950 // Lookup operand form for replacement variable's type
2951 const char *type = comp->_type;
2952 Form *form = (Form*)globals[type];
2953 assert( form != NULL, "Replacement variable's type not found");
2954 OperandForm *op = form->is_operand();
2955 assert( op, "Attempting to emit a non-register or non-constant");
2956 // Check that this is a register or a constant and generate code:
2957 if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2958 // Register
2959 int idx_offset = oper.register_position( globals, rep_var);
2960 position = idx_offset;
2961 fprintf(fp," return (int)ra_->get_encode(node->in(idx");
2962 if ( idx_offset > 0 ) fprintf(fp, "+%d",idx_offset);
2963 fprintf(fp,"));\n");
2964 } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2965 // StackSlot for an sReg comes either from input node or from self, when idx==0
2966 fprintf(fp," if( idx != 0 ) {\n");
2967 fprintf(fp," // Access stack offset (register number) for input operand\n");
2968 fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2969 fprintf(fp," }\n");
2970 fprintf(fp," // Access stack offset (register number) from myself\n");
2971 fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2972 } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2973 // Constant
2974 // Check which constant this name maps to: _c0, _c1, ..., _cn
2975 const int idx = oper.constant_position(globals, comp);
2976 assert( idx != -1, "Constant component not found in operand");
2977 // Output code for this constant, type dependent.
2978 fprintf(fp," return (int)" );
2979 oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2980 fprintf(fp,";\n");
2981 } else {
2982 assert( false, "Attempting to emit a non-register or non-constant");
2983 }
2984 }
2985 else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2986 // Hex value
2987 fprintf(fp," return %s;\n", encoding);
2988 } else {
2989 globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2990 oper._ident, encoding, name);
2991 assert( false, "Do not support octal or decimal encode constants");
2992 }
2993 fprintf(fp," }\n");
2994
2995 if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2996 fprintf(fp," virtual int %s_position() const { return %d; }\n", name, position);
2997 MemInterface *mem_interface = oper._interface->is_MemInterface();
2998 const char *base = mem_interface->_base;
2999 const char *disp = mem_interface->_disp;
3000 if( emit_position && (strcmp(name,"base") == 0)
3001 && base != NULL && is_regI(base, oper, globals)
3002 && disp != NULL && is_conP(disp, oper, globals) ) {
3003 // Found a memory access using a constant pointer for a displacement
3004 // and a base register containing an integer offset.
3005 // In this case the base and disp are reversed with respect to what
3006 // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3007 // Provide a non-NULL return for disp_as_type() that will allow adr_type()
3008 // to correctly compute the access type for alias analysis.
3009 //
3010 // See BugId 4796752, operand indOffset32X in i486.ad
3011 int idx = rep_var_to_constant_index(disp, oper, globals);
3012 fprintf(fp," virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3013 }
3014 }
3015 }
3016
3017 //
3018 // Construct the method to copy _idx, inputs and operands to new node.
define_fill_new_machnode(bool used,FILE * fp_cpp)3019 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3020 fprintf(fp_cpp, "\n");
3021 fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3022 fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
3023 if( !used ) {
3024 fprintf(fp_cpp, " // This architecture does not have cisc or short branch instructions\n");
3025 fprintf(fp_cpp, " ShouldNotCallThis();\n");
3026 fprintf(fp_cpp, "}\n");
3027 } else {
3028 // New node must use same node index for access through allocator's tables
3029 fprintf(fp_cpp, " // New node must use same node index\n");
3030 fprintf(fp_cpp, " node->set_idx( _idx );\n");
3031 // Copy machine-independent inputs
3032 fprintf(fp_cpp, " // Copy machine-independent inputs\n");
3033 fprintf(fp_cpp, " for( uint j = 0; j < req(); j++ ) {\n");
3034 fprintf(fp_cpp, " node->add_req(in(j));\n");
3035 fprintf(fp_cpp, " }\n");
3036 // Copy machine operands to new MachNode
3037 fprintf(fp_cpp, " // Copy my operands, except for cisc position\n");
3038 fprintf(fp_cpp, " int nopnds = num_opnds();\n");
3039 fprintf(fp_cpp, " assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3040 fprintf(fp_cpp, " MachOper **to = node->_opnds;\n");
3041 fprintf(fp_cpp, " for( int i = 0; i < nopnds; i++ ) {\n");
3042 fprintf(fp_cpp, " if( i != cisc_operand() ) \n");
3043 fprintf(fp_cpp, " to[i] = _opnds[i]->clone();\n");
3044 fprintf(fp_cpp, " }\n");
3045 fprintf(fp_cpp, "}\n");
3046 }
3047 fprintf(fp_cpp, "\n");
3048 }
3049
3050 //------------------------------defineClasses----------------------------------
3051 // Define members of MachNode and MachOper classes based on
3052 // operand and instruction lists
defineClasses(FILE * fp)3053 void ArchDesc::defineClasses(FILE *fp) {
3054
3055 // Define the contents of an array containing the machine register names
3056 defineRegNames(fp, _register);
3057 // Define an array containing the machine register encoding values
3058 defineRegEncodes(fp, _register);
3059 // Generate an enumeration of user-defined register classes
3060 // and a list of register masks, one for each class.
3061 // Only define the RegMask value objects in the expand file.
3062 // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3063 declare_register_masks(_HPP_file._fp);
3064 // build_register_masks(fp);
3065 build_register_masks(_CPP_EXPAND_file._fp);
3066 // Define the pipe_classes
3067 build_pipe_classes(_CPP_PIPELINE_file._fp);
3068
3069 // Generate Machine Classes for each operand defined in AD file
3070 fprintf(fp,"\n");
3071 fprintf(fp,"\n");
3072 fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3073 // Iterate through all operands
3074 _operands.reset();
3075 OperandForm *oper;
3076 for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3077 // Ensure this is a machine-world instruction
3078 if ( oper->ideal_only() ) continue;
3079 // !!!!!
3080 // The declaration of labelOper is in machine-independent file: machnode
3081 if ( strcmp(oper->_ident,"label") == 0 ) {
3082 defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3083
3084 fprintf(fp,"MachOper *%sOper::clone() const {\n", oper->_ident);
3085 fprintf(fp," return new %sOper(_label, _block_num);\n", oper->_ident);
3086 fprintf(fp,"}\n");
3087
3088 fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3089 oper->_ident, machOperEnum(oper->_ident));
3090 // // Currently all XXXOper::Hash() methods are identical (990820)
3091 // define_hash(fp, oper->_ident);
3092 // // Currently all XXXOper::Cmp() methods are identical (990820)
3093 // define_cmp(fp, oper->_ident);
3094 fprintf(fp,"\n");
3095
3096 continue;
3097 }
3098
3099 // The declaration of methodOper is in machine-independent file: machnode
3100 if ( strcmp(oper->_ident,"method") == 0 ) {
3101 defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3102
3103 fprintf(fp,"MachOper *%sOper::clone() const {\n", oper->_ident);
3104 fprintf(fp," return new %sOper(_method);\n", oper->_ident);
3105 fprintf(fp,"}\n");
3106
3107 fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3108 oper->_ident, machOperEnum(oper->_ident));
3109 // // Currently all XXXOper::Hash() methods are identical (990820)
3110 // define_hash(fp, oper->_ident);
3111 // // Currently all XXXOper::Cmp() methods are identical (990820)
3112 // define_cmp(fp, oper->_ident);
3113 fprintf(fp,"\n");
3114
3115 continue;
3116 }
3117
3118 defineIn_RegMask(fp, _globalNames, *oper);
3119 defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3120 // // Currently all XXXOper::Hash() methods are identical (990820)
3121 // define_hash(fp, oper->_ident);
3122 // // Currently all XXXOper::Cmp() methods are identical (990820)
3123 // define_cmp(fp, oper->_ident);
3124
3125 // side-call to generate output that used to be in the header file:
3126 extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3127 gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3128
3129 }
3130
3131
3132 // Generate Machine Classes for each instruction defined in AD file
3133 fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3134 // Output the definitions for out_RegMask() // & kill_RegMask()
3135 _instructions.reset();
3136 InstructForm *instr;
3137 MachNodeForm *machnode;
3138 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3139 // Ensure this is a machine-world instruction
3140 if ( instr->ideal_only() ) continue;
3141
3142 defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3143 }
3144
3145 bool used = false;
3146 // Output the definitions for expand rules & peephole rules
3147 _instructions.reset();
3148 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3149 // Ensure this is a machine-world instruction
3150 if ( instr->ideal_only() ) continue;
3151 // If there are multiple defs/kills, or an explicit expand rule, build rule
3152 if( instr->expands() || instr->needs_projections() ||
3153 instr->has_temps() ||
3154 instr->is_mach_constant() ||
3155 instr->needs_constant_base() ||
3156 (instr->_matrule != NULL &&
3157 instr->num_opnds() != instr->num_unique_opnds()) )
3158 defineExpand(_CPP_EXPAND_file._fp, instr);
3159 // If there is an explicit peephole rule, build it
3160 if ( instr->peepholes() )
3161 definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3162
3163 // Output code to convert to the cisc version, if applicable
3164 used |= instr->define_cisc_version(*this, fp);
3165
3166 // Output code to convert to the short branch version, if applicable
3167 used |= instr->define_short_branch_methods(*this, fp);
3168 }
3169
3170 // Construct the method called by cisc_version() to copy inputs and operands.
3171 define_fill_new_machnode(used, fp);
3172
3173 // Output the definitions for labels
3174 _instructions.reset();
3175 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3176 // Ensure this is a machine-world instruction
3177 if ( instr->ideal_only() ) continue;
3178
3179 // Access the fields for operand Label
3180 int label_position = instr->label_position();
3181 if( label_position != -1 ) {
3182 // Set the label
3183 fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3184 fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
3185 label_position );
3186 fprintf(fp," oper->_label = label;\n");
3187 fprintf(fp," oper->_block_num = block_num;\n");
3188 fprintf(fp,"}\n");
3189 // Save the label
3190 fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3191 fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
3192 label_position );
3193 fprintf(fp," *label = oper->_label;\n");
3194 fprintf(fp," *block_num = oper->_block_num;\n");
3195 fprintf(fp,"}\n");
3196 }
3197 }
3198
3199 // Output the definitions for methods
3200 _instructions.reset();
3201 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3202 // Ensure this is a machine-world instruction
3203 if ( instr->ideal_only() ) continue;
3204
3205 // Access the fields for operand Label
3206 int method_position = instr->method_position();
3207 if( method_position != -1 ) {
3208 // Access the method's address
3209 fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3210 fprintf(fp," ((methodOper*)opnd_array(%d))->_method = method;\n",
3211 method_position );
3212 fprintf(fp,"}\n");
3213 fprintf(fp,"\n");
3214 }
3215 }
3216
3217 // Define this instruction's number of relocation entries, base is '0'
3218 _instructions.reset();
3219 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3220 // Output the definition for number of relocation entries
3221 uint reloc_size = instr->reloc(_globalNames);
3222 if ( reloc_size != 0 ) {
3223 fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3224 fprintf(fp," return %d;\n", reloc_size);
3225 fprintf(fp,"}\n");
3226 fprintf(fp,"\n");
3227 }
3228 }
3229 fprintf(fp,"\n");
3230
3231 // Output the definitions for code generation
3232 //
3233 // address ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3234 // // ... encoding defined by user
3235 // return ptr;
3236 // }
3237 //
3238 _instructions.reset();
3239 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3240 // Ensure this is a machine-world instruction
3241 if ( instr->ideal_only() ) continue;
3242
3243 if (instr->_insencode) {
3244 if (instr->postalloc_expands()) {
3245 // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3246 // from code sections in ad file that is dumped to fp.
3247 define_postalloc_expand(fp, *instr);
3248 } else {
3249 defineEmit(fp, *instr);
3250 }
3251 }
3252 if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3253 if (instr->_size) defineSize (fp, *instr);
3254
3255 // side-call to generate output that used to be in the header file:
3256 extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3257 gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3258 }
3259
3260 // Output the definitions for alias analysis
3261 _instructions.reset();
3262 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3263 // Ensure this is a machine-world instruction
3264 if ( instr->ideal_only() ) continue;
3265
3266 // Analyze machine instructions that either USE or DEF memory.
3267 int memory_operand = instr->memory_operand(_globalNames);
3268
3269 if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3270 if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3271 fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3272 fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3273 } else {
3274 fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3275 }
3276 }
3277 }
3278
3279 // Get the length of the longest identifier
3280 int max_ident_len = 0;
3281 _instructions.reset();
3282
3283 for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3284 if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3285 int ident_len = (int)strlen(instr->_ident);
3286 if( max_ident_len < ident_len )
3287 max_ident_len = ident_len;
3288 }
3289 }
3290
3291 // Emit specifically for Node(s)
3292 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3293 max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3294 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3295 max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3296 fprintf(_CPP_PIPELINE_file._fp, "\n");
3297
3298 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3299 max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3300 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3301 max_ident_len, "MachNode");
3302 fprintf(_CPP_PIPELINE_file._fp, "\n");
3303
3304 // Output the definitions for machine node specific pipeline data
3305 _machnodes.reset();
3306
3307 if (_pipeline != NULL) {
3308 for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3309 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3310 machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3311 }
3312 }
3313
3314 fprintf(_CPP_PIPELINE_file._fp, "\n");
3315
3316 // Output the definitions for instruction pipeline static data references
3317 _instructions.reset();
3318
3319 if (_pipeline != NULL) {
3320 for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3321 if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3322 fprintf(_CPP_PIPELINE_file._fp, "\n");
3323 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3324 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3325 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3326 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3327 }
3328 }
3329 }
3330 }
3331
3332
3333 // -------------------------------- maps ------------------------------------
3334
3335 // Information needed to generate the ReduceOp mapping for the DFA
3336 class OutputReduceOp : public OutputMap {
3337 public:
OutputReduceOp(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3338 OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3339 : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3340
declaration()3341 void declaration() { fprintf(_hpp, "extern const int reduceOp[];\n"); }
definition()3342 void definition() { fprintf(_cpp, "const int reduceOp[] = {\n"); }
closing()3343 void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3344 OutputMap::closing();
3345 }
map(OpClassForm & opc)3346 void map(OpClassForm &opc) {
3347 const char *reduce = opc._ident;
3348 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3349 else fprintf(_cpp, " 0");
3350 }
map(OperandForm & oper)3351 void map(OperandForm &oper) {
3352 // Most operands without match rules, e.g. eFlagsReg, do not have a result operand
3353 const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3354 // operand stackSlot does not have a match rule, but produces a stackSlot
3355 if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3356 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3357 else fprintf(_cpp, " 0");
3358 }
map(InstructForm & inst)3359 void map(InstructForm &inst) {
3360 const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3361 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3362 else fprintf(_cpp, " 0");
3363 }
map(char * reduce)3364 void map(char *reduce) {
3365 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3366 else fprintf(_cpp, " 0");
3367 }
3368 };
3369
3370 // Information needed to generate the LeftOp mapping for the DFA
3371 class OutputLeftOp : public OutputMap {
3372 public:
OutputLeftOp(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3373 OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3374 : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3375
declaration()3376 void declaration() { fprintf(_hpp, "extern const int leftOp[];\n"); }
definition()3377 void definition() { fprintf(_cpp, "const int leftOp[] = {\n"); }
closing()3378 void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3379 OutputMap::closing();
3380 }
map(OpClassForm & opc)3381 void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
map(OperandForm & oper)3382 void map(OperandForm &oper) {
3383 const char *reduce = oper.reduce_left(_globals);
3384 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3385 else fprintf(_cpp, " 0");
3386 }
map(char * name)3387 void map(char *name) {
3388 const char *reduce = _AD.reduceLeft(name);
3389 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3390 else fprintf(_cpp, " 0");
3391 }
map(InstructForm & inst)3392 void map(InstructForm &inst) {
3393 const char *reduce = inst.reduce_left(_globals);
3394 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3395 else fprintf(_cpp, " 0");
3396 }
3397 };
3398
3399
3400 // Information needed to generate the RightOp mapping for the DFA
3401 class OutputRightOp : public OutputMap {
3402 public:
OutputRightOp(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3403 OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3404 : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3405
declaration()3406 void declaration() { fprintf(_hpp, "extern const int rightOp[];\n"); }
definition()3407 void definition() { fprintf(_cpp, "const int rightOp[] = {\n"); }
closing()3408 void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3409 OutputMap::closing();
3410 }
map(OpClassForm & opc)3411 void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
map(OperandForm & oper)3412 void map(OperandForm &oper) {
3413 const char *reduce = oper.reduce_right(_globals);
3414 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3415 else fprintf(_cpp, " 0");
3416 }
map(char * name)3417 void map(char *name) {
3418 const char *reduce = _AD.reduceRight(name);
3419 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3420 else fprintf(_cpp, " 0");
3421 }
map(InstructForm & inst)3422 void map(InstructForm &inst) {
3423 const char *reduce = inst.reduce_right(_globals);
3424 if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3425 else fprintf(_cpp, " 0");
3426 }
3427 };
3428
3429
3430 // Information needed to generate the Rule names for the DFA
3431 class OutputRuleName : public OutputMap {
3432 public:
OutputRuleName(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3433 OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3434 : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3435
declaration()3436 void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
definition()3437 void definition() { fprintf(_cpp, "const char *ruleName[] = {\n"); }
closing()3438 void closing() { fprintf(_cpp, " \"invalid rule name\" // no trailing comma\n");
3439 OutputMap::closing();
3440 }
map(OpClassForm & opc)3441 void map(OpClassForm &opc) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(opc._ident) ); }
map(OperandForm & oper)3442 void map(OperandForm &oper) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(oper._ident) ); }
map(char * name)3443 void map(char *name) { fprintf(_cpp, " \"%s\"", name ? name : "0"); }
map(InstructForm & inst)3444 void map(InstructForm &inst){ fprintf(_cpp, " \"%s\"", inst._ident ? inst._ident : "0"); }
3445 };
3446
3447
3448 // Information needed to generate the swallowed mapping for the DFA
3449 class OutputSwallowed : public OutputMap {
3450 public:
OutputSwallowed(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3451 OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3452 : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3453
declaration()3454 void declaration() { fprintf(_hpp, "extern const bool swallowed[];\n"); }
definition()3455 void definition() { fprintf(_cpp, "const bool swallowed[] = {\n"); }
closing()3456 void closing() { fprintf(_cpp, " false // no trailing comma\n");
3457 OutputMap::closing();
3458 }
map(OperandForm & oper)3459 void map(OperandForm &oper) { // Generate the entry for this opcode
3460 const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3461 fprintf(_cpp, " %s", swallowed);
3462 }
map(OpClassForm & opc)3463 void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
map(char * name)3464 void map(char *name) { fprintf(_cpp, " false"); }
map(InstructForm & inst)3465 void map(InstructForm &inst){ fprintf(_cpp, " false"); }
3466 };
3467
3468
3469 // Information needed to generate the decision array for instruction chain rule
3470 class OutputInstChainRule : public OutputMap {
3471 public:
OutputInstChainRule(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3472 OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3473 : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3474
declaration()3475 void declaration() { fprintf(_hpp, "extern const bool instruction_chain_rule[];\n"); }
definition()3476 void definition() { fprintf(_cpp, "const bool instruction_chain_rule[] = {\n"); }
closing()3477 void closing() { fprintf(_cpp, " false // no trailing comma\n");
3478 OutputMap::closing();
3479 }
map(OpClassForm & opc)3480 void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
map(OperandForm & oper)3481 void map(OperandForm &oper) { fprintf(_cpp, " false"); }
map(char * name)3482 void map(char *name) { fprintf(_cpp, " false"); }
map(InstructForm & inst)3483 void map(InstructForm &inst) { // Check for simple chain rule
3484 const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3485 fprintf(_cpp, " %s", chain);
3486 }
3487 };
3488
3489
3490 //---------------------------build_map------------------------------------
3491 // Build mapping from enumeration for densely packed operands
3492 // TO result and child types.
build_map(OutputMap & map)3493 void ArchDesc::build_map(OutputMap &map) {
3494 FILE *fp_hpp = map.decl_file();
3495 FILE *fp_cpp = map.def_file();
3496 int idx = 0;
3497 OperandForm *op;
3498 OpClassForm *opc;
3499 InstructForm *inst;
3500
3501 // Construct this mapping
3502 map.declaration();
3503 fprintf(fp_cpp,"\n");
3504 map.definition();
3505
3506 // Output the mapping for operands
3507 map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3508 _operands.reset();
3509 for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3510 // Ensure this is a machine-world instruction
3511 if ( op->ideal_only() ) continue;
3512
3513 // Generate the entry for this opcode
3514 fprintf(fp_cpp, " /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3515 ++idx;
3516 };
3517 fprintf(fp_cpp, " // last operand\n");
3518
3519 // Place all user-defined operand classes into the mapping
3520 map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3521 _opclass.reset();
3522 for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3523 fprintf(fp_cpp, " /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3524 ++idx;
3525 };
3526 fprintf(fp_cpp, " // last operand class\n");
3527
3528 // Place all internally defined operands into the mapping
3529 map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3530 _internalOpNames.reset();
3531 char *name = NULL;
3532 for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3533 fprintf(fp_cpp, " /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3534 ++idx;
3535 };
3536 fprintf(fp_cpp, " // last internally defined operand\n");
3537
3538 // Place all user-defined instructions into the mapping
3539 if( map.do_instructions() ) {
3540 map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3541 // Output all simple instruction chain rules first
3542 map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3543 {
3544 _instructions.reset();
3545 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3546 // Ensure this is a machine-world instruction
3547 if ( inst->ideal_only() ) continue;
3548 if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3549 if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3550
3551 fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3552 ++idx;
3553 };
3554 map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3555 _instructions.reset();
3556 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3557 // Ensure this is a machine-world instruction
3558 if ( inst->ideal_only() ) continue;
3559 if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3560 if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3561
3562 fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3563 ++idx;
3564 };
3565 map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3566 }
3567 // Output all instructions that are NOT simple chain rules
3568 {
3569 _instructions.reset();
3570 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3571 // Ensure this is a machine-world instruction
3572 if ( inst->ideal_only() ) continue;
3573 if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3574 if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3575
3576 fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3577 ++idx;
3578 };
3579 map.record_position(OutputMap::END_REMATERIALIZE, idx );
3580 _instructions.reset();
3581 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3582 // Ensure this is a machine-world instruction
3583 if ( inst->ideal_only() ) continue;
3584 if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3585 if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3586
3587 fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3588 ++idx;
3589 };
3590 }
3591 fprintf(fp_cpp, " // last instruction\n");
3592 map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3593 }
3594 // Finish defining table
3595 map.closing();
3596 };
3597
3598
3599 // Helper function for buildReduceMaps
reg_save_policy(const char * calling_convention)3600 char reg_save_policy(const char *calling_convention) {
3601 char callconv;
3602
3603 if (!strcmp(calling_convention, "NS")) callconv = 'N';
3604 else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3605 else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3606 else if (!strcmp(calling_convention, "AS")) callconv = 'A';
3607 else callconv = 'Z';
3608
3609 return callconv;
3610 }
3611
generate_needs_clone_jvms(FILE * fp_cpp)3612 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3613 fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3614 _needs_clone_jvms ? "true" : "false");
3615 }
3616
3617 //---------------------------generate_assertion_checks-------------------
generate_adlc_verification(FILE * fp_cpp)3618 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3619 fprintf(fp_cpp, "\n");
3620
3621 fprintf(fp_cpp, "#ifndef PRODUCT\n");
3622 fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3623 globalDefs().print_asserts(fp_cpp);
3624 fprintf(fp_cpp, "}\n");
3625 fprintf(fp_cpp, "#endif\n");
3626 fprintf(fp_cpp, "\n");
3627 }
3628
3629 //---------------------------addSourceBlocks-----------------------------
addSourceBlocks(FILE * fp_cpp)3630 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3631 if (_source.count() > 0)
3632 _source.output(fp_cpp);
3633
3634 generate_adlc_verification(fp_cpp);
3635 }
3636 //---------------------------addHeaderBlocks-----------------------------
addHeaderBlocks(FILE * fp_hpp)3637 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3638 if (_header.count() > 0)
3639 _header.output(fp_hpp);
3640 }
3641 //-------------------------addPreHeaderBlocks----------------------------
addPreHeaderBlocks(FILE * fp_hpp)3642 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3643 // Output #defines from definition block
3644 globalDefs().print_defines(fp_hpp);
3645
3646 if (_pre_header.count() > 0)
3647 _pre_header.output(fp_hpp);
3648 }
3649
3650 //---------------------------buildReduceMaps-----------------------------
3651 // Build mapping from enumeration for densely packed operands
3652 // TO result and child types.
buildReduceMaps(FILE * fp_hpp,FILE * fp_cpp)3653 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3654 RegDef *rdef;
3655 RegDef *next;
3656
3657 // The emit bodies currently require functions defined in the source block.
3658
3659 // Build external declarations for mappings
3660 fprintf(fp_hpp, "\n");
3661 fprintf(fp_hpp, "extern const char register_save_policy[];\n");
3662 fprintf(fp_hpp, "extern const char c_reg_save_policy[];\n");
3663 fprintf(fp_hpp, "extern const int register_save_type[];\n");
3664 fprintf(fp_hpp, "\n");
3665
3666 // Construct Save-Policy array
3667 fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3668 fprintf(fp_cpp, "const char register_save_policy[] = {\n");
3669 _register->reset_RegDefs();
3670 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3671 next = _register->iter_RegDefs();
3672 char policy = reg_save_policy(rdef->_callconv);
3673 const char *comma = (next != NULL) ? "," : " // no trailing comma";
3674 fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname);
3675 }
3676 fprintf(fp_cpp, "};\n\n");
3677
3678 // Construct Native Save-Policy array
3679 fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3680 fprintf(fp_cpp, "const char c_reg_save_policy[] = {\n");
3681 _register->reset_RegDefs();
3682 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3683 next = _register->iter_RegDefs();
3684 char policy = reg_save_policy(rdef->_c_conv);
3685 const char *comma = (next != NULL) ? "," : " // no trailing comma";
3686 fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname);
3687 }
3688 fprintf(fp_cpp, "};\n\n");
3689
3690 // Construct Register Save Type array
3691 fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3692 fprintf(fp_cpp, "const int register_save_type[] = {\n");
3693 _register->reset_RegDefs();
3694 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3695 next = _register->iter_RegDefs();
3696 const char *comma = (next != NULL) ? "," : " // no trailing comma";
3697 fprintf(fp_cpp, " %s%s\n", rdef->_idealtype, comma);
3698 }
3699 fprintf(fp_cpp, "};\n\n");
3700
3701 // Construct the table for reduceOp
3702 OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3703 build_map(output_reduce_op);
3704 // Construct the table for leftOp
3705 OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3706 build_map(output_left_op);
3707 // Construct the table for rightOp
3708 OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3709 build_map(output_right_op);
3710 // Construct the table of rule names
3711 OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3712 build_map(output_rule_name);
3713 // Construct the boolean table for subsumed operands
3714 OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3715 build_map(output_swallowed);
3716 // // // Preserve in case we decide to use this table instead of another
3717 //// Construct the boolean table for instruction chain rules
3718 //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3719 //build_map(output_inst_chain);
3720
3721 }
3722
3723
3724 //---------------------------buildMachOperGenerator---------------------------
3725
3726 // Recurse through match tree, building path through corresponding state tree,
3727 // Until we reach the constant we are looking for.
path_to_constant(FILE * fp,FormDict & globals,MatchNode * mnode,uint idx)3728 static void path_to_constant(FILE *fp, FormDict &globals,
3729 MatchNode *mnode, uint idx) {
3730 if ( ! mnode) return;
3731
3732 unsigned position = 0;
3733 const char *result = NULL;
3734 const char *name = NULL;
3735 const char *optype = NULL;
3736
3737 // Base Case: access constant in ideal node linked to current state node
3738 // Each type of constant has its own access function
3739 if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3740 && mnode->base_operand(position, globals, result, name, optype) ) {
3741 if ( strcmp(optype,"ConI") == 0 ) {
3742 fprintf(fp, "_leaf->get_int()");
3743 } else if ( (strcmp(optype,"ConP") == 0) ) {
3744 fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3745 } else if ( (strcmp(optype,"ConN") == 0) ) {
3746 fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3747 } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3748 fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3749 } else if ( (strcmp(optype,"ConF") == 0) ) {
3750 fprintf(fp, "_leaf->getf()");
3751 } else if ( (strcmp(optype,"ConD") == 0) ) {
3752 fprintf(fp, "_leaf->getd()");
3753 } else if ( (strcmp(optype,"ConL") == 0) ) {
3754 fprintf(fp, "_leaf->get_long()");
3755 } else if ( (strcmp(optype,"Con")==0) ) {
3756 // !!!!! - Update if adding a machine-independent constant type
3757 fprintf(fp, "_leaf->get_int()");
3758 assert( false, "Unsupported constant type, pointer or indefinite");
3759 } else if ( (strcmp(optype,"Bool") == 0) ) {
3760 fprintf(fp, "_leaf->as_Bool()->_test._test");
3761 } else {
3762 assert( false, "Unsupported constant type");
3763 }
3764 return;
3765 }
3766
3767 // If constant is in left child, build path and recurse
3768 uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3769 uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3770 if ( (mnode->_lChild) && (lConsts > idx) ) {
3771 fprintf(fp, "_kids[0]->");
3772 path_to_constant(fp, globals, mnode->_lChild, idx);
3773 return;
3774 }
3775 // If constant is in right child, build path and recurse
3776 if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3777 idx = idx - lConsts;
3778 fprintf(fp, "_kids[1]->");
3779 path_to_constant(fp, globals, mnode->_rChild, idx);
3780 return;
3781 }
3782 assert( false, "ShouldNotReachHere()");
3783 }
3784
3785 // Generate code that is executed when generating a specific Machine Operand
genMachOperCase(FILE * fp,FormDict & globalNames,ArchDesc & AD,OperandForm & op)3786 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3787 OperandForm &op) {
3788 const char *opName = op._ident;
3789 const char *opEnumName = AD.machOperEnum(opName);
3790 uint num_consts = op.num_consts(globalNames);
3791
3792 // Generate the case statement for this opcode
3793 fprintf(fp, " case %s:", opEnumName);
3794 fprintf(fp, "\n return new %sOper(", opName);
3795 // Access parameters for constructor from the stat object
3796 //
3797 // Build access to condition code value
3798 if ( (num_consts > 0) ) {
3799 uint i = 0;
3800 path_to_constant(fp, globalNames, op._matrule, i);
3801 for ( i = 1; i < num_consts; ++i ) {
3802 fprintf(fp, ", ");
3803 path_to_constant(fp, globalNames, op._matrule, i);
3804 }
3805 }
3806 fprintf(fp, " );\n");
3807 }
3808
3809
3810 // Build switch to invoke "new" MachNode or MachOper
buildMachOperGenerator(FILE * fp_cpp)3811 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3812 int idx = 0;
3813
3814 // Build switch to invoke 'new' for a specific MachOper
3815 fprintf(fp_cpp, "\n");
3816 fprintf(fp_cpp, "\n");
3817 fprintf(fp_cpp,
3818 "//------------------------- MachOper Generator ---------------\n");
3819 fprintf(fp_cpp,
3820 "// A switch statement on the dense-packed user-defined type system\n"
3821 "// that invokes 'new' on the corresponding class constructor.\n");
3822 fprintf(fp_cpp, "\n");
3823 fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3824 fprintf(fp_cpp, "(int opcode)");
3825 fprintf(fp_cpp, "{\n");
3826 fprintf(fp_cpp, "\n");
3827 fprintf(fp_cpp, " switch(opcode) {\n");
3828
3829 // Place all user-defined operands into the mapping
3830 _operands.reset();
3831 int opIndex = 0;
3832 OperandForm *op;
3833 for( ; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3834 // Ensure this is a machine-world instruction
3835 if ( op->ideal_only() ) continue;
3836
3837 genMachOperCase(fp_cpp, _globalNames, *this, *op);
3838 };
3839
3840 // Do not iterate over operand classes for the operand generator!!!
3841
3842 // Place all internal operands into the mapping
3843 _internalOpNames.reset();
3844 const char *iopn;
3845 for( ; (iopn = _internalOpNames.iter()) != NULL; ) {
3846 const char *opEnumName = machOperEnum(iopn);
3847 // Generate the case statement for this opcode
3848 fprintf(fp_cpp, " case %s:", opEnumName);
3849 fprintf(fp_cpp, " return NULL;\n");
3850 };
3851
3852 // Generate the default case for switch(opcode)
3853 fprintf(fp_cpp, " \n");
3854 fprintf(fp_cpp, " default:\n");
3855 fprintf(fp_cpp, " fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3856 fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
3857 fprintf(fp_cpp, " break;\n");
3858 fprintf(fp_cpp, " }\n");
3859
3860 // Generate the closing for method Matcher::MachOperGenerator
3861 fprintf(fp_cpp, " return NULL;\n");
3862 fprintf(fp_cpp, "};\n");
3863 }
3864
3865
3866 //---------------------------buildMachNode-------------------------------------
3867 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
buildMachNode(FILE * fp_cpp,InstructForm * inst,const char * indent)3868 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3869 const char *opType = NULL;
3870 const char *opClass = inst->_ident;
3871
3872 // Create the MachNode object
3873 fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
3874
3875 if ( (inst->num_post_match_opnds() != 0) ) {
3876 // Instruction that contains operands which are not in match rule.
3877 //
3878 // Check if the first post-match component may be an interesting def
3879 bool dont_care = false;
3880 ComponentList &comp_list = inst->_components;
3881 Component *comp = NULL;
3882 comp_list.reset();
3883 if ( comp_list.match_iter() != NULL ) dont_care = true;
3884
3885 // Insert operands that are not in match-rule.
3886 // Only insert a DEF if the do_care flag is set
3887 comp_list.reset();
3888 while ( (comp = comp_list.post_match_iter()) ) {
3889 // Check if we don't care about DEFs or KILLs that are not USEs
3890 if ( dont_care && (! comp->isa(Component::USE)) ) {
3891 continue;
3892 }
3893 dont_care = true;
3894 // For each operand not in the match rule, call MachOperGenerator
3895 // with the enum for the opcode that needs to be built.
3896 ComponentList clist = inst->_components;
3897 int index = clist.operand_position(comp->_name, comp->_usedef, inst);
3898 const char *opcode = machOperEnum(comp->_type);
3899 fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3900 fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
3901 }
3902 }
3903 else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3904 // An instruction that chains from a constant!
3905 // In this case, we need to subsume the constant into the node
3906 // at operand position, oper_input_base().
3907 //
3908 // Fill in the constant
3909 fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3910 inst->oper_input_base(_globalNames));
3911 // #####
3912 // Check for multiple constants and then fill them in.
3913 // Just like MachOperGenerator
3914 const char *opName = inst->_matrule->_rChild->_opType;
3915 fprintf(fp_cpp, "new %sOper(", opName);
3916 // Grab operand form
3917 OperandForm *op = (_globalNames[opName])->is_operand();
3918 // Look up the number of constants
3919 uint num_consts = op->num_consts(_globalNames);
3920 if ( (num_consts > 0) ) {
3921 uint i = 0;
3922 path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3923 for ( i = 1; i < num_consts; ++i ) {
3924 fprintf(fp_cpp, ", ");
3925 path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3926 }
3927 }
3928 fprintf(fp_cpp, " );\n");
3929 // #####
3930 }
3931
3932 // Fill in the bottom_type where requested
3933 if (inst->captures_bottom_type(_globalNames)) {
3934 if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3935 fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3936 }
3937 }
3938 if( inst->is_ideal_if() ) {
3939 fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3940 fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3941 }
3942 if (inst->is_ideal_halt()) {
3943 fprintf(fp_cpp, "%s node->_halt_reason = _leaf->as_Halt()->_halt_reason;\n", indent);
3944 }
3945 if (inst->is_ideal_jump()) {
3946 fprintf(fp_cpp, "%s node->_probs = _leaf->as_Jump()->_probs;\n", indent);
3947 }
3948 if( inst->is_ideal_fastlock() ) {
3949 fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3950 fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3951 fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3952 }
3953
3954 }
3955
3956 //---------------------------declare_cisc_version------------------------------
3957 // Build CISC version of this instruction
declare_cisc_version(ArchDesc & AD,FILE * fp_hpp)3958 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3959 if( AD.can_cisc_spill() ) {
3960 InstructForm *inst_cisc = cisc_spill_alternate();
3961 if (inst_cisc != NULL) {
3962 fprintf(fp_hpp, " virtual int cisc_operand() const { return %d; }\n", cisc_spill_operand());
3963 fprintf(fp_hpp, " virtual MachNode *cisc_version(int offset);\n");
3964 fprintf(fp_hpp, " virtual void use_cisc_RegMask();\n");
3965 fprintf(fp_hpp, " virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3966 }
3967 }
3968 }
3969
3970 //---------------------------define_cisc_version-------------------------------
3971 // Build CISC version of this instruction
define_cisc_version(ArchDesc & AD,FILE * fp_cpp)3972 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3973 InstructForm *inst_cisc = this->cisc_spill_alternate();
3974 if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3975 const char *name = inst_cisc->_ident;
3976 assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3977 OperandForm *cisc_oper = AD.cisc_spill_operand();
3978 assert( cisc_oper != NULL, "insanity check");
3979 const char *cisc_oper_name = cisc_oper->_ident;
3980 assert( cisc_oper_name != NULL, "insanity check");
3981 //
3982 // Set the correct reg_mask_or_stack for the cisc operand
3983 fprintf(fp_cpp, "\n");
3984 fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3985 // Lookup the correct reg_mask_or_stack
3986 const char *reg_mask_name = cisc_reg_mask_name();
3987 fprintf(fp_cpp, " _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3988 fprintf(fp_cpp, "}\n");
3989 //
3990 // Construct CISC version of this instruction
3991 fprintf(fp_cpp, "\n");
3992 fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3993 fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
3994 // Create the MachNode object
3995 fprintf(fp_cpp, " %sNode *node = new %sNode();\n", name, name);
3996 // Fill in the bottom_type where requested
3997 if ( this->captures_bottom_type(AD.globalNames()) ) {
3998 fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
3999 }
4000
4001 uint cur_num_opnds = num_opnds();
4002 if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
4003 fprintf(fp_cpp," node->_num_opnds = %d;\n", num_unique_opnds());
4004 }
4005
4006 fprintf(fp_cpp, "\n");
4007 fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
4008 fprintf(fp_cpp, " fill_new_machnode(node);\n");
4009 // Construct operand to access [stack_pointer + offset]
4010 fprintf(fp_cpp, " // Construct operand to access [stack_pointer + offset]\n");
4011 fprintf(fp_cpp, " node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
4012 fprintf(fp_cpp, "\n");
4013
4014 // Return result and exit scope
4015 fprintf(fp_cpp, " return node;\n");
4016 fprintf(fp_cpp, "}\n");
4017 fprintf(fp_cpp, "\n");
4018 return true;
4019 }
4020 return false;
4021 }
4022
4023 //---------------------------declare_short_branch_methods----------------------
4024 // Build prototypes for short branch methods
declare_short_branch_methods(FILE * fp_hpp)4025 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4026 if (has_short_branch_form()) {
4027 fprintf(fp_hpp, " virtual MachNode *short_branch_version();\n");
4028 }
4029 }
4030
4031 //---------------------------define_short_branch_methods-----------------------
4032 // Build definitions for short branch methods
define_short_branch_methods(ArchDesc & AD,FILE * fp_cpp)4033 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4034 if (has_short_branch_form()) {
4035 InstructForm *short_branch = short_branch_form();
4036 const char *name = short_branch->_ident;
4037
4038 // Construct short_branch_version() method.
4039 fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4040 fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
4041 // Create the MachNode object
4042 fprintf(fp_cpp, " %sNode *node = new %sNode();\n", name, name);
4043 if( is_ideal_if() ) {
4044 fprintf(fp_cpp, " node->_prob = _prob;\n");
4045 fprintf(fp_cpp, " node->_fcnt = _fcnt;\n");
4046 }
4047 // Fill in the bottom_type where requested
4048 if ( this->captures_bottom_type(AD.globalNames()) ) {
4049 fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
4050 }
4051
4052 fprintf(fp_cpp, "\n");
4053 // Short branch version must use same node index for access
4054 // through allocator's tables
4055 fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
4056 fprintf(fp_cpp, " fill_new_machnode(node);\n");
4057
4058 // Return result and exit scope
4059 fprintf(fp_cpp, " return node;\n");
4060 fprintf(fp_cpp, "}\n");
4061 fprintf(fp_cpp,"\n");
4062 return true;
4063 }
4064 return false;
4065 }
4066
4067
4068 //---------------------------buildMachNodeGenerator----------------------------
4069 // Build switch to invoke appropriate "new" MachNode for an opcode
buildMachNodeGenerator(FILE * fp_cpp)4070 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4071
4072 // Build switch to invoke 'new' for a specific MachNode
4073 fprintf(fp_cpp, "\n");
4074 fprintf(fp_cpp, "\n");
4075 fprintf(fp_cpp,
4076 "//------------------------- MachNode Generator ---------------\n");
4077 fprintf(fp_cpp,
4078 "// A switch statement on the dense-packed user-defined type system\n"
4079 "// that invokes 'new' on the corresponding class constructor.\n");
4080 fprintf(fp_cpp, "\n");
4081 fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4082 fprintf(fp_cpp, "(int opcode)");
4083 fprintf(fp_cpp, "{\n");
4084 fprintf(fp_cpp, " switch(opcode) {\n");
4085
4086 // Provide constructor for all user-defined instructions
4087 _instructions.reset();
4088 int opIndex = operandFormCount();
4089 InstructForm *inst;
4090 for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4091 // Ensure that matrule is defined.
4092 if ( inst->_matrule == NULL ) continue;
4093
4094 int opcode = opIndex++;
4095 const char *opClass = inst->_ident;
4096 char *opType = NULL;
4097
4098 // Generate the case statement for this instruction
4099 fprintf(fp_cpp, " case %s_rule:", opClass);
4100
4101 // Start local scope
4102 fprintf(fp_cpp, " {\n");
4103 // Generate code to construct the new MachNode
4104 buildMachNode(fp_cpp, inst, " ");
4105 // Return result and exit scope
4106 fprintf(fp_cpp, " return node;\n");
4107 fprintf(fp_cpp, " }\n");
4108 }
4109
4110 // Generate the default case for switch(opcode)
4111 fprintf(fp_cpp, " \n");
4112 fprintf(fp_cpp, " default:\n");
4113 fprintf(fp_cpp, " fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4114 fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
4115 fprintf(fp_cpp, " break;\n");
4116 fprintf(fp_cpp, " };\n");
4117
4118 // Generate the closing for method Matcher::MachNodeGenerator
4119 fprintf(fp_cpp, " return NULL;\n");
4120 fprintf(fp_cpp, "}\n");
4121 }
4122
4123
4124 //---------------------------buildInstructMatchCheck--------------------------
4125 // Output the method to Matcher which checks whether or not a specific
4126 // instruction has a matching rule for the host architecture.
buildInstructMatchCheck(FILE * fp_cpp) const4127 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4128 fprintf(fp_cpp, "\n\n");
4129 fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4130 fprintf(fp_cpp, " assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4131 fprintf(fp_cpp, " return _hasMatchRule[opcode];\n");
4132 fprintf(fp_cpp, "}\n\n");
4133
4134 fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4135 int i;
4136 for (i = 0; i < _last_opcode - 1; i++) {
4137 fprintf(fp_cpp, " %-5s, // %s\n",
4138 _has_match_rule[i] ? "true" : "false",
4139 NodeClassNames[i]);
4140 }
4141 fprintf(fp_cpp, " %-5s // %s\n",
4142 _has_match_rule[i] ? "true" : "false",
4143 NodeClassNames[i]);
4144 fprintf(fp_cpp, "};\n");
4145 }
4146
4147 //---------------------------buildFrameMethods---------------------------------
4148 // Output the methods to Matcher which specify frame behavior
buildFrameMethods(FILE * fp_cpp)4149 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4150 fprintf(fp_cpp,"\n\n");
4151 // Stack Direction
4152 fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4153 _frame->_direction ? "true" : "false");
4154 // Sync Stack Slots
4155 fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4156 _frame->_sync_stack_slots);
4157 // Java Stack Alignment
4158 fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4159 _frame->_alignment);
4160 // Java Return Address Location
4161 fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4162 if (_frame->_return_addr_loc) {
4163 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4164 _frame->_return_addr);
4165 }
4166 else {
4167 fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4168 _frame->_return_addr);
4169 }
4170 // Java Stack Slot Preservation
4171 fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4172 fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4173 // Top Of Stack Slot Preservation, for both Java and C
4174 fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4175 fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4176 // varargs C out slots killed
4177 fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4178 fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4179 // Java Argument Position
4180 fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4181 fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4182 fprintf(fp_cpp,"}\n\n");
4183 // Native Argument Position
4184 fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4185 fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4186 fprintf(fp_cpp,"}\n\n");
4187 // Java Return Value Location
4188 fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n");
4189 fprintf(fp_cpp,"%s\n", _frame->_return_value);
4190 fprintf(fp_cpp,"}\n\n");
4191 // Native Return Value Location
4192 fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n");
4193 fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4194 fprintf(fp_cpp,"}\n\n");
4195
4196 // Inline Cache Register, mask definition, and encoding
4197 fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4198 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4199 _frame->_inline_cache_reg);
4200 fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4201 fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4202
4203 // Interpreter's Method Oop Register, mask definition, and encoding
4204 fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4205 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4206 _frame->_interpreter_method_oop_reg);
4207 fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4208 fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4209
4210 // Interpreter's Frame Pointer Register, mask definition, and encoding
4211 fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4212 if (_frame->_interpreter_frame_pointer_reg == NULL)
4213 fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4214 else
4215 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4216 _frame->_interpreter_frame_pointer_reg);
4217
4218 // Frame Pointer definition
4219 /* CNC - I can not contemplate having a different frame pointer between
4220 Java and native code; makes my head hurt to think about it.
4221 fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4222 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4223 _frame->_frame_pointer);
4224 */
4225 // (Native) Frame Pointer definition
4226 fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4227 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4228 _frame->_frame_pointer);
4229
4230 // Number of callee-save + always-save registers for calling convention
4231 fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4232 fprintf(fp_cpp, "int Matcher::number_of_saved_registers() {\n");
4233 RegDef *rdef;
4234 int nof_saved_registers = 0;
4235 _register->reset_RegDefs();
4236 while( (rdef = _register->iter_RegDefs()) != NULL ) {
4237 if( !strcmp(rdef->_callconv, "SOE") || !strcmp(rdef->_callconv, "AS") )
4238 ++nof_saved_registers;
4239 }
4240 fprintf(fp_cpp, " return %d;\n", nof_saved_registers);
4241 fprintf(fp_cpp, "};\n\n");
4242 }
4243
4244
4245
4246
4247 static int PrintAdlcCisc = 0;
4248 //---------------------------identify_cisc_spilling----------------------------
4249 // Get info for the CISC_oracle and MachNode::cisc_version()
identify_cisc_spill_instructions()4250 void ArchDesc::identify_cisc_spill_instructions() {
4251
4252 if (_frame == NULL)
4253 return;
4254
4255 // Find the user-defined operand for cisc-spilling
4256 if( _frame->_cisc_spilling_operand_name != NULL ) {
4257 const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4258 OperandForm *oper = form ? form->is_operand() : NULL;
4259 // Verify the user's suggestion
4260 if( oper != NULL ) {
4261 // Ensure that match field is defined.
4262 if ( oper->_matrule != NULL ) {
4263 MatchRule &mrule = *oper->_matrule;
4264 if( strcmp(mrule._opType,"AddP") == 0 ) {
4265 MatchNode *left = mrule._lChild;
4266 MatchNode *right= mrule._rChild;
4267 if( left != NULL && right != NULL ) {
4268 const Form *left_op = _globalNames[left->_opType]->is_operand();
4269 const Form *right_op = _globalNames[right->_opType]->is_operand();
4270 if( (left_op != NULL && right_op != NULL)
4271 && (left_op->interface_type(_globalNames) == Form::register_interface)
4272 && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4273 // Successfully verified operand
4274 set_cisc_spill_operand( oper );
4275 if( _cisc_spill_debug ) {
4276 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4277 }
4278 }
4279 }
4280 }
4281 }
4282 }
4283 }
4284
4285 if( cisc_spill_operand() != NULL ) {
4286 // N^2 comparison of instructions looking for a cisc-spilling version
4287 _instructions.reset();
4288 InstructForm *instr;
4289 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4290 // Ensure that match field is defined.
4291 if ( instr->_matrule == NULL ) continue;
4292
4293 MatchRule &mrule = *instr->_matrule;
4294 Predicate *pred = instr->build_predicate();
4295
4296 // Grab the machine type of the operand
4297 const char *rootOp = instr->_ident;
4298 mrule._machType = rootOp;
4299
4300 // Find result type for match
4301 const char *result = instr->reduce_result();
4302
4303 if( PrintAdlcCisc ) fprintf(stderr, " new instruction %s \n", instr->_ident ? instr->_ident : " ");
4304 bool found_cisc_alternate = false;
4305 _instructions.reset2();
4306 InstructForm *instr2;
4307 for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4308 // Ensure that match field is defined.
4309 if( PrintAdlcCisc ) fprintf(stderr, " instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4310 if ( instr2->_matrule != NULL
4311 && (instr != instr2 ) // Skip self
4312 && (instr2->reduce_result() != NULL) // want same result
4313 && (strcmp(result, instr2->reduce_result()) == 0)) {
4314 MatchRule &mrule2 = *instr2->_matrule;
4315 Predicate *pred2 = instr2->build_predicate();
4316 found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4317 }
4318 }
4319 }
4320 }
4321 }
4322
4323 //---------------------------build_cisc_spilling-------------------------------
4324 // Get info for the CISC_oracle and MachNode::cisc_version()
build_cisc_spill_instructions(FILE * fp_hpp,FILE * fp_cpp)4325 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4326 // Output the table for cisc spilling
4327 fprintf(fp_cpp, "// The following instructions can cisc-spill\n");
4328 _instructions.reset();
4329 InstructForm *inst = NULL;
4330 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4331 // Ensure this is a machine-world instruction
4332 if ( inst->ideal_only() ) continue;
4333 const char *inst_name = inst->_ident;
4334 int operand = inst->cisc_spill_operand();
4335 if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4336 InstructForm *inst2 = inst->cisc_spill_alternate();
4337 fprintf(fp_cpp, "// %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4338 }
4339 }
4340 fprintf(fp_cpp, "\n\n");
4341 }
4342
4343 //---------------------------identify_short_branches----------------------------
4344 // Get info for our short branch replacement oracle.
identify_short_branches()4345 void ArchDesc::identify_short_branches() {
4346 // Walk over all instructions, checking to see if they match a short
4347 // branching alternate.
4348 _instructions.reset();
4349 InstructForm *instr;
4350 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4351 // The instruction must have a match rule.
4352 if (instr->_matrule != NULL &&
4353 instr->is_short_branch()) {
4354
4355 _instructions.reset2();
4356 InstructForm *instr2;
4357 while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4358 instr2->check_branch_variant(*this, instr);
4359 }
4360 }
4361 }
4362 }
4363
4364
4365 //---------------------------identify_unique_operands---------------------------
4366 // Identify unique operands.
identify_unique_operands()4367 void ArchDesc::identify_unique_operands() {
4368 // Walk over all instructions.
4369 _instructions.reset();
4370 InstructForm *instr;
4371 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4372 // Ensure this is a machine-world instruction
4373 if (!instr->ideal_only()) {
4374 instr->set_unique_opnds();
4375 }
4376 }
4377 }
4378