1 /*
2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP
26 #define SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP
27 
28 #include "gc/shared/collectedHeap.hpp"
29 #include "gc/shared/generation.hpp"
30 #include "gc/shared/oopStorageParState.hpp"
31 #include "gc/shared/preGCValues.hpp"
32 #include "gc/shared/softRefGenPolicy.hpp"
33 
34 class AdaptiveSizePolicy;
35 class CardTableRS;
36 class GCPolicyCounters;
37 class GenerationSpec;
38 class StrongRootsScope;
39 class SubTasksDone;
40 class WorkGang;
41 
42 // A "GenCollectedHeap" is a CollectedHeap that uses generational
43 // collection.  It has two generations, young and old.
44 class GenCollectedHeap : public CollectedHeap {
45   friend class Generation;
46   friend class DefNewGeneration;
47   friend class TenuredGeneration;
48   friend class GenMarkSweep;
49   friend class VM_GenCollectForAllocation;
50   friend class VM_GenCollectFull;
51   friend class VM_GenCollectFullConcurrent;
52   friend class VM_GC_HeapInspection;
53   friend class VM_HeapDumper;
54   friend class HeapInspection;
55   friend class GCCauseSetter;
56   friend class VMStructs;
57 public:
58   friend class VM_PopulateDumpSharedSpace;
59 
60   enum GenerationType {
61     YoungGen,
62     OldGen
63   };
64 
65 protected:
66   Generation* _young_gen;
67   Generation* _old_gen;
68 
69 private:
70   GenerationSpec* _young_gen_spec;
71   GenerationSpec* _old_gen_spec;
72 
73   // The singleton CardTable Remembered Set.
74   CardTableRS* _rem_set;
75 
76   SoftRefGenPolicy _soft_ref_gen_policy;
77 
78   // The sizing of the heap is controlled by a sizing policy.
79   AdaptiveSizePolicy* _size_policy;
80 
81   GCPolicyCounters* _gc_policy_counters;
82 
83   // Indicates that the most recent previous incremental collection failed.
84   // The flag is cleared when an action is taken that might clear the
85   // condition that caused that incremental collection to fail.
86   bool _incremental_collection_failed;
87 
88   // In support of ExplicitGCInvokesConcurrent functionality
89   unsigned int _full_collections_completed;
90 
91   // Collects the given generation.
92   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
93                           bool run_verification, bool clear_soft_refs,
94                           bool restore_marks_for_biased_locking);
95 
96   // Reserve aligned space for the heap as needed by the contained generations.
97   ReservedHeapSpace allocate(size_t alignment);
98 
99   // Initialize ("weak") refs processing support
100   void ref_processing_init();
101 
102   PreGenGCValues get_pre_gc_values() const;
103 
104 protected:
105 
106   // The set of potentially parallel tasks in root scanning.
107   enum GCH_strong_roots_tasks {
108     GCH_PS_Universe_oops_do,
109     GCH_PS_JNIHandles_oops_do,
110     GCH_PS_ObjectSynchronizer_oops_do,
111     GCH_PS_FlatProfiler_oops_do,
112     GCH_PS_Management_oops_do,
113     GCH_PS_SystemDictionary_oops_do,
114     GCH_PS_ClassLoaderDataGraph_oops_do,
115     GCH_PS_jvmti_oops_do,
116     GCH_PS_CodeCache_oops_do,
117     AOT_ONLY(GCH_PS_aot_oops_do COMMA)
118     GCH_PS_younger_gens,
119     // Leave this one last.
120     GCH_PS_NumElements
121   };
122 
123   // Data structure for claiming the (potentially) parallel tasks in
124   // (gen-specific) roots processing.
125   SubTasksDone* _process_strong_tasks;
126 
127   GCMemoryManager* _young_manager;
128   GCMemoryManager* _old_manager;
129 
130   // Helper functions for allocation
131   HeapWord* attempt_allocation(size_t size,
132                                bool   is_tlab,
133                                bool   first_only);
134 
135   // Helper function for two callbacks below.
136   // Considers collection of the first max_level+1 generations.
137   void do_collection(bool           full,
138                      bool           clear_all_soft_refs,
139                      size_t         size,
140                      bool           is_tlab,
141                      GenerationType max_generation);
142 
143   // Callback from VM_GenCollectForAllocation operation.
144   // This function does everything necessary/possible to satisfy an
145   // allocation request that failed in the youngest generation that should
146   // have handled it (including collection, expansion, etc.)
147   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
148 
149   // Callback from VM_GenCollectFull operation.
150   // Perform a full collection of the first max_level+1 generations.
151   virtual void do_full_collection(bool clear_all_soft_refs);
152   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
153 
154   // Does the "cause" of GC indicate that
155   // we absolutely __must__ clear soft refs?
156   bool must_clear_all_soft_refs();
157 
158   GenCollectedHeap(Generation::Name young,
159                    Generation::Name old,
160                    const char* policy_counters_name);
161 
162 public:
163 
164   // Returns JNI_OK on success
165   virtual jint initialize();
166   virtual CardTableRS* create_rem_set(const MemRegion& reserved_region);
167 
168   void initialize_size_policy(size_t init_eden_size,
169                               size_t init_promo_size,
170                               size_t init_survivor_size);
171 
172   // Does operations required after initialization has been done.
173   void post_initialize();
174 
young_gen() const175   Generation* young_gen() const { return _young_gen; }
old_gen() const176   Generation* old_gen()   const { return _old_gen; }
177 
is_young_gen(const Generation * gen) const178   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
is_old_gen(const Generation * gen) const179   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
180 
reserved_region() const181   MemRegion reserved_region() const { return _reserved; }
is_in_reserved(const void * addr) const182   bool is_in_reserved(const void* addr) const { return _reserved.contains(addr); }
183 
184   GenerationSpec* young_gen_spec() const;
185   GenerationSpec* old_gen_spec() const;
186 
soft_ref_policy()187   virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_gen_policy; }
188 
189   // Adaptive size policy
size_policy()190   virtual AdaptiveSizePolicy* size_policy() {
191     return _size_policy;
192   }
193 
194   // Performance Counter support
counters()195   GCPolicyCounters* counters()     { return _gc_policy_counters; }
196 
197   size_t capacity() const;
198   size_t used() const;
199 
200   // Save the "used_region" for both generations.
201   void save_used_regions();
202 
203   size_t max_capacity() const;
204 
205   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
206 
207   // We may support a shared contiguous allocation area, if the youngest
208   // generation does.
209   bool supports_inline_contig_alloc() const;
210   HeapWord* volatile* top_addr() const;
211   HeapWord** end_addr() const;
212 
213   // Perform a full collection of the heap; intended for use in implementing
214   // "System.gc". This implies as full a collection as the CollectedHeap
215   // supports. Caller does not hold the Heap_lock on entry.
216   virtual void collect(GCCause::Cause cause);
217 
218   // The same as above but assume that the caller holds the Heap_lock.
219   void collect_locked(GCCause::Cause cause);
220 
221   // Perform a full collection of generations up to and including max_generation.
222   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
223   void collect(GCCause::Cause cause, GenerationType max_generation);
224 
225   // Returns "TRUE" iff "p" points into the committed areas of the heap.
226   // The methods is_in() and is_in_youngest() may be expensive to compute
227   // in general, so, to prevent their inadvertent use in product jvm's, we
228   // restrict their use to assertion checking or verification only.
229   bool is_in(const void* p) const;
230 
231   // Returns true if the reference is to an object in the reserved space
232   // for the young generation.
233   // Assumes the the young gen address range is less than that of the old gen.
234   bool is_in_young(oop p);
235 
236 #ifdef ASSERT
237   bool is_in_partial_collection(const void* p);
238 #endif
239 
240   // Optimized nmethod scanning support routines
241   virtual void register_nmethod(nmethod* nm);
242   virtual void unregister_nmethod(nmethod* nm);
243   virtual void verify_nmethod(nmethod* nm);
244   virtual void flush_nmethod(nmethod* nm);
245 
246   void prune_scavengable_nmethods();
247 
248   // Iteration functions.
249   void oop_iterate(OopIterateClosure* cl);
250   void object_iterate(ObjectClosure* cl);
251   Space* space_containing(const void* addr) const;
252 
253   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
254   // each address in the (reserved) heap is a member of exactly
255   // one block.  The defining characteristic of a block is that it is
256   // possible to find its size, and thus to progress forward to the next
257   // block.  (Blocks may be of different sizes.)  Thus, blocks may
258   // represent Java objects, or they might be free blocks in a
259   // free-list-based heap (or subheap), as long as the two kinds are
260   // distinguishable and the size of each is determinable.
261 
262   // Returns the address of the start of the "block" that contains the
263   // address "addr".  We say "blocks" instead of "object" since some heaps
264   // may not pack objects densely; a chunk may either be an object or a
265   // non-object.
266   HeapWord* block_start(const void* addr) const;
267 
268   // Requires "addr" to be the start of a block, and returns "TRUE" iff
269   // the block is an object. Assumes (and verifies in non-product
270   // builds) that addr is in the allocated part of the heap and is
271   // the start of a chunk.
272   bool block_is_obj(const HeapWord* addr) const;
273 
274   // Section on TLAB's.
275   virtual bool supports_tlab_allocation() const;
276   virtual size_t tlab_capacity(Thread* thr) const;
277   virtual size_t tlab_used(Thread* thr) const;
278   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
279   virtual HeapWord* allocate_new_tlab(size_t min_size,
280                                       size_t requested_size,
281                                       size_t* actual_size);
282 
283   // The "requestor" generation is performing some garbage collection
284   // action for which it would be useful to have scratch space.  The
285   // requestor promises to allocate no more than "max_alloc_words" in any
286   // older generation (via promotion say.)   Any blocks of space that can
287   // be provided are returned as a list of ScratchBlocks, sorted by
288   // decreasing size.
289   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
290   // Allow each generation to reset any scratch space that it has
291   // contributed as it needs.
292   void release_scratch();
293 
294   // Ensure parsability: override
295   virtual void ensure_parsability(bool retire_tlabs);
296 
297   // Time in ms since the longest time a collector ran in
298   // in any generation.
299   virtual jlong millis_since_last_gc();
300 
301   // Total number of full collections completed.
total_full_collections_completed()302   unsigned int total_full_collections_completed() {
303     assert(_full_collections_completed <= _total_full_collections,
304            "Can't complete more collections than were started");
305     return _full_collections_completed;
306   }
307 
308   // Update above counter, as appropriate, at the end of a stop-world GC cycle
309   unsigned int update_full_collections_completed();
310   // Update above counter, as appropriate, at the end of a concurrent GC cycle
311   unsigned int update_full_collections_completed(unsigned int count);
312 
313   // Update "time of last gc" for all generations to "now".
update_time_of_last_gc(jlong now)314   void update_time_of_last_gc(jlong now) {
315     _young_gen->update_time_of_last_gc(now);
316     _old_gen->update_time_of_last_gc(now);
317   }
318 
319   // Update the gc statistics for each generation.
update_gc_stats(Generation * current_generation,bool full)320   void update_gc_stats(Generation* current_generation, bool full) {
321     _old_gen->update_gc_stats(current_generation, full);
322   }
323 
no_gc_in_progress()324   bool no_gc_in_progress() { return !is_gc_active(); }
325 
326   // Override.
327   void prepare_for_verify();
328 
329   // Override.
330   void verify(VerifyOption option);
331 
332   // Override.
333   virtual void print_on(outputStream* st) const;
334   virtual void print_gc_threads_on(outputStream* st) const;
335   virtual void gc_threads_do(ThreadClosure* tc) const;
336   virtual void print_tracing_info() const;
337 
338   // Used to print information about locations in the hs_err file.
339   virtual bool print_location(outputStream* st, void* addr) const;
340 
341   void print_heap_change(const PreGenGCValues& pre_gc_values) const;
342 
343   // The functions below are helper functions that a subclass of
344   // "CollectedHeap" can use in the implementation of its virtual
345   // functions.
346 
347   class GenClosure : public StackObj {
348    public:
349     virtual void do_generation(Generation* gen) = 0;
350   };
351 
352   // Apply "cl.do_generation" to all generations in the heap
353   // If "old_to_young" determines the order.
354   void generation_iterate(GenClosure* cl, bool old_to_young);
355 
356   // Return "true" if all generations have reached the
357   // maximal committed limit that they can reach, without a garbage
358   // collection.
359   virtual bool is_maximal_no_gc() const;
360 
361   // This function returns the CardTableRS object that allows us to scan
362   // generations in a fully generational heap.
rem_set()363   CardTableRS* rem_set() { return _rem_set; }
364 
365   // Convenience function to be used in situations where the heap type can be
366   // asserted to be this type.
367   static GenCollectedHeap* heap();
368 
369   // The ScanningOption determines which of the roots
370   // the closure is applied to:
371   // "SO_None" does none;
372   enum ScanningOption {
373     SO_None                =  0x0,
374     SO_AllCodeCache        =  0x8,
375     SO_ScavengeCodeCache   = 0x10
376   };
377 
378  protected:
379   void process_roots(StrongRootsScope* scope,
380                      ScanningOption so,
381                      OopClosure* strong_roots,
382                      CLDClosure* strong_cld_closure,
383                      CLDClosure* weak_cld_closure,
384                      CodeBlobToOopClosure* code_roots);
385 
386   virtual void gc_prologue(bool full);
387   virtual void gc_epilogue(bool full);
388 
389  public:
390   void young_process_roots(StrongRootsScope* scope,
391                            OopsInGenClosure* root_closure,
392                            OopsInGenClosure* old_gen_closure,
393                            CLDClosure* cld_closure);
394 
395   void full_process_roots(StrongRootsScope* scope,
396                           bool is_adjust_phase,
397                           ScanningOption so,
398                           bool only_strong_roots,
399                           OopsInGenClosure* root_closure,
400                           CLDClosure* cld_closure);
401 
402   // Apply "root_closure" to all the weak roots of the system.
403   // These include JNI weak roots, string table,
404   // and referents of reachable weak refs.
405   void gen_process_weak_roots(OopClosure* root_closure);
406 
407   // Set the saved marks of generations, if that makes sense.
408   // In particular, if any generation might iterate over the oops
409   // in other generations, it should call this method.
410   void save_marks();
411 
412   // Returns "true" iff no allocations have occurred since the last
413   // call to "save_marks".
414   bool no_allocs_since_save_marks();
415 
416   // Returns true if an incremental collection is likely to fail.
417   // We optionally consult the young gen, if asked to do so;
418   // otherwise we base our answer on whether the previous incremental
419   // collection attempt failed with no corrective action as of yet.
incremental_collection_will_fail(bool consult_young)420   bool incremental_collection_will_fail(bool consult_young) {
421     // The first disjunct remembers if an incremental collection failed, even
422     // when we thought (second disjunct) that it would not.
423     return incremental_collection_failed() ||
424            (consult_young && !_young_gen->collection_attempt_is_safe());
425   }
426 
427   // If a generation bails out of an incremental collection,
428   // it sets this flag.
incremental_collection_failed() const429   bool incremental_collection_failed() const {
430     return _incremental_collection_failed;
431   }
set_incremental_collection_failed()432   void set_incremental_collection_failed() {
433     _incremental_collection_failed = true;
434   }
clear_incremental_collection_failed()435   void clear_incremental_collection_failed() {
436     _incremental_collection_failed = false;
437   }
438 
439   // Promotion of obj into gen failed.  Try to promote obj to higher
440   // gens in ascending order; return the new location of obj if successful.
441   // Otherwise, try expand-and-allocate for obj in both the young and old
442   // generation; return the new location of obj if successful.  Otherwise, return NULL.
443   oop handle_failed_promotion(Generation* old_gen,
444                               oop obj,
445                               size_t obj_size);
446 
447 
448 private:
449   // Return true if an allocation should be attempted in the older generation
450   // if it fails in the younger generation.  Return false, otherwise.
451   bool should_try_older_generation_allocation(size_t word_size) const;
452 
453   // Try to allocate space by expanding the heap.
454   HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab);
455 
456   HeapWord* mem_allocate_work(size_t size,
457                               bool is_tlab,
458                               bool* gc_overhead_limit_was_exceeded);
459 
460 #if INCLUDE_SERIALGC
461   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
462   // in an essential way: compaction is performed across generations, by
463   // iterating over spaces.
464   void prepare_for_compaction();
465 #endif
466 
467   // Perform a full collection of the generations up to and including max_generation.
468   // This is the low level interface used by the public versions of
469   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
470   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
471 
472   // Save the tops of the spaces in all generations
473   void record_gen_tops_before_GC() PRODUCT_RETURN;
474 
475   // Return true if we need to perform full collection.
476   bool should_do_full_collection(size_t size, bool full,
477                                  bool is_tlab, GenerationType max_gen) const;
478 };
479 
480 #endif // SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP
481