1 /*
2 * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "code/codeCache.hpp"
29 #include "code/compiledMethod.inline.hpp"
30 #include "code/compiledIC.hpp"
31 #include "code/icBuffer.hpp"
32 #include "code/nmethod.hpp"
33 #include "code/pcDesc.hpp"
34 #include "code/scopeDesc.hpp"
35 #include "code/vtableStubs.hpp"
36 #include "compiler/compileBroker.hpp"
37 #include "compiler/oopMap.hpp"
38 #include "gc/g1/heapRegion.hpp"
39 #include "gc/shared/barrierSet.hpp"
40 #include "gc/shared/collectedHeap.hpp"
41 #include "gc/shared/gcLocker.hpp"
42 #include "interpreter/bytecode.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/linkResolver.hpp"
45 #include "logging/log.hpp"
46 #include "logging/logStream.hpp"
47 #include "memory/oopFactory.hpp"
48 #include "memory/resourceArea.hpp"
49 #include "oops/objArrayKlass.hpp"
50 #include "oops/oop.inline.hpp"
51 #include "oops/typeArrayOop.inline.hpp"
52 #include "opto/ad.hpp"
53 #include "opto/addnode.hpp"
54 #include "opto/callnode.hpp"
55 #include "opto/cfgnode.hpp"
56 #include "opto/graphKit.hpp"
57 #include "opto/machnode.hpp"
58 #include "opto/matcher.hpp"
59 #include "opto/memnode.hpp"
60 #include "opto/mulnode.hpp"
61 #include "opto/runtime.hpp"
62 #include "opto/subnode.hpp"
63 #include "runtime/atomic.hpp"
64 #include "runtime/frame.inline.hpp"
65 #include "runtime/handles.inline.hpp"
66 #include "runtime/interfaceSupport.inline.hpp"
67 #include "runtime/javaCalls.hpp"
68 #include "runtime/sharedRuntime.hpp"
69 #include "runtime/signature.hpp"
70 #include "runtime/threadCritical.hpp"
71 #include "runtime/vframe.hpp"
72 #include "runtime/vframeArray.hpp"
73 #include "runtime/vframe_hp.hpp"
74 #include "utilities/copy.hpp"
75 #include "utilities/preserveException.hpp"
76
77
78 // For debugging purposes:
79 // To force FullGCALot inside a runtime function, add the following two lines
80 //
81 // Universe::release_fullgc_alot_dummy();
82 // MarkSweep::invoke(0, "Debugging");
83 //
84 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
85
86
87
88
89 // Compiled code entry points
90 address OptoRuntime::_new_instance_Java = NULL;
91 address OptoRuntime::_new_array_Java = NULL;
92 address OptoRuntime::_new_array_nozero_Java = NULL;
93 address OptoRuntime::_multianewarray2_Java = NULL;
94 address OptoRuntime::_multianewarray3_Java = NULL;
95 address OptoRuntime::_multianewarray4_Java = NULL;
96 address OptoRuntime::_multianewarray5_Java = NULL;
97 address OptoRuntime::_multianewarrayN_Java = NULL;
98 address OptoRuntime::_vtable_must_compile_Java = NULL;
99 address OptoRuntime::_complete_monitor_locking_Java = NULL;
100 address OptoRuntime::_monitor_notify_Java = NULL;
101 address OptoRuntime::_monitor_notifyAll_Java = NULL;
102 address OptoRuntime::_rethrow_Java = NULL;
103
104 address OptoRuntime::_slow_arraycopy_Java = NULL;
105 address OptoRuntime::_register_finalizer_Java = NULL;
106
107 ExceptionBlob* OptoRuntime::_exception_blob;
108
109 // This should be called in an assertion at the start of OptoRuntime routines
110 // which are entered from compiled code (all of them)
111 #ifdef ASSERT
check_compiled_frame(JavaThread * thread)112 static bool check_compiled_frame(JavaThread* thread) {
113 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
114 RegisterMap map(thread, false);
115 frame caller = thread->last_frame().sender(&map);
116 assert(caller.is_compiled_frame(), "not being called from compiled like code");
117 return true;
118 }
119 #endif // ASSERT
120
121
122 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
123 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
124 if (var == NULL) { return false; }
125
generate(ciEnv * env)126 bool OptoRuntime::generate(ciEnv* env) {
127
128 generate_exception_blob();
129
130 // Note: tls: Means fetching the return oop out of the thread-local storage
131 //
132 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
133 // -------------------------------------------------------------------------------------------------------------------------------
134 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
135 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
136 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
137 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
138 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
139 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
140 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
141 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
142 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
143 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false, false);
144 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false, false);
145 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
146
147 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
148 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
149
150 return true;
151 }
152
153 #undef gen
154
155
156 // Helper method to do generation of RunTimeStub's
generate_stub(ciEnv * env,TypeFunc_generator gen,address C_function,const char * name,int is_fancy_jump,bool pass_tls,bool save_argument_registers,bool return_pc)157 address OptoRuntime::generate_stub( ciEnv* env,
158 TypeFunc_generator gen, address C_function,
159 const char *name, int is_fancy_jump,
160 bool pass_tls,
161 bool save_argument_registers,
162 bool return_pc) {
163
164 // Matching the default directive, we currently have no method to match.
165 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
166 ResourceMark rm;
167 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
168 DirectivesStack::release(directive);
169 return C.stub_entry_point();
170 }
171
stub_name(address entry)172 const char* OptoRuntime::stub_name(address entry) {
173 #ifndef PRODUCT
174 CodeBlob* cb = CodeCache::find_blob(entry);
175 RuntimeStub* rs =(RuntimeStub *)cb;
176 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
177 return rs->name();
178 #else
179 // Fast implementation for product mode (maybe it should be inlined too)
180 return "runtime stub";
181 #endif
182 }
183
184
185 //=============================================================================
186 // Opto compiler runtime routines
187 //=============================================================================
188
189
190 //=============================allocation======================================
191 // We failed the fast-path allocation. Now we need to do a scavenge or GC
192 // and try allocation again.
193
194 // object allocation
195 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
196 JRT_BLOCK;
197 #ifndef PRODUCT
198 SharedRuntime::_new_instance_ctr++; // new instance requires GC
199 #endif
200 assert(check_compiled_frame(thread), "incorrect caller");
201
202 // These checks are cheap to make and support reflective allocation.
203 int lh = klass->layout_helper();
204 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
205 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
206 klass->check_valid_for_instantiation(false, THREAD);
207 if (!HAS_PENDING_EXCEPTION) {
208 InstanceKlass::cast(klass)->initialize(THREAD);
209 }
210 }
211
212 if (!HAS_PENDING_EXCEPTION) {
213 // Scavenge and allocate an instance.
214 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
215 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
216 thread->set_vm_result(result);
217
218 // Pass oops back through thread local storage. Our apparent type to Java
219 // is that we return an oop, but we can block on exit from this routine and
220 // a GC can trash the oop in C's return register. The generated stub will
221 // fetch the oop from TLS after any possible GC.
222 }
223
224 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
225 JRT_BLOCK_END;
226
227 // inform GC that we won't do card marks for initializing writes.
228 SharedRuntime::on_slowpath_allocation_exit(thread);
229 JRT_END
230
231
232 // array allocation
233 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
234 JRT_BLOCK;
235 #ifndef PRODUCT
236 SharedRuntime::_new_array_ctr++; // new array requires GC
237 #endif
238 assert(check_compiled_frame(thread), "incorrect caller");
239
240 // Scavenge and allocate an instance.
241 oop result;
242
243 if (array_type->is_typeArray_klass()) {
244 // The oopFactory likes to work with the element type.
245 // (We could bypass the oopFactory, since it doesn't add much value.)
246 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
247 result = oopFactory::new_typeArray(elem_type, len, THREAD);
248 } else {
249 // Although the oopFactory likes to work with the elem_type,
250 // the compiler prefers the array_type, since it must already have
251 // that latter value in hand for the fast path.
252 Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
253 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
254 result = oopFactory::new_objArray(elem_type, len, THREAD);
255 }
256
257 // Pass oops back through thread local storage. Our apparent type to Java
258 // is that we return an oop, but we can block on exit from this routine and
259 // a GC can trash the oop in C's return register. The generated stub will
260 // fetch the oop from TLS after any possible GC.
261 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
262 thread->set_vm_result(result);
263 JRT_BLOCK_END;
264
265 // inform GC that we won't do card marks for initializing writes.
266 SharedRuntime::on_slowpath_allocation_exit(thread);
267 JRT_END
268
269 // array allocation without zeroing
270 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
271 JRT_BLOCK;
272 #ifndef PRODUCT
273 SharedRuntime::_new_array_ctr++; // new array requires GC
274 #endif
275 assert(check_compiled_frame(thread), "incorrect caller");
276
277 // Scavenge and allocate an instance.
278 oop result;
279
280 assert(array_type->is_typeArray_klass(), "should be called only for type array");
281 // The oopFactory likes to work with the element type.
282 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
283 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
284
285 // Pass oops back through thread local storage. Our apparent type to Java
286 // is that we return an oop, but we can block on exit from this routine and
287 // a GC can trash the oop in C's return register. The generated stub will
288 // fetch the oop from TLS after any possible GC.
289 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
290 thread->set_vm_result(result);
291 JRT_BLOCK_END;
292
293
294 // inform GC that we won't do card marks for initializing writes.
295 SharedRuntime::on_slowpath_allocation_exit(thread);
296
297 oop result = thread->vm_result();
298 if ((len > 0) && (result != NULL) &&
299 is_deoptimized_caller_frame(thread)) {
300 // Zero array here if the caller is deoptimized.
301 int size = ((typeArrayOop)result)->object_size();
302 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
303 const size_t hs = arrayOopDesc::header_size(elem_type);
304 // Align to next 8 bytes to avoid trashing arrays's length.
305 const size_t aligned_hs = align_object_offset(hs);
306 HeapWord* obj = (HeapWord*)result;
307 if (aligned_hs > hs) {
308 Copy::zero_to_words(obj+hs, aligned_hs-hs);
309 }
310 // Optimized zeroing.
311 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
312 }
313
314 JRT_END
315
316 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
317
318 // multianewarray for 2 dimensions
319 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
320 #ifndef PRODUCT
321 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
322 #endif
323 assert(check_compiled_frame(thread), "incorrect caller");
324 assert(elem_type->is_klass(), "not a class");
325 jint dims[2];
326 dims[0] = len1;
327 dims[1] = len2;
328 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
329 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
330 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
331 thread->set_vm_result(obj);
332 JRT_END
333
334 // multianewarray for 3 dimensions
335 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
336 #ifndef PRODUCT
337 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
338 #endif
339 assert(check_compiled_frame(thread), "incorrect caller");
340 assert(elem_type->is_klass(), "not a class");
341 jint dims[3];
342 dims[0] = len1;
343 dims[1] = len2;
344 dims[2] = len3;
345 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
346 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
347 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
348 thread->set_vm_result(obj);
349 JRT_END
350
351 // multianewarray for 4 dimensions
352 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
353 #ifndef PRODUCT
354 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
355 #endif
356 assert(check_compiled_frame(thread), "incorrect caller");
357 assert(elem_type->is_klass(), "not a class");
358 jint dims[4];
359 dims[0] = len1;
360 dims[1] = len2;
361 dims[2] = len3;
362 dims[3] = len4;
363 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
364 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
365 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
366 thread->set_vm_result(obj);
367 JRT_END
368
369 // multianewarray for 5 dimensions
370 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
371 #ifndef PRODUCT
372 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
373 #endif
374 assert(check_compiled_frame(thread), "incorrect caller");
375 assert(elem_type->is_klass(), "not a class");
376 jint dims[5];
377 dims[0] = len1;
378 dims[1] = len2;
379 dims[2] = len3;
380 dims[3] = len4;
381 dims[4] = len5;
382 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
383 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
384 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
385 thread->set_vm_result(obj);
386 JRT_END
387
388 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
389 assert(check_compiled_frame(thread), "incorrect caller");
390 assert(elem_type->is_klass(), "not a class");
391 assert(oop(dims)->is_typeArray(), "not an array");
392
393 ResourceMark rm;
394 jint len = dims->length();
395 assert(len > 0, "Dimensions array should contain data");
396 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
397 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
398 c_dims, len);
399
400 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
401 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
402 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
403 thread->set_vm_result(obj);
404 JRT_END
405
406 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
407
408 // Very few notify/notifyAll operations find any threads on the waitset, so
409 // the dominant fast-path is to simply return.
410 // Relatedly, it's critical that notify/notifyAll be fast in order to
411 // reduce lock hold times.
412 if (!SafepointSynchronize::is_synchronizing()) {
413 if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
414 return;
415 }
416 }
417
418 // This is the case the fast-path above isn't provisioned to handle.
419 // The fast-path is designed to handle frequently arising cases in an efficient manner.
420 // (The fast-path is just a degenerate variant of the slow-path).
421 // Perform the dreaded state transition and pass control into the slow-path.
422 JRT_BLOCK;
423 Handle h_obj(THREAD, obj);
424 ObjectSynchronizer::notify(h_obj, CHECK);
425 JRT_BLOCK_END;
426 JRT_END
427
428 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
429
430 if (!SafepointSynchronize::is_synchronizing() ) {
431 if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
432 return;
433 }
434 }
435
436 // This is the case the fast-path above isn't provisioned to handle.
437 // The fast-path is designed to handle frequently arising cases in an efficient manner.
438 // (The fast-path is just a degenerate variant of the slow-path).
439 // Perform the dreaded state transition and pass control into the slow-path.
440 JRT_BLOCK;
441 Handle h_obj(THREAD, obj);
442 ObjectSynchronizer::notifyall(h_obj, CHECK);
443 JRT_BLOCK_END;
444 JRT_END
445
new_instance_Type()446 const TypeFunc *OptoRuntime::new_instance_Type() {
447 // create input type (domain)
448 const Type **fields = TypeTuple::fields(1);
449 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
450 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
451
452 // create result type (range)
453 fields = TypeTuple::fields(1);
454 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
455
456 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
457
458 return TypeFunc::make(domain, range);
459 }
460
461
athrow_Type()462 const TypeFunc *OptoRuntime::athrow_Type() {
463 // create input type (domain)
464 const Type **fields = TypeTuple::fields(1);
465 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
466 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
467
468 // create result type (range)
469 fields = TypeTuple::fields(0);
470
471 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
472
473 return TypeFunc::make(domain, range);
474 }
475
476
new_array_Type()477 const TypeFunc *OptoRuntime::new_array_Type() {
478 // create input type (domain)
479 const Type **fields = TypeTuple::fields(2);
480 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
481 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
482 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
483
484 // create result type (range)
485 fields = TypeTuple::fields(1);
486 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
487
488 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
489
490 return TypeFunc::make(domain, range);
491 }
492
multianewarray_Type(int ndim)493 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
494 // create input type (domain)
495 const int nargs = ndim + 1;
496 const Type **fields = TypeTuple::fields(nargs);
497 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
498 for( int i = 1; i < nargs; i++ )
499 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
500 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
501
502 // create result type (range)
503 fields = TypeTuple::fields(1);
504 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
505 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
506
507 return TypeFunc::make(domain, range);
508 }
509
multianewarray2_Type()510 const TypeFunc *OptoRuntime::multianewarray2_Type() {
511 return multianewarray_Type(2);
512 }
513
multianewarray3_Type()514 const TypeFunc *OptoRuntime::multianewarray3_Type() {
515 return multianewarray_Type(3);
516 }
517
multianewarray4_Type()518 const TypeFunc *OptoRuntime::multianewarray4_Type() {
519 return multianewarray_Type(4);
520 }
521
multianewarray5_Type()522 const TypeFunc *OptoRuntime::multianewarray5_Type() {
523 return multianewarray_Type(5);
524 }
525
multianewarrayN_Type()526 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
527 // create input type (domain)
528 const Type **fields = TypeTuple::fields(2);
529 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
530 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
531 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
532
533 // create result type (range)
534 fields = TypeTuple::fields(1);
535 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
536 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
537
538 return TypeFunc::make(domain, range);
539 }
540
uncommon_trap_Type()541 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
542 // create input type (domain)
543 const Type **fields = TypeTuple::fields(1);
544 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
545 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
546
547 // create result type (range)
548 fields = TypeTuple::fields(0);
549 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
550
551 return TypeFunc::make(domain, range);
552 }
553
554 //-----------------------------------------------------------------------------
555 // Monitor Handling
complete_monitor_enter_Type()556 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
557 // create input type (domain)
558 const Type **fields = TypeTuple::fields(2);
559 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
560 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
561 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
562
563 // create result type (range)
564 fields = TypeTuple::fields(0);
565
566 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
567
568 return TypeFunc::make(domain,range);
569 }
570
571
572 //-----------------------------------------------------------------------------
complete_monitor_exit_Type()573 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
574 // create input type (domain)
575 const Type **fields = TypeTuple::fields(3);
576 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
577 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
578 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
579 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
580
581 // create result type (range)
582 fields = TypeTuple::fields(0);
583
584 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
585
586 return TypeFunc::make(domain, range);
587 }
588
monitor_notify_Type()589 const TypeFunc *OptoRuntime::monitor_notify_Type() {
590 // create input type (domain)
591 const Type **fields = TypeTuple::fields(1);
592 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
593 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
594
595 // create result type (range)
596 fields = TypeTuple::fields(0);
597 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
598 return TypeFunc::make(domain, range);
599 }
600
flush_windows_Type()601 const TypeFunc* OptoRuntime::flush_windows_Type() {
602 // create input type (domain)
603 const Type** fields = TypeTuple::fields(1);
604 fields[TypeFunc::Parms+0] = NULL; // void
605 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
606
607 // create result type
608 fields = TypeTuple::fields(1);
609 fields[TypeFunc::Parms+0] = NULL; // void
610 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
611
612 return TypeFunc::make(domain, range);
613 }
614
l2f_Type()615 const TypeFunc* OptoRuntime::l2f_Type() {
616 // create input type (domain)
617 const Type **fields = TypeTuple::fields(2);
618 fields[TypeFunc::Parms+0] = TypeLong::LONG;
619 fields[TypeFunc::Parms+1] = Type::HALF;
620 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
621
622 // create result type (range)
623 fields = TypeTuple::fields(1);
624 fields[TypeFunc::Parms+0] = Type::FLOAT;
625 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
626
627 return TypeFunc::make(domain, range);
628 }
629
modf_Type()630 const TypeFunc* OptoRuntime::modf_Type() {
631 const Type **fields = TypeTuple::fields(2);
632 fields[TypeFunc::Parms+0] = Type::FLOAT;
633 fields[TypeFunc::Parms+1] = Type::FLOAT;
634 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
635
636 // create result type (range)
637 fields = TypeTuple::fields(1);
638 fields[TypeFunc::Parms+0] = Type::FLOAT;
639
640 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
641
642 return TypeFunc::make(domain, range);
643 }
644
Math_D_D_Type()645 const TypeFunc *OptoRuntime::Math_D_D_Type() {
646 // create input type (domain)
647 const Type **fields = TypeTuple::fields(2);
648 // Symbol* name of class to be loaded
649 fields[TypeFunc::Parms+0] = Type::DOUBLE;
650 fields[TypeFunc::Parms+1] = Type::HALF;
651 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
652
653 // create result type (range)
654 fields = TypeTuple::fields(2);
655 fields[TypeFunc::Parms+0] = Type::DOUBLE;
656 fields[TypeFunc::Parms+1] = Type::HALF;
657 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
658
659 return TypeFunc::make(domain, range);
660 }
661
Math_DD_D_Type()662 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
663 const Type **fields = TypeTuple::fields(4);
664 fields[TypeFunc::Parms+0] = Type::DOUBLE;
665 fields[TypeFunc::Parms+1] = Type::HALF;
666 fields[TypeFunc::Parms+2] = Type::DOUBLE;
667 fields[TypeFunc::Parms+3] = Type::HALF;
668 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
669
670 // create result type (range)
671 fields = TypeTuple::fields(2);
672 fields[TypeFunc::Parms+0] = Type::DOUBLE;
673 fields[TypeFunc::Parms+1] = Type::HALF;
674 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
675
676 return TypeFunc::make(domain, range);
677 }
678
679 //-------------- currentTimeMillis, currentTimeNanos, etc
680
void_long_Type()681 const TypeFunc* OptoRuntime::void_long_Type() {
682 // create input type (domain)
683 const Type **fields = TypeTuple::fields(0);
684 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
685
686 // create result type (range)
687 fields = TypeTuple::fields(2);
688 fields[TypeFunc::Parms+0] = TypeLong::LONG;
689 fields[TypeFunc::Parms+1] = Type::HALF;
690 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
691
692 return TypeFunc::make(domain, range);
693 }
694
695 // arraycopy stub variations:
696 enum ArrayCopyType {
697 ac_fast, // void(ptr, ptr, size_t)
698 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
699 ac_slow, // void(ptr, int, ptr, int, int)
700 ac_generic // int(ptr, int, ptr, int, int)
701 };
702
make_arraycopy_Type(ArrayCopyType act)703 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
704 // create input type (domain)
705 int num_args = (act == ac_fast ? 3 : 5);
706 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
707 int argcnt = num_args;
708 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
709 const Type** fields = TypeTuple::fields(argcnt);
710 int argp = TypeFunc::Parms;
711 fields[argp++] = TypePtr::NOTNULL; // src
712 if (num_size_args == 0) {
713 fields[argp++] = TypeInt::INT; // src_pos
714 }
715 fields[argp++] = TypePtr::NOTNULL; // dest
716 if (num_size_args == 0) {
717 fields[argp++] = TypeInt::INT; // dest_pos
718 fields[argp++] = TypeInt::INT; // length
719 }
720 while (num_size_args-- > 0) {
721 fields[argp++] = TypeX_X; // size in whatevers (size_t)
722 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
723 }
724 if (act == ac_checkcast) {
725 fields[argp++] = TypePtr::NOTNULL; // super_klass
726 }
727 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
728 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
729
730 // create result type if needed
731 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
732 fields = TypeTuple::fields(1);
733 if (retcnt == 0)
734 fields[TypeFunc::Parms+0] = NULL; // void
735 else
736 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
737 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
738 return TypeFunc::make(domain, range);
739 }
740
fast_arraycopy_Type()741 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
742 // This signature is simple: Two base pointers and a size_t.
743 return make_arraycopy_Type(ac_fast);
744 }
745
checkcast_arraycopy_Type()746 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
747 // An extension of fast_arraycopy_Type which adds type checking.
748 return make_arraycopy_Type(ac_checkcast);
749 }
750
slow_arraycopy_Type()751 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
752 // This signature is exactly the same as System.arraycopy.
753 // There are no intptr_t (int/long) arguments.
754 return make_arraycopy_Type(ac_slow);
755 }
756
generic_arraycopy_Type()757 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
758 // This signature is like System.arraycopy, except that it returns status.
759 return make_arraycopy_Type(ac_generic);
760 }
761
762
array_fill_Type()763 const TypeFunc* OptoRuntime::array_fill_Type() {
764 const Type** fields;
765 int argp = TypeFunc::Parms;
766 // create input type (domain): pointer, int, size_t
767 fields = TypeTuple::fields(3 LP64_ONLY( + 1));
768 fields[argp++] = TypePtr::NOTNULL;
769 fields[argp++] = TypeInt::INT;
770 fields[argp++] = TypeX_X; // size in whatevers (size_t)
771 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
772 const TypeTuple *domain = TypeTuple::make(argp, fields);
773
774 // create result type
775 fields = TypeTuple::fields(1);
776 fields[TypeFunc::Parms+0] = NULL; // void
777 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
778
779 return TypeFunc::make(domain, range);
780 }
781
782 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
aescrypt_block_Type()783 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
784 // create input type (domain)
785 int num_args = 3;
786 if (Matcher::pass_original_key_for_aes()) {
787 num_args = 4;
788 }
789 int argcnt = num_args;
790 const Type** fields = TypeTuple::fields(argcnt);
791 int argp = TypeFunc::Parms;
792 fields[argp++] = TypePtr::NOTNULL; // src
793 fields[argp++] = TypePtr::NOTNULL; // dest
794 fields[argp++] = TypePtr::NOTNULL; // k array
795 if (Matcher::pass_original_key_for_aes()) {
796 fields[argp++] = TypePtr::NOTNULL; // original k array
797 }
798 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
799 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
800
801 // no result type needed
802 fields = TypeTuple::fields(1);
803 fields[TypeFunc::Parms+0] = NULL; // void
804 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
805 return TypeFunc::make(domain, range);
806 }
807
808 /**
809 * int updateBytesCRC32(int crc, byte* b, int len)
810 */
updateBytesCRC32_Type()811 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
812 // create input type (domain)
813 int num_args = 3;
814 int argcnt = num_args;
815 const Type** fields = TypeTuple::fields(argcnt);
816 int argp = TypeFunc::Parms;
817 fields[argp++] = TypeInt::INT; // crc
818 fields[argp++] = TypePtr::NOTNULL; // src
819 fields[argp++] = TypeInt::INT; // len
820 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
821 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
822
823 // result type needed
824 fields = TypeTuple::fields(1);
825 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
826 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
827 return TypeFunc::make(domain, range);
828 }
829
830 /**
831 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
832 */
updateBytesCRC32C_Type()833 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
834 // create input type (domain)
835 int num_args = 4;
836 int argcnt = num_args;
837 const Type** fields = TypeTuple::fields(argcnt);
838 int argp = TypeFunc::Parms;
839 fields[argp++] = TypeInt::INT; // crc
840 fields[argp++] = TypePtr::NOTNULL; // buf
841 fields[argp++] = TypeInt::INT; // len
842 fields[argp++] = TypePtr::NOTNULL; // table
843 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
844 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
845
846 // result type needed
847 fields = TypeTuple::fields(1);
848 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
849 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
850 return TypeFunc::make(domain, range);
851 }
852
853 /**
854 * int updateBytesAdler32(int adler, bytes* b, int off, int len)
855 */
updateBytesAdler32_Type()856 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
857 // create input type (domain)
858 int num_args = 3;
859 int argcnt = num_args;
860 const Type** fields = TypeTuple::fields(argcnt);
861 int argp = TypeFunc::Parms;
862 fields[argp++] = TypeInt::INT; // crc
863 fields[argp++] = TypePtr::NOTNULL; // src + offset
864 fields[argp++] = TypeInt::INT; // len
865 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
866 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
867
868 // result type needed
869 fields = TypeTuple::fields(1);
870 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
871 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
872 return TypeFunc::make(domain, range);
873 }
874
875 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
cipherBlockChaining_aescrypt_Type()876 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
877 // create input type (domain)
878 int num_args = 5;
879 if (Matcher::pass_original_key_for_aes()) {
880 num_args = 6;
881 }
882 int argcnt = num_args;
883 const Type** fields = TypeTuple::fields(argcnt);
884 int argp = TypeFunc::Parms;
885 fields[argp++] = TypePtr::NOTNULL; // src
886 fields[argp++] = TypePtr::NOTNULL; // dest
887 fields[argp++] = TypePtr::NOTNULL; // k array
888 fields[argp++] = TypePtr::NOTNULL; // r array
889 fields[argp++] = TypeInt::INT; // src len
890 if (Matcher::pass_original_key_for_aes()) {
891 fields[argp++] = TypePtr::NOTNULL; // original k array
892 }
893 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
894 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
895
896 // returning cipher len (int)
897 fields = TypeTuple::fields(1);
898 fields[TypeFunc::Parms+0] = TypeInt::INT;
899 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
900 return TypeFunc::make(domain, range);
901 }
902
903 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
electronicCodeBook_aescrypt_Type()904 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
905 // create input type (domain)
906 int num_args = 4;
907 if (Matcher::pass_original_key_for_aes()) {
908 num_args = 5;
909 }
910 int argcnt = num_args;
911 const Type** fields = TypeTuple::fields(argcnt);
912 int argp = TypeFunc::Parms;
913 fields[argp++] = TypePtr::NOTNULL; // src
914 fields[argp++] = TypePtr::NOTNULL; // dest
915 fields[argp++] = TypePtr::NOTNULL; // k array
916 fields[argp++] = TypeInt::INT; // src len
917 if (Matcher::pass_original_key_for_aes()) {
918 fields[argp++] = TypePtr::NOTNULL; // original k array
919 }
920 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
921 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
922
923 // returning cipher len (int)
924 fields = TypeTuple::fields(1);
925 fields[TypeFunc::Parms + 0] = TypeInt::INT;
926 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
927 return TypeFunc::make(domain, range);
928 }
929
930 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
counterMode_aescrypt_Type()931 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
932 // create input type (domain)
933 int num_args = 7;
934 if (Matcher::pass_original_key_for_aes()) {
935 num_args = 8;
936 }
937 int argcnt = num_args;
938 const Type** fields = TypeTuple::fields(argcnt);
939 int argp = TypeFunc::Parms;
940 fields[argp++] = TypePtr::NOTNULL; // src
941 fields[argp++] = TypePtr::NOTNULL; // dest
942 fields[argp++] = TypePtr::NOTNULL; // k array
943 fields[argp++] = TypePtr::NOTNULL; // counter array
944 fields[argp++] = TypeInt::INT; // src len
945 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
946 fields[argp++] = TypePtr::NOTNULL; // saved used addr
947 if (Matcher::pass_original_key_for_aes()) {
948 fields[argp++] = TypePtr::NOTNULL; // original k array
949 }
950 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
951 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
952 // returning cipher len (int)
953 fields = TypeTuple::fields(1);
954 fields[TypeFunc::Parms + 0] = TypeInt::INT;
955 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
956 return TypeFunc::make(domain, range);
957 }
958
959 /*
960 * void implCompress(byte[] buf, int ofs)
961 */
sha_implCompress_Type()962 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
963 // create input type (domain)
964 int num_args = 2;
965 int argcnt = num_args;
966 const Type** fields = TypeTuple::fields(argcnt);
967 int argp = TypeFunc::Parms;
968 fields[argp++] = TypePtr::NOTNULL; // buf
969 fields[argp++] = TypePtr::NOTNULL; // state
970 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
971 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
972
973 // no result type needed
974 fields = TypeTuple::fields(1);
975 fields[TypeFunc::Parms+0] = NULL; // void
976 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
977 return TypeFunc::make(domain, range);
978 }
979
980 /*
981 * int implCompressMultiBlock(byte[] b, int ofs, int limit)
982 */
digestBase_implCompressMB_Type()983 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
984 // create input type (domain)
985 int num_args = 4;
986 int argcnt = num_args;
987 const Type** fields = TypeTuple::fields(argcnt);
988 int argp = TypeFunc::Parms;
989 fields[argp++] = TypePtr::NOTNULL; // buf
990 fields[argp++] = TypePtr::NOTNULL; // state
991 fields[argp++] = TypeInt::INT; // ofs
992 fields[argp++] = TypeInt::INT; // limit
993 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
994 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
995
996 // returning ofs (int)
997 fields = TypeTuple::fields(1);
998 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
999 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1000 return TypeFunc::make(domain, range);
1001 }
1002
multiplyToLen_Type()1003 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1004 // create input type (domain)
1005 int num_args = 6;
1006 int argcnt = num_args;
1007 const Type** fields = TypeTuple::fields(argcnt);
1008 int argp = TypeFunc::Parms;
1009 fields[argp++] = TypePtr::NOTNULL; // x
1010 fields[argp++] = TypeInt::INT; // xlen
1011 fields[argp++] = TypePtr::NOTNULL; // y
1012 fields[argp++] = TypeInt::INT; // ylen
1013 fields[argp++] = TypePtr::NOTNULL; // z
1014 fields[argp++] = TypeInt::INT; // zlen
1015 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1016 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1017
1018 // no result type needed
1019 fields = TypeTuple::fields(1);
1020 fields[TypeFunc::Parms+0] = NULL;
1021 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1022 return TypeFunc::make(domain, range);
1023 }
1024
squareToLen_Type()1025 const TypeFunc* OptoRuntime::squareToLen_Type() {
1026 // create input type (domain)
1027 int num_args = 4;
1028 int argcnt = num_args;
1029 const Type** fields = TypeTuple::fields(argcnt);
1030 int argp = TypeFunc::Parms;
1031 fields[argp++] = TypePtr::NOTNULL; // x
1032 fields[argp++] = TypeInt::INT; // len
1033 fields[argp++] = TypePtr::NOTNULL; // z
1034 fields[argp++] = TypeInt::INT; // zlen
1035 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1036 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1037
1038 // no result type needed
1039 fields = TypeTuple::fields(1);
1040 fields[TypeFunc::Parms+0] = NULL;
1041 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1042 return TypeFunc::make(domain, range);
1043 }
1044
1045 // for mulAdd calls, 2 pointers and 3 ints, returning int
mulAdd_Type()1046 const TypeFunc* OptoRuntime::mulAdd_Type() {
1047 // create input type (domain)
1048 int num_args = 5;
1049 int argcnt = num_args;
1050 const Type** fields = TypeTuple::fields(argcnt);
1051 int argp = TypeFunc::Parms;
1052 fields[argp++] = TypePtr::NOTNULL; // out
1053 fields[argp++] = TypePtr::NOTNULL; // in
1054 fields[argp++] = TypeInt::INT; // offset
1055 fields[argp++] = TypeInt::INT; // len
1056 fields[argp++] = TypeInt::INT; // k
1057 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1058 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1059
1060 // returning carry (int)
1061 fields = TypeTuple::fields(1);
1062 fields[TypeFunc::Parms+0] = TypeInt::INT;
1063 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1064 return TypeFunc::make(domain, range);
1065 }
1066
montgomeryMultiply_Type()1067 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1068 // create input type (domain)
1069 int num_args = 7;
1070 int argcnt = num_args;
1071 const Type** fields = TypeTuple::fields(argcnt);
1072 int argp = TypeFunc::Parms;
1073 fields[argp++] = TypePtr::NOTNULL; // a
1074 fields[argp++] = TypePtr::NOTNULL; // b
1075 fields[argp++] = TypePtr::NOTNULL; // n
1076 fields[argp++] = TypeInt::INT; // len
1077 fields[argp++] = TypeLong::LONG; // inv
1078 fields[argp++] = Type::HALF;
1079 fields[argp++] = TypePtr::NOTNULL; // result
1080 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1081 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1082
1083 // result type needed
1084 fields = TypeTuple::fields(1);
1085 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1086
1087 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1088 return TypeFunc::make(domain, range);
1089 }
1090
montgomerySquare_Type()1091 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1092 // create input type (domain)
1093 int num_args = 6;
1094 int argcnt = num_args;
1095 const Type** fields = TypeTuple::fields(argcnt);
1096 int argp = TypeFunc::Parms;
1097 fields[argp++] = TypePtr::NOTNULL; // a
1098 fields[argp++] = TypePtr::NOTNULL; // n
1099 fields[argp++] = TypeInt::INT; // len
1100 fields[argp++] = TypeLong::LONG; // inv
1101 fields[argp++] = Type::HALF;
1102 fields[argp++] = TypePtr::NOTNULL; // result
1103 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1104 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1105
1106 // result type needed
1107 fields = TypeTuple::fields(1);
1108 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1109
1110 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1111 return TypeFunc::make(domain, range);
1112 }
1113
vectorizedMismatch_Type()1114 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1115 // create input type (domain)
1116 int num_args = 4;
1117 int argcnt = num_args;
1118 const Type** fields = TypeTuple::fields(argcnt);
1119 int argp = TypeFunc::Parms;
1120 fields[argp++] = TypePtr::NOTNULL; // obja
1121 fields[argp++] = TypePtr::NOTNULL; // objb
1122 fields[argp++] = TypeInt::INT; // length, number of elements
1123 fields[argp++] = TypeInt::INT; // log2scale, element size
1124 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1125 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1126
1127 //return mismatch index (int)
1128 fields = TypeTuple::fields(1);
1129 fields[TypeFunc::Parms + 0] = TypeInt::INT;
1130 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1131 return TypeFunc::make(domain, range);
1132 }
1133
1134 // GHASH block processing
ghash_processBlocks_Type()1135 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1136 int argcnt = 4;
1137
1138 const Type** fields = TypeTuple::fields(argcnt);
1139 int argp = TypeFunc::Parms;
1140 fields[argp++] = TypePtr::NOTNULL; // state
1141 fields[argp++] = TypePtr::NOTNULL; // subkeyH
1142 fields[argp++] = TypePtr::NOTNULL; // data
1143 fields[argp++] = TypeInt::INT; // blocks
1144 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1145 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1146
1147 // result type needed
1148 fields = TypeTuple::fields(1);
1149 fields[TypeFunc::Parms+0] = NULL; // void
1150 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1151 return TypeFunc::make(domain, range);
1152 }
1153 // Base64 encode function
base64_encodeBlock_Type()1154 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1155 int argcnt = 6;
1156
1157 const Type** fields = TypeTuple::fields(argcnt);
1158 int argp = TypeFunc::Parms;
1159 fields[argp++] = TypePtr::NOTNULL; // src array
1160 fields[argp++] = TypeInt::INT; // offset
1161 fields[argp++] = TypeInt::INT; // length
1162 fields[argp++] = TypePtr::NOTNULL; // dest array
1163 fields[argp++] = TypeInt::INT; // dp
1164 fields[argp++] = TypeInt::BOOL; // isURL
1165 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1166 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1167
1168 // result type needed
1169 fields = TypeTuple::fields(1);
1170 fields[TypeFunc::Parms + 0] = NULL; // void
1171 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1172 return TypeFunc::make(domain, range);
1173 }
1174
1175 //------------- Interpreter state access for on stack replacement
osr_end_Type()1176 const TypeFunc* OptoRuntime::osr_end_Type() {
1177 // create input type (domain)
1178 const Type **fields = TypeTuple::fields(1);
1179 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1180 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1181
1182 // create result type
1183 fields = TypeTuple::fields(1);
1184 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1185 fields[TypeFunc::Parms+0] = NULL; // void
1186 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1187 return TypeFunc::make(domain, range);
1188 }
1189
1190 //-------------- methodData update helpers
1191
profile_receiver_type_Type()1192 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1193 // create input type (domain)
1194 const Type **fields = TypeTuple::fields(2);
1195 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
1196 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
1197 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1198
1199 // create result type
1200 fields = TypeTuple::fields(1);
1201 fields[TypeFunc::Parms+0] = NULL; // void
1202 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1203 return TypeFunc::make(domain,range);
1204 }
1205
1206 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1207 if (receiver == NULL) return;
1208 Klass* receiver_klass = receiver->klass();
1209
1210 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1211 int empty_row = -1; // free row, if any is encountered
1212
1213 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1214 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1215 // if (vc->receiver(row) == receiver_klass)
1216 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1217 intptr_t row_recv = *(mdp + receiver_off);
1218 if (row_recv == (intptr_t) receiver_klass) {
1219 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1220 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1221 *(mdp + count_off) += DataLayout::counter_increment;
1222 return;
1223 } else if (row_recv == 0) {
1224 // else if (vc->receiver(row) == NULL)
1225 empty_row = (int) row;
1226 }
1227 }
1228
1229 if (empty_row != -1) {
1230 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1231 // vc->set_receiver(empty_row, receiver_klass);
1232 *(mdp + receiver_off) = (intptr_t) receiver_klass;
1233 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1234 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1235 *(mdp + count_off) = DataLayout::counter_increment;
1236 } else {
1237 // Receiver did not match any saved receiver and there is no empty row for it.
1238 // Increment total counter to indicate polymorphic case.
1239 intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1240 *count_p += DataLayout::counter_increment;
1241 }
1242 JRT_END
1243
1244 //-------------------------------------------------------------------------------------
1245 // register policy
1246
is_callee_saved_register(MachRegisterNumbers reg)1247 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1248 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1249 switch (register_save_policy[reg]) {
1250 case 'C': return false; //SOC
1251 case 'E': return true ; //SOE
1252 case 'N': return false; //NS
1253 case 'A': return false; //AS
1254 }
1255 ShouldNotReachHere();
1256 return false;
1257 }
1258
1259 //-----------------------------------------------------------------------
1260 // Exceptions
1261 //
1262
1263 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1264
1265 // The method is an entry that is always called by a C++ method not
1266 // directly from compiled code. Compiled code will call the C++ method following.
1267 // We can't allow async exception to be installed during exception processing.
1268 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1269
1270 // Do not confuse exception_oop with pending_exception. The exception_oop
1271 // is only used to pass arguments into the method. Not for general
1272 // exception handling. DO NOT CHANGE IT to use pending_exception, since
1273 // the runtime stubs checks this on exit.
1274 assert(thread->exception_oop() != NULL, "exception oop is found");
1275 address handler_address = NULL;
1276
1277 Handle exception(thread, thread->exception_oop());
1278 address pc = thread->exception_pc();
1279
1280 // Clear out the exception oop and pc since looking up an
1281 // exception handler can cause class loading, which might throw an
1282 // exception and those fields are expected to be clear during
1283 // normal bytecode execution.
1284 thread->clear_exception_oop_and_pc();
1285
1286 LogTarget(Info, exceptions) lt;
1287 if (lt.is_enabled()) {
1288 ResourceMark rm;
1289 LogStream ls(lt);
1290 trace_exception(&ls, exception(), pc, "");
1291 }
1292
1293 // for AbortVMOnException flag
1294 Exceptions::debug_check_abort(exception);
1295
1296 #ifdef ASSERT
1297 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1298 // should throw an exception here
1299 ShouldNotReachHere();
1300 }
1301 #endif
1302
1303 // new exception handling: this method is entered only from adapters
1304 // exceptions from compiled java methods are handled in compiled code
1305 // using rethrow node
1306
1307 nm = CodeCache::find_nmethod(pc);
1308 assert(nm != NULL, "No NMethod found");
1309 if (nm->is_native_method()) {
1310 fatal("Native method should not have path to exception handling");
1311 } else {
1312 // we are switching to old paradigm: search for exception handler in caller_frame
1313 // instead in exception handler of caller_frame.sender()
1314
1315 if (JvmtiExport::can_post_on_exceptions()) {
1316 // "Full-speed catching" is not necessary here,
1317 // since we're notifying the VM on every catch.
1318 // Force deoptimization and the rest of the lookup
1319 // will be fine.
1320 deoptimize_caller_frame(thread);
1321 }
1322
1323 // Check the stack guard pages. If enabled, look for handler in this frame;
1324 // otherwise, forcibly unwind the frame.
1325 //
1326 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1327 bool force_unwind = !thread->reguard_stack();
1328 bool deopting = false;
1329 if (nm->is_deopt_pc(pc)) {
1330 deopting = true;
1331 RegisterMap map(thread, false);
1332 frame deoptee = thread->last_frame().sender(&map);
1333 assert(deoptee.is_deoptimized_frame(), "must be deopted");
1334 // Adjust the pc back to the original throwing pc
1335 pc = deoptee.pc();
1336 }
1337
1338 // If we are forcing an unwind because of stack overflow then deopt is
1339 // irrelevant since we are throwing the frame away anyway.
1340
1341 if (deopting && !force_unwind) {
1342 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1343 } else {
1344
1345 handler_address =
1346 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1347
1348 if (handler_address == NULL) {
1349 bool recursive_exception = false;
1350 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1351 assert (handler_address != NULL, "must have compiled handler");
1352 // Update the exception cache only when the unwind was not forced
1353 // and there didn't happen another exception during the computation of the
1354 // compiled exception handler. Checking for exception oop equality is not
1355 // sufficient because some exceptions are pre-allocated and reused.
1356 if (!force_unwind && !recursive_exception) {
1357 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1358 }
1359 } else {
1360 #ifdef ASSERT
1361 bool recursive_exception = false;
1362 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1363 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1364 p2i(handler_address), p2i(computed_address));
1365 #endif
1366 }
1367 }
1368
1369 thread->set_exception_pc(pc);
1370 thread->set_exception_handler_pc(handler_address);
1371
1372 // Check if the exception PC is a MethodHandle call site.
1373 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1374 }
1375
1376 // Restore correct return pc. Was saved above.
1377 thread->set_exception_oop(exception());
1378 return handler_address;
1379
1380 JRT_END
1381
1382 // We are entering here from exception_blob
1383 // If there is a compiled exception handler in this method, we will continue there;
1384 // otherwise we will unwind the stack and continue at the caller of top frame method
1385 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1386 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1387 // we looked up the handler for has been deoptimized in the meantime. If it has been
1388 // we must not use the handler and instead return the deopt blob.
handle_exception_C(JavaThread * thread)1389 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1390 //
1391 // We are in Java not VM and in debug mode we have a NoHandleMark
1392 //
1393 #ifndef PRODUCT
1394 SharedRuntime::_find_handler_ctr++; // find exception handler
1395 #endif
1396 debug_only(NoHandleMark __hm;)
1397 nmethod* nm = NULL;
1398 address handler_address = NULL;
1399 {
1400 // Enter the VM
1401
1402 ResetNoHandleMark rnhm;
1403 handler_address = handle_exception_C_helper(thread, nm);
1404 }
1405
1406 // Back in java: Use no oops, DON'T safepoint
1407
1408 // Now check to see if the handler we are returning is in a now
1409 // deoptimized frame
1410
1411 if (nm != NULL) {
1412 RegisterMap map(thread, false);
1413 frame caller = thread->last_frame().sender(&map);
1414 #ifdef ASSERT
1415 assert(caller.is_compiled_frame(), "must be");
1416 #endif // ASSERT
1417 if (caller.is_deoptimized_frame()) {
1418 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1419 }
1420 }
1421 return handler_address;
1422 }
1423
1424 //------------------------------rethrow----------------------------------------
1425 // We get here after compiled code has executed a 'RethrowNode'. The callee
1426 // is either throwing or rethrowing an exception. The callee-save registers
1427 // have been restored, synchronized objects have been unlocked and the callee
1428 // stack frame has been removed. The return address was passed in.
1429 // Exception oop is passed as the 1st argument. This routine is then called
1430 // from the stub. On exit, we know where to jump in the caller's code.
1431 // After this C code exits, the stub will pop his frame and end in a jump
1432 // (instead of a return). We enter the caller's default handler.
1433 //
1434 // This must be JRT_LEAF:
1435 // - caller will not change its state as we cannot block on exit,
1436 // therefore raw_exception_handler_for_return_address is all it takes
1437 // to handle deoptimized blobs
1438 //
1439 // However, there needs to be a safepoint check in the middle! So compiled
1440 // safepoints are completely watertight.
1441 //
1442 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1443 //
1444 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1445 //
rethrow_C(oopDesc * exception,JavaThread * thread,address ret_pc)1446 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1447 #ifndef PRODUCT
1448 SharedRuntime::_rethrow_ctr++; // count rethrows
1449 #endif
1450 assert (exception != NULL, "should have thrown a NULLPointerException");
1451 #ifdef ASSERT
1452 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1453 // should throw an exception here
1454 ShouldNotReachHere();
1455 }
1456 #endif
1457
1458 thread->set_vm_result(exception);
1459 // Frame not compiled (handles deoptimization blob)
1460 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1461 }
1462
1463
rethrow_Type()1464 const TypeFunc *OptoRuntime::rethrow_Type() {
1465 // create input type (domain)
1466 const Type **fields = TypeTuple::fields(1);
1467 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1468 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1469
1470 // create result type (range)
1471 fields = TypeTuple::fields(1);
1472 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1473 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1474
1475 return TypeFunc::make(domain, range);
1476 }
1477
1478
deoptimize_caller_frame(JavaThread * thread,bool doit)1479 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1480 // Deoptimize the caller before continuing, as the compiled
1481 // exception handler table may not be valid.
1482 if (!StressCompiledExceptionHandlers && doit) {
1483 deoptimize_caller_frame(thread);
1484 }
1485 }
1486
deoptimize_caller_frame(JavaThread * thread)1487 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1488 // Called from within the owner thread, so no need for safepoint
1489 RegisterMap reg_map(thread);
1490 frame stub_frame = thread->last_frame();
1491 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1492 frame caller_frame = stub_frame.sender(®_map);
1493
1494 // Deoptimize the caller frame.
1495 Deoptimization::deoptimize_frame(thread, caller_frame.id());
1496 }
1497
1498
is_deoptimized_caller_frame(JavaThread * thread)1499 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1500 // Called from within the owner thread, so no need for safepoint
1501 RegisterMap reg_map(thread);
1502 frame stub_frame = thread->last_frame();
1503 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1504 frame caller_frame = stub_frame.sender(®_map);
1505 return caller_frame.is_deoptimized_frame();
1506 }
1507
1508
register_finalizer_Type()1509 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1510 // create input type (domain)
1511 const Type **fields = TypeTuple::fields(1);
1512 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
1513 // // The JavaThread* is passed to each routine as the last argument
1514 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
1515 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1516
1517 // create result type (range)
1518 fields = TypeTuple::fields(0);
1519
1520 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1521
1522 return TypeFunc::make(domain,range);
1523 }
1524
1525
1526 //-----------------------------------------------------------------------------
1527 // Dtrace support. entry and exit probes have the same signature
dtrace_method_entry_exit_Type()1528 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1529 // create input type (domain)
1530 const Type **fields = TypeTuple::fields(2);
1531 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1532 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
1533 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1534
1535 // create result type (range)
1536 fields = TypeTuple::fields(0);
1537
1538 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1539
1540 return TypeFunc::make(domain,range);
1541 }
1542
dtrace_object_alloc_Type()1543 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1544 // create input type (domain)
1545 const Type **fields = TypeTuple::fields(2);
1546 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1547 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
1548
1549 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1550
1551 // create result type (range)
1552 fields = TypeTuple::fields(0);
1553
1554 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1555
1556 return TypeFunc::make(domain,range);
1557 }
1558
1559
1560 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1561 assert(oopDesc::is_oop(obj), "must be a valid oop");
1562 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1563 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1564 JRT_END
1565
1566 //-----------------------------------------------------------------------------
1567
1568 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1569
1570 //
1571 // dump the collected NamedCounters.
1572 //
print_named_counters()1573 void OptoRuntime::print_named_counters() {
1574 int total_lock_count = 0;
1575 int eliminated_lock_count = 0;
1576
1577 NamedCounter* c = _named_counters;
1578 while (c) {
1579 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1580 int count = c->count();
1581 if (count > 0) {
1582 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1583 if (Verbose) {
1584 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1585 }
1586 total_lock_count += count;
1587 if (eliminated) {
1588 eliminated_lock_count += count;
1589 }
1590 }
1591 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1592 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1593 if (blc->nonzero()) {
1594 tty->print_cr("%s", c->name());
1595 blc->print_on(tty);
1596 }
1597 #if INCLUDE_RTM_OPT
1598 } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1599 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1600 if (rlc->nonzero()) {
1601 tty->print_cr("%s", c->name());
1602 rlc->print_on(tty);
1603 }
1604 #endif
1605 }
1606 c = c->next();
1607 }
1608 if (total_lock_count > 0) {
1609 tty->print_cr("dynamic locks: %d", total_lock_count);
1610 if (eliminated_lock_count) {
1611 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1612 (int)(eliminated_lock_count * 100.0 / total_lock_count));
1613 }
1614 }
1615 }
1616
1617 //
1618 // Allocate a new NamedCounter. The JVMState is used to generate the
1619 // name which consists of method@line for the inlining tree.
1620 //
1621
new_named_counter(JVMState * youngest_jvms,NamedCounter::CounterTag tag)1622 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1623 int max_depth = youngest_jvms->depth();
1624
1625 // Visit scopes from youngest to oldest.
1626 bool first = true;
1627 stringStream st;
1628 for (int depth = max_depth; depth >= 1; depth--) {
1629 JVMState* jvms = youngest_jvms->of_depth(depth);
1630 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1631 if (!first) {
1632 st.print(" ");
1633 } else {
1634 first = false;
1635 }
1636 int bci = jvms->bci();
1637 if (bci < 0) bci = 0;
1638 if (m != NULL) {
1639 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1640 } else {
1641 st.print("no method");
1642 }
1643 st.print("@%d", bci);
1644 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1645 }
1646 NamedCounter* c;
1647 if (tag == NamedCounter::BiasedLockingCounter) {
1648 c = new BiasedLockingNamedCounter(st.as_string());
1649 } else if (tag == NamedCounter::RTMLockingCounter) {
1650 c = new RTMLockingNamedCounter(st.as_string());
1651 } else {
1652 c = new NamedCounter(st.as_string(), tag);
1653 }
1654
1655 // atomically add the new counter to the head of the list. We only
1656 // add counters so this is safe.
1657 NamedCounter* head;
1658 do {
1659 c->set_next(NULL);
1660 head = _named_counters;
1661 c->set_next(head);
1662 } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1663 return c;
1664 }
1665
1666 int trace_exception_counter = 0;
trace_exception(outputStream * st,oop exception_oop,address exception_pc,const char * msg)1667 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1668 trace_exception_counter++;
1669 stringStream tempst;
1670
1671 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1672 exception_oop->print_value_on(&tempst);
1673 tempst.print(" in ");
1674 CodeBlob* blob = CodeCache::find_blob(exception_pc);
1675 if (blob->is_compiled()) {
1676 CompiledMethod* cm = blob->as_compiled_method_or_null();
1677 cm->method()->print_value_on(&tempst);
1678 } else if (blob->is_runtime_stub()) {
1679 tempst.print("<runtime-stub>");
1680 } else {
1681 tempst.print("<unknown>");
1682 }
1683 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
1684 tempst.print("]");
1685
1686 st->print_raw_cr(tempst.as_string());
1687 }
1688