1 /*
2  * Copyright (c) 1996, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.beans;
27 
28 import java.awt.Component;
29 import java.lang.ref.Reference;
30 import java.lang.ref.SoftReference;
31 import java.lang.reflect.Constructor;
32 import java.lang.reflect.InvocationTargetException;
33 import java.lang.reflect.Method;
34 import java.lang.reflect.Type;
35 import java.util.ArrayList;
36 import java.util.EventObject;
37 import java.util.HashMap;
38 import java.util.Iterator;
39 import java.util.List;
40 import java.util.Map;
41 import java.util.TreeMap;
42 
43 import com.sun.beans.TypeResolver;
44 import com.sun.beans.finder.ClassFinder;
45 import com.sun.beans.introspect.ClassInfo;
46 import com.sun.beans.introspect.EventSetInfo;
47 import com.sun.beans.introspect.PropertyInfo;
48 import jdk.internal.access.JavaBeansAccess;
49 import jdk.internal.access.SharedSecrets;
50 import sun.reflect.misc.ReflectUtil;
51 
52 /**
53  * The Introspector class provides a standard way for tools to learn about
54  * the properties, events, and methods supported by a target Java Bean.
55  * <p>
56  * For each of those three kinds of information, the Introspector will
57  * separately analyze the bean's class and superclasses looking for
58  * either explicit or implicit information and use that information to
59  * build a BeanInfo object that comprehensively describes the target bean.
60  * <p>
61  * For each class "Foo", explicit information may be available if there exists
62  * a corresponding "FooBeanInfo" class that provides a non-null value when
63  * queried for the information.   We first look for the BeanInfo class by
64  * taking the full package-qualified name of the target bean class and
65  * appending "BeanInfo" to form a new class name.  If this fails, then
66  * we take the final classname component of this name, and look for that
67  * class in each of the packages specified in the BeanInfo package search
68  * path.
69  * <p>
70  * Thus for a class such as "sun.xyz.OurButton" we would first look for a
71  * BeanInfo class called "sun.xyz.OurButtonBeanInfo" and if that failed we'd
72  * look in each package in the BeanInfo search path for an OurButtonBeanInfo
73  * class.  With the default search path, this would mean looking for
74  * "sun.beans.infos.OurButtonBeanInfo".
75  * <p>
76  * If a class provides explicit BeanInfo about itself then we add that to
77  * the BeanInfo information we obtained from analyzing any derived classes,
78  * but we regard the explicit information as being definitive for the current
79  * class and its base classes, and do not proceed any further up the superclass
80  * chain.
81  * <p>
82  * If we don't find explicit BeanInfo on a class, we use low-level
83  * reflection to study the methods of the class and apply standard design
84  * patterns to identify property accessors, event sources, or public
85  * methods.  We then proceed to analyze the class's superclass and add
86  * in the information from it (and possibly on up the superclass chain).
87  * <p>
88  * For more information about introspection and design patterns, please
89  * consult the
90  *  <a href="http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html">JavaBeans&trade; specification</a>.
91  *
92  * @since 1.1
93  */
94 
95 public class Introspector {
96 
97     // Flags that can be used to control getBeanInfo:
98     /**
99      * Flag to indicate to use of all beaninfo.
100      * @since 1.2
101      */
102     public static final int USE_ALL_BEANINFO           = 1;
103     /**
104      * Flag to indicate to ignore immediate beaninfo.
105      * @since 1.2
106      */
107     public static final int IGNORE_IMMEDIATE_BEANINFO  = 2;
108     /**
109      * Flag to indicate to ignore all beaninfo.
110      * @since 1.2
111      */
112     public static final int IGNORE_ALL_BEANINFO        = 3;
113 
114     private Class<?> beanClass;
115     private BeanInfo explicitBeanInfo;
116     private BeanInfo superBeanInfo;
117     private BeanInfo[] additionalBeanInfo;
118 
119     private boolean propertyChangeSource = false;
120 
121     // These should be removed.
122     private String defaultEventName;
123     private String defaultPropertyName;
124     private int defaultEventIndex = -1;
125     private int defaultPropertyIndex = -1;
126 
127     // Methods maps from Method names to MethodDescriptors
128     private Map<String, MethodDescriptor> methods;
129 
130     // properties maps from String names to PropertyDescriptors
131     private Map<String, PropertyDescriptor> properties;
132 
133     // events maps from String names to EventSetDescriptors
134     private Map<String, EventSetDescriptor> events;
135 
136     private static final EventSetDescriptor[] EMPTY_EVENTSETDESCRIPTORS = new EventSetDescriptor[0];
137 
138     static final String ADD_PREFIX = "add";
139     static final String REMOVE_PREFIX = "remove";
140     static final String GET_PREFIX = "get";
141     static final String SET_PREFIX = "set";
142     static final String IS_PREFIX = "is";
143 
144     // register with SharedSecrets for JMX usage
145     static {
SharedSecrets.setJavaBeansAccess(new JavaBeansAccess() { @Override public Method getReadMethod(Class<?> clazz, String property) throws Exception { BeanInfo bi = Introspector.getBeanInfo(clazz); PropertyDescriptor[] pds = bi.getPropertyDescriptors(); for (PropertyDescriptor pd: pds) { if (pd.getName().equals(property)) { return pd.getReadMethod(); } } return null; } @Override public String[] getConstructorPropertiesValue(Constructor<?> ctr) { ConstructorProperties cp = ctr.getAnnotation(ConstructorProperties.class); String [] ret = cp != null ? cp.value() : null; return ret; } })146         SharedSecrets.setJavaBeansAccess(new JavaBeansAccess() {
147             @Override
148             public Method getReadMethod(Class<?> clazz, String property) throws Exception {
149                 BeanInfo bi = Introspector.getBeanInfo(clazz);
150                 PropertyDescriptor[] pds = bi.getPropertyDescriptors();
151                 for (PropertyDescriptor pd: pds) {
152                     if (pd.getName().equals(property)) {
153                         return pd.getReadMethod();
154                     }
155                 }
156                 return null;
157             }
158 
159             @Override
160             public String[] getConstructorPropertiesValue(Constructor<?> ctr) {
161                 ConstructorProperties cp = ctr.getAnnotation(ConstructorProperties.class);
162                 String [] ret = cp != null ? cp.value() : null;
163                 return ret;
164             }
165         });
166     }
167 
168     //======================================================================
169     //                          Public methods
170     //======================================================================
171 
172     /**
173      * Introspect on a Java Bean and learn about all its properties, exposed
174      * methods, and events.
175      * <p>
176      * If the BeanInfo class for a Java Bean has been previously Introspected
177      * then the BeanInfo class is retrieved from the BeanInfo cache.
178      *
179      * @param beanClass  The bean class to be analyzed.
180      * @return  A BeanInfo object describing the target bean.
181      * @exception IntrospectionException if an exception occurs during
182      *              introspection.
183      * @see #flushCaches
184      * @see #flushFromCaches
185      */
getBeanInfo(Class<?> beanClass)186     public static BeanInfo getBeanInfo(Class<?> beanClass)
187         throws IntrospectionException
188     {
189         if (!ReflectUtil.isPackageAccessible(beanClass)) {
190             return (new Introspector(beanClass, null, USE_ALL_BEANINFO)).getBeanInfo();
191         }
192         ThreadGroupContext context = ThreadGroupContext.getContext();
193         BeanInfo beanInfo = context.getBeanInfo(beanClass);
194         if (beanInfo == null) {
195             beanInfo = new Introspector(beanClass, null, USE_ALL_BEANINFO).getBeanInfo();
196             context.putBeanInfo(beanClass, beanInfo);
197         }
198         return beanInfo;
199     }
200 
201     /**
202      * Introspect on a Java bean and learn about all its properties, exposed
203      * methods, and events, subject to some control flags.
204      * <p>
205      * If the BeanInfo class for a Java Bean has been previously Introspected
206      * based on the same arguments then the BeanInfo class is retrieved
207      * from the BeanInfo cache.
208      *
209      * @param beanClass  The bean class to be analyzed.
210      * @param flags  Flags to control the introspection.
211      *     If flags == USE_ALL_BEANINFO then we use all of the BeanInfo
212      *          classes we can discover.
213      *     If flags == IGNORE_IMMEDIATE_BEANINFO then we ignore any
214      *           BeanInfo associated with the specified beanClass.
215      *     If flags == IGNORE_ALL_BEANINFO then we ignore all BeanInfo
216      *           associated with the specified beanClass or any of its
217      *           parent classes.
218      * @return  A BeanInfo object describing the target bean.
219      * @exception IntrospectionException if an exception occurs during
220      *              introspection.
221      * @since 1.2
222      */
getBeanInfo(Class<?> beanClass, int flags)223     public static BeanInfo getBeanInfo(Class<?> beanClass, int flags)
224                                                 throws IntrospectionException {
225         return getBeanInfo(beanClass, null, flags);
226     }
227 
228     /**
229      * Introspect on a Java bean and learn all about its properties, exposed
230      * methods, below a given "stop" point.
231      * <p>
232      * If the BeanInfo class for a Java Bean has been previously Introspected
233      * based on the same arguments, then the BeanInfo class is retrieved
234      * from the BeanInfo cache.
235      * @return the BeanInfo for the bean
236      * @param beanClass The bean class to be analyzed.
237      * @param stopClass The baseclass at which to stop the analysis.  Any
238      *    methods/properties/events in the stopClass or in its baseclasses
239      *    will be ignored in the analysis.
240      * @exception IntrospectionException if an exception occurs during
241      *              introspection.
242      */
getBeanInfo(Class<?> beanClass, Class<?> stopClass)243     public static BeanInfo getBeanInfo(Class<?> beanClass, Class<?> stopClass)
244                                                 throws IntrospectionException {
245         return getBeanInfo(beanClass, stopClass, USE_ALL_BEANINFO);
246     }
247 
248     /**
249      * Introspect on a Java Bean and learn about all its properties,
250      * exposed methods and events, below a given {@code stopClass} point
251      * subject to some control {@code flags}.
252      * <dl>
253      *  <dt>USE_ALL_BEANINFO</dt>
254      *  <dd>Any BeanInfo that can be discovered will be used.</dd>
255      *  <dt>IGNORE_IMMEDIATE_BEANINFO</dt>
256      *  <dd>Any BeanInfo associated with the specified {@code beanClass} will be ignored.</dd>
257      *  <dt>IGNORE_ALL_BEANINFO</dt>
258      *  <dd>Any BeanInfo associated with the specified {@code beanClass}
259      *      or any of its parent classes will be ignored.</dd>
260      * </dl>
261      * Any methods/properties/events in the {@code stopClass}
262      * or in its parent classes will be ignored in the analysis.
263      * <p>
264      * If the BeanInfo class for a Java Bean has been
265      * previously introspected based on the same arguments then
266      * the BeanInfo class is retrieved from the BeanInfo cache.
267      *
268      * @param beanClass  the bean class to be analyzed
269      * @param stopClass  the parent class at which to stop the analysis
270      * @param flags      flags to control the introspection
271      * @return a BeanInfo object describing the target bean
272      * @exception IntrospectionException if an exception occurs during introspection
273      *
274      * @since 1.7
275      */
getBeanInfo(Class<?> beanClass, Class<?> stopClass, int flags)276     public static BeanInfo getBeanInfo(Class<?> beanClass, Class<?> stopClass,
277                                         int flags) throws IntrospectionException {
278         BeanInfo bi;
279         if (stopClass == null && flags == USE_ALL_BEANINFO) {
280             // Same parameters to take advantage of caching.
281             bi = getBeanInfo(beanClass);
282         } else {
283             bi = (new Introspector(beanClass, stopClass, flags)).getBeanInfo();
284         }
285         return bi;
286 
287         // Old behaviour: Make an independent copy of the BeanInfo.
288         //return new GenericBeanInfo(bi);
289     }
290 
291 
292     /**
293      * Utility method to take a string and convert it to normal Java variable
294      * name capitalization.  This normally means converting the first
295      * character from upper case to lower case, but in the (unusual) special
296      * case when there is more than one character and both the first and
297      * second characters are upper case, we leave it alone.
298      * <p>
299      * Thus "FooBah" becomes "fooBah" and "X" becomes "x", but "URL" stays
300      * as "URL".
301      *
302      * @param  name The string to be decapitalized.
303      * @return  The decapitalized version of the string.
304      */
decapitalize(String name)305     public static String decapitalize(String name) {
306         if (name == null || name.length() == 0) {
307             return name;
308         }
309         if (name.length() > 1 && Character.isUpperCase(name.charAt(1)) &&
310                         Character.isUpperCase(name.charAt(0))){
311             return name;
312         }
313         char[] chars = name.toCharArray();
314         chars[0] = Character.toLowerCase(chars[0]);
315         return new String(chars);
316     }
317 
318     /**
319      * Gets the list of package names that will be used for
320      *          finding BeanInfo classes.
321      *
322      * @return  The array of package names that will be searched in
323      *          order to find BeanInfo classes. The default value
324      *          for this array is implementation-dependent; e.g.
325      *          Sun implementation initially sets to {"sun.beans.infos"}.
326      */
327 
getBeanInfoSearchPath()328     public static String[] getBeanInfoSearchPath() {
329         return ThreadGroupContext.getContext().getBeanInfoFinder().getPackages();
330     }
331 
332     /**
333      * Change the list of package names that will be used for
334      *          finding BeanInfo classes.  The behaviour of
335      *          this method is undefined if parameter path
336      *          is null.
337      *
338      * <p>First, if there is a security manager, its {@code checkPropertiesAccess}
339      * method is called. This could result in a SecurityException.
340      *
341      * @param path  Array of package names.
342      * @exception  SecurityException  if a security manager exists and its
343      *             {@code checkPropertiesAccess} method doesn't allow setting
344      *              of system properties.
345      * @see SecurityManager#checkPropertiesAccess
346      */
347 
setBeanInfoSearchPath(String[] path)348     public static void setBeanInfoSearchPath(String[] path) {
349         SecurityManager sm = System.getSecurityManager();
350         if (sm != null) {
351             sm.checkPropertiesAccess();
352         }
353         ThreadGroupContext.getContext().getBeanInfoFinder().setPackages(path);
354     }
355 
356 
357     /**
358      * Flush all of the Introspector's internal caches.  This method is
359      * not normally required.  It is normally only needed by advanced
360      * tools that update existing "Class" objects in-place and need
361      * to make the Introspector re-analyze existing Class objects.
362      *
363      * @since 1.2
364      */
flushCaches()365     public static void flushCaches() {
366         ThreadGroupContext.getContext().clearBeanInfoCache();
367     }
368 
369     /**
370      * Flush the Introspector's internal cached information for a given class.
371      * This method is not normally required.  It is normally only needed
372      * by advanced tools that update existing "Class" objects in-place
373      * and need to make the Introspector re-analyze an existing Class object.
374      *
375      * Note that only the direct state associated with the target Class
376      * object is flushed.  We do not flush state for other Class objects
377      * with the same name, nor do we flush state for any related Class
378      * objects (such as subclasses), even though their state may include
379      * information indirectly obtained from the target Class object.
380      *
381      * @param clz  Class object to be flushed.
382      * @throws NullPointerException If the Class object is null.
383      * @since 1.2
384      */
flushFromCaches(Class<?> clz)385     public static void flushFromCaches(Class<?> clz) {
386         if (clz == null) {
387             throw new NullPointerException();
388         }
389         ThreadGroupContext.getContext().removeBeanInfo(clz);
390     }
391 
392     //======================================================================
393     //                  Private implementation methods
394     //======================================================================
395 
Introspector(Class<?> beanClass, Class<?> stopClass, int flags)396     private Introspector(Class<?> beanClass, Class<?> stopClass, int flags)
397                                             throws IntrospectionException {
398         this.beanClass = beanClass;
399 
400         // Check stopClass is a superClass of startClass.
401         if (stopClass != null) {
402             boolean isSuper = false;
403             for (Class<?> c = beanClass.getSuperclass(); c != null; c = c.getSuperclass()) {
404                 if (c == stopClass) {
405                     isSuper = true;
406                 }
407             }
408             if (!isSuper) {
409                 throw new IntrospectionException(stopClass.getName() + " not superclass of " +
410                                         beanClass.getName());
411             }
412         }
413 
414         if (flags == USE_ALL_BEANINFO) {
415             explicitBeanInfo = findExplicitBeanInfo(beanClass);
416         }
417 
418         Class<?> superClass = beanClass.getSuperclass();
419         if (superClass != stopClass) {
420             int newFlags = flags;
421             if (newFlags == IGNORE_IMMEDIATE_BEANINFO) {
422                 newFlags = USE_ALL_BEANINFO;
423             }
424             superBeanInfo = getBeanInfo(superClass, stopClass, newFlags);
425         }
426         if (explicitBeanInfo != null) {
427             additionalBeanInfo = explicitBeanInfo.getAdditionalBeanInfo();
428         }
429         if (additionalBeanInfo == null) {
430             additionalBeanInfo = new BeanInfo[0];
431         }
432     }
433 
434     /**
435      * Constructs a GenericBeanInfo class from the state of the Introspector
436      */
getBeanInfo()437     private BeanInfo getBeanInfo() throws IntrospectionException {
438 
439         // the evaluation order here is import, as we evaluate the
440         // event sets and locate PropertyChangeListeners before we
441         // look for properties.
442         BeanDescriptor bd = getTargetBeanDescriptor();
443         MethodDescriptor[] mds = getTargetMethodInfo();
444         EventSetDescriptor[] esds = getTargetEventInfo();
445         PropertyDescriptor[] pds = getTargetPropertyInfo();
446 
447         int defaultEvent = getTargetDefaultEventIndex();
448         int defaultProperty = getTargetDefaultPropertyIndex();
449 
450         return new GenericBeanInfo(bd, esds, defaultEvent, pds,
451                         defaultProperty, mds, explicitBeanInfo);
452 
453     }
454 
455     /**
456      * Looks for an explicit BeanInfo class that corresponds to the Class.
457      * First it looks in the existing package that the Class is defined in,
458      * then it checks to see if the class is its own BeanInfo. Finally,
459      * the BeanInfo search path is prepended to the class and searched.
460      *
461      * @param beanClass  the class type of the bean
462      * @return Instance of an explicit BeanInfo class or null if one isn't found.
463      */
findExplicitBeanInfo(Class<?> beanClass)464     private static BeanInfo findExplicitBeanInfo(Class<?> beanClass) {
465         return ThreadGroupContext.getContext().getBeanInfoFinder().find(beanClass);
466     }
467 
468     /**
469      * @return An array of PropertyDescriptors describing the editable
470      * properties supported by the target bean.
471      */
472 
getTargetPropertyInfo()473     private PropertyDescriptor[] getTargetPropertyInfo() {
474 
475         // Check if the bean has its own BeanInfo that will provide
476         // explicit information.
477         PropertyDescriptor[] explicitProperties = null;
478         if (explicitBeanInfo != null) {
479             explicitProperties = getPropertyDescriptors(this.explicitBeanInfo);
480         }
481 
482         if (explicitProperties == null && superBeanInfo != null) {
483             // We have no explicit BeanInfo properties.  Check with our parent.
484             addPropertyDescriptors(getPropertyDescriptors(this.superBeanInfo));
485         }
486 
487         for (int i = 0; i < additionalBeanInfo.length; i++) {
488             addPropertyDescriptors(additionalBeanInfo[i].getPropertyDescriptors());
489         }
490 
491         if (explicitProperties != null) {
492             // Add the explicit BeanInfo data to our results.
493             addPropertyDescriptors(explicitProperties);
494 
495         } else {
496             // Apply some reflection to the current class.
497             for (Map.Entry<String,PropertyInfo> entry : ClassInfo.get(this.beanClass).getProperties().entrySet()) {
498                 addPropertyDescriptor(null != entry.getValue().getIndexed()
499                         ? new IndexedPropertyDescriptor(entry, this.propertyChangeSource)
500                         : new PropertyDescriptor(entry, this.propertyChangeSource));
501             }
502             JavaBean annotation = this.beanClass.getAnnotation(JavaBean.class);
503             if ((annotation != null) && !annotation.defaultProperty().isEmpty()) {
504                 this.defaultPropertyName = annotation.defaultProperty();
505             }
506         }
507         processPropertyDescriptors();
508 
509         // Allocate and populate the result array.
510         PropertyDescriptor[] result =
511                 properties.values().toArray(new PropertyDescriptor[properties.size()]);
512 
513         // Set the default index.
514         if (defaultPropertyName != null) {
515             for (int i = 0; i < result.length; i++) {
516                 if (defaultPropertyName.equals(result[i].getName())) {
517                     defaultPropertyIndex = i;
518                 }
519             }
520         }
521         return result;
522     }
523 
524     private HashMap<String, List<PropertyDescriptor>> pdStore = new HashMap<>();
525 
526     /**
527      * Adds the property descriptor to the list store.
528      */
addPropertyDescriptor(PropertyDescriptor pd)529     private void addPropertyDescriptor(PropertyDescriptor pd) {
530         String propName = pd.getName();
531         List<PropertyDescriptor> list = pdStore.get(propName);
532         if (list == null) {
533             list = new ArrayList<>();
534             pdStore.put(propName, list);
535         }
536         if (this.beanClass != pd.getClass0()) {
537             // replace existing property descriptor
538             // only if we have types to resolve
539             // in the context of this.beanClass
540             Method read = pd.getReadMethod();
541             Method write = pd.getWriteMethod();
542             boolean cls = true;
543             if (read != null) cls = cls && read.getGenericReturnType() instanceof Class;
544             if (write != null) cls = cls && write.getGenericParameterTypes()[0] instanceof Class;
545             if (pd instanceof IndexedPropertyDescriptor) {
546                 IndexedPropertyDescriptor ipd = (IndexedPropertyDescriptor) pd;
547                 Method readI = ipd.getIndexedReadMethod();
548                 Method writeI = ipd.getIndexedWriteMethod();
549                 if (readI != null) cls = cls && readI.getGenericReturnType() instanceof Class;
550                 if (writeI != null) cls = cls && writeI.getGenericParameterTypes()[1] instanceof Class;
551                 if (!cls) {
552                     pd = new IndexedPropertyDescriptor(ipd);
553                     pd.updateGenericsFor(this.beanClass);
554                 }
555             }
556             else if (!cls) {
557                 pd = new PropertyDescriptor(pd);
558                 pd.updateGenericsFor(this.beanClass);
559             }
560         }
561         list.add(pd);
562     }
563 
addPropertyDescriptors(PropertyDescriptor[] descriptors)564     private void addPropertyDescriptors(PropertyDescriptor[] descriptors) {
565         if (descriptors != null) {
566             for (PropertyDescriptor descriptor : descriptors) {
567                 addPropertyDescriptor(descriptor);
568             }
569         }
570     }
571 
getPropertyDescriptors(BeanInfo info)572     private PropertyDescriptor[] getPropertyDescriptors(BeanInfo info) {
573         PropertyDescriptor[] descriptors = info.getPropertyDescriptors();
574         int index = info.getDefaultPropertyIndex();
575         if ((0 <= index) && (index < descriptors.length)) {
576             this.defaultPropertyName = descriptors[index].getName();
577         }
578         return descriptors;
579     }
580 
581     /**
582      * Populates the property descriptor table by merging the
583      * lists of Property descriptors.
584      */
processPropertyDescriptors()585     private void processPropertyDescriptors() {
586         if (properties == null) {
587             properties = new TreeMap<>();
588         }
589 
590         List<PropertyDescriptor> list;
591 
592         PropertyDescriptor pd, gpd, spd;
593         IndexedPropertyDescriptor ipd, igpd, ispd;
594 
595         Iterator<List<PropertyDescriptor>> it = pdStore.values().iterator();
596         while (it.hasNext()) {
597             pd = null; gpd = null; spd = null;
598             ipd = null; igpd = null; ispd = null;
599 
600             list = it.next();
601 
602             // First pass. Find the latest getter method. Merge properties
603             // of previous getter methods.
604             for (int i = 0; i < list.size(); i++) {
605                 pd = list.get(i);
606                 if (pd instanceof IndexedPropertyDescriptor) {
607                     ipd = (IndexedPropertyDescriptor)pd;
608                     if (ipd.getIndexedReadMethod() != null) {
609                         if (igpd != null) {
610                             igpd = new IndexedPropertyDescriptor(igpd, ipd);
611                         } else {
612                             igpd = ipd;
613                         }
614                     }
615                 } else {
616                     if (pd.getReadMethod() != null) {
617                         String pdName = pd.getReadMethod().getName();
618                         if (gpd != null) {
619                             // Don't replace the existing read
620                             // method if it starts with "is"
621                             String gpdName = gpd.getReadMethod().getName();
622                             if (gpdName.equals(pdName) || !gpdName.startsWith(IS_PREFIX)) {
623                                 gpd = new PropertyDescriptor(gpd, pd);
624                             }
625                         } else {
626                             gpd = pd;
627                         }
628                     }
629                 }
630             }
631 
632             // Second pass. Find the latest setter method which
633             // has the same type as the getter method.
634             for (int i = 0; i < list.size(); i++) {
635                 pd = list.get(i);
636                 if (pd instanceof IndexedPropertyDescriptor) {
637                     ipd = (IndexedPropertyDescriptor)pd;
638                     if (ipd.getIndexedWriteMethod() != null) {
639                         if (igpd != null) {
640                             if (isAssignable(igpd.getIndexedPropertyType(), ipd.getIndexedPropertyType())) {
641                                 if (ispd != null) {
642                                     ispd = new IndexedPropertyDescriptor(ispd, ipd);
643                                 } else {
644                                     ispd = ipd;
645                                 }
646                             }
647                         } else {
648                             if (ispd != null) {
649                                 ispd = new IndexedPropertyDescriptor(ispd, ipd);
650                             } else {
651                                 ispd = ipd;
652                             }
653                         }
654                     }
655                 } else {
656                     if (pd.getWriteMethod() != null) {
657                         if (gpd != null) {
658                             if (isAssignable(gpd.getPropertyType(), pd.getPropertyType())) {
659                                 if (spd != null) {
660                                     spd = new PropertyDescriptor(spd, pd);
661                                 } else {
662                                     spd = pd;
663                                 }
664                             }
665                         } else {
666                             if (spd != null) {
667                                 spd = new PropertyDescriptor(spd, pd);
668                             } else {
669                                 spd = pd;
670                             }
671                         }
672                     }
673                 }
674             }
675 
676             // At this stage we should have either PDs or IPDs for the
677             // representative getters and setters. The order at which the
678             // property descriptors are determined represent the
679             // precedence of the property ordering.
680             pd = null; ipd = null;
681 
682             if (igpd != null && ispd != null) {
683                 // Complete indexed properties set
684                 // Merge any classic property descriptors
685                 if ((gpd == spd) || (gpd == null)) {
686                     pd = spd;
687                 } else if (spd == null) {
688                     pd = gpd;
689                 } else if (spd instanceof IndexedPropertyDescriptor) {
690                     pd = mergePropertyWithIndexedProperty(gpd, (IndexedPropertyDescriptor) spd);
691                 } else if (gpd instanceof IndexedPropertyDescriptor) {
692                     pd = mergePropertyWithIndexedProperty(spd, (IndexedPropertyDescriptor) gpd);
693                 } else {
694                     pd = mergePropertyDescriptor(gpd, spd);
695                 }
696                 if (igpd == ispd) {
697                     ipd = igpd;
698                 } else {
699                     ipd = mergePropertyDescriptor(igpd, ispd);
700                 }
701                 if (pd == null) {
702                     pd = ipd;
703                 } else {
704                     Class<?> propType = pd.getPropertyType();
705                     Class<?> ipropType = ipd.getIndexedPropertyType();
706                     if (propType.isArray() && propType.getComponentType() == ipropType) {
707                         pd = pd.getClass0().isAssignableFrom(ipd.getClass0())
708                                 ? new IndexedPropertyDescriptor(pd, ipd)
709                                 : new IndexedPropertyDescriptor(ipd, pd);
710                     } else if (pd.getClass0().isAssignableFrom(ipd.getClass0())) {
711                         pd = pd.getClass0().isAssignableFrom(ipd.getClass0())
712                                 ? new PropertyDescriptor(pd, ipd)
713                                 : new PropertyDescriptor(ipd, pd);
714                     } else {
715                         pd = ipd;
716                     }
717                 }
718             } else if (gpd != null && spd != null) {
719                 if (igpd != null) {
720                     gpd = mergePropertyWithIndexedProperty(gpd, igpd);
721                 }
722                 if (ispd != null) {
723                     spd = mergePropertyWithIndexedProperty(spd, ispd);
724                 }
725                 // Complete simple properties set
726                 if (gpd == spd) {
727                     pd = gpd;
728                 } else if (spd instanceof IndexedPropertyDescriptor) {
729                     pd = mergePropertyWithIndexedProperty(gpd, (IndexedPropertyDescriptor) spd);
730                 } else if (gpd instanceof IndexedPropertyDescriptor) {
731                     pd = mergePropertyWithIndexedProperty(spd, (IndexedPropertyDescriptor) gpd);
732                 } else {
733                     pd = mergePropertyDescriptor(gpd, spd);
734                 }
735             } else if (ispd != null) {
736                 // indexed setter
737                 pd = ispd;
738                 // Merge any classic property descriptors
739                 if (spd != null) {
740                     pd = mergePropertyDescriptor(ispd, spd);
741                 }
742                 if (gpd != null) {
743                     pd = mergePropertyDescriptor(ispd, gpd);
744                 }
745             } else if (igpd != null) {
746                 // indexed getter
747                 pd = igpd;
748                 // Merge any classic property descriptors
749                 if (gpd != null) {
750                     pd = mergePropertyDescriptor(igpd, gpd);
751                 }
752                 if (spd != null) {
753                     pd = mergePropertyDescriptor(igpd, spd);
754                 }
755             } else if (spd != null) {
756                 // simple setter
757                 pd = spd;
758             } else if (gpd != null) {
759                 // simple getter
760                 pd = gpd;
761             }
762 
763             // Very special case to ensure that an IndexedPropertyDescriptor
764             // doesn't contain less information than the enclosed
765             // PropertyDescriptor. If it does, then recreate as a
766             // PropertyDescriptor. See 4168833
767             if (pd instanceof IndexedPropertyDescriptor) {
768                 ipd = (IndexedPropertyDescriptor)pd;
769                 if (ipd.getIndexedReadMethod() == null && ipd.getIndexedWriteMethod() == null) {
770                     pd = new PropertyDescriptor(ipd);
771                 }
772             }
773 
774             // Find the first property descriptor
775             // which does not have getter and setter methods.
776             // See regression bug 4984912.
777             if ( (pd == null) && (list.size() > 0) ) {
778                 pd = list.get(0);
779             }
780 
781             if (pd != null) {
782                 properties.put(pd.getName(), pd);
783             }
784         }
785     }
786 
isAssignable(Class<?> current, Class<?> candidate)787     private static boolean isAssignable(Class<?> current, Class<?> candidate) {
788         return ((current == null) || (candidate == null)) ? current == candidate : current.isAssignableFrom(candidate);
789     }
790 
mergePropertyWithIndexedProperty(PropertyDescriptor pd, IndexedPropertyDescriptor ipd)791     private PropertyDescriptor mergePropertyWithIndexedProperty(PropertyDescriptor pd, IndexedPropertyDescriptor ipd) {
792         Class<?> type = pd.getPropertyType();
793         if (type.isArray() && (type.getComponentType() == ipd.getIndexedPropertyType())) {
794             return pd.getClass0().isAssignableFrom(ipd.getClass0())
795                     ? new IndexedPropertyDescriptor(pd, ipd)
796                     : new IndexedPropertyDescriptor(ipd, pd);
797         }
798         return pd;
799     }
800 
801     /**
802      * Adds the property descriptor to the indexedproperty descriptor only if the
803      * types are the same.
804      *
805      * The most specific property descriptor will take precedence.
806      */
mergePropertyDescriptor(IndexedPropertyDescriptor ipd, PropertyDescriptor pd)807     private PropertyDescriptor mergePropertyDescriptor(IndexedPropertyDescriptor ipd,
808                                                        PropertyDescriptor pd) {
809         PropertyDescriptor result = null;
810 
811         Class<?> propType = pd.getPropertyType();
812         Class<?> ipropType = ipd.getIndexedPropertyType();
813 
814         if (propType.isArray() && propType.getComponentType() == ipropType) {
815             if (pd.getClass0().isAssignableFrom(ipd.getClass0())) {
816                 result = new IndexedPropertyDescriptor(pd, ipd);
817             } else {
818                 result = new IndexedPropertyDescriptor(ipd, pd);
819             }
820         } else if ((ipd.getReadMethod() == null) && (ipd.getWriteMethod() == null)) {
821             if (pd.getClass0().isAssignableFrom(ipd.getClass0())) {
822                 result = new PropertyDescriptor(pd, ipd);
823             } else {
824                 result = new PropertyDescriptor(ipd, pd);
825             }
826         } else {
827             // Cannot merge the pd because of type mismatch
828             // Return the most specific pd
829             if (pd.getClass0().isAssignableFrom(ipd.getClass0())) {
830                 result = ipd;
831             } else {
832                 result = pd;
833                 // Try to add methods which may have been lost in the type change
834                 // See 4168833
835                 Method write = result.getWriteMethod();
836                 Method read = result.getReadMethod();
837 
838                 if (read == null && write != null) {
839                     read = findMethod(result.getClass0(),
840                                       GET_PREFIX + NameGenerator.capitalize(result.getName()), 0);
841                     if (read != null) {
842                         try {
843                             result.setReadMethod(read);
844                         } catch (IntrospectionException ex) {
845                             // no consequences for failure.
846                         }
847                     }
848                 }
849                 if (write == null && read != null) {
850                     write = findMethod(result.getClass0(),
851                                        SET_PREFIX + NameGenerator.capitalize(result.getName()), 1,
852                                        new Class<?>[] { FeatureDescriptor.getReturnType(result.getClass0(), read) });
853                     if (write != null) {
854                         try {
855                             result.setWriteMethod(write);
856                         } catch (IntrospectionException ex) {
857                             // no consequences for failure.
858                         }
859                     }
860                 }
861             }
862         }
863         return result;
864     }
865 
866     // Handle regular pd merge
mergePropertyDescriptor(PropertyDescriptor pd1, PropertyDescriptor pd2)867     private PropertyDescriptor mergePropertyDescriptor(PropertyDescriptor pd1,
868                                                        PropertyDescriptor pd2) {
869         if (pd1.getClass0().isAssignableFrom(pd2.getClass0())) {
870             return new PropertyDescriptor(pd1, pd2);
871         } else {
872             return new PropertyDescriptor(pd2, pd1);
873         }
874     }
875 
876     // Handle regular ipd merge
mergePropertyDescriptor(IndexedPropertyDescriptor ipd1, IndexedPropertyDescriptor ipd2)877     private IndexedPropertyDescriptor mergePropertyDescriptor(IndexedPropertyDescriptor ipd1,
878                                                        IndexedPropertyDescriptor ipd2) {
879         if (ipd1.getClass0().isAssignableFrom(ipd2.getClass0())) {
880             return new IndexedPropertyDescriptor(ipd1, ipd2);
881         } else {
882             return new IndexedPropertyDescriptor(ipd2, ipd1);
883         }
884     }
885 
886     /**
887      * @return An array of EventSetDescriptors describing the kinds of
888      * events fired by the target bean.
889      */
getTargetEventInfo()890     private EventSetDescriptor[] getTargetEventInfo() throws IntrospectionException {
891         if (events == null) {
892             events = new HashMap<>();
893         }
894 
895         // Check if the bean has its own BeanInfo that will provide
896         // explicit information.
897         EventSetDescriptor[] explicitEvents = null;
898         if (explicitBeanInfo != null) {
899             explicitEvents = explicitBeanInfo.getEventSetDescriptors();
900             int ix = explicitBeanInfo.getDefaultEventIndex();
901             if (ix >= 0 && ix < explicitEvents.length) {
902                 defaultEventName = explicitEvents[ix].getName();
903             }
904         }
905 
906         if (explicitEvents == null && superBeanInfo != null) {
907             // We have no explicit BeanInfo events.  Check with our parent.
908             EventSetDescriptor[] supers = superBeanInfo.getEventSetDescriptors();
909             for (int i = 0 ; i < supers.length; i++) {
910                 addEvent(supers[i]);
911             }
912             int ix = superBeanInfo.getDefaultEventIndex();
913             if (ix >= 0 && ix < supers.length) {
914                 defaultEventName = supers[ix].getName();
915             }
916         }
917 
918         for (int i = 0; i < additionalBeanInfo.length; i++) {
919             EventSetDescriptor[] additional = additionalBeanInfo[i].getEventSetDescriptors();
920             if (additional != null) {
921                 for (int j = 0 ; j < additional.length; j++) {
922                     addEvent(additional[j]);
923                 }
924             }
925         }
926 
927         if (explicitEvents != null) {
928             // Add the explicit explicitBeanInfo data to our results.
929             for (int i = 0 ; i < explicitEvents.length; i++) {
930                 addEvent(explicitEvents[i]);
931             }
932 
933         } else {
934             // Apply some reflection to the current class.
935             for (Map.Entry<String,EventSetInfo> entry : ClassInfo.get(this.beanClass).getEventSets().entrySet()) {
936                     // generate a list of Method objects for each of the target methods:
937                 List<Method> methods = new ArrayList<>();
938                 for (Method method : ClassInfo.get(entry.getValue().getListenerType()).getMethods()) {
939                     if (isEventHandler(method)) {
940                         methods.add(method);
941                     }
942                 }
943                 addEvent(new EventSetDescriptor(
944                         entry.getKey(),
945                         entry.getValue(),
946                         methods.toArray(new Method[methods.size()])));
947             }
948             JavaBean annotation = this.beanClass.getAnnotation(JavaBean.class);
949             if ((annotation != null) && !annotation.defaultEventSet().isEmpty()) {
950                 this.defaultEventName = annotation.defaultEventSet();
951             }
952         }
953         EventSetDescriptor[] result;
954         if (events.size() == 0) {
955             result = EMPTY_EVENTSETDESCRIPTORS;
956         } else {
957             // Allocate and populate the result array.
958             result = new EventSetDescriptor[events.size()];
959             result = events.values().toArray(result);
960             // Set the default index.
961             if (defaultEventName != null) {
962                 for (int i = 0; i < result.length; i++) {
963                     if (defaultEventName.equals(result[i].getName())) {
964                         defaultEventIndex = i;
965                     }
966                 }
967             }
968         }
969         return result;
970     }
971 
addEvent(EventSetDescriptor esd)972     private void addEvent(EventSetDescriptor esd) {
973         String key = esd.getName();
974         if (esd.getName().equals("propertyChange")) {
975             propertyChangeSource = true;
976         }
977         EventSetDescriptor old = events.get(key);
978         if (old == null) {
979             events.put(key, esd);
980             return;
981         }
982         EventSetDescriptor composite = new EventSetDescriptor(old, esd);
983         events.put(key, composite);
984     }
985 
986     /**
987      * @return An array of MethodDescriptors describing the private
988      * methods supported by the target bean.
989      */
getTargetMethodInfo()990     private MethodDescriptor[] getTargetMethodInfo() {
991         if (methods == null) {
992             methods = new HashMap<>(100);
993         }
994 
995         // Check if the bean has its own BeanInfo that will provide
996         // explicit information.
997         MethodDescriptor[] explicitMethods = null;
998         if (explicitBeanInfo != null) {
999             explicitMethods = explicitBeanInfo.getMethodDescriptors();
1000         }
1001 
1002         if (explicitMethods == null && superBeanInfo != null) {
1003             // We have no explicit BeanInfo methods.  Check with our parent.
1004             MethodDescriptor[] supers = superBeanInfo.getMethodDescriptors();
1005             for (int i = 0 ; i < supers.length; i++) {
1006                 addMethod(supers[i]);
1007             }
1008         }
1009 
1010         for (int i = 0; i < additionalBeanInfo.length; i++) {
1011             MethodDescriptor[] additional = additionalBeanInfo[i].getMethodDescriptors();
1012             if (additional != null) {
1013                 for (int j = 0 ; j < additional.length; j++) {
1014                     addMethod(additional[j]);
1015                 }
1016             }
1017         }
1018 
1019         if (explicitMethods != null) {
1020             // Add the explicit explicitBeanInfo data to our results.
1021             for (int i = 0 ; i < explicitMethods.length; i++) {
1022                 addMethod(explicitMethods[i]);
1023             }
1024 
1025         } else {
1026             // Apply some reflection to the current class.
1027             for (Method method : ClassInfo.get(this.beanClass).getMethods()) {
1028                 addMethod(new MethodDescriptor(method));
1029             }
1030         }
1031 
1032         // Allocate and populate the result array.
1033         MethodDescriptor[] result = new MethodDescriptor[methods.size()];
1034         result = methods.values().toArray(result);
1035 
1036         return result;
1037     }
1038 
addMethod(MethodDescriptor md)1039     private void addMethod(MethodDescriptor md) {
1040         // We have to be careful here to distinguish method by both name
1041         // and argument lists.
1042         // This method gets called a *lot, so we try to be efficient.
1043         String name = md.getName();
1044 
1045         MethodDescriptor old = methods.get(name);
1046         if (old == null) {
1047             // This is the common case.
1048             methods.put(name, md);
1049             return;
1050         }
1051 
1052         // We have a collision on method names.  This is rare.
1053 
1054         // Check if old and md have the same type.
1055         String[] p1 = md.getParamNames();
1056         String[] p2 = old.getParamNames();
1057 
1058         boolean match = false;
1059         if (p1.length == p2.length) {
1060             match = true;
1061             for (int i = 0; i < p1.length; i++) {
1062                 if (p1[i] != p2[i]) {
1063                     match = false;
1064                     break;
1065                 }
1066             }
1067         }
1068         if (match) {
1069             MethodDescriptor composite = new MethodDescriptor(old, md);
1070             methods.put(name, composite);
1071             return;
1072         }
1073 
1074         // We have a collision on method names with different type signatures.
1075         // This is very rare.
1076 
1077         String longKey = makeQualifiedMethodName(name, p1);
1078         old = methods.get(longKey);
1079         if (old == null) {
1080             methods.put(longKey, md);
1081             return;
1082         }
1083         MethodDescriptor composite = new MethodDescriptor(old, md);
1084         methods.put(longKey, composite);
1085     }
1086 
1087     /**
1088      * Creates a key for a method in a method cache.
1089      */
makeQualifiedMethodName(String name, String[] params)1090     private static String makeQualifiedMethodName(String name, String[] params) {
1091         StringBuilder sb = new StringBuilder(name);
1092         sb.append('=');
1093         for (int i = 0; i < params.length; i++) {
1094             sb.append(':');
1095             sb.append(params[i]);
1096         }
1097         return sb.toString();
1098     }
1099 
getTargetDefaultEventIndex()1100     private int getTargetDefaultEventIndex() {
1101         return defaultEventIndex;
1102     }
1103 
getTargetDefaultPropertyIndex()1104     private int getTargetDefaultPropertyIndex() {
1105         return defaultPropertyIndex;
1106     }
1107 
getTargetBeanDescriptor()1108     private BeanDescriptor getTargetBeanDescriptor() {
1109         // Use explicit info, if available,
1110         if (explicitBeanInfo != null) {
1111             BeanDescriptor bd = explicitBeanInfo.getBeanDescriptor();
1112             if (bd != null) {
1113                 return (bd);
1114             }
1115         }
1116         // OK, fabricate a default BeanDescriptor.
1117         return new BeanDescriptor(this.beanClass, findCustomizerClass(this.beanClass));
1118     }
1119 
findCustomizerClass(Class<?> type)1120     private static Class<?> findCustomizerClass(Class<?> type) {
1121         String name = type.getName() + "Customizer";
1122         try {
1123             type = ClassFinder.findClass(name, type.getClassLoader());
1124             // Each customizer should inherit java.awt.Component and implement java.beans.Customizer
1125             // according to the section 9.3 of JavaBeans&trade; specification
1126             if (Component.class.isAssignableFrom(type) && Customizer.class.isAssignableFrom(type)) {
1127                 return type;
1128             }
1129         }
1130         catch (Exception exception) {
1131             // ignore any exceptions
1132         }
1133         return null;
1134     }
1135 
isEventHandler(Method m)1136     private boolean isEventHandler(Method m) {
1137         // We assume that a method is an event handler if it has a single
1138         // argument, whose type inherit from java.util.Event.
1139         Type[] argTypes = m.getGenericParameterTypes();
1140         if (argTypes.length != 1) {
1141             return false;
1142         }
1143         return isSubclass(TypeResolver.erase(TypeResolver.resolveInClass(beanClass, argTypes[0])), EventObject.class);
1144     }
1145 
1146     //======================================================================
1147     // Package private support methods.
1148     //======================================================================
1149 
1150     /**
1151      * Internal support for finding a target methodName with a given
1152      * parameter list on a given class.
1153      */
internalFindMethod(Class<?> start, String methodName, int argCount, Class<?>[] args)1154     private static Method internalFindMethod(Class<?> start, String methodName,
1155                                                  int argCount, Class<?>[] args) {
1156         // For overriden methods we need to find the most derived version.
1157         // So we start with the given class and walk up the superclass chain.
1158         for (Class<?> cl = start; cl != null; cl = cl.getSuperclass()) {
1159             for (Method method : ClassInfo.get(cl).getMethods()) {
1160                 // make sure method signature matches.
1161                 if (method.getName().equals(methodName)) {
1162                     Type[] params = method.getGenericParameterTypes();
1163                     if (params.length == argCount) {
1164                         if (args != null) {
1165                             boolean different = false;
1166                             if (argCount > 0) {
1167                                 for (int j = 0; j < argCount; j++) {
1168                                     if (TypeResolver.erase(TypeResolver.resolveInClass(start, params[j])) != args[j]) {
1169                                         different = true;
1170                                         continue;
1171                                     }
1172                                 }
1173                                 if (different) {
1174                                     continue;
1175                                 }
1176                             }
1177                         }
1178                         return method;
1179                     }
1180                 }
1181             }
1182         }
1183         // Now check any inherited interfaces.  This is necessary both when
1184         // the argument class is itself an interface, and when the argument
1185         // class is an abstract class.
1186         Class<?>[] ifcs = start.getInterfaces();
1187         for (int i = 0 ; i < ifcs.length; i++) {
1188             // Note: The original implementation had both methods calling
1189             // the 3 arg method. This is preserved but perhaps it should
1190             // pass the args array instead of null.
1191             Method method = internalFindMethod(ifcs[i], methodName, argCount, null);
1192             if (method != null) {
1193                 return method;
1194             }
1195         }
1196         return null;
1197     }
1198 
1199     /**
1200      * Find a target methodName on a given class.
1201      */
findMethod(Class<?> cls, String methodName, int argCount)1202     static Method findMethod(Class<?> cls, String methodName, int argCount) {
1203         return findMethod(cls, methodName, argCount, null);
1204     }
1205 
1206     /**
1207      * Find a target methodName with specific parameter list on a given class.
1208      * <p>
1209      * Used in the contructors of the EventSetDescriptor,
1210      * PropertyDescriptor and the IndexedPropertyDescriptor.
1211      * <p>
1212      * @param cls The Class object on which to retrieve the method.
1213      * @param methodName Name of the method.
1214      * @param argCount Number of arguments for the desired method.
1215      * @param args Array of argument types for the method.
1216      * @return the method or null if not found
1217      */
findMethod(Class<?> cls, String methodName, int argCount, Class<?>[] args)1218     static Method findMethod(Class<?> cls, String methodName, int argCount,
1219                              Class<?>[] args) {
1220         if (methodName == null) {
1221             return null;
1222         }
1223         return internalFindMethod(cls, methodName, argCount, args);
1224     }
1225 
1226     /**
1227      * Return true if class a is either equivalent to class b, or
1228      * if class a is a subclass of class b, i.e. if a either "extends"
1229      * or "implements" b.
1230      * Note tht either or both "Class" objects may represent interfaces.
1231      */
isSubclass(Class<?> a, Class<?> b)1232     static  boolean isSubclass(Class<?> a, Class<?> b) {
1233         // We rely on the fact that for any given java class or
1234         // primtitive type there is a unqiue Class object, so
1235         // we can use object equivalence in the comparisons.
1236         if (a == b) {
1237             return true;
1238         }
1239         if (a == null || b == null) {
1240             return false;
1241         }
1242         for (Class<?> x = a; x != null; x = x.getSuperclass()) {
1243             if (x == b) {
1244                 return true;
1245             }
1246             if (b.isInterface()) {
1247                 Class<?>[] interfaces = x.getInterfaces();
1248                 for (int i = 0; i < interfaces.length; i++) {
1249                     if (isSubclass(interfaces[i], b)) {
1250                         return true;
1251                     }
1252                 }
1253             }
1254         }
1255         return false;
1256     }
1257 
1258     /**
1259      * Try to create an instance of a named class.
1260      * First try the classloader of "sibling", then try the system
1261      * classloader then the class loader of the current Thread.
1262      */
1263     @SuppressWarnings("deprecation")
instantiate(Class<?> sibling, String className)1264     static Object instantiate(Class<?> sibling, String className)
1265                  throws InstantiationException, IllegalAccessException,
1266                         NoSuchMethodException, InvocationTargetException,
1267                                                 ClassNotFoundException {
1268         // First check with sibling's classloader (if any).
1269         ClassLoader cl = sibling.getClassLoader();
1270         Class<?> cls = ClassFinder.findClass(className, cl);
1271         return cls.newInstance();
1272     }
1273 
1274 } // end class Introspector
1275 
1276 //===========================================================================
1277 
1278 /**
1279  * Package private implementation support class for Introspector's
1280  * internal use.
1281  * <p>
1282  * Mostly this is used as a placeholder for the descriptors.
1283  */
1284 
1285 class GenericBeanInfo extends SimpleBeanInfo {
1286 
1287     private BeanDescriptor beanDescriptor;
1288     private EventSetDescriptor[] events;
1289     private int defaultEvent;
1290     private PropertyDescriptor[] properties;
1291     private int defaultProperty;
1292     private MethodDescriptor[] methods;
1293     private Reference<BeanInfo> targetBeanInfoRef;
1294 
GenericBeanInfo(BeanDescriptor beanDescriptor, EventSetDescriptor[] events, int defaultEvent, PropertyDescriptor[] properties, int defaultProperty, MethodDescriptor[] methods, BeanInfo targetBeanInfo)1295     public GenericBeanInfo(BeanDescriptor beanDescriptor,
1296                 EventSetDescriptor[] events, int defaultEvent,
1297                 PropertyDescriptor[] properties, int defaultProperty,
1298                 MethodDescriptor[] methods, BeanInfo targetBeanInfo) {
1299         this.beanDescriptor = beanDescriptor;
1300         this.events = events;
1301         this.defaultEvent = defaultEvent;
1302         this.properties = properties;
1303         this.defaultProperty = defaultProperty;
1304         this.methods = methods;
1305         this.targetBeanInfoRef = (targetBeanInfo != null)
1306                 ? new SoftReference<>(targetBeanInfo)
1307                 : null;
1308     }
1309 
1310     /**
1311      * Package-private dup constructor
1312      * This must isolate the new object from any changes to the old object.
1313      */
GenericBeanInfo(GenericBeanInfo old)1314     GenericBeanInfo(GenericBeanInfo old) {
1315 
1316         beanDescriptor = new BeanDescriptor(old.beanDescriptor);
1317         if (old.events != null) {
1318             int len = old.events.length;
1319             events = new EventSetDescriptor[len];
1320             for (int i = 0; i < len; i++) {
1321                 events[i] = new EventSetDescriptor(old.events[i]);
1322             }
1323         }
1324         defaultEvent = old.defaultEvent;
1325         if (old.properties != null) {
1326             int len = old.properties.length;
1327             properties = new PropertyDescriptor[len];
1328             for (int i = 0; i < len; i++) {
1329                 PropertyDescriptor oldp = old.properties[i];
1330                 if (oldp instanceof IndexedPropertyDescriptor) {
1331                     properties[i] = new IndexedPropertyDescriptor(
1332                                         (IndexedPropertyDescriptor) oldp);
1333                 } else {
1334                     properties[i] = new PropertyDescriptor(oldp);
1335                 }
1336             }
1337         }
1338         defaultProperty = old.defaultProperty;
1339         if (old.methods != null) {
1340             int len = old.methods.length;
1341             methods = new MethodDescriptor[len];
1342             for (int i = 0; i < len; i++) {
1343                 methods[i] = new MethodDescriptor(old.methods[i]);
1344             }
1345         }
1346         this.targetBeanInfoRef = old.targetBeanInfoRef;
1347     }
1348 
getPropertyDescriptors()1349     public PropertyDescriptor[] getPropertyDescriptors() {
1350         return properties;
1351     }
1352 
getDefaultPropertyIndex()1353     public int getDefaultPropertyIndex() {
1354         return defaultProperty;
1355     }
1356 
getEventSetDescriptors()1357     public EventSetDescriptor[] getEventSetDescriptors() {
1358         return events;
1359     }
1360 
getDefaultEventIndex()1361     public int getDefaultEventIndex() {
1362         return defaultEvent;
1363     }
1364 
getMethodDescriptors()1365     public MethodDescriptor[] getMethodDescriptors() {
1366         return methods;
1367     }
1368 
getBeanDescriptor()1369     public BeanDescriptor getBeanDescriptor() {
1370         return beanDescriptor;
1371     }
1372 
getIcon(int iconKind)1373     public java.awt.Image getIcon(int iconKind) {
1374         BeanInfo targetBeanInfo = getTargetBeanInfo();
1375         if (targetBeanInfo != null) {
1376             return targetBeanInfo.getIcon(iconKind);
1377         }
1378         return super.getIcon(iconKind);
1379     }
1380 
getTargetBeanInfo()1381     private BeanInfo getTargetBeanInfo() {
1382         if (this.targetBeanInfoRef == null) {
1383             return null;
1384         }
1385         BeanInfo targetBeanInfo = this.targetBeanInfoRef.get();
1386         if (targetBeanInfo == null) {
1387             targetBeanInfo = ThreadGroupContext.getContext().getBeanInfoFinder()
1388                     .find(this.beanDescriptor.getBeanClass());
1389             if (targetBeanInfo != null) {
1390                 this.targetBeanInfoRef = new SoftReference<>(targetBeanInfo);
1391             }
1392         }
1393         return targetBeanInfo;
1394     }
1395 }
1396