1 /*
2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include <jni.h>
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stddef.h>
31 #include <elf.h>
32 #include <link.h>
33 #include "libproc_impl.h"
34 #include "ps_core_common.h"
35 #include "proc_service.h"
36 #include "salibelf.h"
37 
38 // This file has the libproc implementation to read core files.
39 // For live processes, refer to ps_proc.c. Portions of this is adapted
40 // /modelled after Solaris libproc.so (in particular Pcore.c)
41 
42 
43 //---------------------------------------------------------------------------
44 // functions to handle map_info
45 
46 // Order mappings based on virtual address.  We use this function as the
47 // callback for sorting the array of map_info pointers.
core_cmp_mapping(const void * lhsp,const void * rhsp)48 static int core_cmp_mapping(const void *lhsp, const void *rhsp)
49 {
50   const map_info *lhs = *((const map_info **)lhsp);
51   const map_info *rhs = *((const map_info **)rhsp);
52 
53   if (lhs->vaddr == rhs->vaddr) {
54     return (0);
55   }
56 
57   return (lhs->vaddr < rhs->vaddr ? -1 : 1);
58 }
59 
60 // we sort map_info by starting virtual address so that we can do
61 // binary search to read from an address.
sort_map_array(struct ps_prochandle * ph)62 static bool sort_map_array(struct ps_prochandle* ph) {
63   size_t num_maps = ph->core->num_maps;
64   map_info* map = ph->core->maps;
65   int i = 0;
66 
67   // allocate map_array
68   map_info** array;
69   if ( (array = (map_info**) malloc(sizeof(map_info*) * num_maps)) == NULL) {
70     print_debug("can't allocate memory for map array\n");
71     return false;
72   }
73 
74   // add maps to array
75   while (map) {
76     array[i] = map;
77     i++;
78     map = map->next;
79   }
80 
81   // sort is called twice. If this is second time, clear map array
82   if (ph->core->map_array) {
83     free(ph->core->map_array);
84   }
85 
86   ph->core->map_array = array;
87   // sort the map_info array by base virtual address.
88   qsort(ph->core->map_array, ph->core->num_maps, sizeof (map_info*),
89         core_cmp_mapping);
90 
91   // print map
92   if (is_debug()) {
93     int j = 0;
94     print_debug("---- sorted virtual address map ----\n");
95     for (j = 0; j < ph->core->num_maps; j++) {
96       print_debug("base = 0x%lx\tsize = %zu\n", ph->core->map_array[j]->vaddr,
97                   ph->core->map_array[j]->memsz);
98     }
99   }
100 
101   return true;
102 }
103 
104 #ifndef MIN
105 #define MIN(x, y) (((x) < (y))? (x): (y))
106 #endif
107 
core_read_data(struct ps_prochandle * ph,uintptr_t addr,char * buf,size_t size)108 static bool core_read_data(struct ps_prochandle* ph, uintptr_t addr, char *buf, size_t size) {
109    ssize_t resid = size;
110    int page_size=sysconf(_SC_PAGE_SIZE);
111    while (resid != 0) {
112       map_info *mp = core_lookup(ph, addr);
113       uintptr_t mapoff;
114       ssize_t len, rem;
115       off_t off;
116       int fd;
117 
118       if (mp == NULL) {
119          break;  /* No mapping for this address */
120       }
121 
122       fd = mp->fd;
123       mapoff = addr - mp->vaddr;
124       len = MIN(resid, mp->memsz - mapoff);
125       off = mp->offset + mapoff;
126 
127       if ((len = pread(fd, buf, len, off)) <= 0) {
128          break;
129       }
130 
131       resid -= len;
132       addr += len;
133       buf = (char *)buf + len;
134 
135       // mappings always start at page boundary. But, may end in fractional
136       // page. fill zeros for possible fractional page at the end of a mapping.
137       rem = mp->memsz % page_size;
138       if (rem > 0) {
139          rem = page_size - rem;
140          len = MIN(resid, rem);
141          resid -= len;
142          addr += len;
143          // we are not assuming 'buf' to be zero initialized.
144          memset(buf, 0, len);
145          buf += len;
146       }
147    }
148 
149    if (resid) {
150       print_debug("core read failed for %d byte(s) @ 0x%lx (%d more bytes)\n",
151               size, addr, resid);
152       return false;
153    } else {
154       return true;
155    }
156 }
157 
158 // null implementation for write
core_write_data(struct ps_prochandle * ph,uintptr_t addr,const char * buf,size_t size)159 static bool core_write_data(struct ps_prochandle* ph,
160                              uintptr_t addr, const char *buf , size_t size) {
161    return false;
162 }
163 
core_get_lwp_regs(struct ps_prochandle * ph,lwpid_t lwp_id,struct user_regs_struct * regs)164 static bool core_get_lwp_regs(struct ps_prochandle* ph, lwpid_t lwp_id,
165                           struct user_regs_struct* regs) {
166    // for core we have cached the lwp regs from NOTE section
167    thread_info* thr = ph->threads;
168    while (thr) {
169      if (thr->lwp_id == lwp_id) {
170        memcpy(regs, &thr->regs, sizeof(struct user_regs_struct));
171        return true;
172      }
173      thr = thr->next;
174    }
175    return false;
176 }
177 
178 static ps_prochandle_ops core_ops = {
179    .release=  core_release,
180    .p_pread=  core_read_data,
181    .p_pwrite= core_write_data,
182    .get_lwp_regs= core_get_lwp_regs
183 };
184 
185 // read regs and create thread from NT_PRSTATUS entries from core file
core_handle_prstatus(struct ps_prochandle * ph,const char * buf,size_t nbytes)186 static bool core_handle_prstatus(struct ps_prochandle* ph, const char* buf, size_t nbytes) {
187    // we have to read prstatus_t from buf
188    // assert(nbytes == sizeof(prstaus_t), "size mismatch on prstatus_t");
189    prstatus_t* prstat = (prstatus_t*) buf;
190    thread_info* newthr;
191    print_debug("got integer regset for lwp %d\n", prstat->pr_pid);
192    if((newthr = add_thread_info(ph, prstat->pr_pid)) == NULL)
193       return false;
194 
195    // copy regs
196    memcpy(&newthr->regs, prstat->pr_reg, sizeof(struct user_regs_struct));
197 
198    if (is_debug()) {
199       print_debug("integer regset\n");
200 #ifdef i386
201       // print the regset
202       print_debug("\teax = 0x%x\n", newthr->regs.eax);
203       print_debug("\tebx = 0x%x\n", newthr->regs.ebx);
204       print_debug("\tecx = 0x%x\n", newthr->regs.ecx);
205       print_debug("\tedx = 0x%x\n", newthr->regs.edx);
206       print_debug("\tesp = 0x%x\n", newthr->regs.esp);
207       print_debug("\tebp = 0x%x\n", newthr->regs.ebp);
208       print_debug("\tesi = 0x%x\n", newthr->regs.esi);
209       print_debug("\tedi = 0x%x\n", newthr->regs.edi);
210       print_debug("\teip = 0x%x\n", newthr->regs.eip);
211 #endif
212 
213 #if defined(amd64) || defined(x86_64)
214       // print the regset
215       print_debug("\tr15 = 0x%lx\n", newthr->regs.r15);
216       print_debug("\tr14 = 0x%lx\n", newthr->regs.r14);
217       print_debug("\tr13 = 0x%lx\n", newthr->regs.r13);
218       print_debug("\tr12 = 0x%lx\n", newthr->regs.r12);
219       print_debug("\trbp = 0x%lx\n", newthr->regs.rbp);
220       print_debug("\trbx = 0x%lx\n", newthr->regs.rbx);
221       print_debug("\tr11 = 0x%lx\n", newthr->regs.r11);
222       print_debug("\tr10 = 0x%lx\n", newthr->regs.r10);
223       print_debug("\tr9 = 0x%lx\n", newthr->regs.r9);
224       print_debug("\tr8 = 0x%lx\n", newthr->regs.r8);
225       print_debug("\trax = 0x%lx\n", newthr->regs.rax);
226       print_debug("\trcx = 0x%lx\n", newthr->regs.rcx);
227       print_debug("\trdx = 0x%lx\n", newthr->regs.rdx);
228       print_debug("\trsi = 0x%lx\n", newthr->regs.rsi);
229       print_debug("\trdi = 0x%lx\n", newthr->regs.rdi);
230       print_debug("\torig_rax = 0x%lx\n", newthr->regs.orig_rax);
231       print_debug("\trip = 0x%lx\n", newthr->regs.rip);
232       print_debug("\tcs = 0x%lx\n", newthr->regs.cs);
233       print_debug("\teflags = 0x%lx\n", newthr->regs.eflags);
234       print_debug("\trsp = 0x%lx\n", newthr->regs.rsp);
235       print_debug("\tss = 0x%lx\n", newthr->regs.ss);
236       print_debug("\tfs_base = 0x%lx\n", newthr->regs.fs_base);
237       print_debug("\tgs_base = 0x%lx\n", newthr->regs.gs_base);
238       print_debug("\tds = 0x%lx\n", newthr->regs.ds);
239       print_debug("\tes = 0x%lx\n", newthr->regs.es);
240       print_debug("\tfs = 0x%lx\n", newthr->regs.fs);
241       print_debug("\tgs = 0x%lx\n", newthr->regs.gs);
242 #endif
243    }
244 
245    return true;
246 }
247 
248 #define ROUNDUP(x, y)  ((((x)+((y)-1))/(y))*(y))
249 
250 // read NT_PRSTATUS entries from core NOTE segment
core_handle_note(struct ps_prochandle * ph,ELF_PHDR * note_phdr)251 static bool core_handle_note(struct ps_prochandle* ph, ELF_PHDR* note_phdr) {
252    char* buf = NULL;
253    char* p = NULL;
254    size_t size = note_phdr->p_filesz;
255 
256    // we are interested in just prstatus entries. we will ignore the rest.
257    // Advance the seek pointer to the start of the PT_NOTE data
258    if (lseek(ph->core->core_fd, note_phdr->p_offset, SEEK_SET) == (off_t)-1) {
259       print_debug("failed to lseek to PT_NOTE data\n");
260       return false;
261    }
262 
263    // Now process the PT_NOTE structures.  Each one is preceded by
264    // an Elf{32/64}_Nhdr structure describing its type and size.
265    if ( (buf = (char*) malloc(size)) == NULL) {
266       print_debug("can't allocate memory for reading core notes\n");
267       goto err;
268    }
269 
270    // read notes into buffer
271    if (read(ph->core->core_fd, buf, size) != size) {
272       print_debug("failed to read notes, core file must have been truncated\n");
273       goto err;
274    }
275 
276    p = buf;
277    while (p < buf + size) {
278       ELF_NHDR* notep = (ELF_NHDR*) p;
279       char* descdata  = p + sizeof(ELF_NHDR) + ROUNDUP(notep->n_namesz, 4);
280       print_debug("Note header with n_type = %d and n_descsz = %u\n",
281                                    notep->n_type, notep->n_descsz);
282 
283       if (notep->n_type == NT_PRSTATUS) {
284         if (core_handle_prstatus(ph, descdata, notep->n_descsz) != true) {
285           return false;
286         }
287       } else if (notep->n_type == NT_AUXV) {
288         // Get first segment from entry point
289         ELF_AUXV *auxv = (ELF_AUXV *)descdata;
290         while (auxv->a_type != AT_NULL) {
291           if (auxv->a_type == AT_ENTRY) {
292             // Set entry point address to address of dynamic section.
293             // We will adjust it in read_exec_segments().
294             ph->core->dynamic_addr = auxv->a_un.a_val;
295             break;
296           }
297           auxv++;
298         }
299       }
300       p = descdata + ROUNDUP(notep->n_descsz, 4);
301    }
302 
303    free(buf);
304    return true;
305 
306 err:
307    if (buf) free(buf);
308    return false;
309 }
310 
311 // read all segments from core file
read_core_segments(struct ps_prochandle * ph,ELF_EHDR * core_ehdr)312 static bool read_core_segments(struct ps_prochandle* ph, ELF_EHDR* core_ehdr) {
313    int i = 0;
314    ELF_PHDR* phbuf = NULL;
315    ELF_PHDR* core_php = NULL;
316 
317    if ((phbuf =  read_program_header_table(ph->core->core_fd, core_ehdr)) == NULL)
318       return false;
319 
320    /*
321     * Now iterate through the program headers in the core file.
322     * We're interested in two types of Phdrs: PT_NOTE (which
323     * contains a set of saved /proc structures), and PT_LOAD (which
324     * represents a memory mapping from the process's address space).
325     *
326     * Difference b/w Solaris PT_NOTE and Linux/BSD PT_NOTE:
327     *
328     *     In Solaris there are two PT_NOTE segments the first PT_NOTE (if present)
329     *     contains /proc structs in the pre-2.6 unstructured /proc format. the last
330     *     PT_NOTE has data in new /proc format.
331     *
332     *     In Solaris, there is only one pstatus (process status). pstatus contains
333     *     integer register set among other stuff. For each LWP, we have one lwpstatus
334     *     entry that has integer regset for that LWP.
335     *
336     *     Linux threads are actually 'clone'd processes. To support core analysis
337     *     of "multithreaded" process, Linux creates more than one pstatus (called
338     *     "prstatus") entry in PT_NOTE. Each prstatus entry has integer regset for one
339     *     "thread". Please refer to Linux kernel src file 'fs/binfmt_elf.c', in particular
340     *     function "elf_core_dump".
341     */
342 
343     for (core_php = phbuf, i = 0; i < core_ehdr->e_phnum; i++) {
344       switch (core_php->p_type) {
345          case PT_NOTE:
346             if (core_handle_note(ph, core_php) != true) {
347               goto err;
348             }
349             break;
350 
351          case PT_LOAD: {
352             if (core_php->p_filesz != 0) {
353                if (add_map_info(ph, ph->core->core_fd, core_php->p_offset,
354                   core_php->p_vaddr, core_php->p_filesz) == NULL) goto err;
355             }
356             break;
357          }
358       }
359 
360       core_php++;
361    }
362 
363    free(phbuf);
364    return true;
365 err:
366    free(phbuf);
367    return false;
368 }
369 
370 // read segments of a shared object
read_lib_segments(struct ps_prochandle * ph,int lib_fd,ELF_EHDR * lib_ehdr,uintptr_t lib_base)371 static bool read_lib_segments(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* lib_ehdr, uintptr_t lib_base) {
372   int i = 0;
373   ELF_PHDR* phbuf;
374   ELF_PHDR* lib_php = NULL;
375 
376   int page_size = sysconf(_SC_PAGE_SIZE);
377 
378   if ((phbuf = read_program_header_table(lib_fd, lib_ehdr)) == NULL) {
379     return false;
380   }
381 
382   // we want to process only PT_LOAD segments that are not writable.
383   // i.e., text segments. The read/write/exec (data) segments would
384   // have been already added from core file segments.
385   for (lib_php = phbuf, i = 0; i < lib_ehdr->e_phnum; i++) {
386     if ((lib_php->p_type == PT_LOAD) && !(lib_php->p_flags & PF_W) && (lib_php->p_filesz != 0)) {
387 
388       uintptr_t target_vaddr = lib_php->p_vaddr + lib_base;
389       map_info *existing_map = core_lookup(ph, target_vaddr);
390 
391       if (existing_map == NULL){
392         if (add_map_info(ph, lib_fd, lib_php->p_offset,
393                           target_vaddr, lib_php->p_memsz) == NULL) {
394           goto err;
395         }
396       } else {
397         // Coredump stores value of p_memsz elf field
398         // rounded up to page boundary.
399 
400         if ((existing_map->memsz != page_size) &&
401             (existing_map->fd != lib_fd) &&
402             (ROUNDUP(existing_map->memsz, page_size) != ROUNDUP(lib_php->p_memsz, page_size))) {
403 
404           print_debug("address conflict @ 0x%lx (existing map size = %ld, size = %ld, flags = %d)\n",
405                         target_vaddr, existing_map->memsz, lib_php->p_memsz, lib_php->p_flags);
406           goto err;
407         }
408 
409         /* replace PT_LOAD segment with library segment */
410         print_debug("overwrote with new address mapping (memsz %ld -> %ld)\n",
411                      existing_map->memsz, ROUNDUP(lib_php->p_memsz, page_size));
412 
413         existing_map->fd = lib_fd;
414         existing_map->offset = lib_php->p_offset;
415         existing_map->memsz = ROUNDUP(lib_php->p_memsz, page_size);
416       }
417     }
418 
419     lib_php++;
420   }
421 
422   free(phbuf);
423   return true;
424 err:
425   free(phbuf);
426   return false;
427 }
428 
429 // process segments from interpreter (ld.so or ld-linux.so)
read_interp_segments(struct ps_prochandle * ph)430 static bool read_interp_segments(struct ps_prochandle* ph) {
431   ELF_EHDR interp_ehdr;
432 
433   if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) {
434     print_debug("interpreter is not a valid ELF file\n");
435     return false;
436   }
437 
438   if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) {
439     print_debug("can't read segments of interpreter\n");
440     return false;
441   }
442 
443   return true;
444 }
445 
446 // process segments of a a.out
read_exec_segments(struct ps_prochandle * ph,ELF_EHDR * exec_ehdr)447 static bool read_exec_segments(struct ps_prochandle* ph, ELF_EHDR* exec_ehdr) {
448   int i = 0;
449   ELF_PHDR* phbuf = NULL;
450   ELF_PHDR* exec_php = NULL;
451 
452   if ((phbuf = read_program_header_table(ph->core->exec_fd, exec_ehdr)) == NULL) {
453     return false;
454   }
455 
456   for (exec_php = phbuf, i = 0; i < exec_ehdr->e_phnum; i++) {
457     switch (exec_php->p_type) {
458 
459       // add mappings for PT_LOAD segments
460     case PT_LOAD: {
461       // add only non-writable segments of non-zero filesz
462       if (!(exec_php->p_flags & PF_W) && exec_php->p_filesz != 0) {
463         if (add_map_info(ph, ph->core->exec_fd, exec_php->p_offset, exec_php->p_vaddr, exec_php->p_filesz) == NULL) goto err;
464       }
465       break;
466     }
467 
468     // read the interpreter and it's segments
469     case PT_INTERP: {
470       char interp_name[BUF_SIZE + 1];
471 
472       // BUF_SIZE is PATH_MAX + NAME_MAX + 1.
473       if (exec_php->p_filesz > BUF_SIZE) {
474         goto err;
475       }
476       if (pread(ph->core->exec_fd, interp_name,
477                 exec_php->p_filesz, exec_php->p_offset) != exec_php->p_filesz) {
478         print_debug("Unable to read in the ELF interpreter\n");
479         goto err;
480       }
481       interp_name[exec_php->p_filesz] = '\0';
482       print_debug("ELF interpreter %s\n", interp_name);
483       // read interpreter segments as well
484       if ((ph->core->interp_fd = pathmap_open(interp_name)) < 0) {
485         print_debug("can't open runtime loader\n");
486         goto err;
487       }
488       break;
489     }
490 
491     // from PT_DYNAMIC we want to read address of first link_map addr
492     case PT_DYNAMIC: {
493       if (exec_ehdr->e_type == ET_EXEC) {
494         ph->core->dynamic_addr = exec_php->p_vaddr;
495       } else { // ET_DYN
496         // dynamic_addr has entry point of executable.
497         // Thus we should substract it.
498         ph->core->dynamic_addr += exec_php->p_vaddr - exec_ehdr->e_entry;
499       }
500       print_debug("address of _DYNAMIC is 0x%lx\n", ph->core->dynamic_addr);
501       break;
502     }
503 
504     } // switch
505     exec_php++;
506   } // for
507 
508   free(phbuf);
509   return true;
510  err:
511   free(phbuf);
512   return false;
513 }
514 
515 
516 #define FIRST_LINK_MAP_OFFSET offsetof(struct r_debug,  r_map)
517 #define LD_BASE_OFFSET        offsetof(struct r_debug,  r_ldbase)
518 #define LINK_MAP_ADDR_OFFSET  offsetof(struct link_map, l_addr)
519 #define LINK_MAP_NAME_OFFSET  offsetof(struct link_map, l_name)
520 #define LINK_MAP_LD_OFFSET    offsetof(struct link_map, l_ld)
521 #define LINK_MAP_NEXT_OFFSET  offsetof(struct link_map, l_next)
522 
523 #define INVALID_LOAD_ADDRESS -1L
524 #define ZERO_LOAD_ADDRESS 0x0L
525 
526 // Calculate the load address of shared library
527 // on prelink-enabled environment.
528 //
529 // In case of GDB, it would be calculated by offset of link_map.l_ld
530 // and the address of .dynamic section.
531 // See GDB implementation: lm_addr_check @ solib-svr4.c
calc_prelinked_load_address(struct ps_prochandle * ph,int lib_fd,ELF_EHDR * elf_ehdr,uintptr_t link_map_addr)532 static uintptr_t calc_prelinked_load_address(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* elf_ehdr, uintptr_t link_map_addr) {
533   ELF_PHDR *phbuf;
534   uintptr_t lib_ld;
535   uintptr_t lib_dyn_addr = 0L;
536   uintptr_t load_addr;
537   int i;
538 
539   phbuf = read_program_header_table(lib_fd, elf_ehdr);
540   if (phbuf == NULL) {
541     print_debug("can't read program header of shared object\n");
542     return INVALID_LOAD_ADDRESS;
543   }
544 
545   // Get the address of .dynamic section from shared library.
546   for (i = 0; i < elf_ehdr->e_phnum; i++) {
547     if (phbuf[i].p_type == PT_DYNAMIC) {
548       lib_dyn_addr = phbuf[i].p_vaddr;
549       break;
550     }
551   }
552 
553   free(phbuf);
554 
555   if (ps_pdread(ph, (psaddr_t)link_map_addr + LINK_MAP_LD_OFFSET,
556                &lib_ld, sizeof(uintptr_t)) != PS_OK) {
557     print_debug("can't read address of dynamic section in shared object\n");
558     return INVALID_LOAD_ADDRESS;
559   }
560 
561   // Return the load address which is calculated by the address of .dynamic
562   // and link_map.l_ld .
563   load_addr = lib_ld - lib_dyn_addr;
564   print_debug("lib_ld = 0x%lx, lib_dyn_addr = 0x%lx -> lib_base_diff = 0x%lx\n", lib_ld, lib_dyn_addr, load_addr);
565   return load_addr;
566 }
567 
568 // read shared library info from runtime linker's data structures.
569 // This work is done by librtlb_db in Solaris
read_shared_lib_info(struct ps_prochandle * ph)570 static bool read_shared_lib_info(struct ps_prochandle* ph) {
571   uintptr_t addr = ph->core->dynamic_addr;
572   uintptr_t debug_base;
573   uintptr_t first_link_map_addr;
574   uintptr_t ld_base_addr;
575   uintptr_t link_map_addr;
576   uintptr_t lib_base_diff;
577   uintptr_t lib_base;
578   uintptr_t lib_name_addr;
579   char lib_name[BUF_SIZE];
580   ELF_DYN dyn;
581   ELF_EHDR elf_ehdr;
582   int lib_fd;
583 
584   // _DYNAMIC has information of the form
585   //         [tag] [data] [tag] [data] .....
586   // Both tag and data are pointer sized.
587   // We look for dynamic info with DT_DEBUG. This has shared object info.
588   // refer to struct r_debug in link.h
589 
590   dyn.d_tag = DT_NULL;
591   while (dyn.d_tag != DT_DEBUG) {
592     if (ps_pdread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) {
593       print_debug("can't read debug info from _DYNAMIC\n");
594       return false;
595     }
596     addr += sizeof(ELF_DYN);
597   }
598 
599   // we have got Dyn entry with DT_DEBUG
600   debug_base = dyn.d_un.d_ptr;
601   // at debug_base we have struct r_debug. This has first link map in r_map field
602   if (ps_pdread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET,
603                  &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) {
604     print_debug("can't read first link map address\n");
605     return false;
606   }
607 
608   // read ld_base address from struct r_debug
609   if (ps_pdread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr,
610                  sizeof(uintptr_t)) != PS_OK) {
611     print_debug("can't read ld base address\n");
612     return false;
613   }
614   ph->core->ld_base_addr = ld_base_addr;
615 
616   print_debug("interpreter base address is 0x%lx\n", ld_base_addr);
617 
618   // now read segments from interp (i.e ld.so or ld-linux.so or ld-elf.so)
619   if (read_interp_segments(ph) != true) {
620       return false;
621   }
622 
623   // after adding interpreter (ld.so) mappings sort again
624   if (sort_map_array(ph) != true) {
625     return false;
626   }
627 
628    print_debug("first link map is at 0x%lx\n", first_link_map_addr);
629 
630    link_map_addr = first_link_map_addr;
631    while (link_map_addr != 0) {
632       // read library base address of the .so. Note that even though <sys/link.h> calls
633       // link_map->l_addr as "base address",  this is * not * really base virtual
634       // address of the shared object. This is actually the difference b/w the virtual
635       // address mentioned in shared object and the actual virtual base where runtime
636       // linker loaded it. We use "base diff" in read_lib_segments call below.
637 
638       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET,
639                    &lib_base_diff, sizeof(uintptr_t)) != PS_OK) {
640          print_debug("can't read shared object base address diff\n");
641          return false;
642       }
643 
644       // read address of the name
645       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET,
646                     &lib_name_addr, sizeof(uintptr_t)) != PS_OK) {
647          print_debug("can't read address of shared object name\n");
648          return false;
649       }
650 
651       // read name of the shared object
652       lib_name[0] = '\0';
653       if (lib_name_addr != 0 &&
654           read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) {
655          print_debug("can't read shared object name\n");
656          // don't let failure to read the name stop opening the file.  If something is really wrong
657          // it will fail later.
658       }
659 
660       if (lib_name[0] != '\0') {
661          // ignore empty lib names
662          lib_fd = pathmap_open(lib_name);
663 
664          if (lib_fd < 0) {
665             print_debug("can't open shared object %s\n", lib_name);
666             // continue with other libraries...
667          } else {
668             if (read_elf_header(lib_fd, &elf_ehdr)) {
669                if (lib_base_diff == ZERO_LOAD_ADDRESS ) {
670                  lib_base_diff = calc_prelinked_load_address(ph, lib_fd, &elf_ehdr, link_map_addr);
671                  if (lib_base_diff == INVALID_LOAD_ADDRESS) {
672                    close(lib_fd);
673                    return false;
674                  }
675                }
676 
677                lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr);
678                print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n",
679                            lib_name, lib_base, lib_base_diff);
680                // while adding library mappings we need to use "base difference".
681                if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) {
682                   print_debug("can't read shared object's segments\n");
683                   close(lib_fd);
684                   return false;
685                }
686                add_lib_info_fd(ph, lib_name, lib_fd, lib_base);
687                // Map info is added for the library (lib_name) so
688                // we need to re-sort it before calling the p_pdread.
689                if (sort_map_array(ph) != true)
690                   return false;
691             } else {
692                print_debug("can't read ELF header for shared object %s\n", lib_name);
693                close(lib_fd);
694                // continue with other libraries...
695             }
696          }
697       }
698 
699     // read next link_map address
700     if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET,
701                    &link_map_addr, sizeof(uintptr_t)) != PS_OK) {
702       print_debug("can't read next link in link_map\n");
703       return false;
704     }
705   }
706 
707   return true;
708 }
709 
710 // the one and only one exposed stuff from this file
711 JNIEXPORT struct ps_prochandle* JNICALL
Pgrab_core(const char * exec_file,const char * core_file)712 Pgrab_core(const char* exec_file, const char* core_file) {
713   ELF_EHDR core_ehdr;
714   ELF_EHDR exec_ehdr;
715   ELF_EHDR lib_ehdr;
716 
717   struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle));
718   if (ph == NULL) {
719     print_debug("can't allocate ps_prochandle\n");
720     return NULL;
721   }
722 
723   if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) {
724     free(ph);
725     print_debug("can't allocate ps_prochandle\n");
726     return NULL;
727   }
728 
729   // initialize ph
730   ph->ops = &core_ops;
731   ph->core->core_fd   = -1;
732   ph->core->exec_fd   = -1;
733   ph->core->interp_fd = -1;
734 
735   // open the core file
736   if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) {
737     print_debug("can't open core file\n");
738     goto err;
739   }
740 
741   // read core file ELF header
742   if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) {
743     print_debug("core file is not a valid ELF ET_CORE file\n");
744     goto err;
745   }
746 
747   if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) {
748     print_debug("can't open executable file\n");
749     goto err;
750   }
751 
752   if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true ||
753       ((exec_ehdr.e_type != ET_EXEC) && (exec_ehdr.e_type != ET_DYN))) {
754     print_debug("executable file is not a valid ELF file\n");
755     goto err;
756   }
757 
758   // process core file segments
759   if (read_core_segments(ph, &core_ehdr) != true) {
760     goto err;
761   }
762 
763   // process exec file segments
764   if (read_exec_segments(ph, &exec_ehdr) != true) {
765     goto err;
766   }
767 
768   // exec file is also treated like a shared object for symbol search
769   if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd,
770                       (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL) {
771     goto err;
772   }
773 
774   // allocate and sort maps into map_array, we need to do this
775   // here because read_shared_lib_info needs to read from debuggee
776   // address space
777   if (sort_map_array(ph) != true) {
778     goto err;
779   }
780 
781   if (read_shared_lib_info(ph) != true) {
782     goto err;
783   }
784 
785   // sort again because we have added more mappings from shared objects
786   if (sort_map_array(ph) != true) {
787     goto err;
788   }
789 
790   if (init_classsharing_workaround(ph) != true) {
791     goto err;
792   }
793 
794   return ph;
795 
796 err:
797   Prelease(ph);
798   return NULL;
799 }
800