1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "compiler/disassembler.hpp"
28 #include "interpreter/interpreter.hpp"
29 #include "interpreter/interpreterRuntime.hpp"
30 #include "interpreter/interp_masm.hpp"
31 #include "interpreter/templateTable.hpp"
32 #include "memory/universe.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/objArrayKlass.hpp"
35 #include "oops/oop.inline.hpp"
36 #include "prims/methodHandles.hpp"
37 #include "runtime/frame.inline.hpp"
38 #include "runtime/safepointMechanism.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/stubRoutines.hpp"
41 #include "runtime/synchronizer.hpp"
42 #include "utilities/macros.hpp"
43 
44 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
45 
46 // Global Register Names
47 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
48 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
49 
50 // Platform-dependent initialization
pd_initialize()51 void TemplateTable::pd_initialize() {
52   // No x86 specific initialization
53 }
54 
55 // Address Computation: local variables
iaddress(int n)56 static inline Address iaddress(int n) {
57   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
58 }
59 
laddress(int n)60 static inline Address laddress(int n) {
61   return iaddress(n + 1);
62 }
63 
64 #ifndef _LP64
haddress(int n)65 static inline Address haddress(int n) {
66   return iaddress(n + 0);
67 }
68 #endif
69 
faddress(int n)70 static inline Address faddress(int n) {
71   return iaddress(n);
72 }
73 
daddress(int n)74 static inline Address daddress(int n) {
75   return laddress(n);
76 }
77 
aaddress(int n)78 static inline Address aaddress(int n) {
79   return iaddress(n);
80 }
81 
iaddress(Register r)82 static inline Address iaddress(Register r) {
83   return Address(rlocals, r, Address::times_ptr);
84 }
85 
laddress(Register r)86 static inline Address laddress(Register r) {
87   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
88 }
89 
90 #ifndef _LP64
haddress(Register r)91 static inline Address haddress(Register r)       {
92   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
93 }
94 #endif
95 
faddress(Register r)96 static inline Address faddress(Register r) {
97   return iaddress(r);
98 }
99 
daddress(Register r)100 static inline Address daddress(Register r) {
101   return laddress(r);
102 }
103 
aaddress(Register r)104 static inline Address aaddress(Register r) {
105   return iaddress(r);
106 }
107 
108 
109 // expression stack
110 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
111 // data beyond the rsp which is potentially unsafe in an MT environment;
112 // an interrupt may overwrite that data.)
at_rsp()113 static inline Address at_rsp   () {
114   return Address(rsp, 0);
115 }
116 
117 // At top of Java expression stack which may be different than esp().  It
118 // isn't for category 1 objects.
at_tos()119 static inline Address at_tos   () {
120   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
121 }
122 
at_tos_p1()123 static inline Address at_tos_p1() {
124   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
125 }
126 
at_tos_p2()127 static inline Address at_tos_p2() {
128   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
129 }
130 
131 // Condition conversion
j_not(TemplateTable::Condition cc)132 static Assembler::Condition j_not(TemplateTable::Condition cc) {
133   switch (cc) {
134   case TemplateTable::equal        : return Assembler::notEqual;
135   case TemplateTable::not_equal    : return Assembler::equal;
136   case TemplateTable::less         : return Assembler::greaterEqual;
137   case TemplateTable::less_equal   : return Assembler::greater;
138   case TemplateTable::greater      : return Assembler::lessEqual;
139   case TemplateTable::greater_equal: return Assembler::less;
140   }
141   ShouldNotReachHere();
142   return Assembler::zero;
143 }
144 
145 
146 
147 // Miscelaneous helper routines
148 // Store an oop (or NULL) at the address described by obj.
149 // If val == noreg this means store a NULL
150 
151 
do_oop_store(InterpreterMacroAssembler * _masm,Address dst,Register val,DecoratorSet decorators=0)152 static void do_oop_store(InterpreterMacroAssembler* _masm,
153                          Address dst,
154                          Register val,
155                          DecoratorSet decorators = 0) {
156   assert(val == noreg || val == rax, "parameter is just for looks");
157   __ store_heap_oop(dst, val, rdx, rbx, decorators);
158 }
159 
do_oop_load(InterpreterMacroAssembler * _masm,Address src,Register dst,DecoratorSet decorators=0)160 static void do_oop_load(InterpreterMacroAssembler* _masm,
161                         Address src,
162                         Register dst,
163                         DecoratorSet decorators = 0) {
164   __ load_heap_oop(dst, src, rdx, rbx, decorators);
165 }
166 
at_bcp(int offset)167 Address TemplateTable::at_bcp(int offset) {
168   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
169   return Address(rbcp, offset);
170 }
171 
172 
patch_bytecode(Bytecodes::Code bc,Register bc_reg,Register temp_reg,bool load_bc_into_bc_reg,int byte_no)173 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
174                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
175                                    int byte_no) {
176   if (!RewriteBytecodes)  return;
177   Label L_patch_done;
178 
179   switch (bc) {
180   case Bytecodes::_fast_aputfield:
181   case Bytecodes::_fast_bputfield:
182   case Bytecodes::_fast_zputfield:
183   case Bytecodes::_fast_cputfield:
184   case Bytecodes::_fast_dputfield:
185   case Bytecodes::_fast_fputfield:
186   case Bytecodes::_fast_iputfield:
187   case Bytecodes::_fast_lputfield:
188   case Bytecodes::_fast_sputfield:
189     {
190       // We skip bytecode quickening for putfield instructions when
191       // the put_code written to the constant pool cache is zero.
192       // This is required so that every execution of this instruction
193       // calls out to InterpreterRuntime::resolve_get_put to do
194       // additional, required work.
195       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
196       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
197       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
198       __ movl(bc_reg, bc);
199       __ cmpl(temp_reg, (int) 0);
200       __ jcc(Assembler::zero, L_patch_done);  // don't patch
201     }
202     break;
203   default:
204     assert(byte_no == -1, "sanity");
205     // the pair bytecodes have already done the load.
206     if (load_bc_into_bc_reg) {
207       __ movl(bc_reg, bc);
208     }
209   }
210 
211   if (JvmtiExport::can_post_breakpoint()) {
212     Label L_fast_patch;
213     // if a breakpoint is present we can't rewrite the stream directly
214     __ movzbl(temp_reg, at_bcp(0));
215     __ cmpl(temp_reg, Bytecodes::_breakpoint);
216     __ jcc(Assembler::notEqual, L_fast_patch);
217     __ get_method(temp_reg);
218     // Let breakpoint table handling rewrite to quicker bytecode
219     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
220 #ifndef ASSERT
221     __ jmpb(L_patch_done);
222 #else
223     __ jmp(L_patch_done);
224 #endif
225     __ bind(L_fast_patch);
226   }
227 
228 #ifdef ASSERT
229   Label L_okay;
230   __ load_unsigned_byte(temp_reg, at_bcp(0));
231   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
232   __ jcc(Assembler::equal, L_okay);
233   __ cmpl(temp_reg, bc_reg);
234   __ jcc(Assembler::equal, L_okay);
235   __ stop("patching the wrong bytecode");
236   __ bind(L_okay);
237 #endif
238 
239   // patch bytecode
240   __ movb(at_bcp(0), bc_reg);
241   __ bind(L_patch_done);
242 }
243 // Individual instructions
244 
245 
nop()246 void TemplateTable::nop() {
247   transition(vtos, vtos);
248   // nothing to do
249 }
250 
shouldnotreachhere()251 void TemplateTable::shouldnotreachhere() {
252   transition(vtos, vtos);
253   __ stop("shouldnotreachhere bytecode");
254 }
255 
aconst_null()256 void TemplateTable::aconst_null() {
257   transition(vtos, atos);
258   __ xorl(rax, rax);
259 }
260 
iconst(int value)261 void TemplateTable::iconst(int value) {
262   transition(vtos, itos);
263   if (value == 0) {
264     __ xorl(rax, rax);
265   } else {
266     __ movl(rax, value);
267   }
268 }
269 
lconst(int value)270 void TemplateTable::lconst(int value) {
271   transition(vtos, ltos);
272   if (value == 0) {
273     __ xorl(rax, rax);
274   } else {
275     __ movl(rax, value);
276   }
277 #ifndef _LP64
278   assert(value >= 0, "check this code");
279   __ xorptr(rdx, rdx);
280 #endif
281 }
282 
283 
284 
fconst(int value)285 void TemplateTable::fconst(int value) {
286   transition(vtos, ftos);
287   if (UseSSE >= 1) {
288     static float one = 1.0f, two = 2.0f;
289     switch (value) {
290     case 0:
291       __ xorps(xmm0, xmm0);
292       break;
293     case 1:
294       __ movflt(xmm0, ExternalAddress((address) &one));
295       break;
296     case 2:
297       __ movflt(xmm0, ExternalAddress((address) &two));
298       break;
299     default:
300       ShouldNotReachHere();
301       break;
302     }
303   } else {
304 #ifdef _LP64
305     ShouldNotReachHere();
306 #else
307            if (value == 0) { __ fldz();
308     } else if (value == 1) { __ fld1();
309     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
310     } else                 { ShouldNotReachHere();
311     }
312 #endif // _LP64
313   }
314 }
315 
dconst(int value)316 void TemplateTable::dconst(int value) {
317   transition(vtos, dtos);
318   if (UseSSE >= 2) {
319     static double one = 1.0;
320     switch (value) {
321     case 0:
322       __ xorpd(xmm0, xmm0);
323       break;
324     case 1:
325       __ movdbl(xmm0, ExternalAddress((address) &one));
326       break;
327     default:
328       ShouldNotReachHere();
329       break;
330     }
331   } else {
332 #ifdef _LP64
333     ShouldNotReachHere();
334 #else
335            if (value == 0) { __ fldz();
336     } else if (value == 1) { __ fld1();
337     } else                 { ShouldNotReachHere();
338     }
339 #endif
340   }
341 }
342 
bipush()343 void TemplateTable::bipush() {
344   transition(vtos, itos);
345   __ load_signed_byte(rax, at_bcp(1));
346 }
347 
sipush()348 void TemplateTable::sipush() {
349   transition(vtos, itos);
350   __ load_unsigned_short(rax, at_bcp(1));
351   __ bswapl(rax);
352   __ sarl(rax, 16);
353 }
354 
ldc(bool wide)355 void TemplateTable::ldc(bool wide) {
356   transition(vtos, vtos);
357   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
358   Label call_ldc, notFloat, notClass, notInt, Done;
359 
360   if (wide) {
361     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
362   } else {
363     __ load_unsigned_byte(rbx, at_bcp(1));
364   }
365 
366   __ get_cpool_and_tags(rcx, rax);
367   const int base_offset = ConstantPool::header_size() * wordSize;
368   const int tags_offset = Array<u1>::base_offset_in_bytes();
369 
370   // get type
371   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
372 
373   // unresolved class - get the resolved class
374   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
375   __ jccb(Assembler::equal, call_ldc);
376 
377   // unresolved class in error state - call into runtime to throw the error
378   // from the first resolution attempt
379   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
380   __ jccb(Assembler::equal, call_ldc);
381 
382   // resolved class - need to call vm to get java mirror of the class
383   __ cmpl(rdx, JVM_CONSTANT_Class);
384   __ jcc(Assembler::notEqual, notClass);
385 
386   __ bind(call_ldc);
387 
388   __ movl(rarg, wide);
389   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
390 
391   __ push(atos);
392   __ jmp(Done);
393 
394   __ bind(notClass);
395   __ cmpl(rdx, JVM_CONSTANT_Float);
396   __ jccb(Assembler::notEqual, notFloat);
397 
398   // ftos
399   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
400   __ push(ftos);
401   __ jmp(Done);
402 
403   __ bind(notFloat);
404   __ cmpl(rdx, JVM_CONSTANT_Integer);
405   __ jccb(Assembler::notEqual, notInt);
406 
407   // itos
408   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
409   __ push(itos);
410   __ jmp(Done);
411 
412   // assume the tag is for condy; if not, the VM runtime will tell us
413   __ bind(notInt);
414   condy_helper(Done);
415 
416   __ bind(Done);
417 }
418 
419 // Fast path for caching oop constants.
fast_aldc(bool wide)420 void TemplateTable::fast_aldc(bool wide) {
421   transition(vtos, atos);
422 
423   Register result = rax;
424   Register tmp = rdx;
425   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
426   int index_size = wide ? sizeof(u2) : sizeof(u1);
427 
428   Label resolved;
429 
430   // We are resolved if the resolved reference cache entry contains a
431   // non-null object (String, MethodType, etc.)
432   assert_different_registers(result, tmp);
433   __ get_cache_index_at_bcp(tmp, 1, index_size);
434   __ load_resolved_reference_at_index(result, tmp);
435   __ testptr(result, result);
436   __ jcc(Assembler::notZero, resolved);
437 
438   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
439 
440   // first time invocation - must resolve first
441   __ movl(rarg, (int)bytecode());
442   __ call_VM(result, entry, rarg);
443   __ bind(resolved);
444 
445   { // Check for the null sentinel.
446     // If we just called the VM, it already did the mapping for us,
447     // but it's harmless to retry.
448     Label notNull;
449     ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
450     __ movptr(tmp, null_sentinel);
451     __ cmpoop(tmp, result);
452     __ jccb(Assembler::notEqual, notNull);
453     __ xorptr(result, result);  // NULL object reference
454     __ bind(notNull);
455   }
456 
457   if (VerifyOops) {
458     __ verify_oop(result);
459   }
460 }
461 
ldc2_w()462 void TemplateTable::ldc2_w() {
463   transition(vtos, vtos);
464   Label notDouble, notLong, Done;
465   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
466 
467   __ get_cpool_and_tags(rcx, rax);
468   const int base_offset = ConstantPool::header_size() * wordSize;
469   const int tags_offset = Array<u1>::base_offset_in_bytes();
470 
471   // get type
472   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
473   __ cmpl(rdx, JVM_CONSTANT_Double);
474   __ jccb(Assembler::notEqual, notDouble);
475 
476   // dtos
477   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
478   __ push(dtos);
479 
480   __ jmp(Done);
481   __ bind(notDouble);
482   __ cmpl(rdx, JVM_CONSTANT_Long);
483   __ jccb(Assembler::notEqual, notLong);
484 
485   // ltos
486   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
487   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
488   __ push(ltos);
489   __ jmp(Done);
490 
491   __ bind(notLong);
492   condy_helper(Done);
493 
494   __ bind(Done);
495 }
496 
condy_helper(Label & Done)497 void TemplateTable::condy_helper(Label& Done) {
498   const Register obj = rax;
499   const Register off = rbx;
500   const Register flags = rcx;
501   const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
502   __ movl(rarg, (int)bytecode());
503   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
504 #ifndef _LP64
505   // borrow rdi from locals
506   __ get_thread(rdi);
507   __ get_vm_result_2(flags, rdi);
508   __ restore_locals();
509 #else
510   __ get_vm_result_2(flags, r15_thread);
511 #endif
512   // VMr = obj = base address to find primitive value to push
513   // VMr2 = flags = (tos, off) using format of CPCE::_flags
514   __ movl(off, flags);
515   __ andl(off, ConstantPoolCacheEntry::field_index_mask);
516   const Address field(obj, off, Address::times_1, 0*wordSize);
517 
518   // What sort of thing are we loading?
519   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
520   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
521 
522   switch (bytecode()) {
523   case Bytecodes::_ldc:
524   case Bytecodes::_ldc_w:
525     {
526       // tos in (itos, ftos, stos, btos, ctos, ztos)
527       Label notInt, notFloat, notShort, notByte, notChar, notBool;
528       __ cmpl(flags, itos);
529       __ jcc(Assembler::notEqual, notInt);
530       // itos
531       __ movl(rax, field);
532       __ push(itos);
533       __ jmp(Done);
534 
535       __ bind(notInt);
536       __ cmpl(flags, ftos);
537       __ jcc(Assembler::notEqual, notFloat);
538       // ftos
539       __ load_float(field);
540       __ push(ftos);
541       __ jmp(Done);
542 
543       __ bind(notFloat);
544       __ cmpl(flags, stos);
545       __ jcc(Assembler::notEqual, notShort);
546       // stos
547       __ load_signed_short(rax, field);
548       __ push(stos);
549       __ jmp(Done);
550 
551       __ bind(notShort);
552       __ cmpl(flags, btos);
553       __ jcc(Assembler::notEqual, notByte);
554       // btos
555       __ load_signed_byte(rax, field);
556       __ push(btos);
557       __ jmp(Done);
558 
559       __ bind(notByte);
560       __ cmpl(flags, ctos);
561       __ jcc(Assembler::notEqual, notChar);
562       // ctos
563       __ load_unsigned_short(rax, field);
564       __ push(ctos);
565       __ jmp(Done);
566 
567       __ bind(notChar);
568       __ cmpl(flags, ztos);
569       __ jcc(Assembler::notEqual, notBool);
570       // ztos
571       __ load_signed_byte(rax, field);
572       __ push(ztos);
573       __ jmp(Done);
574 
575       __ bind(notBool);
576       break;
577     }
578 
579   case Bytecodes::_ldc2_w:
580     {
581       Label notLong, notDouble;
582       __ cmpl(flags, ltos);
583       __ jcc(Assembler::notEqual, notLong);
584       // ltos
585       // Loading high word first because movptr clobbers rax
586       NOT_LP64(__ movptr(rdx, field.plus_disp(4)));
587       __ movptr(rax, field);
588       __ push(ltos);
589       __ jmp(Done);
590 
591       __ bind(notLong);
592       __ cmpl(flags, dtos);
593       __ jcc(Assembler::notEqual, notDouble);
594       // dtos
595       __ load_double(field);
596       __ push(dtos);
597       __ jmp(Done);
598 
599       __ bind(notDouble);
600       break;
601     }
602 
603   default:
604     ShouldNotReachHere();
605   }
606 
607   __ stop("bad ldc/condy");
608 }
609 
locals_index(Register reg,int offset)610 void TemplateTable::locals_index(Register reg, int offset) {
611   __ load_unsigned_byte(reg, at_bcp(offset));
612   __ negptr(reg);
613 }
614 
iload()615 void TemplateTable::iload() {
616   iload_internal();
617 }
618 
nofast_iload()619 void TemplateTable::nofast_iload() {
620   iload_internal(may_not_rewrite);
621 }
622 
iload_internal(RewriteControl rc)623 void TemplateTable::iload_internal(RewriteControl rc) {
624   transition(vtos, itos);
625   if (RewriteFrequentPairs && rc == may_rewrite) {
626     Label rewrite, done;
627     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
628     LP64_ONLY(assert(rbx != bc, "register damaged"));
629 
630     // get next byte
631     __ load_unsigned_byte(rbx,
632                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
633     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
634     // last two iloads in a pair.  Comparing against fast_iload means that
635     // the next bytecode is neither an iload or a caload, and therefore
636     // an iload pair.
637     __ cmpl(rbx, Bytecodes::_iload);
638     __ jcc(Assembler::equal, done);
639 
640     __ cmpl(rbx, Bytecodes::_fast_iload);
641     __ movl(bc, Bytecodes::_fast_iload2);
642 
643     __ jccb(Assembler::equal, rewrite);
644 
645     // if _caload, rewrite to fast_icaload
646     __ cmpl(rbx, Bytecodes::_caload);
647     __ movl(bc, Bytecodes::_fast_icaload);
648     __ jccb(Assembler::equal, rewrite);
649 
650     // rewrite so iload doesn't check again.
651     __ movl(bc, Bytecodes::_fast_iload);
652 
653     // rewrite
654     // bc: fast bytecode
655     __ bind(rewrite);
656     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
657     __ bind(done);
658   }
659 
660   // Get the local value into tos
661   locals_index(rbx);
662   __ movl(rax, iaddress(rbx));
663 }
664 
fast_iload2()665 void TemplateTable::fast_iload2() {
666   transition(vtos, itos);
667   locals_index(rbx);
668   __ movl(rax, iaddress(rbx));
669   __ push(itos);
670   locals_index(rbx, 3);
671   __ movl(rax, iaddress(rbx));
672 }
673 
fast_iload()674 void TemplateTable::fast_iload() {
675   transition(vtos, itos);
676   locals_index(rbx);
677   __ movl(rax, iaddress(rbx));
678 }
679 
lload()680 void TemplateTable::lload() {
681   transition(vtos, ltos);
682   locals_index(rbx);
683   __ movptr(rax, laddress(rbx));
684   NOT_LP64(__ movl(rdx, haddress(rbx)));
685 }
686 
fload()687 void TemplateTable::fload() {
688   transition(vtos, ftos);
689   locals_index(rbx);
690   __ load_float(faddress(rbx));
691 }
692 
dload()693 void TemplateTable::dload() {
694   transition(vtos, dtos);
695   locals_index(rbx);
696   __ load_double(daddress(rbx));
697 }
698 
aload()699 void TemplateTable::aload() {
700   transition(vtos, atos);
701   locals_index(rbx);
702   __ movptr(rax, aaddress(rbx));
703 }
704 
locals_index_wide(Register reg)705 void TemplateTable::locals_index_wide(Register reg) {
706   __ load_unsigned_short(reg, at_bcp(2));
707   __ bswapl(reg);
708   __ shrl(reg, 16);
709   __ negptr(reg);
710 }
711 
wide_iload()712 void TemplateTable::wide_iload() {
713   transition(vtos, itos);
714   locals_index_wide(rbx);
715   __ movl(rax, iaddress(rbx));
716 }
717 
wide_lload()718 void TemplateTable::wide_lload() {
719   transition(vtos, ltos);
720   locals_index_wide(rbx);
721   __ movptr(rax, laddress(rbx));
722   NOT_LP64(__ movl(rdx, haddress(rbx)));
723 }
724 
wide_fload()725 void TemplateTable::wide_fload() {
726   transition(vtos, ftos);
727   locals_index_wide(rbx);
728   __ load_float(faddress(rbx));
729 }
730 
wide_dload()731 void TemplateTable::wide_dload() {
732   transition(vtos, dtos);
733   locals_index_wide(rbx);
734   __ load_double(daddress(rbx));
735 }
736 
wide_aload()737 void TemplateTable::wide_aload() {
738   transition(vtos, atos);
739   locals_index_wide(rbx);
740   __ movptr(rax, aaddress(rbx));
741 }
742 
index_check(Register array,Register index)743 void TemplateTable::index_check(Register array, Register index) {
744   // Pop ptr into array
745   __ pop_ptr(array);
746   index_check_without_pop(array, index);
747 }
748 
index_check_without_pop(Register array,Register index)749 void TemplateTable::index_check_without_pop(Register array, Register index) {
750   // destroys rbx
751   // check array
752   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
753   // sign extend index for use by indexed load
754   __ movl2ptr(index, index);
755   // check index
756   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
757   if (index != rbx) {
758     // ??? convention: move aberrant index into rbx for exception message
759     assert(rbx != array, "different registers");
760     __ movl(rbx, index);
761   }
762   Label skip;
763   __ jccb(Assembler::below, skip);
764   // Pass array to create more detailed exceptions.
765   __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array);
766   __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
767   __ bind(skip);
768 }
769 
iaload()770 void TemplateTable::iaload() {
771   transition(itos, itos);
772   // rax: index
773   // rdx: array
774   index_check(rdx, rax); // kills rbx
775   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax,
776                     Address(rdx, rax, Address::times_4,
777                             arrayOopDesc::base_offset_in_bytes(T_INT)),
778                     noreg, noreg);
779 }
780 
laload()781 void TemplateTable::laload() {
782   transition(itos, ltos);
783   // rax: index
784   // rdx: array
785   index_check(rdx, rax); // kills rbx
786   NOT_LP64(__ mov(rbx, rax));
787   // rbx,: index
788   __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */,
789                     Address(rdx, rbx, Address::times_8,
790                             arrayOopDesc::base_offset_in_bytes(T_LONG)),
791                     noreg, noreg);
792 }
793 
794 
795 
faload()796 void TemplateTable::faload() {
797   transition(itos, ftos);
798   // rax: index
799   // rdx: array
800   index_check(rdx, rax); // kills rbx
801   __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */,
802                     Address(rdx, rax,
803                             Address::times_4,
804                             arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
805                     noreg, noreg);
806 }
807 
daload()808 void TemplateTable::daload() {
809   transition(itos, dtos);
810   // rax: index
811   // rdx: array
812   index_check(rdx, rax); // kills rbx
813   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */,
814                     Address(rdx, rax,
815                             Address::times_8,
816                             arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
817                     noreg, noreg);
818 }
819 
aaload()820 void TemplateTable::aaload() {
821   transition(itos, atos);
822   // rax: index
823   // rdx: array
824   index_check(rdx, rax); // kills rbx
825   do_oop_load(_masm,
826               Address(rdx, rax,
827                       UseCompressedOops ? Address::times_4 : Address::times_ptr,
828                       arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
829               rax,
830               IS_ARRAY);
831 }
832 
baload()833 void TemplateTable::baload() {
834   transition(itos, itos);
835   // rax: index
836   // rdx: array
837   index_check(rdx, rax); // kills rbx
838   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax,
839                     Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)),
840                     noreg, noreg);
841 }
842 
caload()843 void TemplateTable::caload() {
844   transition(itos, itos);
845   // rax: index
846   // rdx: array
847   index_check(rdx, rax); // kills rbx
848   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
849                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
850                     noreg, noreg);
851 }
852 
853 // iload followed by caload frequent pair
fast_icaload()854 void TemplateTable::fast_icaload() {
855   transition(vtos, itos);
856   // load index out of locals
857   locals_index(rbx);
858   __ movl(rax, iaddress(rbx));
859 
860   // rax: index
861   // rdx: array
862   index_check(rdx, rax); // kills rbx
863   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
864                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
865                     noreg, noreg);
866 }
867 
868 
saload()869 void TemplateTable::saload() {
870   transition(itos, itos);
871   // rax: index
872   // rdx: array
873   index_check(rdx, rax); // kills rbx
874   __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax,
875                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)),
876                     noreg, noreg);
877 }
878 
iload(int n)879 void TemplateTable::iload(int n) {
880   transition(vtos, itos);
881   __ movl(rax, iaddress(n));
882 }
883 
lload(int n)884 void TemplateTable::lload(int n) {
885   transition(vtos, ltos);
886   __ movptr(rax, laddress(n));
887   NOT_LP64(__ movptr(rdx, haddress(n)));
888 }
889 
fload(int n)890 void TemplateTable::fload(int n) {
891   transition(vtos, ftos);
892   __ load_float(faddress(n));
893 }
894 
dload(int n)895 void TemplateTable::dload(int n) {
896   transition(vtos, dtos);
897   __ load_double(daddress(n));
898 }
899 
aload(int n)900 void TemplateTable::aload(int n) {
901   transition(vtos, atos);
902   __ movptr(rax, aaddress(n));
903 }
904 
aload_0()905 void TemplateTable::aload_0() {
906   aload_0_internal();
907 }
908 
nofast_aload_0()909 void TemplateTable::nofast_aload_0() {
910   aload_0_internal(may_not_rewrite);
911 }
912 
aload_0_internal(RewriteControl rc)913 void TemplateTable::aload_0_internal(RewriteControl rc) {
914   transition(vtos, atos);
915   // According to bytecode histograms, the pairs:
916   //
917   // _aload_0, _fast_igetfield
918   // _aload_0, _fast_agetfield
919   // _aload_0, _fast_fgetfield
920   //
921   // occur frequently. If RewriteFrequentPairs is set, the (slow)
922   // _aload_0 bytecode checks if the next bytecode is either
923   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
924   // rewrites the current bytecode into a pair bytecode; otherwise it
925   // rewrites the current bytecode into _fast_aload_0 that doesn't do
926   // the pair check anymore.
927   //
928   // Note: If the next bytecode is _getfield, the rewrite must be
929   //       delayed, otherwise we may miss an opportunity for a pair.
930   //
931   // Also rewrite frequent pairs
932   //   aload_0, aload_1
933   //   aload_0, iload_1
934   // These bytecodes with a small amount of code are most profitable
935   // to rewrite
936   if (RewriteFrequentPairs && rc == may_rewrite) {
937     Label rewrite, done;
938 
939     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
940     LP64_ONLY(assert(rbx != bc, "register damaged"));
941 
942     // get next byte
943     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
944 
945     // if _getfield then wait with rewrite
946     __ cmpl(rbx, Bytecodes::_getfield);
947     __ jcc(Assembler::equal, done);
948 
949     // if _igetfield then rewrite to _fast_iaccess_0
950     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
951     __ cmpl(rbx, Bytecodes::_fast_igetfield);
952     __ movl(bc, Bytecodes::_fast_iaccess_0);
953     __ jccb(Assembler::equal, rewrite);
954 
955     // if _agetfield then rewrite to _fast_aaccess_0
956     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
957     __ cmpl(rbx, Bytecodes::_fast_agetfield);
958     __ movl(bc, Bytecodes::_fast_aaccess_0);
959     __ jccb(Assembler::equal, rewrite);
960 
961     // if _fgetfield then rewrite to _fast_faccess_0
962     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
963     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
964     __ movl(bc, Bytecodes::_fast_faccess_0);
965     __ jccb(Assembler::equal, rewrite);
966 
967     // else rewrite to _fast_aload0
968     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
969     __ movl(bc, Bytecodes::_fast_aload_0);
970 
971     // rewrite
972     // bc: fast bytecode
973     __ bind(rewrite);
974     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
975 
976     __ bind(done);
977   }
978 
979   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
980   aload(0);
981 }
982 
istore()983 void TemplateTable::istore() {
984   transition(itos, vtos);
985   locals_index(rbx);
986   __ movl(iaddress(rbx), rax);
987 }
988 
989 
lstore()990 void TemplateTable::lstore() {
991   transition(ltos, vtos);
992   locals_index(rbx);
993   __ movptr(laddress(rbx), rax);
994   NOT_LP64(__ movptr(haddress(rbx), rdx));
995 }
996 
fstore()997 void TemplateTable::fstore() {
998   transition(ftos, vtos);
999   locals_index(rbx);
1000   __ store_float(faddress(rbx));
1001 }
1002 
dstore()1003 void TemplateTable::dstore() {
1004   transition(dtos, vtos);
1005   locals_index(rbx);
1006   __ store_double(daddress(rbx));
1007 }
1008 
astore()1009 void TemplateTable::astore() {
1010   transition(vtos, vtos);
1011   __ pop_ptr(rax);
1012   locals_index(rbx);
1013   __ movptr(aaddress(rbx), rax);
1014 }
1015 
wide_istore()1016 void TemplateTable::wide_istore() {
1017   transition(vtos, vtos);
1018   __ pop_i();
1019   locals_index_wide(rbx);
1020   __ movl(iaddress(rbx), rax);
1021 }
1022 
wide_lstore()1023 void TemplateTable::wide_lstore() {
1024   transition(vtos, vtos);
1025   NOT_LP64(__ pop_l(rax, rdx));
1026   LP64_ONLY(__ pop_l());
1027   locals_index_wide(rbx);
1028   __ movptr(laddress(rbx), rax);
1029   NOT_LP64(__ movl(haddress(rbx), rdx));
1030 }
1031 
wide_fstore()1032 void TemplateTable::wide_fstore() {
1033 #ifdef _LP64
1034   transition(vtos, vtos);
1035   __ pop_f(xmm0);
1036   locals_index_wide(rbx);
1037   __ movflt(faddress(rbx), xmm0);
1038 #else
1039   wide_istore();
1040 #endif
1041 }
1042 
wide_dstore()1043 void TemplateTable::wide_dstore() {
1044 #ifdef _LP64
1045   transition(vtos, vtos);
1046   __ pop_d(xmm0);
1047   locals_index_wide(rbx);
1048   __ movdbl(daddress(rbx), xmm0);
1049 #else
1050   wide_lstore();
1051 #endif
1052 }
1053 
wide_astore()1054 void TemplateTable::wide_astore() {
1055   transition(vtos, vtos);
1056   __ pop_ptr(rax);
1057   locals_index_wide(rbx);
1058   __ movptr(aaddress(rbx), rax);
1059 }
1060 
iastore()1061 void TemplateTable::iastore() {
1062   transition(itos, vtos);
1063   __ pop_i(rbx);
1064   // rax: value
1065   // rbx: index
1066   // rdx: array
1067   index_check(rdx, rbx); // prefer index in rbx
1068   __ access_store_at(T_INT, IN_HEAP | IS_ARRAY,
1069                      Address(rdx, rbx, Address::times_4,
1070                              arrayOopDesc::base_offset_in_bytes(T_INT)),
1071                      rax, noreg, noreg);
1072 }
1073 
lastore()1074 void TemplateTable::lastore() {
1075   transition(ltos, vtos);
1076   __ pop_i(rbx);
1077   // rax,: low(value)
1078   // rcx: array
1079   // rdx: high(value)
1080   index_check(rcx, rbx);  // prefer index in rbx,
1081   // rbx,: index
1082   __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY,
1083                      Address(rcx, rbx, Address::times_8,
1084                              arrayOopDesc::base_offset_in_bytes(T_LONG)),
1085                      noreg /* ltos */, noreg, noreg);
1086 }
1087 
1088 
fastore()1089 void TemplateTable::fastore() {
1090   transition(ftos, vtos);
1091   __ pop_i(rbx);
1092   // value is in UseSSE >= 1 ? xmm0 : ST(0)
1093   // rbx:  index
1094   // rdx:  array
1095   index_check(rdx, rbx); // prefer index in rbx
1096   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY,
1097                      Address(rdx, rbx, Address::times_4,
1098                              arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1099                      noreg /* ftos */, noreg, noreg);
1100 }
1101 
dastore()1102 void TemplateTable::dastore() {
1103   transition(dtos, vtos);
1104   __ pop_i(rbx);
1105   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1106   // rbx:  index
1107   // rdx:  array
1108   index_check(rdx, rbx); // prefer index in rbx
1109   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY,
1110                      Address(rdx, rbx, Address::times_8,
1111                              arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
1112                      noreg /* dtos */, noreg, noreg);
1113 }
1114 
aastore()1115 void TemplateTable::aastore() {
1116   Label is_null, ok_is_subtype, done;
1117   transition(vtos, vtos);
1118   // stack: ..., array, index, value
1119   __ movptr(rax, at_tos());    // value
1120   __ movl(rcx, at_tos_p1()); // index
1121   __ movptr(rdx, at_tos_p2()); // array
1122 
1123   Address element_address(rdx, rcx,
1124                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1125                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1126 
1127   index_check_without_pop(rdx, rcx);     // kills rbx
1128   __ testptr(rax, rax);
1129   __ jcc(Assembler::zero, is_null);
1130 
1131   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1132   // Move subklass into rbx
1133   __ load_klass(rbx, rax, tmp_load_klass);
1134   // Move superklass into rax
1135   __ load_klass(rax, rdx, tmp_load_klass);
1136   __ movptr(rax, Address(rax,
1137                          ObjArrayKlass::element_klass_offset()));
1138 
1139   // Generate subtype check.  Blows rcx, rdi
1140   // Superklass in rax.  Subklass in rbx.
1141   __ gen_subtype_check(rbx, ok_is_subtype);
1142 
1143   // Come here on failure
1144   // object is at TOS
1145   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1146 
1147   // Come here on success
1148   __ bind(ok_is_subtype);
1149 
1150   // Get the value we will store
1151   __ movptr(rax, at_tos());
1152   __ movl(rcx, at_tos_p1()); // index
1153   // Now store using the appropriate barrier
1154   do_oop_store(_masm, element_address, rax, IS_ARRAY);
1155   __ jmp(done);
1156 
1157   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1158   __ bind(is_null);
1159   __ profile_null_seen(rbx);
1160 
1161   // Store a NULL
1162   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1163 
1164   // Pop stack arguments
1165   __ bind(done);
1166   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1167 }
1168 
bastore()1169 void TemplateTable::bastore() {
1170   transition(itos, vtos);
1171   __ pop_i(rbx);
1172   // rax: value
1173   // rbx: index
1174   // rdx: array
1175   index_check(rdx, rbx); // prefer index in rbx
1176   // Need to check whether array is boolean or byte
1177   // since both types share the bastore bytecode.
1178   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1179   __ load_klass(rcx, rdx, tmp_load_klass);
1180   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1181   int diffbit = Klass::layout_helper_boolean_diffbit();
1182   __ testl(rcx, diffbit);
1183   Label L_skip;
1184   __ jccb(Assembler::zero, L_skip);
1185   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1186   __ bind(L_skip);
1187   __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY,
1188                      Address(rdx, rbx,Address::times_1,
1189                              arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1190                      rax, noreg, noreg);
1191 }
1192 
castore()1193 void TemplateTable::castore() {
1194   transition(itos, vtos);
1195   __ pop_i(rbx);
1196   // rax: value
1197   // rbx: index
1198   // rdx: array
1199   index_check(rdx, rbx);  // prefer index in rbx
1200   __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY,
1201                      Address(rdx, rbx, Address::times_2,
1202                              arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1203                      rax, noreg, noreg);
1204 }
1205 
1206 
sastore()1207 void TemplateTable::sastore() {
1208   castore();
1209 }
1210 
istore(int n)1211 void TemplateTable::istore(int n) {
1212   transition(itos, vtos);
1213   __ movl(iaddress(n), rax);
1214 }
1215 
lstore(int n)1216 void TemplateTable::lstore(int n) {
1217   transition(ltos, vtos);
1218   __ movptr(laddress(n), rax);
1219   NOT_LP64(__ movptr(haddress(n), rdx));
1220 }
1221 
fstore(int n)1222 void TemplateTable::fstore(int n) {
1223   transition(ftos, vtos);
1224   __ store_float(faddress(n));
1225 }
1226 
dstore(int n)1227 void TemplateTable::dstore(int n) {
1228   transition(dtos, vtos);
1229   __ store_double(daddress(n));
1230 }
1231 
1232 
astore(int n)1233 void TemplateTable::astore(int n) {
1234   transition(vtos, vtos);
1235   __ pop_ptr(rax);
1236   __ movptr(aaddress(n), rax);
1237 }
1238 
pop()1239 void TemplateTable::pop() {
1240   transition(vtos, vtos);
1241   __ addptr(rsp, Interpreter::stackElementSize);
1242 }
1243 
pop2()1244 void TemplateTable::pop2() {
1245   transition(vtos, vtos);
1246   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1247 }
1248 
1249 
dup()1250 void TemplateTable::dup() {
1251   transition(vtos, vtos);
1252   __ load_ptr(0, rax);
1253   __ push_ptr(rax);
1254   // stack: ..., a, a
1255 }
1256 
dup_x1()1257 void TemplateTable::dup_x1() {
1258   transition(vtos, vtos);
1259   // stack: ..., a, b
1260   __ load_ptr( 0, rax);  // load b
1261   __ load_ptr( 1, rcx);  // load a
1262   __ store_ptr(1, rax);  // store b
1263   __ store_ptr(0, rcx);  // store a
1264   __ push_ptr(rax);      // push b
1265   // stack: ..., b, a, b
1266 }
1267 
dup_x2()1268 void TemplateTable::dup_x2() {
1269   transition(vtos, vtos);
1270   // stack: ..., a, b, c
1271   __ load_ptr( 0, rax);  // load c
1272   __ load_ptr( 2, rcx);  // load a
1273   __ store_ptr(2, rax);  // store c in a
1274   __ push_ptr(rax);      // push c
1275   // stack: ..., c, b, c, c
1276   __ load_ptr( 2, rax);  // load b
1277   __ store_ptr(2, rcx);  // store a in b
1278   // stack: ..., c, a, c, c
1279   __ store_ptr(1, rax);  // store b in c
1280   // stack: ..., c, a, b, c
1281 }
1282 
dup2()1283 void TemplateTable::dup2() {
1284   transition(vtos, vtos);
1285   // stack: ..., a, b
1286   __ load_ptr(1, rax);  // load a
1287   __ push_ptr(rax);     // push a
1288   __ load_ptr(1, rax);  // load b
1289   __ push_ptr(rax);     // push b
1290   // stack: ..., a, b, a, b
1291 }
1292 
1293 
dup2_x1()1294 void TemplateTable::dup2_x1() {
1295   transition(vtos, vtos);
1296   // stack: ..., a, b, c
1297   __ load_ptr( 0, rcx);  // load c
1298   __ load_ptr( 1, rax);  // load b
1299   __ push_ptr(rax);      // push b
1300   __ push_ptr(rcx);      // push c
1301   // stack: ..., a, b, c, b, c
1302   __ store_ptr(3, rcx);  // store c in b
1303   // stack: ..., a, c, c, b, c
1304   __ load_ptr( 4, rcx);  // load a
1305   __ store_ptr(2, rcx);  // store a in 2nd c
1306   // stack: ..., a, c, a, b, c
1307   __ store_ptr(4, rax);  // store b in a
1308   // stack: ..., b, c, a, b, c
1309 }
1310 
dup2_x2()1311 void TemplateTable::dup2_x2() {
1312   transition(vtos, vtos);
1313   // stack: ..., a, b, c, d
1314   __ load_ptr( 0, rcx);  // load d
1315   __ load_ptr( 1, rax);  // load c
1316   __ push_ptr(rax);      // push c
1317   __ push_ptr(rcx);      // push d
1318   // stack: ..., a, b, c, d, c, d
1319   __ load_ptr( 4, rax);  // load b
1320   __ store_ptr(2, rax);  // store b in d
1321   __ store_ptr(4, rcx);  // store d in b
1322   // stack: ..., a, d, c, b, c, d
1323   __ load_ptr( 5, rcx);  // load a
1324   __ load_ptr( 3, rax);  // load c
1325   __ store_ptr(3, rcx);  // store a in c
1326   __ store_ptr(5, rax);  // store c in a
1327   // stack: ..., c, d, a, b, c, d
1328 }
1329 
swap()1330 void TemplateTable::swap() {
1331   transition(vtos, vtos);
1332   // stack: ..., a, b
1333   __ load_ptr( 1, rcx);  // load a
1334   __ load_ptr( 0, rax);  // load b
1335   __ store_ptr(0, rcx);  // store a in b
1336   __ store_ptr(1, rax);  // store b in a
1337   // stack: ..., b, a
1338 }
1339 
iop2(Operation op)1340 void TemplateTable::iop2(Operation op) {
1341   transition(itos, itos);
1342   switch (op) {
1343   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1344   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1345   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1346   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1347   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1348   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1349   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1350   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1351   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1352   default   : ShouldNotReachHere();
1353   }
1354 }
1355 
lop2(Operation op)1356 void TemplateTable::lop2(Operation op) {
1357   transition(ltos, ltos);
1358 #ifdef _LP64
1359   switch (op) {
1360   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1361   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1362   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1363   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1364   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1365   default   : ShouldNotReachHere();
1366   }
1367 #else
1368   __ pop_l(rbx, rcx);
1369   switch (op) {
1370     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1371     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1372                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1373     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1374     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1375     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1376     default   : ShouldNotReachHere();
1377   }
1378 #endif
1379 }
1380 
idiv()1381 void TemplateTable::idiv() {
1382   transition(itos, itos);
1383   __ movl(rcx, rax);
1384   __ pop_i(rax);
1385   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1386   //       they are not equal, one could do a normal division (no correction
1387   //       needed), which may speed up this implementation for the common case.
1388   //       (see also JVM spec., p.243 & p.271)
1389   __ corrected_idivl(rcx);
1390 }
1391 
irem()1392 void TemplateTable::irem() {
1393   transition(itos, itos);
1394   __ movl(rcx, rax);
1395   __ pop_i(rax);
1396   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1397   //       they are not equal, one could do a normal division (no correction
1398   //       needed), which may speed up this implementation for the common case.
1399   //       (see also JVM spec., p.243 & p.271)
1400   __ corrected_idivl(rcx);
1401   __ movl(rax, rdx);
1402 }
1403 
lmul()1404 void TemplateTable::lmul() {
1405   transition(ltos, ltos);
1406 #ifdef _LP64
1407   __ pop_l(rdx);
1408   __ imulq(rax, rdx);
1409 #else
1410   __ pop_l(rbx, rcx);
1411   __ push(rcx); __ push(rbx);
1412   __ push(rdx); __ push(rax);
1413   __ lmul(2 * wordSize, 0);
1414   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1415 #endif
1416 }
1417 
ldiv()1418 void TemplateTable::ldiv() {
1419   transition(ltos, ltos);
1420 #ifdef _LP64
1421   __ mov(rcx, rax);
1422   __ pop_l(rax);
1423   // generate explicit div0 check
1424   __ testq(rcx, rcx);
1425   __ jump_cc(Assembler::zero,
1426              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1427   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1428   //       they are not equal, one could do a normal division (no correction
1429   //       needed), which may speed up this implementation for the common case.
1430   //       (see also JVM spec., p.243 & p.271)
1431   __ corrected_idivq(rcx); // kills rbx
1432 #else
1433   __ pop_l(rbx, rcx);
1434   __ push(rcx); __ push(rbx);
1435   __ push(rdx); __ push(rax);
1436   // check if y = 0
1437   __ orl(rax, rdx);
1438   __ jump_cc(Assembler::zero,
1439              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1440   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1441   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1442 #endif
1443 }
1444 
lrem()1445 void TemplateTable::lrem() {
1446   transition(ltos, ltos);
1447 #ifdef _LP64
1448   __ mov(rcx, rax);
1449   __ pop_l(rax);
1450   __ testq(rcx, rcx);
1451   __ jump_cc(Assembler::zero,
1452              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1453   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1454   //       they are not equal, one could do a normal division (no correction
1455   //       needed), which may speed up this implementation for the common case.
1456   //       (see also JVM spec., p.243 & p.271)
1457   __ corrected_idivq(rcx); // kills rbx
1458   __ mov(rax, rdx);
1459 #else
1460   __ pop_l(rbx, rcx);
1461   __ push(rcx); __ push(rbx);
1462   __ push(rdx); __ push(rax);
1463   // check if y = 0
1464   __ orl(rax, rdx);
1465   __ jump_cc(Assembler::zero,
1466              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1467   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1468   __ addptr(rsp, 4 * wordSize);
1469 #endif
1470 }
1471 
lshl()1472 void TemplateTable::lshl() {
1473   transition(itos, ltos);
1474   __ movl(rcx, rax);                             // get shift count
1475   #ifdef _LP64
1476   __ pop_l(rax);                                 // get shift value
1477   __ shlq(rax);
1478 #else
1479   __ pop_l(rax, rdx);                            // get shift value
1480   __ lshl(rdx, rax);
1481 #endif
1482 }
1483 
lshr()1484 void TemplateTable::lshr() {
1485 #ifdef _LP64
1486   transition(itos, ltos);
1487   __ movl(rcx, rax);                             // get shift count
1488   __ pop_l(rax);                                 // get shift value
1489   __ sarq(rax);
1490 #else
1491   transition(itos, ltos);
1492   __ mov(rcx, rax);                              // get shift count
1493   __ pop_l(rax, rdx);                            // get shift value
1494   __ lshr(rdx, rax, true);
1495 #endif
1496 }
1497 
lushr()1498 void TemplateTable::lushr() {
1499   transition(itos, ltos);
1500 #ifdef _LP64
1501   __ movl(rcx, rax);                             // get shift count
1502   __ pop_l(rax);                                 // get shift value
1503   __ shrq(rax);
1504 #else
1505   __ mov(rcx, rax);                              // get shift count
1506   __ pop_l(rax, rdx);                            // get shift value
1507   __ lshr(rdx, rax);
1508 #endif
1509 }
1510 
fop2(Operation op)1511 void TemplateTable::fop2(Operation op) {
1512   transition(ftos, ftos);
1513 
1514   if (UseSSE >= 1) {
1515     switch (op) {
1516     case add:
1517       __ addss(xmm0, at_rsp());
1518       __ addptr(rsp, Interpreter::stackElementSize);
1519       break;
1520     case sub:
1521       __ movflt(xmm1, xmm0);
1522       __ pop_f(xmm0);
1523       __ subss(xmm0, xmm1);
1524       break;
1525     case mul:
1526       __ mulss(xmm0, at_rsp());
1527       __ addptr(rsp, Interpreter::stackElementSize);
1528       break;
1529     case div:
1530       __ movflt(xmm1, xmm0);
1531       __ pop_f(xmm0);
1532       __ divss(xmm0, xmm1);
1533       break;
1534     case rem:
1535       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1536       // modulo operation. The frem method calls the function
1537       // double fmod(double x, double y) in math.h. The documentation of fmod states:
1538       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1539       // (signalling or quiet) is returned.
1540       //
1541       // On x86_32 platforms the FPU is used to perform the modulo operation. The
1542       // reason is that on 32-bit Windows the sign of modulo operations diverges from
1543       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1544       // The fprem instruction used on x86_32 is functionally equivalent to
1545       // SharedRuntime::frem in that it returns a NaN.
1546 #ifdef _LP64
1547       __ movflt(xmm1, xmm0);
1548       __ pop_f(xmm0);
1549       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1550 #else
1551       __ push_f(xmm0);
1552       __ pop_f();
1553       __ fld_s(at_rsp());
1554       __ fremr(rax);
1555       __ f2ieee();
1556       __ pop(rax);  // pop second operand off the stack
1557       __ push_f();
1558       __ pop_f(xmm0);
1559 #endif
1560       break;
1561     default:
1562       ShouldNotReachHere();
1563       break;
1564     }
1565   } else {
1566 #ifdef _LP64
1567     ShouldNotReachHere();
1568 #else
1569     switch (op) {
1570     case add: __ fadd_s (at_rsp());                break;
1571     case sub: __ fsubr_s(at_rsp());                break;
1572     case mul: __ fmul_s (at_rsp());                break;
1573     case div: __ fdivr_s(at_rsp());                break;
1574     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1575     default : ShouldNotReachHere();
1576     }
1577     __ f2ieee();
1578     __ pop(rax);  // pop second operand off the stack
1579 #endif // _LP64
1580   }
1581 }
1582 
dop2(Operation op)1583 void TemplateTable::dop2(Operation op) {
1584   transition(dtos, dtos);
1585   if (UseSSE >= 2) {
1586     switch (op) {
1587     case add:
1588       __ addsd(xmm0, at_rsp());
1589       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1590       break;
1591     case sub:
1592       __ movdbl(xmm1, xmm0);
1593       __ pop_d(xmm0);
1594       __ subsd(xmm0, xmm1);
1595       break;
1596     case mul:
1597       __ mulsd(xmm0, at_rsp());
1598       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1599       break;
1600     case div:
1601       __ movdbl(xmm1, xmm0);
1602       __ pop_d(xmm0);
1603       __ divsd(xmm0, xmm1);
1604       break;
1605     case rem:
1606       // Similar to fop2(), the modulo operation is performed using the
1607       // SharedRuntime::drem method (on x86_64 platforms) or using the
1608       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1609 #ifdef _LP64
1610       __ movdbl(xmm1, xmm0);
1611       __ pop_d(xmm0);
1612       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1613 #else
1614       __ push_d(xmm0);
1615       __ pop_d();
1616       __ fld_d(at_rsp());
1617       __ fremr(rax);
1618       __ d2ieee();
1619       __ pop(rax);
1620       __ pop(rdx);
1621       __ push_d();
1622       __ pop_d(xmm0);
1623 #endif
1624       break;
1625     default:
1626       ShouldNotReachHere();
1627       break;
1628     }
1629   } else {
1630 #ifdef _LP64
1631     ShouldNotReachHere();
1632 #else
1633     switch (op) {
1634     case add: __ fadd_d (at_rsp());                break;
1635     case sub: __ fsubr_d(at_rsp());                break;
1636     case mul: {
1637       Label L_strict;
1638       Label L_join;
1639       const Address access_flags      (rcx, Method::access_flags_offset());
1640       __ get_method(rcx);
1641       __ movl(rcx, access_flags);
1642       __ testl(rcx, JVM_ACC_STRICT);
1643       __ jccb(Assembler::notZero, L_strict);
1644       __ fmul_d (at_rsp());
1645       __ jmpb(L_join);
1646       __ bind(L_strict);
1647       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1648       __ fmulp();
1649       __ fmul_d (at_rsp());
1650       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1651       __ fmulp();
1652       __ bind(L_join);
1653       break;
1654     }
1655     case div: {
1656       Label L_strict;
1657       Label L_join;
1658       const Address access_flags      (rcx, Method::access_flags_offset());
1659       __ get_method(rcx);
1660       __ movl(rcx, access_flags);
1661       __ testl(rcx, JVM_ACC_STRICT);
1662       __ jccb(Assembler::notZero, L_strict);
1663       __ fdivr_d(at_rsp());
1664       __ jmp(L_join);
1665       __ bind(L_strict);
1666       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1667       __ fmul_d (at_rsp());
1668       __ fdivrp();
1669       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1670       __ fmulp();
1671       __ bind(L_join);
1672       break;
1673     }
1674     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1675     default : ShouldNotReachHere();
1676     }
1677     __ d2ieee();
1678     // Pop double precision number from rsp.
1679     __ pop(rax);
1680     __ pop(rdx);
1681 #endif
1682   }
1683 }
1684 
ineg()1685 void TemplateTable::ineg() {
1686   transition(itos, itos);
1687   __ negl(rax);
1688 }
1689 
lneg()1690 void TemplateTable::lneg() {
1691   transition(ltos, ltos);
1692   LP64_ONLY(__ negq(rax));
1693   NOT_LP64(__ lneg(rdx, rax));
1694 }
1695 
1696 // Note: 'double' and 'long long' have 32-bits alignment on x86.
double_quadword(jlong * adr,jlong lo,jlong hi)1697 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1698   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1699   // of 128-bits operands for SSE instructions.
1700   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1701   // Store the value to a 128-bits operand.
1702   operand[0] = lo;
1703   operand[1] = hi;
1704   return operand;
1705 }
1706 
1707 // Buffer for 128-bits masks used by SSE instructions.
1708 static jlong float_signflip_pool[2*2];
1709 static jlong double_signflip_pool[2*2];
1710 
fneg()1711 void TemplateTable::fneg() {
1712   transition(ftos, ftos);
1713   if (UseSSE >= 1) {
1714     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
1715     __ xorps(xmm0, ExternalAddress((address) float_signflip));
1716   } else {
1717     LP64_ONLY(ShouldNotReachHere());
1718     NOT_LP64(__ fchs());
1719   }
1720 }
1721 
dneg()1722 void TemplateTable::dneg() {
1723   transition(dtos, dtos);
1724   if (UseSSE >= 2) {
1725     static jlong *double_signflip =
1726       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1727     __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1728   } else {
1729 #ifdef _LP64
1730     ShouldNotReachHere();
1731 #else
1732     __ fchs();
1733 #endif
1734   }
1735 }
1736 
iinc()1737 void TemplateTable::iinc() {
1738   transition(vtos, vtos);
1739   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1740   locals_index(rbx);
1741   __ addl(iaddress(rbx), rdx);
1742 }
1743 
wide_iinc()1744 void TemplateTable::wide_iinc() {
1745   transition(vtos, vtos);
1746   __ movl(rdx, at_bcp(4)); // get constant
1747   locals_index_wide(rbx);
1748   __ bswapl(rdx); // swap bytes & sign-extend constant
1749   __ sarl(rdx, 16);
1750   __ addl(iaddress(rbx), rdx);
1751   // Note: should probably use only one movl to get both
1752   //       the index and the constant -> fix this
1753 }
1754 
convert()1755 void TemplateTable::convert() {
1756 #ifdef _LP64
1757   // Checking
1758 #ifdef ASSERT
1759   {
1760     TosState tos_in  = ilgl;
1761     TosState tos_out = ilgl;
1762     switch (bytecode()) {
1763     case Bytecodes::_i2l: // fall through
1764     case Bytecodes::_i2f: // fall through
1765     case Bytecodes::_i2d: // fall through
1766     case Bytecodes::_i2b: // fall through
1767     case Bytecodes::_i2c: // fall through
1768     case Bytecodes::_i2s: tos_in = itos; break;
1769     case Bytecodes::_l2i: // fall through
1770     case Bytecodes::_l2f: // fall through
1771     case Bytecodes::_l2d: tos_in = ltos; break;
1772     case Bytecodes::_f2i: // fall through
1773     case Bytecodes::_f2l: // fall through
1774     case Bytecodes::_f2d: tos_in = ftos; break;
1775     case Bytecodes::_d2i: // fall through
1776     case Bytecodes::_d2l: // fall through
1777     case Bytecodes::_d2f: tos_in = dtos; break;
1778     default             : ShouldNotReachHere();
1779     }
1780     switch (bytecode()) {
1781     case Bytecodes::_l2i: // fall through
1782     case Bytecodes::_f2i: // fall through
1783     case Bytecodes::_d2i: // fall through
1784     case Bytecodes::_i2b: // fall through
1785     case Bytecodes::_i2c: // fall through
1786     case Bytecodes::_i2s: tos_out = itos; break;
1787     case Bytecodes::_i2l: // fall through
1788     case Bytecodes::_f2l: // fall through
1789     case Bytecodes::_d2l: tos_out = ltos; break;
1790     case Bytecodes::_i2f: // fall through
1791     case Bytecodes::_l2f: // fall through
1792     case Bytecodes::_d2f: tos_out = ftos; break;
1793     case Bytecodes::_i2d: // fall through
1794     case Bytecodes::_l2d: // fall through
1795     case Bytecodes::_f2d: tos_out = dtos; break;
1796     default             : ShouldNotReachHere();
1797     }
1798     transition(tos_in, tos_out);
1799   }
1800 #endif // ASSERT
1801 
1802   static const int64_t is_nan = 0x8000000000000000L;
1803 
1804   // Conversion
1805   switch (bytecode()) {
1806   case Bytecodes::_i2l:
1807     __ movslq(rax, rax);
1808     break;
1809   case Bytecodes::_i2f:
1810     __ cvtsi2ssl(xmm0, rax);
1811     break;
1812   case Bytecodes::_i2d:
1813     __ cvtsi2sdl(xmm0, rax);
1814     break;
1815   case Bytecodes::_i2b:
1816     __ movsbl(rax, rax);
1817     break;
1818   case Bytecodes::_i2c:
1819     __ movzwl(rax, rax);
1820     break;
1821   case Bytecodes::_i2s:
1822     __ movswl(rax, rax);
1823     break;
1824   case Bytecodes::_l2i:
1825     __ movl(rax, rax);
1826     break;
1827   case Bytecodes::_l2f:
1828     __ cvtsi2ssq(xmm0, rax);
1829     break;
1830   case Bytecodes::_l2d:
1831     __ cvtsi2sdq(xmm0, rax);
1832     break;
1833   case Bytecodes::_f2i:
1834   {
1835     Label L;
1836     __ cvttss2sil(rax, xmm0);
1837     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1838     __ jcc(Assembler::notEqual, L);
1839     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1840     __ bind(L);
1841   }
1842     break;
1843   case Bytecodes::_f2l:
1844   {
1845     Label L;
1846     __ cvttss2siq(rax, xmm0);
1847     // NaN or overflow/underflow?
1848     __ cmp64(rax, ExternalAddress((address) &is_nan));
1849     __ jcc(Assembler::notEqual, L);
1850     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1851     __ bind(L);
1852   }
1853     break;
1854   case Bytecodes::_f2d:
1855     __ cvtss2sd(xmm0, xmm0);
1856     break;
1857   case Bytecodes::_d2i:
1858   {
1859     Label L;
1860     __ cvttsd2sil(rax, xmm0);
1861     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1862     __ jcc(Assembler::notEqual, L);
1863     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1864     __ bind(L);
1865   }
1866     break;
1867   case Bytecodes::_d2l:
1868   {
1869     Label L;
1870     __ cvttsd2siq(rax, xmm0);
1871     // NaN or overflow/underflow?
1872     __ cmp64(rax, ExternalAddress((address) &is_nan));
1873     __ jcc(Assembler::notEqual, L);
1874     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1875     __ bind(L);
1876   }
1877     break;
1878   case Bytecodes::_d2f:
1879     __ cvtsd2ss(xmm0, xmm0);
1880     break;
1881   default:
1882     ShouldNotReachHere();
1883   }
1884 #else
1885   // Checking
1886 #ifdef ASSERT
1887   { TosState tos_in  = ilgl;
1888     TosState tos_out = ilgl;
1889     switch (bytecode()) {
1890       case Bytecodes::_i2l: // fall through
1891       case Bytecodes::_i2f: // fall through
1892       case Bytecodes::_i2d: // fall through
1893       case Bytecodes::_i2b: // fall through
1894       case Bytecodes::_i2c: // fall through
1895       case Bytecodes::_i2s: tos_in = itos; break;
1896       case Bytecodes::_l2i: // fall through
1897       case Bytecodes::_l2f: // fall through
1898       case Bytecodes::_l2d: tos_in = ltos; break;
1899       case Bytecodes::_f2i: // fall through
1900       case Bytecodes::_f2l: // fall through
1901       case Bytecodes::_f2d: tos_in = ftos; break;
1902       case Bytecodes::_d2i: // fall through
1903       case Bytecodes::_d2l: // fall through
1904       case Bytecodes::_d2f: tos_in = dtos; break;
1905       default             : ShouldNotReachHere();
1906     }
1907     switch (bytecode()) {
1908       case Bytecodes::_l2i: // fall through
1909       case Bytecodes::_f2i: // fall through
1910       case Bytecodes::_d2i: // fall through
1911       case Bytecodes::_i2b: // fall through
1912       case Bytecodes::_i2c: // fall through
1913       case Bytecodes::_i2s: tos_out = itos; break;
1914       case Bytecodes::_i2l: // fall through
1915       case Bytecodes::_f2l: // fall through
1916       case Bytecodes::_d2l: tos_out = ltos; break;
1917       case Bytecodes::_i2f: // fall through
1918       case Bytecodes::_l2f: // fall through
1919       case Bytecodes::_d2f: tos_out = ftos; break;
1920       case Bytecodes::_i2d: // fall through
1921       case Bytecodes::_l2d: // fall through
1922       case Bytecodes::_f2d: tos_out = dtos; break;
1923       default             : ShouldNotReachHere();
1924     }
1925     transition(tos_in, tos_out);
1926   }
1927 #endif // ASSERT
1928 
1929   // Conversion
1930   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1931   switch (bytecode()) {
1932     case Bytecodes::_i2l:
1933       __ extend_sign(rdx, rax);
1934       break;
1935     case Bytecodes::_i2f:
1936       if (UseSSE >= 1) {
1937         __ cvtsi2ssl(xmm0, rax);
1938       } else {
1939         __ push(rax);          // store int on tos
1940         __ fild_s(at_rsp());   // load int to ST0
1941         __ f2ieee();           // truncate to float size
1942         __ pop(rcx);           // adjust rsp
1943       }
1944       break;
1945     case Bytecodes::_i2d:
1946       if (UseSSE >= 2) {
1947         __ cvtsi2sdl(xmm0, rax);
1948       } else {
1949       __ push(rax);          // add one slot for d2ieee()
1950       __ push(rax);          // store int on tos
1951       __ fild_s(at_rsp());   // load int to ST0
1952       __ d2ieee();           // truncate to double size
1953       __ pop(rcx);           // adjust rsp
1954       __ pop(rcx);
1955       }
1956       break;
1957     case Bytecodes::_i2b:
1958       __ shll(rax, 24);      // truncate upper 24 bits
1959       __ sarl(rax, 24);      // and sign-extend byte
1960       LP64_ONLY(__ movsbl(rax, rax));
1961       break;
1962     case Bytecodes::_i2c:
1963       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1964       LP64_ONLY(__ movzwl(rax, rax));
1965       break;
1966     case Bytecodes::_i2s:
1967       __ shll(rax, 16);      // truncate upper 16 bits
1968       __ sarl(rax, 16);      // and sign-extend short
1969       LP64_ONLY(__ movswl(rax, rax));
1970       break;
1971     case Bytecodes::_l2i:
1972       /* nothing to do */
1973       break;
1974     case Bytecodes::_l2f:
1975       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
1976       // 64-bit long values to floats. On 32-bit platforms it is not possible
1977       // to use that instruction with 64-bit operands, therefore the FPU is
1978       // used to perform the conversion.
1979       __ push(rdx);          // store long on tos
1980       __ push(rax);
1981       __ fild_d(at_rsp());   // load long to ST0
1982       __ f2ieee();           // truncate to float size
1983       __ pop(rcx);           // adjust rsp
1984       __ pop(rcx);
1985       if (UseSSE >= 1) {
1986         __ push_f();
1987         __ pop_f(xmm0);
1988       }
1989       break;
1990     case Bytecodes::_l2d:
1991       // On 32-bit platforms the FPU is used for conversion because on
1992       // 32-bit platforms it is not not possible to use the cvtsi2sdq
1993       // instruction with 64-bit operands.
1994       __ push(rdx);          // store long on tos
1995       __ push(rax);
1996       __ fild_d(at_rsp());   // load long to ST0
1997       __ d2ieee();           // truncate to double size
1998       __ pop(rcx);           // adjust rsp
1999       __ pop(rcx);
2000       if (UseSSE >= 2) {
2001         __ push_d();
2002         __ pop_d(xmm0);
2003       }
2004       break;
2005     case Bytecodes::_f2i:
2006       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
2007       // as it returns 0 for any NaN.
2008       if (UseSSE >= 1) {
2009         __ push_f(xmm0);
2010       } else {
2011         __ push(rcx);          // reserve space for argument
2012         __ fstp_s(at_rsp());   // pass float argument on stack
2013       }
2014       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
2015       break;
2016     case Bytecodes::_f2l:
2017       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
2018       // as it returns 0 for any NaN.
2019       if (UseSSE >= 1) {
2020        __ push_f(xmm0);
2021       } else {
2022         __ push(rcx);          // reserve space for argument
2023         __ fstp_s(at_rsp());   // pass float argument on stack
2024       }
2025       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
2026       break;
2027     case Bytecodes::_f2d:
2028       if (UseSSE < 1) {
2029         /* nothing to do */
2030       } else if (UseSSE == 1) {
2031         __ push_f(xmm0);
2032         __ pop_f();
2033       } else { // UseSSE >= 2
2034         __ cvtss2sd(xmm0, xmm0);
2035       }
2036       break;
2037     case Bytecodes::_d2i:
2038       if (UseSSE >= 2) {
2039         __ push_d(xmm0);
2040       } else {
2041         __ push(rcx);          // reserve space for argument
2042         __ push(rcx);
2043         __ fstp_d(at_rsp());   // pass double argument on stack
2044       }
2045       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
2046       break;
2047     case Bytecodes::_d2l:
2048       if (UseSSE >= 2) {
2049         __ push_d(xmm0);
2050       } else {
2051         __ push(rcx);          // reserve space for argument
2052         __ push(rcx);
2053         __ fstp_d(at_rsp());   // pass double argument on stack
2054       }
2055       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
2056       break;
2057     case Bytecodes::_d2f:
2058       if (UseSSE <= 1) {
2059         __ push(rcx);          // reserve space for f2ieee()
2060         __ f2ieee();           // truncate to float size
2061         __ pop(rcx);           // adjust rsp
2062         if (UseSSE == 1) {
2063           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
2064           // the conversion is performed using the FPU in this case.
2065           __ push_f();
2066           __ pop_f(xmm0);
2067         }
2068       } else { // UseSSE >= 2
2069         __ cvtsd2ss(xmm0, xmm0);
2070       }
2071       break;
2072     default             :
2073       ShouldNotReachHere();
2074   }
2075 #endif
2076 }
2077 
lcmp()2078 void TemplateTable::lcmp() {
2079   transition(ltos, itos);
2080 #ifdef _LP64
2081   Label done;
2082   __ pop_l(rdx);
2083   __ cmpq(rdx, rax);
2084   __ movl(rax, -1);
2085   __ jccb(Assembler::less, done);
2086   __ setb(Assembler::notEqual, rax);
2087   __ movzbl(rax, rax);
2088   __ bind(done);
2089 #else
2090 
2091   // y = rdx:rax
2092   __ pop_l(rbx, rcx);             // get x = rcx:rbx
2093   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2094   __ mov(rax, rcx);
2095 #endif
2096 }
2097 
float_cmp(bool is_float,int unordered_result)2098 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2099   if ((is_float && UseSSE >= 1) ||
2100       (!is_float && UseSSE >= 2)) {
2101     Label done;
2102     if (is_float) {
2103       // XXX get rid of pop here, use ... reg, mem32
2104       __ pop_f(xmm1);
2105       __ ucomiss(xmm1, xmm0);
2106     } else {
2107       // XXX get rid of pop here, use ... reg, mem64
2108       __ pop_d(xmm1);
2109       __ ucomisd(xmm1, xmm0);
2110     }
2111     if (unordered_result < 0) {
2112       __ movl(rax, -1);
2113       __ jccb(Assembler::parity, done);
2114       __ jccb(Assembler::below, done);
2115       __ setb(Assembler::notEqual, rdx);
2116       __ movzbl(rax, rdx);
2117     } else {
2118       __ movl(rax, 1);
2119       __ jccb(Assembler::parity, done);
2120       __ jccb(Assembler::above, done);
2121       __ movl(rax, 0);
2122       __ jccb(Assembler::equal, done);
2123       __ decrementl(rax);
2124     }
2125     __ bind(done);
2126   } else {
2127 #ifdef _LP64
2128     ShouldNotReachHere();
2129 #else
2130     if (is_float) {
2131       __ fld_s(at_rsp());
2132     } else {
2133       __ fld_d(at_rsp());
2134       __ pop(rdx);
2135     }
2136     __ pop(rcx);
2137     __ fcmp2int(rax, unordered_result < 0);
2138 #endif // _LP64
2139   }
2140 }
2141 
branch(bool is_jsr,bool is_wide)2142 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2143   __ get_method(rcx); // rcx holds method
2144   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2145                                      // holds bumped taken count
2146 
2147   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2148                              InvocationCounter::counter_offset();
2149   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2150                               InvocationCounter::counter_offset();
2151 
2152   // Load up edx with the branch displacement
2153   if (is_wide) {
2154     __ movl(rdx, at_bcp(1));
2155   } else {
2156     __ load_signed_short(rdx, at_bcp(1));
2157   }
2158   __ bswapl(rdx);
2159 
2160   if (!is_wide) {
2161     __ sarl(rdx, 16);
2162   }
2163   LP64_ONLY(__ movl2ptr(rdx, rdx));
2164 
2165   // Handle all the JSR stuff here, then exit.
2166   // It's much shorter and cleaner than intermingling with the non-JSR
2167   // normal-branch stuff occurring below.
2168   if (is_jsr) {
2169     // Pre-load the next target bytecode into rbx
2170     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2171 
2172     // compute return address as bci in rax
2173     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2174                         in_bytes(ConstMethod::codes_offset())));
2175     __ subptr(rax, Address(rcx, Method::const_offset()));
2176     // Adjust the bcp in r13 by the displacement in rdx
2177     __ addptr(rbcp, rdx);
2178     // jsr returns atos that is not an oop
2179     __ push_i(rax);
2180     __ dispatch_only(vtos, true);
2181     return;
2182   }
2183 
2184   // Normal (non-jsr) branch handling
2185 
2186   // Adjust the bcp in r13 by the displacement in rdx
2187   __ addptr(rbcp, rdx);
2188 
2189   assert(UseLoopCounter || !UseOnStackReplacement,
2190          "on-stack-replacement requires loop counters");
2191   Label backedge_counter_overflow;
2192   Label profile_method;
2193   Label dispatch;
2194   if (UseLoopCounter) {
2195     // increment backedge counter for backward branches
2196     // rax: MDO
2197     // rbx: MDO bumped taken-count
2198     // rcx: method
2199     // rdx: target offset
2200     // r13: target bcp
2201     // r14: locals pointer
2202     __ testl(rdx, rdx);             // check if forward or backward branch
2203     __ jcc(Assembler::positive, dispatch); // count only if backward branch
2204 
2205     // check if MethodCounters exists
2206     Label has_counters;
2207     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2208     __ testptr(rax, rax);
2209     __ jcc(Assembler::notZero, has_counters);
2210     __ push(rdx);
2211     __ push(rcx);
2212     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2213                rcx);
2214     __ pop(rcx);
2215     __ pop(rdx);
2216     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2217     __ testptr(rax, rax);
2218     __ jcc(Assembler::zero, dispatch);
2219     __ bind(has_counters);
2220 
2221     if (TieredCompilation) {
2222       Label no_mdo;
2223       int increment = InvocationCounter::count_increment;
2224       if (ProfileInterpreter) {
2225         // Are we profiling?
2226         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2227         __ testptr(rbx, rbx);
2228         __ jccb(Assembler::zero, no_mdo);
2229         // Increment the MDO backedge counter
2230         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2231                                            in_bytes(InvocationCounter::counter_offset()));
2232         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2233         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero,
2234                                    UseOnStackReplacement ? &backedge_counter_overflow : NULL);
2235         __ jmp(dispatch);
2236       }
2237       __ bind(no_mdo);
2238       // Increment backedge counter in MethodCounters*
2239       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2240       const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2241       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
2242                                  rax, false, Assembler::zero,
2243                                  UseOnStackReplacement ? &backedge_counter_overflow : NULL);
2244     } else { // not TieredCompilation
2245       // increment counter
2246       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2247       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
2248       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
2249       __ movl(Address(rcx, be_offset), rax);        // store counter
2250 
2251       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
2252 
2253       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
2254       __ addl(rax, Address(rcx, be_offset));        // add both counters
2255 
2256       if (ProfileInterpreter) {
2257         // Test to see if we should create a method data oop
2258         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
2259         __ jcc(Assembler::less, dispatch);
2260 
2261         // if no method data exists, go to profile method
2262         __ test_method_data_pointer(rax, profile_method);
2263 
2264         if (UseOnStackReplacement) {
2265           // check for overflow against rbx which is the MDO taken count
2266           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2267           __ jcc(Assembler::below, dispatch);
2268 
2269           // When ProfileInterpreter is on, the backedge_count comes
2270           // from the MethodData*, which value does not get reset on
2271           // the call to frequency_counter_overflow().  To avoid
2272           // excessive calls to the overflow routine while the method is
2273           // being compiled, add a second test to make sure the overflow
2274           // function is called only once every overflow_frequency.
2275           const int overflow_frequency = 1024;
2276           __ andl(rbx, overflow_frequency - 1);
2277           __ jcc(Assembler::zero, backedge_counter_overflow);
2278 
2279         }
2280       } else {
2281         if (UseOnStackReplacement) {
2282           // check for overflow against rax, which is the sum of the
2283           // counters
2284           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2285           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
2286 
2287         }
2288       }
2289     }
2290     __ bind(dispatch);
2291   }
2292 
2293   // Pre-load the next target bytecode into rbx
2294   __ load_unsigned_byte(rbx, Address(rbcp, 0));
2295 
2296   // continue with the bytecode @ target
2297   // rax: return bci for jsr's, unused otherwise
2298   // rbx: target bytecode
2299   // r13: target bcp
2300   __ dispatch_only(vtos, true);
2301 
2302   if (UseLoopCounter) {
2303     if (ProfileInterpreter) {
2304       // Out-of-line code to allocate method data oop.
2305       __ bind(profile_method);
2306       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2307       __ set_method_data_pointer_for_bcp();
2308       __ jmp(dispatch);
2309     }
2310 
2311     if (UseOnStackReplacement) {
2312       // invocation counter overflow
2313       __ bind(backedge_counter_overflow);
2314       __ negptr(rdx);
2315       __ addptr(rdx, rbcp); // branch bcp
2316       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2317       __ call_VM(noreg,
2318                  CAST_FROM_FN_PTR(address,
2319                                   InterpreterRuntime::frequency_counter_overflow),
2320                  rdx);
2321 
2322       // rax: osr nmethod (osr ok) or NULL (osr not possible)
2323       // rdx: scratch
2324       // r14: locals pointer
2325       // r13: bcp
2326       __ testptr(rax, rax);                        // test result
2327       __ jcc(Assembler::zero, dispatch);         // no osr if null
2328       // nmethod may have been invalidated (VM may block upon call_VM return)
2329       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2330       __ jcc(Assembler::notEqual, dispatch);
2331 
2332       // We have the address of an on stack replacement routine in rax.
2333       // In preparation of invoking it, first we must migrate the locals
2334       // and monitors from off the interpreter frame on the stack.
2335       // Ensure to save the osr nmethod over the migration call,
2336       // it will be preserved in rbx.
2337       __ mov(rbx, rax);
2338 
2339       NOT_LP64(__ get_thread(rcx));
2340 
2341       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2342 
2343       // rax is OSR buffer, move it to expected parameter location
2344       LP64_ONLY(__ mov(j_rarg0, rax));
2345       NOT_LP64(__ mov(rcx, rax));
2346       // We use j_rarg definitions here so that registers don't conflict as parameter
2347       // registers change across platforms as we are in the midst of a calling
2348       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2349 
2350       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2351       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2352 
2353       // pop the interpreter frame
2354       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2355       __ leave();                                // remove frame anchor
2356       __ pop(retaddr);                           // get return address
2357       __ mov(rsp, sender_sp);                   // set sp to sender sp
2358       // Ensure compiled code always sees stack at proper alignment
2359       __ andptr(rsp, -(StackAlignmentInBytes));
2360 
2361       // unlike x86 we need no specialized return from compiled code
2362       // to the interpreter or the call stub.
2363 
2364       // push the return address
2365       __ push(retaddr);
2366 
2367       // and begin the OSR nmethod
2368       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
2369     }
2370   }
2371 }
2372 
if_0cmp(Condition cc)2373 void TemplateTable::if_0cmp(Condition cc) {
2374   transition(itos, vtos);
2375   // assume branch is more often taken than not (loops use backward branches)
2376   Label not_taken;
2377   __ testl(rax, rax);
2378   __ jcc(j_not(cc), not_taken);
2379   branch(false, false);
2380   __ bind(not_taken);
2381   __ profile_not_taken_branch(rax);
2382 }
2383 
if_icmp(Condition cc)2384 void TemplateTable::if_icmp(Condition cc) {
2385   transition(itos, vtos);
2386   // assume branch is more often taken than not (loops use backward branches)
2387   Label not_taken;
2388   __ pop_i(rdx);
2389   __ cmpl(rdx, rax);
2390   __ jcc(j_not(cc), not_taken);
2391   branch(false, false);
2392   __ bind(not_taken);
2393   __ profile_not_taken_branch(rax);
2394 }
2395 
if_nullcmp(Condition cc)2396 void TemplateTable::if_nullcmp(Condition cc) {
2397   transition(atos, vtos);
2398   // assume branch is more often taken than not (loops use backward branches)
2399   Label not_taken;
2400   __ testptr(rax, rax);
2401   __ jcc(j_not(cc), not_taken);
2402   branch(false, false);
2403   __ bind(not_taken);
2404   __ profile_not_taken_branch(rax);
2405 }
2406 
if_acmp(Condition cc)2407 void TemplateTable::if_acmp(Condition cc) {
2408   transition(atos, vtos);
2409   // assume branch is more often taken than not (loops use backward branches)
2410   Label not_taken;
2411   __ pop_ptr(rdx);
2412   __ cmpoop(rdx, rax);
2413   __ jcc(j_not(cc), not_taken);
2414   branch(false, false);
2415   __ bind(not_taken);
2416   __ profile_not_taken_branch(rax);
2417 }
2418 
ret()2419 void TemplateTable::ret() {
2420   transition(vtos, vtos);
2421   locals_index(rbx);
2422   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2423   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2424   __ profile_ret(rbx, rcx);
2425   __ get_method(rax);
2426   __ movptr(rbcp, Address(rax, Method::const_offset()));
2427   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2428                       ConstMethod::codes_offset()));
2429   __ dispatch_next(vtos, 0, true);
2430 }
2431 
wide_ret()2432 void TemplateTable::wide_ret() {
2433   transition(vtos, vtos);
2434   locals_index_wide(rbx);
2435   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2436   __ profile_ret(rbx, rcx);
2437   __ get_method(rax);
2438   __ movptr(rbcp, Address(rax, Method::const_offset()));
2439   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2440   __ dispatch_next(vtos, 0, true);
2441 }
2442 
tableswitch()2443 void TemplateTable::tableswitch() {
2444   Label default_case, continue_execution;
2445   transition(itos, vtos);
2446 
2447   // align r13/rsi
2448   __ lea(rbx, at_bcp(BytesPerInt));
2449   __ andptr(rbx, -BytesPerInt);
2450   // load lo & hi
2451   __ movl(rcx, Address(rbx, BytesPerInt));
2452   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2453   __ bswapl(rcx);
2454   __ bswapl(rdx);
2455   // check against lo & hi
2456   __ cmpl(rax, rcx);
2457   __ jcc(Assembler::less, default_case);
2458   __ cmpl(rax, rdx);
2459   __ jcc(Assembler::greater, default_case);
2460   // lookup dispatch offset
2461   __ subl(rax, rcx);
2462   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2463   __ profile_switch_case(rax, rbx, rcx);
2464   // continue execution
2465   __ bind(continue_execution);
2466   __ bswapl(rdx);
2467   LP64_ONLY(__ movl2ptr(rdx, rdx));
2468   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2469   __ addptr(rbcp, rdx);
2470   __ dispatch_only(vtos, true);
2471   // handle default
2472   __ bind(default_case);
2473   __ profile_switch_default(rax);
2474   __ movl(rdx, Address(rbx, 0));
2475   __ jmp(continue_execution);
2476 }
2477 
lookupswitch()2478 void TemplateTable::lookupswitch() {
2479   transition(itos, itos);
2480   __ stop("lookupswitch bytecode should have been rewritten");
2481 }
2482 
fast_linearswitch()2483 void TemplateTable::fast_linearswitch() {
2484   transition(itos, vtos);
2485   Label loop_entry, loop, found, continue_execution;
2486   // bswap rax so we can avoid bswapping the table entries
2487   __ bswapl(rax);
2488   // align r13
2489   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2490                                     // this instruction (change offsets
2491                                     // below)
2492   __ andptr(rbx, -BytesPerInt);
2493   // set counter
2494   __ movl(rcx, Address(rbx, BytesPerInt));
2495   __ bswapl(rcx);
2496   __ jmpb(loop_entry);
2497   // table search
2498   __ bind(loop);
2499   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2500   __ jcc(Assembler::equal, found);
2501   __ bind(loop_entry);
2502   __ decrementl(rcx);
2503   __ jcc(Assembler::greaterEqual, loop);
2504   // default case
2505   __ profile_switch_default(rax);
2506   __ movl(rdx, Address(rbx, 0));
2507   __ jmp(continue_execution);
2508   // entry found -> get offset
2509   __ bind(found);
2510   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2511   __ profile_switch_case(rcx, rax, rbx);
2512   // continue execution
2513   __ bind(continue_execution);
2514   __ bswapl(rdx);
2515   __ movl2ptr(rdx, rdx);
2516   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2517   __ addptr(rbcp, rdx);
2518   __ dispatch_only(vtos, true);
2519 }
2520 
fast_binaryswitch()2521 void TemplateTable::fast_binaryswitch() {
2522   transition(itos, vtos);
2523   // Implementation using the following core algorithm:
2524   //
2525   // int binary_search(int key, LookupswitchPair* array, int n) {
2526   //   // Binary search according to "Methodik des Programmierens" by
2527   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2528   //   int i = 0;
2529   //   int j = n;
2530   //   while (i+1 < j) {
2531   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2532   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2533   //     // where a stands for the array and assuming that the (inexisting)
2534   //     // element a[n] is infinitely big.
2535   //     int h = (i + j) >> 1;
2536   //     // i < h < j
2537   //     if (key < array[h].fast_match()) {
2538   //       j = h;
2539   //     } else {
2540   //       i = h;
2541   //     }
2542   //   }
2543   //   // R: a[i] <= key < a[i+1] or Q
2544   //   // (i.e., if key is within array, i is the correct index)
2545   //   return i;
2546   // }
2547 
2548   // Register allocation
2549   const Register key   = rax; // already set (tosca)
2550   const Register array = rbx;
2551   const Register i     = rcx;
2552   const Register j     = rdx;
2553   const Register h     = rdi;
2554   const Register temp  = rsi;
2555 
2556   // Find array start
2557   NOT_LP64(__ save_bcp());
2558 
2559   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2560                                           // get rid of this
2561                                           // instruction (change
2562                                           // offsets below)
2563   __ andptr(array, -BytesPerInt);
2564 
2565   // Initialize i & j
2566   __ xorl(i, i);                            // i = 0;
2567   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2568 
2569   // Convert j into native byteordering
2570   __ bswapl(j);
2571 
2572   // And start
2573   Label entry;
2574   __ jmp(entry);
2575 
2576   // binary search loop
2577   {
2578     Label loop;
2579     __ bind(loop);
2580     // int h = (i + j) >> 1;
2581     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2582     __ sarl(h, 1);                               // h = (i + j) >> 1;
2583     // if (key < array[h].fast_match()) {
2584     //   j = h;
2585     // } else {
2586     //   i = h;
2587     // }
2588     // Convert array[h].match to native byte-ordering before compare
2589     __ movl(temp, Address(array, h, Address::times_8));
2590     __ bswapl(temp);
2591     __ cmpl(key, temp);
2592     // j = h if (key <  array[h].fast_match())
2593     __ cmov32(Assembler::less, j, h);
2594     // i = h if (key >= array[h].fast_match())
2595     __ cmov32(Assembler::greaterEqual, i, h);
2596     // while (i+1 < j)
2597     __ bind(entry);
2598     __ leal(h, Address(i, 1)); // i+1
2599     __ cmpl(h, j);             // i+1 < j
2600     __ jcc(Assembler::less, loop);
2601   }
2602 
2603   // end of binary search, result index is i (must check again!)
2604   Label default_case;
2605   // Convert array[i].match to native byte-ordering before compare
2606   __ movl(temp, Address(array, i, Address::times_8));
2607   __ bswapl(temp);
2608   __ cmpl(key, temp);
2609   __ jcc(Assembler::notEqual, default_case);
2610 
2611   // entry found -> j = offset
2612   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2613   __ profile_switch_case(i, key, array);
2614   __ bswapl(j);
2615   LP64_ONLY(__ movslq(j, j));
2616 
2617   NOT_LP64(__ restore_bcp());
2618   NOT_LP64(__ restore_locals());                           // restore rdi
2619 
2620   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2621   __ addptr(rbcp, j);
2622   __ dispatch_only(vtos, true);
2623 
2624   // default case -> j = default offset
2625   __ bind(default_case);
2626   __ profile_switch_default(i);
2627   __ movl(j, Address(array, -2 * BytesPerInt));
2628   __ bswapl(j);
2629   LP64_ONLY(__ movslq(j, j));
2630 
2631   NOT_LP64(__ restore_bcp());
2632   NOT_LP64(__ restore_locals());
2633 
2634   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2635   __ addptr(rbcp, j);
2636   __ dispatch_only(vtos, true);
2637 }
2638 
_return(TosState state)2639 void TemplateTable::_return(TosState state) {
2640   transition(state, state);
2641 
2642   assert(_desc->calls_vm(),
2643          "inconsistent calls_vm information"); // call in remove_activation
2644 
2645   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2646     assert(state == vtos, "only valid state");
2647     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2648     __ movptr(robj, aaddress(0));
2649     Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
2650     __ load_klass(rdi, robj, tmp_load_klass);
2651     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2652     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2653     Label skip_register_finalizer;
2654     __ jcc(Assembler::zero, skip_register_finalizer);
2655 
2656     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2657 
2658     __ bind(skip_register_finalizer);
2659   }
2660 
2661   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2662     Label no_safepoint;
2663     NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2664 #ifdef _LP64
2665     __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2666 #else
2667     const Register thread = rdi;
2668     __ get_thread(thread);
2669     __ testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2670 #endif
2671     __ jcc(Assembler::zero, no_safepoint);
2672     __ push(state);
2673     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2674                                     InterpreterRuntime::at_safepoint));
2675     __ pop(state);
2676     __ bind(no_safepoint);
2677   }
2678 
2679   // Narrow result if state is itos but result type is smaller.
2680   // Need to narrow in the return bytecode rather than in generate_return_entry
2681   // since compiled code callers expect the result to already be narrowed.
2682   if (state == itos) {
2683     __ narrow(rax);
2684   }
2685   __ remove_activation(state, rbcp);
2686 
2687   __ jmp(rbcp);
2688 }
2689 
2690 // ----------------------------------------------------------------------------
2691 // Volatile variables demand their effects be made known to all CPU's
2692 // in order.  Store buffers on most chips allow reads & writes to
2693 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2694 // without some kind of memory barrier (i.e., it's not sufficient that
2695 // the interpreter does not reorder volatile references, the hardware
2696 // also must not reorder them).
2697 //
2698 // According to the new Java Memory Model (JMM):
2699 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2700 //     writes act as aquire & release, so:
2701 // (2) A read cannot let unrelated NON-volatile memory refs that
2702 //     happen after the read float up to before the read.  It's OK for
2703 //     non-volatile memory refs that happen before the volatile read to
2704 //     float down below it.
2705 // (3) Similar a volatile write cannot let unrelated NON-volatile
2706 //     memory refs that happen BEFORE the write float down to after the
2707 //     write.  It's OK for non-volatile memory refs that happen after the
2708 //     volatile write to float up before it.
2709 //
2710 // We only put in barriers around volatile refs (they are expensive),
2711 // not _between_ memory refs (that would require us to track the
2712 // flavor of the previous memory refs).  Requirements (2) and (3)
2713 // require some barriers before volatile stores and after volatile
2714 // loads.  These nearly cover requirement (1) but miss the
2715 // volatile-store-volatile-load case.  This final case is placed after
2716 // volatile-stores although it could just as well go before
2717 // volatile-loads.
2718 
volatile_barrier(Assembler::Membar_mask_bits order_constraint)2719 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2720   // Helper function to insert a is-volatile test and memory barrier
2721   __ membar(order_constraint);
2722 }
2723 
resolve_cache_and_index(int byte_no,Register cache,Register index,size_t index_size)2724 void TemplateTable::resolve_cache_and_index(int byte_no,
2725                                             Register cache,
2726                                             Register index,
2727                                             size_t index_size) {
2728   const Register temp = rbx;
2729   assert_different_registers(cache, index, temp);
2730 
2731   Label L_clinit_barrier_slow;
2732   Label resolved;
2733 
2734   Bytecodes::Code code = bytecode();
2735   switch (code) {
2736   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2737   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2738   default: break;
2739   }
2740 
2741   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2742   __ get_cache_and_index_and_bytecode_at_bcp(cache, index, temp, byte_no, 1, index_size);
2743   __ cmpl(temp, code);  // have we resolved this bytecode?
2744   __ jcc(Assembler::equal, resolved);
2745 
2746   // resolve first time through
2747   // Class initialization barrier slow path lands here as well.
2748   __ bind(L_clinit_barrier_slow);
2749   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2750   __ movl(temp, code);
2751   __ call_VM(noreg, entry, temp);
2752   // Update registers with resolved info
2753   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
2754 
2755   __ bind(resolved);
2756 
2757   // Class initialization barrier for static methods
2758   if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2759     const Register method = temp;
2760     const Register klass  = temp;
2761     const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2762     assert(thread != noreg, "x86_32 not supported");
2763 
2764     __ load_resolved_method_at_index(byte_no, method, cache, index);
2765     __ load_method_holder(klass, method);
2766     __ clinit_barrier(klass, thread, NULL /*L_fast_path*/, &L_clinit_barrier_slow);
2767   }
2768 }
2769 
2770 // The cache and index registers must be set before call
load_field_cp_cache_entry(Register obj,Register cache,Register index,Register off,Register flags,bool is_static=false)2771 void TemplateTable::load_field_cp_cache_entry(Register obj,
2772                                               Register cache,
2773                                               Register index,
2774                                               Register off,
2775                                               Register flags,
2776                                               bool is_static = false) {
2777   assert_different_registers(cache, index, flags, off);
2778 
2779   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2780   // Field offset
2781   __ movptr(off, Address(cache, index, Address::times_ptr,
2782                          in_bytes(cp_base_offset +
2783                                   ConstantPoolCacheEntry::f2_offset())));
2784   // Flags
2785   __ movl(flags, Address(cache, index, Address::times_ptr,
2786                          in_bytes(cp_base_offset +
2787                                   ConstantPoolCacheEntry::flags_offset())));
2788 
2789   // klass overwrite register
2790   if (is_static) {
2791     __ movptr(obj, Address(cache, index, Address::times_ptr,
2792                            in_bytes(cp_base_offset +
2793                                     ConstantPoolCacheEntry::f1_offset())));
2794     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2795     __ movptr(obj, Address(obj, mirror_offset));
2796     __ resolve_oop_handle(obj);
2797   }
2798 }
2799 
load_invoke_cp_cache_entry(int byte_no,Register method,Register itable_index,Register flags,bool is_invokevirtual,bool is_invokevfinal,bool is_invokedynamic)2800 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2801                                                Register method,
2802                                                Register itable_index,
2803                                                Register flags,
2804                                                bool is_invokevirtual,
2805                                                bool is_invokevfinal, /*unused*/
2806                                                bool is_invokedynamic) {
2807   // setup registers
2808   const Register cache = rcx;
2809   const Register index = rdx;
2810   assert_different_registers(method, flags);
2811   assert_different_registers(method, cache, index);
2812   assert_different_registers(itable_index, flags);
2813   assert_different_registers(itable_index, cache, index);
2814   // determine constant pool cache field offsets
2815   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2816   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2817                                     ConstantPoolCacheEntry::flags_offset());
2818   // access constant pool cache fields
2819   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2820                                     ConstantPoolCacheEntry::f2_offset());
2821 
2822   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2823   resolve_cache_and_index(byte_no, cache, index, index_size);
2824   __ load_resolved_method_at_index(byte_no, method, cache, index);
2825 
2826   if (itable_index != noreg) {
2827     // pick up itable or appendix index from f2 also:
2828     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2829   }
2830   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2831 }
2832 
2833 // The registers cache and index expected to be set before call.
2834 // Correct values of the cache and index registers are preserved.
jvmti_post_field_access(Register cache,Register index,bool is_static,bool has_tos)2835 void TemplateTable::jvmti_post_field_access(Register cache,
2836                                             Register index,
2837                                             bool is_static,
2838                                             bool has_tos) {
2839   if (JvmtiExport::can_post_field_access()) {
2840     // Check to see if a field access watch has been set before we take
2841     // the time to call into the VM.
2842     Label L1;
2843     assert_different_registers(cache, index, rax);
2844     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2845     __ testl(rax,rax);
2846     __ jcc(Assembler::zero, L1);
2847 
2848     // cache entry pointer
2849     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2850     __ shll(index, LogBytesPerWord);
2851     __ addptr(cache, index);
2852     if (is_static) {
2853       __ xorptr(rax, rax);      // NULL object reference
2854     } else {
2855       __ pop(atos);         // Get the object
2856       __ verify_oop(rax);
2857       __ push(atos);        // Restore stack state
2858     }
2859     // rax,:   object pointer or NULL
2860     // cache: cache entry pointer
2861     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2862                rax, cache);
2863     __ get_cache_and_index_at_bcp(cache, index, 1);
2864     __ bind(L1);
2865   }
2866 }
2867 
pop_and_check_object(Register r)2868 void TemplateTable::pop_and_check_object(Register r) {
2869   __ pop_ptr(r);
2870   __ null_check(r);  // for field access must check obj.
2871   __ verify_oop(r);
2872 }
2873 
getfield_or_static(int byte_no,bool is_static,RewriteControl rc)2874 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2875   transition(vtos, vtos);
2876 
2877   const Register cache = rcx;
2878   const Register index = rdx;
2879   const Register obj   = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
2880   const Register off   = rbx;
2881   const Register flags = rax;
2882   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
2883 
2884   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2885   jvmti_post_field_access(cache, index, is_static, false);
2886   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2887 
2888   if (!is_static) pop_and_check_object(obj);
2889 
2890   const Address field(obj, off, Address::times_1, 0*wordSize);
2891 
2892   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2893 
2894   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2895   // Make sure we don't need to mask edx after the above shift
2896   assert(btos == 0, "change code, btos != 0");
2897 
2898   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2899 
2900   __ jcc(Assembler::notZero, notByte);
2901   // btos
2902   __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
2903   __ push(btos);
2904   // Rewrite bytecode to be faster
2905   if (!is_static && rc == may_rewrite) {
2906     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2907   }
2908   __ jmp(Done);
2909 
2910   __ bind(notByte);
2911   __ cmpl(flags, ztos);
2912   __ jcc(Assembler::notEqual, notBool);
2913 
2914   // ztos (same code as btos)
2915   __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg);
2916   __ push(ztos);
2917   // Rewrite bytecode to be faster
2918   if (!is_static && rc == may_rewrite) {
2919     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2920     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2921   }
2922   __ jmp(Done);
2923 
2924   __ bind(notBool);
2925   __ cmpl(flags, atos);
2926   __ jcc(Assembler::notEqual, notObj);
2927   // atos
2928   do_oop_load(_masm, field, rax);
2929   __ push(atos);
2930   if (!is_static && rc == may_rewrite) {
2931     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2932   }
2933   __ jmp(Done);
2934 
2935   __ bind(notObj);
2936   __ cmpl(flags, itos);
2937   __ jcc(Assembler::notEqual, notInt);
2938   // itos
2939   __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
2940   __ push(itos);
2941   // Rewrite bytecode to be faster
2942   if (!is_static && rc == may_rewrite) {
2943     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2944   }
2945   __ jmp(Done);
2946 
2947   __ bind(notInt);
2948   __ cmpl(flags, ctos);
2949   __ jcc(Assembler::notEqual, notChar);
2950   // ctos
2951   __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
2952   __ push(ctos);
2953   // Rewrite bytecode to be faster
2954   if (!is_static && rc == may_rewrite) {
2955     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2956   }
2957   __ jmp(Done);
2958 
2959   __ bind(notChar);
2960   __ cmpl(flags, stos);
2961   __ jcc(Assembler::notEqual, notShort);
2962   // stos
2963   __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
2964   __ push(stos);
2965   // Rewrite bytecode to be faster
2966   if (!is_static && rc == may_rewrite) {
2967     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2968   }
2969   __ jmp(Done);
2970 
2971   __ bind(notShort);
2972   __ cmpl(flags, ltos);
2973   __ jcc(Assembler::notEqual, notLong);
2974   // ltos
2975     // Generate code as if volatile (x86_32).  There just aren't enough registers to
2976     // save that information and this code is faster than the test.
2977   __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg);
2978   __ push(ltos);
2979   // Rewrite bytecode to be faster
2980   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
2981   __ jmp(Done);
2982 
2983   __ bind(notLong);
2984   __ cmpl(flags, ftos);
2985   __ jcc(Assembler::notEqual, notFloat);
2986   // ftos
2987 
2988   __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2989   __ push(ftos);
2990   // Rewrite bytecode to be faster
2991   if (!is_static && rc == may_rewrite) {
2992     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2993   }
2994   __ jmp(Done);
2995 
2996   __ bind(notFloat);
2997 #ifdef ASSERT
2998   Label notDouble;
2999   __ cmpl(flags, dtos);
3000   __ jcc(Assembler::notEqual, notDouble);
3001 #endif
3002   // dtos
3003   // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
3004   __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg);
3005   __ push(dtos);
3006   // Rewrite bytecode to be faster
3007   if (!is_static && rc == may_rewrite) {
3008     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
3009   }
3010 #ifdef ASSERT
3011   __ jmp(Done);
3012 
3013   __ bind(notDouble);
3014   __ stop("Bad state");
3015 #endif
3016 
3017   __ bind(Done);
3018   // [jk] not needed currently
3019   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
3020   //                                              Assembler::LoadStore));
3021 }
3022 
getfield(int byte_no)3023 void TemplateTable::getfield(int byte_no) {
3024   getfield_or_static(byte_no, false);
3025 }
3026 
nofast_getfield(int byte_no)3027 void TemplateTable::nofast_getfield(int byte_no) {
3028   getfield_or_static(byte_no, false, may_not_rewrite);
3029 }
3030 
getstatic(int byte_no)3031 void TemplateTable::getstatic(int byte_no) {
3032   getfield_or_static(byte_no, true);
3033 }
3034 
3035 
3036 // The registers cache and index expected to be set before call.
3037 // The function may destroy various registers, just not the cache and index registers.
jvmti_post_field_mod(Register cache,Register index,bool is_static)3038 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
3039 
3040   const Register robj = LP64_ONLY(c_rarg2)   NOT_LP64(rax);
3041   const Register RBX  = LP64_ONLY(c_rarg1)   NOT_LP64(rbx);
3042   const Register RCX  = LP64_ONLY(c_rarg3)   NOT_LP64(rcx);
3043   const Register RDX  = LP64_ONLY(rscratch1) NOT_LP64(rdx);
3044 
3045   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3046 
3047   if (JvmtiExport::can_post_field_modification()) {
3048     // Check to see if a field modification watch has been set before
3049     // we take the time to call into the VM.
3050     Label L1;
3051     assert_different_registers(cache, index, rax);
3052     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3053     __ testl(rax, rax);
3054     __ jcc(Assembler::zero, L1);
3055 
3056     __ get_cache_and_index_at_bcp(robj, RDX, 1);
3057 
3058 
3059     if (is_static) {
3060       // Life is simple.  Null out the object pointer.
3061       __ xorl(RBX, RBX);
3062 
3063     } else {
3064       // Life is harder. The stack holds the value on top, followed by
3065       // the object.  We don't know the size of the value, though; it
3066       // could be one or two words depending on its type. As a result,
3067       // we must find the type to determine where the object is.
3068 #ifndef _LP64
3069       Label two_word, valsize_known;
3070 #endif
3071       __ movl(RCX, Address(robj, RDX,
3072                            Address::times_ptr,
3073                            in_bytes(cp_base_offset +
3074                                      ConstantPoolCacheEntry::flags_offset())));
3075       NOT_LP64(__ mov(rbx, rsp));
3076       __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
3077 
3078       // Make sure we don't need to mask rcx after the above shift
3079       ConstantPoolCacheEntry::verify_tos_state_shift();
3080 #ifdef _LP64
3081       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
3082       __ cmpl(c_rarg3, ltos);
3083       __ cmovptr(Assembler::equal,
3084                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
3085       __ cmpl(c_rarg3, dtos);
3086       __ cmovptr(Assembler::equal,
3087                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
3088 #else
3089       __ cmpl(rcx, ltos);
3090       __ jccb(Assembler::equal, two_word);
3091       __ cmpl(rcx, dtos);
3092       __ jccb(Assembler::equal, two_word);
3093       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
3094       __ jmpb(valsize_known);
3095 
3096       __ bind(two_word);
3097       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
3098 
3099       __ bind(valsize_known);
3100       // setup object pointer
3101       __ movptr(rbx, Address(rbx, 0));
3102 #endif
3103     }
3104     // cache entry pointer
3105     __ addptr(robj, in_bytes(cp_base_offset));
3106     __ shll(RDX, LogBytesPerWord);
3107     __ addptr(robj, RDX);
3108     // object (tos)
3109     __ mov(RCX, rsp);
3110     // c_rarg1: object pointer set up above (NULL if static)
3111     // c_rarg2: cache entry pointer
3112     // c_rarg3: jvalue object on the stack
3113     __ call_VM(noreg,
3114                CAST_FROM_FN_PTR(address,
3115                                 InterpreterRuntime::post_field_modification),
3116                RBX, robj, RCX);
3117     __ get_cache_and_index_at_bcp(cache, index, 1);
3118     __ bind(L1);
3119   }
3120 }
3121 
putfield_or_static(int byte_no,bool is_static,RewriteControl rc)3122 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3123   transition(vtos, vtos);
3124 
3125   const Register cache = rcx;
3126   const Register index = rdx;
3127   const Register obj   = rcx;
3128   const Register off   = rbx;
3129   const Register flags = rax;
3130 
3131   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3132   jvmti_post_field_mod(cache, index, is_static);
3133   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3134 
3135   // [jk] not needed currently
3136   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3137   //                                              Assembler::StoreStore));
3138 
3139   Label notVolatile, Done;
3140   __ movl(rdx, flags);
3141   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3142   __ andl(rdx, 0x1);
3143 
3144   // Check for volatile store
3145   __ testl(rdx, rdx);
3146   __ jcc(Assembler::zero, notVolatile);
3147 
3148   putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags);
3149   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3150                                                Assembler::StoreStore));
3151   __ jmp(Done);
3152   __ bind(notVolatile);
3153 
3154   putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags);
3155 
3156   __ bind(Done);
3157 }
3158 
putfield_or_static_helper(int byte_no,bool is_static,RewriteControl rc,Register obj,Register off,Register flags)3159 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc,
3160                                               Register obj, Register off, Register flags) {
3161 
3162   // field addresses
3163   const Address field(obj, off, Address::times_1, 0*wordSize);
3164   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3165 
3166   Label notByte, notBool, notInt, notShort, notChar,
3167         notLong, notFloat, notObj;
3168   Label Done;
3169 
3170   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3171 
3172   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3173 
3174   assert(btos == 0, "change code, btos != 0");
3175   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3176   __ jcc(Assembler::notZero, notByte);
3177 
3178   // btos
3179   {
3180     __ pop(btos);
3181     if (!is_static) pop_and_check_object(obj);
3182     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg);
3183     if (!is_static && rc == may_rewrite) {
3184       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3185     }
3186     __ jmp(Done);
3187   }
3188 
3189   __ bind(notByte);
3190   __ cmpl(flags, ztos);
3191   __ jcc(Assembler::notEqual, notBool);
3192 
3193   // ztos
3194   {
3195     __ pop(ztos);
3196     if (!is_static) pop_and_check_object(obj);
3197     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg);
3198     if (!is_static && rc == may_rewrite) {
3199       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3200     }
3201     __ jmp(Done);
3202   }
3203 
3204   __ bind(notBool);
3205   __ cmpl(flags, atos);
3206   __ jcc(Assembler::notEqual, notObj);
3207 
3208   // atos
3209   {
3210     __ pop(atos);
3211     if (!is_static) pop_and_check_object(obj);
3212     // Store into the field
3213     do_oop_store(_masm, field, rax);
3214     if (!is_static && rc == may_rewrite) {
3215       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3216     }
3217     __ jmp(Done);
3218   }
3219 
3220   __ bind(notObj);
3221   __ cmpl(flags, itos);
3222   __ jcc(Assembler::notEqual, notInt);
3223 
3224   // itos
3225   {
3226     __ pop(itos);
3227     if (!is_static) pop_and_check_object(obj);
3228     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg);
3229     if (!is_static && rc == may_rewrite) {
3230       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3231     }
3232     __ jmp(Done);
3233   }
3234 
3235   __ bind(notInt);
3236   __ cmpl(flags, ctos);
3237   __ jcc(Assembler::notEqual, notChar);
3238 
3239   // ctos
3240   {
3241     __ pop(ctos);
3242     if (!is_static) pop_and_check_object(obj);
3243     __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg);
3244     if (!is_static && rc == may_rewrite) {
3245       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3246     }
3247     __ jmp(Done);
3248   }
3249 
3250   __ bind(notChar);
3251   __ cmpl(flags, stos);
3252   __ jcc(Assembler::notEqual, notShort);
3253 
3254   // stos
3255   {
3256     __ pop(stos);
3257     if (!is_static) pop_and_check_object(obj);
3258     __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg);
3259     if (!is_static && rc == may_rewrite) {
3260       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3261     }
3262     __ jmp(Done);
3263   }
3264 
3265   __ bind(notShort);
3266   __ cmpl(flags, ltos);
3267   __ jcc(Assembler::notEqual, notLong);
3268 
3269   // ltos
3270   {
3271     __ pop(ltos);
3272     if (!is_static) pop_and_check_object(obj);
3273     // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32)
3274     __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg);
3275 #ifdef _LP64
3276     if (!is_static && rc == may_rewrite) {
3277       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3278     }
3279 #endif // _LP64
3280     __ jmp(Done);
3281   }
3282 
3283   __ bind(notLong);
3284   __ cmpl(flags, ftos);
3285   __ jcc(Assembler::notEqual, notFloat);
3286 
3287   // ftos
3288   {
3289     __ pop(ftos);
3290     if (!is_static) pop_and_check_object(obj);
3291     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg);
3292     if (!is_static && rc == may_rewrite) {
3293       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3294     }
3295     __ jmp(Done);
3296   }
3297 
3298   __ bind(notFloat);
3299 #ifdef ASSERT
3300   Label notDouble;
3301   __ cmpl(flags, dtos);
3302   __ jcc(Assembler::notEqual, notDouble);
3303 #endif
3304 
3305   // dtos
3306   {
3307     __ pop(dtos);
3308     if (!is_static) pop_and_check_object(obj);
3309     // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
3310     __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg);
3311     if (!is_static && rc == may_rewrite) {
3312       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3313     }
3314   }
3315 
3316 #ifdef ASSERT
3317   __ jmp(Done);
3318 
3319   __ bind(notDouble);
3320   __ stop("Bad state");
3321 #endif
3322 
3323   __ bind(Done);
3324 }
3325 
putfield(int byte_no)3326 void TemplateTable::putfield(int byte_no) {
3327   putfield_or_static(byte_no, false);
3328 }
3329 
nofast_putfield(int byte_no)3330 void TemplateTable::nofast_putfield(int byte_no) {
3331   putfield_or_static(byte_no, false, may_not_rewrite);
3332 }
3333 
putstatic(int byte_no)3334 void TemplateTable::putstatic(int byte_no) {
3335   putfield_or_static(byte_no, true);
3336 }
3337 
jvmti_post_fast_field_mod()3338 void TemplateTable::jvmti_post_fast_field_mod() {
3339 
3340   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3341 
3342   if (JvmtiExport::can_post_field_modification()) {
3343     // Check to see if a field modification watch has been set before
3344     // we take the time to call into the VM.
3345     Label L2;
3346     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3347     __ testl(scratch, scratch);
3348     __ jcc(Assembler::zero, L2);
3349     __ pop_ptr(rbx);                  // copy the object pointer from tos
3350     __ verify_oop(rbx);
3351     __ push_ptr(rbx);                 // put the object pointer back on tos
3352     // Save tos values before call_VM() clobbers them. Since we have
3353     // to do it for every data type, we use the saved values as the
3354     // jvalue object.
3355     switch (bytecode()) {          // load values into the jvalue object
3356     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3357     case Bytecodes::_fast_bputfield: // fall through
3358     case Bytecodes::_fast_zputfield: // fall through
3359     case Bytecodes::_fast_sputfield: // fall through
3360     case Bytecodes::_fast_cputfield: // fall through
3361     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3362     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3363     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3364     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3365 
3366     default:
3367       ShouldNotReachHere();
3368     }
3369     __ mov(scratch, rsp);             // points to jvalue on the stack
3370     // access constant pool cache entry
3371     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
3372     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
3373     __ verify_oop(rbx);
3374     // rbx: object pointer copied above
3375     // c_rarg2: cache entry pointer
3376     // c_rarg3: jvalue object on the stack
3377     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3378     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3379 
3380     switch (bytecode()) {             // restore tos values
3381     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3382     case Bytecodes::_fast_bputfield: // fall through
3383     case Bytecodes::_fast_zputfield: // fall through
3384     case Bytecodes::_fast_sputfield: // fall through
3385     case Bytecodes::_fast_cputfield: // fall through
3386     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3387     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3388     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3389     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3390     default: break;
3391     }
3392     __ bind(L2);
3393   }
3394 }
3395 
fast_storefield(TosState state)3396 void TemplateTable::fast_storefield(TosState state) {
3397   transition(state, vtos);
3398 
3399   ByteSize base = ConstantPoolCache::base_offset();
3400 
3401   jvmti_post_fast_field_mod();
3402 
3403   // access constant pool cache
3404   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3405 
3406   // test for volatile with rdx but rdx is tos register for lputfield.
3407   __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
3408                        in_bytes(base +
3409                                 ConstantPoolCacheEntry::flags_offset())));
3410 
3411   // replace index with field offset from cache entry
3412   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3413                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
3414 
3415   // [jk] not needed currently
3416   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3417   //                                              Assembler::StoreStore));
3418 
3419   Label notVolatile, Done;
3420   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3421   __ andl(rdx, 0x1);
3422 
3423   // Get object from stack
3424   pop_and_check_object(rcx);
3425 
3426   // field address
3427   const Address field(rcx, rbx, Address::times_1);
3428 
3429   // Check for volatile store
3430   __ testl(rdx, rdx);
3431   __ jcc(Assembler::zero, notVolatile);
3432 
3433   fast_storefield_helper(field, rax);
3434   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3435                                                Assembler::StoreStore));
3436   __ jmp(Done);
3437   __ bind(notVolatile);
3438 
3439   fast_storefield_helper(field, rax);
3440 
3441   __ bind(Done);
3442 }
3443 
fast_storefield_helper(Address field,Register rax)3444 void TemplateTable::fast_storefield_helper(Address field, Register rax) {
3445 
3446   // access field
3447   switch (bytecode()) {
3448   case Bytecodes::_fast_aputfield:
3449     do_oop_store(_masm, field, rax);
3450     break;
3451   case Bytecodes::_fast_lputfield:
3452 #ifdef _LP64
3453     __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg);
3454 #else
3455   __ stop("should not be rewritten");
3456 #endif
3457     break;
3458   case Bytecodes::_fast_iputfield:
3459     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg);
3460     break;
3461   case Bytecodes::_fast_zputfield:
3462     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg);
3463     break;
3464   case Bytecodes::_fast_bputfield:
3465     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg);
3466     break;
3467   case Bytecodes::_fast_sputfield:
3468     __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg);
3469     break;
3470   case Bytecodes::_fast_cputfield:
3471     __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg);
3472     break;
3473   case Bytecodes::_fast_fputfield:
3474     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg);
3475     break;
3476   case Bytecodes::_fast_dputfield:
3477     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg);
3478     break;
3479   default:
3480     ShouldNotReachHere();
3481   }
3482 }
3483 
fast_accessfield(TosState state)3484 void TemplateTable::fast_accessfield(TosState state) {
3485   transition(atos, state);
3486 
3487   // Do the JVMTI work here to avoid disturbing the register state below
3488   if (JvmtiExport::can_post_field_access()) {
3489     // Check to see if a field access watch has been set before we
3490     // take the time to call into the VM.
3491     Label L1;
3492     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3493     __ testl(rcx, rcx);
3494     __ jcc(Assembler::zero, L1);
3495     // access constant pool cache entry
3496     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
3497     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
3498     __ verify_oop(rax);
3499     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3500     LP64_ONLY(__ mov(c_rarg1, rax));
3501     // c_rarg1: object pointer copied above
3502     // c_rarg2: cache entry pointer
3503     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3504     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3505     __ pop_ptr(rax); // restore object pointer
3506     __ bind(L1);
3507   }
3508 
3509   // access constant pool cache
3510   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3511   // replace index with field offset from cache entry
3512   // [jk] not needed currently
3513   // __ movl(rdx, Address(rcx, rbx, Address::times_8,
3514   //                      in_bytes(ConstantPoolCache::base_offset() +
3515   //                               ConstantPoolCacheEntry::flags_offset())));
3516   // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3517   // __ andl(rdx, 0x1);
3518   //
3519   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3520                          in_bytes(ConstantPoolCache::base_offset() +
3521                                   ConstantPoolCacheEntry::f2_offset())));
3522 
3523   // rax: object
3524   __ verify_oop(rax);
3525   __ null_check(rax);
3526   Address field(rax, rbx, Address::times_1);
3527 
3528   // access field
3529   switch (bytecode()) {
3530   case Bytecodes::_fast_agetfield:
3531     do_oop_load(_masm, field, rax);
3532     __ verify_oop(rax);
3533     break;
3534   case Bytecodes::_fast_lgetfield:
3535 #ifdef _LP64
3536     __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg);
3537 #else
3538   __ stop("should not be rewritten");
3539 #endif
3540     break;
3541   case Bytecodes::_fast_igetfield:
3542     __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3543     break;
3544   case Bytecodes::_fast_bgetfield:
3545     __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
3546     break;
3547   case Bytecodes::_fast_sgetfield:
3548     __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
3549     break;
3550   case Bytecodes::_fast_cgetfield:
3551     __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
3552     break;
3553   case Bytecodes::_fast_fgetfield:
3554     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3555     break;
3556   case Bytecodes::_fast_dgetfield:
3557     __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3558     break;
3559   default:
3560     ShouldNotReachHere();
3561   }
3562   // [jk] not needed currently
3563   //   Label notVolatile;
3564   //   __ testl(rdx, rdx);
3565   //   __ jcc(Assembler::zero, notVolatile);
3566   //   __ membar(Assembler::LoadLoad);
3567   //   __ bind(notVolatile);
3568 }
3569 
fast_xaccess(TosState state)3570 void TemplateTable::fast_xaccess(TosState state) {
3571   transition(vtos, state);
3572 
3573   // get receiver
3574   __ movptr(rax, aaddress(0));
3575   // access constant pool cache
3576   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
3577   __ movptr(rbx,
3578             Address(rcx, rdx, Address::times_ptr,
3579                     in_bytes(ConstantPoolCache::base_offset() +
3580                              ConstantPoolCacheEntry::f2_offset())));
3581   // make sure exception is reported in correct bcp range (getfield is
3582   // next instruction)
3583   __ increment(rbcp);
3584   __ null_check(rax);
3585   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3586   switch (state) {
3587   case itos:
3588     __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3589     break;
3590   case atos:
3591     do_oop_load(_masm, field, rax);
3592     __ verify_oop(rax);
3593     break;
3594   case ftos:
3595     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3596     break;
3597   default:
3598     ShouldNotReachHere();
3599   }
3600 
3601   // [jk] not needed currently
3602   // Label notVolatile;
3603   // __ movl(rdx, Address(rcx, rdx, Address::times_8,
3604   //                      in_bytes(ConstantPoolCache::base_offset() +
3605   //                               ConstantPoolCacheEntry::flags_offset())));
3606   // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3607   // __ testl(rdx, 0x1);
3608   // __ jcc(Assembler::zero, notVolatile);
3609   // __ membar(Assembler::LoadLoad);
3610   // __ bind(notVolatile);
3611 
3612   __ decrement(rbcp);
3613 }
3614 
3615 //-----------------------------------------------------------------------------
3616 // Calls
3617 
count_calls(Register method,Register temp)3618 void TemplateTable::count_calls(Register method, Register temp) {
3619   // implemented elsewhere
3620   ShouldNotReachHere();
3621 }
3622 
prepare_invoke(int byte_no,Register method,Register index,Register recv,Register flags)3623 void TemplateTable::prepare_invoke(int byte_no,
3624                                    Register method,  // linked method (or i-klass)
3625                                    Register index,   // itable index, MethodType, etc.
3626                                    Register recv,    // if caller wants to see it
3627                                    Register flags    // if caller wants to test it
3628                                    ) {
3629   // determine flags
3630   const Bytecodes::Code code = bytecode();
3631   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3632   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3633   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3634   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3635   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3636   const bool load_receiver       = (recv  != noreg);
3637   const bool save_flags          = (flags != noreg);
3638   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3639   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3640   assert(flags == noreg || flags == rdx, "");
3641   assert(recv  == noreg || recv  == rcx, "");
3642 
3643   // setup registers & access constant pool cache
3644   if (recv  == noreg)  recv  = rcx;
3645   if (flags == noreg)  flags = rdx;
3646   assert_different_registers(method, index, recv, flags);
3647 
3648   // save 'interpreter return address'
3649   __ save_bcp();
3650 
3651   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3652 
3653   // maybe push appendix to arguments (just before return address)
3654   if (is_invokedynamic || is_invokehandle) {
3655     Label L_no_push;
3656     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3657     __ jcc(Assembler::zero, L_no_push);
3658     // Push the appendix as a trailing parameter.
3659     // This must be done before we get the receiver,
3660     // since the parameter_size includes it.
3661     __ push(rbx);
3662     __ mov(rbx, index);
3663     __ load_resolved_reference_at_index(index, rbx);
3664     __ pop(rbx);
3665     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3666     __ bind(L_no_push);
3667   }
3668 
3669   // load receiver if needed (after appendix is pushed so parameter size is correct)
3670   // Note: no return address pushed yet
3671   if (load_receiver) {
3672     __ movl(recv, flags);
3673     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3674     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3675     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3676     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3677     __ movptr(recv, recv_addr);
3678     __ verify_oop(recv);
3679   }
3680 
3681   if (save_flags) {
3682     __ movl(rbcp, flags);
3683   }
3684 
3685   // compute return type
3686   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3687   // Make sure we don't need to mask flags after the above shift
3688   ConstantPoolCacheEntry::verify_tos_state_shift();
3689   // load return address
3690   {
3691     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3692     ExternalAddress table(table_addr);
3693     LP64_ONLY(__ lea(rscratch1, table));
3694     LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
3695     NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
3696   }
3697 
3698   // push return address
3699   __ push(flags);
3700 
3701   // Restore flags value from the constant pool cache, and restore rsi
3702   // for later null checks.  r13 is the bytecode pointer
3703   if (save_flags) {
3704     __ movl(flags, rbcp);
3705     __ restore_bcp();
3706   }
3707 }
3708 
invokevirtual_helper(Register index,Register recv,Register flags)3709 void TemplateTable::invokevirtual_helper(Register index,
3710                                          Register recv,
3711                                          Register flags) {
3712   // Uses temporary registers rax, rdx
3713   assert_different_registers(index, recv, rax, rdx);
3714   assert(index == rbx, "");
3715   assert(recv  == rcx, "");
3716 
3717   // Test for an invoke of a final method
3718   Label notFinal;
3719   __ movl(rax, flags);
3720   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3721   __ jcc(Assembler::zero, notFinal);
3722 
3723   const Register method = index;  // method must be rbx
3724   assert(method == rbx,
3725          "Method* must be rbx for interpreter calling convention");
3726 
3727   // do the call - the index is actually the method to call
3728   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3729 
3730   // It's final, need a null check here!
3731   __ null_check(recv);
3732 
3733   // profile this call
3734   __ profile_final_call(rax);
3735   __ profile_arguments_type(rax, method, rbcp, true);
3736 
3737   __ jump_from_interpreted(method, rax);
3738 
3739   __ bind(notFinal);
3740 
3741   // get receiver klass
3742   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3743   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3744   __ load_klass(rax, recv, tmp_load_klass);
3745 
3746   // profile this call
3747   __ profile_virtual_call(rax, rlocals, rdx);
3748   // get target Method* & entry point
3749   __ lookup_virtual_method(rax, index, method);
3750 
3751   __ profile_arguments_type(rdx, method, rbcp, true);
3752   __ jump_from_interpreted(method, rdx);
3753 }
3754 
invokevirtual(int byte_no)3755 void TemplateTable::invokevirtual(int byte_no) {
3756   transition(vtos, vtos);
3757   assert(byte_no == f2_byte, "use this argument");
3758   prepare_invoke(byte_no,
3759                  rbx,    // method or vtable index
3760                  noreg,  // unused itable index
3761                  rcx, rdx); // recv, flags
3762 
3763   // rbx: index
3764   // rcx: receiver
3765   // rdx: flags
3766 
3767   invokevirtual_helper(rbx, rcx, rdx);
3768 }
3769 
invokespecial(int byte_no)3770 void TemplateTable::invokespecial(int byte_no) {
3771   transition(vtos, vtos);
3772   assert(byte_no == f1_byte, "use this argument");
3773   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3774                  rcx);  // get receiver also for null check
3775   __ verify_oop(rcx);
3776   __ null_check(rcx);
3777   // do the call
3778   __ profile_call(rax);
3779   __ profile_arguments_type(rax, rbx, rbcp, false);
3780   __ jump_from_interpreted(rbx, rax);
3781 }
3782 
invokestatic(int byte_no)3783 void TemplateTable::invokestatic(int byte_no) {
3784   transition(vtos, vtos);
3785   assert(byte_no == f1_byte, "use this argument");
3786   prepare_invoke(byte_no, rbx);  // get f1 Method*
3787   // do the call
3788   __ profile_call(rax);
3789   __ profile_arguments_type(rax, rbx, rbcp, false);
3790   __ jump_from_interpreted(rbx, rax);
3791 }
3792 
3793 
fast_invokevfinal(int byte_no)3794 void TemplateTable::fast_invokevfinal(int byte_no) {
3795   transition(vtos, vtos);
3796   assert(byte_no == f2_byte, "use this argument");
3797   __ stop("fast_invokevfinal not used on x86");
3798 }
3799 
3800 
invokeinterface(int byte_no)3801 void TemplateTable::invokeinterface(int byte_no) {
3802   transition(vtos, vtos);
3803   assert(byte_no == f1_byte, "use this argument");
3804   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
3805                  rcx, rdx); // recv, flags
3806 
3807   // rax: reference klass (from f1) if interface method
3808   // rbx: method (from f2)
3809   // rcx: receiver
3810   // rdx: flags
3811 
3812   // First check for Object case, then private interface method,
3813   // then regular interface method.
3814 
3815   // Special case of invokeinterface called for virtual method of
3816   // java.lang.Object.  See cpCache.cpp for details.
3817   Label notObjectMethod;
3818   __ movl(rlocals, rdx);
3819   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3820   __ jcc(Assembler::zero, notObjectMethod);
3821   invokevirtual_helper(rbx, rcx, rdx);
3822   // no return from above
3823   __ bind(notObjectMethod);
3824 
3825   Label no_such_interface; // for receiver subtype check
3826   Register recvKlass; // used for exception processing
3827 
3828   // Check for private method invocation - indicated by vfinal
3829   Label notVFinal;
3830   __ movl(rlocals, rdx);
3831   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3832   __ jcc(Assembler::zero, notVFinal);
3833 
3834   // Get receiver klass into rlocals - also a null check
3835   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3836   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3837   __ load_klass(rlocals, rcx, tmp_load_klass);
3838 
3839   Label subtype;
3840   __ check_klass_subtype(rlocals, rax, rbcp, subtype);
3841   // If we get here the typecheck failed
3842   recvKlass = rdx;
3843   __ mov(recvKlass, rlocals); // shuffle receiver class for exception use
3844   __ jmp(no_such_interface);
3845 
3846   __ bind(subtype);
3847 
3848   // do the call - rbx is actually the method to call
3849 
3850   __ profile_final_call(rdx);
3851   __ profile_arguments_type(rdx, rbx, rbcp, true);
3852 
3853   __ jump_from_interpreted(rbx, rdx);
3854   // no return from above
3855   __ bind(notVFinal);
3856 
3857   // Get receiver klass into rdx - also a null check
3858   __ restore_locals();  // restore r14
3859   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3860   __ load_klass(rdx, rcx, tmp_load_klass);
3861 
3862   Label no_such_method;
3863 
3864   // Preserve method for throw_AbstractMethodErrorVerbose.
3865   __ mov(rcx, rbx);
3866   // Receiver subtype check against REFC.
3867   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3868   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3869                              rdx, rax, noreg,
3870                              // outputs: scan temp. reg, scan temp. reg
3871                              rbcp, rlocals,
3872                              no_such_interface,
3873                              /*return_method=*/false);
3874 
3875   // profile this call
3876   __ restore_bcp(); // rbcp was destroyed by receiver type check
3877   __ profile_virtual_call(rdx, rbcp, rlocals);
3878 
3879   // Get declaring interface class from method, and itable index
3880   __ load_method_holder(rax, rbx);
3881   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3882   __ subl(rbx, Method::itable_index_max);
3883   __ negl(rbx);
3884 
3885   // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3886   __ mov(rlocals, rdx);
3887   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3888                              rlocals, rax, rbx,
3889                              // outputs: method, scan temp. reg
3890                              rbx, rbcp,
3891                              no_such_interface);
3892 
3893   // rbx: Method* to call
3894   // rcx: receiver
3895   // Check for abstract method error
3896   // Note: This should be done more efficiently via a throw_abstract_method_error
3897   //       interpreter entry point and a conditional jump to it in case of a null
3898   //       method.
3899   __ testptr(rbx, rbx);
3900   __ jcc(Assembler::zero, no_such_method);
3901 
3902   __ profile_arguments_type(rdx, rbx, rbcp, true);
3903 
3904   // do the call
3905   // rcx: receiver
3906   // rbx,: Method*
3907   __ jump_from_interpreted(rbx, rdx);
3908   __ should_not_reach_here();
3909 
3910   // exception handling code follows...
3911   // note: must restore interpreter registers to canonical
3912   //       state for exception handling to work correctly!
3913 
3914   __ bind(no_such_method);
3915   // throw exception
3916   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3917   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3918   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3919   // Pass arguments for generating a verbose error message.
3920 #ifdef _LP64
3921   recvKlass = c_rarg1;
3922   Register method    = c_rarg2;
3923   if (recvKlass != rdx) { __ movq(recvKlass, rdx); }
3924   if (method != rcx)    { __ movq(method, rcx);    }
3925 #else
3926   recvKlass = rdx;
3927   Register method    = rcx;
3928 #endif
3929   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3930              recvKlass, method);
3931   // The call_VM checks for exception, so we should never return here.
3932   __ should_not_reach_here();
3933 
3934   __ bind(no_such_interface);
3935   // throw exception
3936   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3937   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3938   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3939   // Pass arguments for generating a verbose error message.
3940   LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } )
3941   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3942              recvKlass, rax);
3943   // the call_VM checks for exception, so we should never return here.
3944   __ should_not_reach_here();
3945 }
3946 
invokehandle(int byte_no)3947 void TemplateTable::invokehandle(int byte_no) {
3948   transition(vtos, vtos);
3949   assert(byte_no == f1_byte, "use this argument");
3950   const Register rbx_method = rbx;
3951   const Register rax_mtype  = rax;
3952   const Register rcx_recv   = rcx;
3953   const Register rdx_flags  = rdx;
3954 
3955   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3956   __ verify_method_ptr(rbx_method);
3957   __ verify_oop(rcx_recv);
3958   __ null_check(rcx_recv);
3959 
3960   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3961   // rbx: MH.invokeExact_MT method (from f2)
3962 
3963   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3964 
3965   // FIXME: profile the LambdaForm also
3966   __ profile_final_call(rax);
3967   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3968 
3969   __ jump_from_interpreted(rbx_method, rdx);
3970 }
3971 
invokedynamic(int byte_no)3972 void TemplateTable::invokedynamic(int byte_no) {
3973   transition(vtos, vtos);
3974   assert(byte_no == f1_byte, "use this argument");
3975 
3976   const Register rbx_method   = rbx;
3977   const Register rax_callsite = rax;
3978 
3979   prepare_invoke(byte_no, rbx_method, rax_callsite);
3980 
3981   // rax: CallSite object (from cpool->resolved_references[f1])
3982   // rbx: MH.linkToCallSite method (from f2)
3983 
3984   // Note:  rax_callsite is already pushed by prepare_invoke
3985 
3986   // %%% should make a type profile for any invokedynamic that takes a ref argument
3987   // profile this call
3988   __ profile_call(rbcp);
3989   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3990 
3991   __ verify_oop(rax_callsite);
3992 
3993   __ jump_from_interpreted(rbx_method, rdx);
3994 }
3995 
3996 //-----------------------------------------------------------------------------
3997 // Allocation
3998 
_new()3999 void TemplateTable::_new() {
4000   transition(vtos, atos);
4001   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
4002   Label slow_case;
4003   Label slow_case_no_pop;
4004   Label done;
4005   Label initialize_header;
4006   Label initialize_object;  // including clearing the fields
4007 
4008   __ get_cpool_and_tags(rcx, rax);
4009 
4010   // Make sure the class we're about to instantiate has been resolved.
4011   // This is done before loading InstanceKlass to be consistent with the order
4012   // how Constant Pool is updated (see ConstantPool::klass_at_put)
4013   const int tags_offset = Array<u1>::base_offset_in_bytes();
4014   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
4015   __ jcc(Assembler::notEqual, slow_case_no_pop);
4016 
4017   // get InstanceKlass
4018   __ load_resolved_klass_at_index(rcx, rcx, rdx);
4019   __ push(rcx);  // save the contexts of klass for initializing the header
4020 
4021   // make sure klass is initialized & doesn't have finalizer
4022   // make sure klass is fully initialized
4023   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4024   __ jcc(Assembler::notEqual, slow_case);
4025 
4026   // get instance_size in InstanceKlass (scaled to a count of bytes)
4027   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
4028   // test to see if it has a finalizer or is malformed in some way
4029   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
4030   __ jcc(Assembler::notZero, slow_case);
4031 
4032   // Allocate the instance:
4033   //  If TLAB is enabled:
4034   //    Try to allocate in the TLAB.
4035   //    If fails, go to the slow path.
4036   //  Else If inline contiguous allocations are enabled:
4037   //    Try to allocate in eden.
4038   //    If fails due to heap end, go to slow path.
4039   //
4040   //  If TLAB is enabled OR inline contiguous is enabled:
4041   //    Initialize the allocation.
4042   //    Exit.
4043   //
4044   //  Go to slow path.
4045 
4046   const bool allow_shared_alloc =
4047     Universe::heap()->supports_inline_contig_alloc();
4048 
4049   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
4050 #ifndef _LP64
4051   if (UseTLAB || allow_shared_alloc) {
4052     __ get_thread(thread);
4053   }
4054 #endif // _LP64
4055 
4056   if (UseTLAB) {
4057     __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case);
4058     if (ZeroTLAB) {
4059       // the fields have been already cleared
4060       __ jmp(initialize_header);
4061     } else {
4062       // initialize both the header and fields
4063       __ jmp(initialize_object);
4064     }
4065   } else {
4066     // Allocation in the shared Eden, if allowed.
4067     //
4068     // rdx: instance size in bytes
4069     __ eden_allocate(thread, rax, rdx, 0, rbx, slow_case);
4070   }
4071 
4072   // If UseTLAB or allow_shared_alloc are true, the object is created above and
4073   // there is an initialize need. Otherwise, skip and go to the slow path.
4074   if (UseTLAB || allow_shared_alloc) {
4075     // The object is initialized before the header.  If the object size is
4076     // zero, go directly to the header initialization.
4077     __ bind(initialize_object);
4078     __ decrement(rdx, sizeof(oopDesc));
4079     __ jcc(Assembler::zero, initialize_header);
4080 
4081     // Initialize topmost object field, divide rdx by 8, check if odd and
4082     // test if zero.
4083     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
4084     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
4085 
4086     // rdx must have been multiple of 8
4087 #ifdef ASSERT
4088     // make sure rdx was multiple of 8
4089     Label L;
4090     // Ignore partial flag stall after shrl() since it is debug VM
4091     __ jcc(Assembler::carryClear, L);
4092     __ stop("object size is not multiple of 2 - adjust this code");
4093     __ bind(L);
4094     // rdx must be > 0, no extra check needed here
4095 #endif
4096 
4097     // initialize remaining object fields: rdx was a multiple of 8
4098     { Label loop;
4099     __ bind(loop);
4100     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
4101     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
4102     __ decrement(rdx);
4103     __ jcc(Assembler::notZero, loop);
4104     }
4105 
4106     // initialize object header only.
4107     __ bind(initialize_header);
4108     if (UseBiasedLocking) {
4109       __ pop(rcx);   // get saved klass back in the register.
4110       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
4111       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
4112     } else {
4113       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
4114                 (intptr_t)markWord::prototype().value()); // header
4115       __ pop(rcx);   // get saved klass back in the register.
4116     }
4117 #ifdef _LP64
4118     __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
4119     __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
4120 #endif
4121     Register tmp_store_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
4122     __ store_klass(rax, rcx, tmp_store_klass);  // klass
4123 
4124     {
4125       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
4126       // Trigger dtrace event for fastpath
4127       __ push(atos);
4128       __ call_VM_leaf(
4129            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
4130       __ pop(atos);
4131     }
4132 
4133     __ jmp(done);
4134   }
4135 
4136   // slow case
4137   __ bind(slow_case);
4138   __ pop(rcx);   // restore stack pointer to what it was when we came in.
4139   __ bind(slow_case_no_pop);
4140 
4141   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4142   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4143 
4144   __ get_constant_pool(rarg1);
4145   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4146   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4147    __ verify_oop(rax);
4148 
4149   // continue
4150   __ bind(done);
4151 }
4152 
newarray()4153 void TemplateTable::newarray() {
4154   transition(itos, atos);
4155   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4156   __ load_unsigned_byte(rarg1, at_bcp(1));
4157   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4158           rarg1, rax);
4159 }
4160 
anewarray()4161 void TemplateTable::anewarray() {
4162   transition(itos, atos);
4163 
4164   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4165   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4166 
4167   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4168   __ get_constant_pool(rarg1);
4169   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4170           rarg1, rarg2, rax);
4171 }
4172 
arraylength()4173 void TemplateTable::arraylength() {
4174   transition(atos, itos);
4175   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
4176   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4177 }
4178 
checkcast()4179 void TemplateTable::checkcast() {
4180   transition(atos, atos);
4181   Label done, is_null, ok_is_subtype, quicked, resolved;
4182   __ testptr(rax, rax); // object is in rax
4183   __ jcc(Assembler::zero, is_null);
4184 
4185   // Get cpool & tags index
4186   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4187   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4188   // See if bytecode has already been quicked
4189   __ cmpb(Address(rdx, rbx,
4190                   Address::times_1,
4191                   Array<u1>::base_offset_in_bytes()),
4192           JVM_CONSTANT_Class);
4193   __ jcc(Assembler::equal, quicked);
4194   __ push(atos); // save receiver for result, and for GC
4195   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4196 
4197   // vm_result_2 has metadata result
4198 #ifndef _LP64
4199   // borrow rdi from locals
4200   __ get_thread(rdi);
4201   __ get_vm_result_2(rax, rdi);
4202   __ restore_locals();
4203 #else
4204   __ get_vm_result_2(rax, r15_thread);
4205 #endif
4206 
4207   __ pop_ptr(rdx); // restore receiver
4208   __ jmpb(resolved);
4209 
4210   // Get superklass in rax and subklass in rbx
4211   __ bind(quicked);
4212   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4213   __ load_resolved_klass_at_index(rax, rcx, rbx);
4214 
4215   __ bind(resolved);
4216   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
4217   __ load_klass(rbx, rdx, tmp_load_klass);
4218 
4219   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
4220   // Superklass in rax.  Subklass in rbx.
4221   __ gen_subtype_check(rbx, ok_is_subtype);
4222 
4223   // Come here on failure
4224   __ push_ptr(rdx);
4225   // object is at TOS
4226   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
4227 
4228   // Come here on success
4229   __ bind(ok_is_subtype);
4230   __ mov(rax, rdx); // Restore object in rdx
4231 
4232   // Collect counts on whether this check-cast sees NULLs a lot or not.
4233   if (ProfileInterpreter) {
4234     __ jmp(done);
4235     __ bind(is_null);
4236     __ profile_null_seen(rcx);
4237   } else {
4238     __ bind(is_null);   // same as 'done'
4239   }
4240   __ bind(done);
4241 }
4242 
instanceof()4243 void TemplateTable::instanceof() {
4244   transition(atos, itos);
4245   Label done, is_null, ok_is_subtype, quicked, resolved;
4246   __ testptr(rax, rax);
4247   __ jcc(Assembler::zero, is_null);
4248 
4249   // Get cpool & tags index
4250   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4251   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4252   // See if bytecode has already been quicked
4253   __ cmpb(Address(rdx, rbx,
4254                   Address::times_1,
4255                   Array<u1>::base_offset_in_bytes()),
4256           JVM_CONSTANT_Class);
4257   __ jcc(Assembler::equal, quicked);
4258 
4259   __ push(atos); // save receiver for result, and for GC
4260   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4261   // vm_result_2 has metadata result
4262 
4263 #ifndef _LP64
4264   // borrow rdi from locals
4265   __ get_thread(rdi);
4266   __ get_vm_result_2(rax, rdi);
4267   __ restore_locals();
4268 #else
4269   __ get_vm_result_2(rax, r15_thread);
4270 #endif
4271 
4272   __ pop_ptr(rdx); // restore receiver
4273   __ verify_oop(rdx);
4274   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
4275   __ load_klass(rdx, rdx, tmp_load_klass);
4276   __ jmpb(resolved);
4277 
4278   // Get superklass in rax and subklass in rdx
4279   __ bind(quicked);
4280   __ load_klass(rdx, rax, tmp_load_klass);
4281   __ load_resolved_klass_at_index(rax, rcx, rbx);
4282 
4283   __ bind(resolved);
4284 
4285   // Generate subtype check.  Blows rcx, rdi
4286   // Superklass in rax.  Subklass in rdx.
4287   __ gen_subtype_check(rdx, ok_is_subtype);
4288 
4289   // Come here on failure
4290   __ xorl(rax, rax);
4291   __ jmpb(done);
4292   // Come here on success
4293   __ bind(ok_is_subtype);
4294   __ movl(rax, 1);
4295 
4296   // Collect counts on whether this test sees NULLs a lot or not.
4297   if (ProfileInterpreter) {
4298     __ jmp(done);
4299     __ bind(is_null);
4300     __ profile_null_seen(rcx);
4301   } else {
4302     __ bind(is_null);   // same as 'done'
4303   }
4304   __ bind(done);
4305   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
4306   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
4307 }
4308 
4309 
4310 //----------------------------------------------------------------------------------------------------
4311 // Breakpoints
_breakpoint()4312 void TemplateTable::_breakpoint() {
4313   // Note: We get here even if we are single stepping..
4314   // jbug insists on setting breakpoints at every bytecode
4315   // even if we are in single step mode.
4316 
4317   transition(vtos, vtos);
4318 
4319   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4320 
4321   // get the unpatched byte code
4322   __ get_method(rarg);
4323   __ call_VM(noreg,
4324              CAST_FROM_FN_PTR(address,
4325                               InterpreterRuntime::get_original_bytecode_at),
4326              rarg, rbcp);
4327   __ mov(rbx, rax);  // why?
4328 
4329   // post the breakpoint event
4330   __ get_method(rarg);
4331   __ call_VM(noreg,
4332              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4333              rarg, rbcp);
4334 
4335   // complete the execution of original bytecode
4336   __ dispatch_only_normal(vtos);
4337 }
4338 
4339 //-----------------------------------------------------------------------------
4340 // Exceptions
4341 
athrow()4342 void TemplateTable::athrow() {
4343   transition(atos, vtos);
4344   __ null_check(rax);
4345   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
4346 }
4347 
4348 //-----------------------------------------------------------------------------
4349 // Synchronization
4350 //
4351 // Note: monitorenter & exit are symmetric routines; which is reflected
4352 //       in the assembly code structure as well
4353 //
4354 // Stack layout:
4355 //
4356 // [expressions  ] <--- rsp               = expression stack top
4357 // ..
4358 // [expressions  ]
4359 // [monitor entry] <--- monitor block top = expression stack bot
4360 // ..
4361 // [monitor entry]
4362 // [frame data   ] <--- monitor block bot
4363 // ...
4364 // [saved rbp    ] <--- rbp
monitorenter()4365 void TemplateTable::monitorenter() {
4366   transition(atos, vtos);
4367 
4368   // check for NULL object
4369   __ null_check(rax);
4370 
4371   __ resolve(IS_NOT_NULL, rax);
4372 
4373   const Address monitor_block_top(
4374         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4375   const Address monitor_block_bot(
4376         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4377   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4378 
4379   Label allocated;
4380 
4381   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4382   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4383   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4384 
4385   // initialize entry pointer
4386   __ xorl(rmon, rmon); // points to free slot or NULL
4387 
4388   // find a free slot in the monitor block (result in rmon)
4389   {
4390     Label entry, loop, exit;
4391     __ movptr(rtop, monitor_block_top); // points to current entry,
4392                                         // starting with top-most entry
4393     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4394                                         // of monitor block
4395     __ jmpb(entry);
4396 
4397     __ bind(loop);
4398     // check if current entry is used
4399     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
4400     // if not used then remember entry in rmon
4401     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
4402     // check if current entry is for same object
4403     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4404     // if same object then stop searching
4405     __ jccb(Assembler::equal, exit);
4406     // otherwise advance to next entry
4407     __ addptr(rtop, entry_size);
4408     __ bind(entry);
4409     // check if bottom reached
4410     __ cmpptr(rtop, rbot);
4411     // if not at bottom then check this entry
4412     __ jcc(Assembler::notEqual, loop);
4413     __ bind(exit);
4414   }
4415 
4416   __ testptr(rmon, rmon); // check if a slot has been found
4417   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4418 
4419   // allocate one if there's no free slot
4420   {
4421     Label entry, loop;
4422     // 1. compute new pointers          // rsp: old expression stack top
4423     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4424     __ subptr(rsp, entry_size);         // move expression stack top
4425     __ subptr(rmon, entry_size);        // move expression stack bottom
4426     __ mov(rtop, rsp);                  // set start value for copy loop
4427     __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
4428     __ jmp(entry);
4429     // 2. move expression stack contents
4430     __ bind(loop);
4431     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4432                                                 // word from old location
4433     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
4434     __ addptr(rtop, wordSize);                  // advance to next word
4435     __ bind(entry);
4436     __ cmpptr(rtop, rmon);                      // check if bottom reached
4437     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
4438                                                 // copy next word
4439   }
4440 
4441   // call run-time routine
4442   // rmon: points to monitor entry
4443   __ bind(allocated);
4444 
4445   // Increment bcp to point to the next bytecode, so exception
4446   // handling for async. exceptions work correctly.
4447   // The object has already been poped from the stack, so the
4448   // expression stack looks correct.
4449   __ increment(rbcp);
4450 
4451   // store object
4452   __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
4453   __ lock_object(rmon);
4454 
4455   // check to make sure this monitor doesn't cause stack overflow after locking
4456   __ save_bcp();  // in case of exception
4457   __ generate_stack_overflow_check(0);
4458 
4459   // The bcp has already been incremented. Just need to dispatch to
4460   // next instruction.
4461   __ dispatch_next(vtos);
4462 }
4463 
monitorexit()4464 void TemplateTable::monitorexit() {
4465   transition(atos, vtos);
4466 
4467   // check for NULL object
4468   __ null_check(rax);
4469 
4470   __ resolve(IS_NOT_NULL, rax);
4471 
4472   const Address monitor_block_top(
4473         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4474   const Address monitor_block_bot(
4475         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4476   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4477 
4478   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4479   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4480 
4481   Label found;
4482 
4483   // find matching slot
4484   {
4485     Label entry, loop;
4486     __ movptr(rtop, monitor_block_top); // points to current entry,
4487                                         // starting with top-most entry
4488     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4489                                         // of monitor block
4490     __ jmpb(entry);
4491 
4492     __ bind(loop);
4493     // check if current entry is for same object
4494     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4495     // if same object then stop searching
4496     __ jcc(Assembler::equal, found);
4497     // otherwise advance to next entry
4498     __ addptr(rtop, entry_size);
4499     __ bind(entry);
4500     // check if bottom reached
4501     __ cmpptr(rtop, rbot);
4502     // if not at bottom then check this entry
4503     __ jcc(Assembler::notEqual, loop);
4504   }
4505 
4506   // error handling. Unlocking was not block-structured
4507   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4508                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4509   __ should_not_reach_here();
4510 
4511   // call run-time routine
4512   __ bind(found);
4513   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4514   __ unlock_object(rtop);
4515   __ pop_ptr(rax); // discard object
4516 }
4517 
4518 // Wide instructions
wide()4519 void TemplateTable::wide() {
4520   transition(vtos, vtos);
4521   __ load_unsigned_byte(rbx, at_bcp(1));
4522   ExternalAddress wtable((address)Interpreter::_wentry_point);
4523   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
4524   // Note: the rbcp increment step is part of the individual wide bytecode implementations
4525 }
4526 
4527 // Multi arrays
multianewarray()4528 void TemplateTable::multianewarray() {
4529   transition(vtos, atos);
4530 
4531   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4532   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4533   // last dim is on top of stack; we want address of first one:
4534   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4535   // the latter wordSize to point to the beginning of the array.
4536   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4537   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4538   __ load_unsigned_byte(rbx, at_bcp(3));
4539   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
4540 }
4541