1 /*
2  * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_C1_C1_LIR_HPP
26 #define SHARE_C1_C1_LIR_HPP
27 
28 #include "c1/c1_Defs.hpp"
29 #include "c1/c1_ValueType.hpp"
30 #include "oops/method.hpp"
31 #include "utilities/globalDefinitions.hpp"
32 
33 class BlockBegin;
34 class BlockList;
35 class LIR_Assembler;
36 class CodeEmitInfo;
37 class CodeStub;
38 class CodeStubList;
39 class ArrayCopyStub;
40 class LIR_Op;
41 class ciType;
42 class ValueType;
43 class LIR_OpVisitState;
44 class FpuStackSim;
45 
46 //---------------------------------------------------------------------
47 //                 LIR Operands
48 //  LIR_OprDesc
49 //    LIR_OprPtr
50 //      LIR_Const
51 //      LIR_Address
52 //---------------------------------------------------------------------
53 class LIR_OprDesc;
54 class LIR_OprPtr;
55 class LIR_Const;
56 class LIR_Address;
57 class LIR_OprVisitor;
58 
59 
60 typedef LIR_OprDesc* LIR_Opr;
61 typedef int          RegNr;
62 
63 typedef GrowableArray<LIR_Opr> LIR_OprList;
64 typedef GrowableArray<LIR_Op*> LIR_OpArray;
65 typedef GrowableArray<LIR_Op*> LIR_OpList;
66 
67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
68 class LIR_OprPtr: public CompilationResourceObj {
69  public:
is_oop_pointer() const70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
is_float_kind() const71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
72 
as_constant()73   virtual LIR_Const*  as_constant()              { return NULL; }
as_address()74   virtual LIR_Address* as_address()              { return NULL; }
75   virtual BasicType type() const                 = 0;
76   virtual void print_value_on(outputStream* out) const = 0;
77 };
78 
79 
80 
81 // LIR constants
82 class LIR_Const: public LIR_OprPtr {
83  private:
84   JavaValue _value;
85 
type_check(BasicType t) const86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
type_check(BasicType t1,BasicType t2) const87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
type_check(BasicType t1,BasicType t2,BasicType t3) const88   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
89 
90  public:
LIR_Const(jint i,bool is_address=false)91   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
LIR_Const(jlong l)92   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
LIR_Const(jfloat f)93   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
LIR_Const(jdouble d)94   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
LIR_Const(jobject o)95   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
LIR_Const(void * p)96   LIR_Const(void* p) {
97 #ifdef _LP64
98     assert(sizeof(jlong) >= sizeof(p), "too small");;
99     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
100 #else
101     assert(sizeof(jint) >= sizeof(p), "too small");;
102     _value.set_type(T_INT);     _value.set_jint((jint)p);
103 #endif
104   }
LIR_Const(Metadata * m)105   LIR_Const(Metadata* m) {
106     _value.set_type(T_METADATA);
107 #ifdef _LP64
108     _value.set_jlong((jlong)m);
109 #else
110     _value.set_jint((jint)m);
111 #endif // _LP64
112   }
113 
type() const114   virtual BasicType type()       const { return _value.get_type(); }
as_constant()115   virtual LIR_Const* as_constant()     { return this; }
116 
as_jint() const117   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
as_jlong() const118   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
as_jfloat() const119   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
as_jdouble() const120   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
as_jobject() const121   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
as_jint_lo() const122   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
as_jint_hi() const123   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
124 
125 #ifdef _LP64
as_pointer() const126   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
as_metadata() const127   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
128 #else
as_pointer() const129   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
as_metadata() const130   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
131 #endif
132 
133 
as_jint_bits() const134   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
as_jint_lo_bits() const135   jint      as_jint_lo_bits() const    {
136     if (type() == T_DOUBLE) {
137       return low(jlong_cast(_value.get_jdouble()));
138     } else {
139       return as_jint_lo();
140     }
141   }
as_jint_hi_bits() const142   jint      as_jint_hi_bits() const    {
143     if (type() == T_DOUBLE) {
144       return high(jlong_cast(_value.get_jdouble()));
145     } else {
146       return as_jint_hi();
147     }
148   }
as_jlong_bits() const149   jlong      as_jlong_bits() const    {
150     if (type() == T_DOUBLE) {
151       return jlong_cast(_value.get_jdouble());
152     } else {
153       return as_jlong();
154     }
155   }
156 
157   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
158 
159 
is_zero_float()160   bool is_zero_float() {
161     jfloat f = as_jfloat();
162     jfloat ok = 0.0f;
163     return jint_cast(f) == jint_cast(ok);
164   }
165 
is_one_float()166   bool is_one_float() {
167     jfloat f = as_jfloat();
168     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
169   }
170 
is_zero_double()171   bool is_zero_double() {
172     jdouble d = as_jdouble();
173     jdouble ok = 0.0;
174     return jlong_cast(d) == jlong_cast(ok);
175   }
176 
is_one_double()177   bool is_one_double() {
178     jdouble d = as_jdouble();
179     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
180   }
181 };
182 
183 
184 //---------------------LIR Operand descriptor------------------------------------
185 //
186 // The class LIR_OprDesc represents a LIR instruction operand;
187 // it can be a register (ALU/FPU), stack location or a constant;
188 // Constants and addresses are represented as resource area allocated
189 // structures (see above).
190 // Registers and stack locations are inlined into the this pointer
191 // (see value function).
192 
193 class LIR_OprDesc: public CompilationResourceObj {
194  public:
195   // value structure:
196   //     data       opr-type opr-kind
197   // +--------------+-------+-------+
198   // [max...........|7 6 5 4|3 2 1 0]
199   //                               ^
200   //                         is_pointer bit
201   //
202   // lowest bit cleared, means it is a structure pointer
203   // we need  4 bits to represent types
204 
205  private:
206   friend class LIR_OprFact;
207 
208   // Conversion
value() const209   intptr_t value() const                         { return (intptr_t) this; }
210 
check_value_mask(intptr_t mask,intptr_t masked_value) const211   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
212     return (value() & mask) == masked_value;
213   }
214 
215   enum OprKind {
216       pointer_value      = 0
217     , stack_value        = 1
218     , cpu_register       = 3
219     , fpu_register       = 5
220     , illegal_value      = 7
221   };
222 
223   enum OprBits {
224       pointer_bits   = 1
225     , kind_bits      = 3
226     , type_bits      = 4
227     , size_bits      = 2
228     , destroys_bits  = 1
229     , virtual_bits   = 1
230     , is_xmm_bits    = 1
231     , last_use_bits  = 1
232     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
233     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
234                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
235     , data_bits      = BitsPerInt - non_data_bits
236     , reg_bits       = data_bits / 2      // for two registers in one value encoding
237   };
238 
239   enum OprShift {
240       kind_shift     = 0
241     , type_shift     = kind_shift     + kind_bits
242     , size_shift     = type_shift     + type_bits
243     , destroys_shift = size_shift     + size_bits
244     , last_use_shift = destroys_shift + destroys_bits
245     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
246     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
247     , is_xmm_shift   = virtual_shift + virtual_bits
248     , data_shift     = is_xmm_shift + is_xmm_bits
249     , reg1_shift = data_shift
250     , reg2_shift = data_shift + reg_bits
251 
252   };
253 
254   enum OprSize {
255       single_size = 0 << size_shift
256     , double_size = 1 << size_shift
257   };
258 
259   enum OprMask {
260       kind_mask      = right_n_bits(kind_bits)
261     , type_mask      = right_n_bits(type_bits) << type_shift
262     , size_mask      = right_n_bits(size_bits) << size_shift
263     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
264     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
265     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
266     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
267     , pointer_mask   = right_n_bits(pointer_bits)
268     , lower_reg_mask = right_n_bits(reg_bits)
269     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
270   };
271 
data() const272   uintptr_t data() const                         { return value() >> data_shift; }
lo_reg_half() const273   int lo_reg_half() const                        { return data() & lower_reg_mask; }
hi_reg_half() const274   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
kind_field() const275   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
size_field() const276   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
277 
278   static char type_char(BasicType t);
279 
280  public:
281   enum {
282     vreg_base = ConcreteRegisterImpl::number_of_registers,
283     vreg_max = (1 << data_bits) - 1
284   };
285 
286   static inline LIR_Opr illegalOpr();
287 
288   enum OprType {
289       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
290     , int_type      = 1 << type_shift
291     , long_type     = 2 << type_shift
292     , object_type   = 3 << type_shift
293     , address_type  = 4 << type_shift
294     , float_type    = 5 << type_shift
295     , double_type   = 6 << type_shift
296     , metadata_type = 7 << type_shift
297   };
298   friend OprType as_OprType(BasicType t);
299   friend BasicType as_BasicType(OprType t);
300 
type_field_valid() const301   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
type_field() const302   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
303 
size_for(BasicType t)304   static OprSize size_for(BasicType t) {
305     switch (t) {
306       case T_LONG:
307       case T_DOUBLE:
308         return double_size;
309         break;
310 
311       case T_FLOAT:
312       case T_BOOLEAN:
313       case T_CHAR:
314       case T_BYTE:
315       case T_SHORT:
316       case T_INT:
317       case T_ADDRESS:
318       case T_OBJECT:
319       case T_ARRAY:
320       case T_METADATA:
321         return single_size;
322         break;
323 
324       default:
325         ShouldNotReachHere();
326         return single_size;
327       }
328   }
329 
330 
331   void validate_type() const PRODUCT_RETURN;
332 
type() const333   BasicType type() const {
334     if (is_pointer()) {
335       return pointer()->type();
336     }
337     return as_BasicType(type_field());
338   }
339 
340 
value_type() const341   ValueType* value_type() const                  { return as_ValueType(type()); }
342 
type_char() const343   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
344 
is_equal(LIR_Opr opr) const345   bool is_equal(LIR_Opr opr) const         { return this == opr; }
346   // checks whether types are same
is_same_type(LIR_Opr opr) const347   bool is_same_type(LIR_Opr opr) const     {
348     assert(type_field() != unknown_type &&
349            opr->type_field() != unknown_type, "shouldn't see unknown_type");
350     return type_field() == opr->type_field();
351   }
is_same_register(LIR_Opr opr)352   bool is_same_register(LIR_Opr opr) {
353     return (is_register() && opr->is_register() &&
354             kind_field() == opr->kind_field() &&
355             (value() & no_type_mask) == (opr->value() & no_type_mask));
356   }
357 
is_pointer() const358   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
is_illegal() const359   bool is_illegal() const      { return kind_field() == illegal_value; }
is_valid() const360   bool is_valid() const        { return kind_field() != illegal_value; }
361 
is_register() const362   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
is_virtual() const363   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
364 
is_constant() const365   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
is_address() const366   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
367 
is_float_kind() const368   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
369   bool is_oop() const;
370 
371   // semantic for fpu- and xmm-registers:
372   // * is_float and is_double return true for xmm_registers
373   //   (so is_single_fpu and is_single_xmm are true)
374   // * So you must always check for is_???_xmm prior to is_???_fpu to
375   //   distinguish between fpu- and xmm-registers
376 
is_stack() const377   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
is_single_stack() const378   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
is_double_stack() const379   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
380 
is_cpu_register() const381   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
is_virtual_cpu() const382   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
is_fixed_cpu() const383   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
is_single_cpu() const384   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
is_double_cpu() const385   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
386 
is_fpu_register() const387   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
is_virtual_fpu() const388   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
is_fixed_fpu() const389   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
is_single_fpu() const390   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
is_double_fpu() const391   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
392 
is_xmm_register() const393   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
is_single_xmm() const394   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
is_double_xmm() const395   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
396 
397   // fast accessor functions for special bits that do not work for pointers
398   // (in this functions, the check for is_pointer() is omitted)
is_single_word() const399   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
is_double_word() const400   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
is_virtual_register() const401   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
is_oop_register() const402   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
type_register() const403   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
404 
is_last_use() const405   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
is_fpu_stack_offset() const406   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
make_last_use()407   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
make_fpu_stack_offset()408   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
409 
410 
single_stack_ix() const411   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
double_stack_ix() const412   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
cpu_regnr() const413   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
cpu_regnrLo() const414   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
cpu_regnrHi() const415   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
fpu_regnr() const416   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
fpu_regnrLo() const417   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
fpu_regnrHi() const418   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
xmm_regnr() const419   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
xmm_regnrLo() const420   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
xmm_regnrHi() const421   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
vreg_number() const422   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
423 
pointer() const424   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
as_constant_ptr() const425   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
as_address_ptr() const426   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
427 
428   Register as_register()    const;
429   Register as_register_lo() const;
430   Register as_register_hi() const;
431 
as_pointer_register()432   Register as_pointer_register() {
433 #ifdef _LP64
434     if (is_double_cpu()) {
435       assert(as_register_lo() == as_register_hi(), "should be a single register");
436       return as_register_lo();
437     }
438 #endif
439     return as_register();
440   }
441 
442   FloatRegister as_float_reg   () const;
443   FloatRegister as_double_reg  () const;
444 #ifdef X86
445   XMMRegister as_xmm_float_reg () const;
446   XMMRegister as_xmm_double_reg() const;
447   // for compatibility with RInfo
fpu() const448   int fpu() const { return lo_reg_half(); }
449 #endif
450 
as_jint() const451   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
as_jlong() const452   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
as_jfloat() const453   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
as_jdouble() const454   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
as_jobject() const455   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
456 
457   void print() const PRODUCT_RETURN;
458   void print(outputStream* out) const PRODUCT_RETURN;
459 };
460 
461 
as_OprType(BasicType type)462 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
463   switch (type) {
464   case T_INT:      return LIR_OprDesc::int_type;
465   case T_LONG:     return LIR_OprDesc::long_type;
466   case T_FLOAT:    return LIR_OprDesc::float_type;
467   case T_DOUBLE:   return LIR_OprDesc::double_type;
468   case T_OBJECT:
469   case T_ARRAY:    return LIR_OprDesc::object_type;
470   case T_ADDRESS:  return LIR_OprDesc::address_type;
471   case T_METADATA: return LIR_OprDesc::metadata_type;
472   case T_ILLEGAL:  // fall through
473   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
474   }
475 }
476 
as_BasicType(LIR_OprDesc::OprType t)477 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
478   switch (t) {
479   case LIR_OprDesc::int_type:     return T_INT;
480   case LIR_OprDesc::long_type:    return T_LONG;
481   case LIR_OprDesc::float_type:   return T_FLOAT;
482   case LIR_OprDesc::double_type:  return T_DOUBLE;
483   case LIR_OprDesc::object_type:  return T_OBJECT;
484   case LIR_OprDesc::address_type: return T_ADDRESS;
485   case LIR_OprDesc::metadata_type:return T_METADATA;
486   case LIR_OprDesc::unknown_type: // fall through
487   default: ShouldNotReachHere();  return T_ILLEGAL;
488   }
489 }
490 
491 
492 // LIR_Address
493 class LIR_Address: public LIR_OprPtr {
494  friend class LIR_OpVisitState;
495 
496  public:
497   // NOTE: currently these must be the log2 of the scale factor (and
498   // must also be equivalent to the ScaleFactor enum in
499   // assembler_i486.hpp)
500   enum Scale {
501     times_1  =  0,
502     times_2  =  1,
503     times_4  =  2,
504     times_8  =  3
505   };
506 
507  private:
508   LIR_Opr   _base;
509   LIR_Opr   _index;
510   Scale     _scale;
511   intx      _disp;
512   BasicType _type;
513 
514  public:
LIR_Address(LIR_Opr base,LIR_Opr index,BasicType type)515   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
516        _base(base)
517      , _index(index)
518      , _scale(times_1)
519      , _disp(0)
520      , _type(type) { verify(); }
521 
LIR_Address(LIR_Opr base,intx disp,BasicType type)522   LIR_Address(LIR_Opr base, intx disp, BasicType type):
523        _base(base)
524      , _index(LIR_OprDesc::illegalOpr())
525      , _scale(times_1)
526      , _disp(disp)
527      , _type(type) { verify(); }
528 
LIR_Address(LIR_Opr base,BasicType type)529   LIR_Address(LIR_Opr base, BasicType type):
530        _base(base)
531      , _index(LIR_OprDesc::illegalOpr())
532      , _scale(times_1)
533      , _disp(0)
534      , _type(type) { verify(); }
535 
LIR_Address(LIR_Opr base,LIR_Opr index,intx disp,BasicType type)536   LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
537        _base(base)
538      , _index(index)
539      , _scale(times_1)
540      , _disp(disp)
541      , _type(type) { verify(); }
542 
LIR_Address(LIR_Opr base,LIR_Opr index,Scale scale,intx disp,BasicType type)543   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
544        _base(base)
545      , _index(index)
546      , _scale(scale)
547      , _disp(disp)
548      , _type(type) { verify(); }
549 
base() const550   LIR_Opr base()  const                          { return _base;  }
index() const551   LIR_Opr index() const                          { return _index; }
scale() const552   Scale   scale() const                          { return _scale; }
disp() const553   intx    disp()  const                          { return _disp;  }
554 
equals(LIR_Address * other) const555   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
556 
as_address()557   virtual LIR_Address* as_address()              { return this;   }
type() const558   virtual BasicType type() const                 { return _type; }
559   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
560 
561   void verify() const PRODUCT_RETURN;
562 
563   static Scale scale(BasicType type);
564 };
565 
566 
567 // operand factory
568 class LIR_OprFact: public AllStatic {
569  public:
570 
571   static LIR_Opr illegalOpr;
572 
single_cpu(int reg)573   static LIR_Opr single_cpu(int reg) {
574     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
575                                LIR_OprDesc::int_type             |
576                                LIR_OprDesc::cpu_register         |
577                                LIR_OprDesc::single_size);
578   }
single_cpu_oop(int reg)579   static LIR_Opr single_cpu_oop(int reg) {
580     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
581                                LIR_OprDesc::object_type          |
582                                LIR_OprDesc::cpu_register         |
583                                LIR_OprDesc::single_size);
584   }
single_cpu_address(int reg)585   static LIR_Opr single_cpu_address(int reg) {
586     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
587                                LIR_OprDesc::address_type         |
588                                LIR_OprDesc::cpu_register         |
589                                LIR_OprDesc::single_size);
590   }
single_cpu_metadata(int reg)591   static LIR_Opr single_cpu_metadata(int reg) {
592     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
593                                LIR_OprDesc::metadata_type        |
594                                LIR_OprDesc::cpu_register         |
595                                LIR_OprDesc::single_size);
596   }
double_cpu(int reg1,int reg2)597   static LIR_Opr double_cpu(int reg1, int reg2) {
598     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
599     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
600                                (reg2 << LIR_OprDesc::reg2_shift) |
601                                LIR_OprDesc::long_type            |
602                                LIR_OprDesc::cpu_register         |
603                                LIR_OprDesc::double_size);
604   }
605 
single_fpu(int reg)606   static LIR_Opr single_fpu(int reg) {
607     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
608                                LIR_OprDesc::float_type           |
609                                LIR_OprDesc::fpu_register         |
610                                LIR_OprDesc::single_size);
611   }
612 
613   // Platform dependant.
614   static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
615 
616 #ifdef ARM32
single_softfp(int reg)617   static LIR_Opr single_softfp(int reg) {
618     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
619                                LIR_OprDesc::float_type           |
620                                LIR_OprDesc::cpu_register         |
621                                LIR_OprDesc::single_size);
622   }
double_softfp(int reg1,int reg2)623   static LIR_Opr double_softfp(int reg1, int reg2) {
624     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
625                                (reg2 << LIR_OprDesc::reg2_shift) |
626                                LIR_OprDesc::double_type          |
627                                LIR_OprDesc::cpu_register         |
628                                LIR_OprDesc::double_size);
629   }
630 #endif // ARM32
631 
632 #if defined(X86)
single_xmm(int reg)633   static LIR_Opr single_xmm(int reg) {
634     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
635                                LIR_OprDesc::float_type          |
636                                LIR_OprDesc::fpu_register        |
637                                LIR_OprDesc::single_size         |
638                                LIR_OprDesc::is_xmm_mask);
639   }
double_xmm(int reg)640   static LIR_Opr double_xmm(int reg) {
641     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
642                                (reg << LIR_OprDesc::reg2_shift) |
643                                LIR_OprDesc::double_type         |
644                                LIR_OprDesc::fpu_register        |
645                                LIR_OprDesc::double_size         |
646                                LIR_OprDesc::is_xmm_mask);
647   }
648 #endif // X86
649 
virtual_register(int index,BasicType type)650   static LIR_Opr virtual_register(int index, BasicType type) {
651     LIR_Opr res;
652     switch (type) {
653       case T_OBJECT: // fall through
654       case T_ARRAY:
655         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
656                                             LIR_OprDesc::object_type  |
657                                             LIR_OprDesc::cpu_register |
658                                             LIR_OprDesc::single_size  |
659                                             LIR_OprDesc::virtual_mask);
660         break;
661 
662       case T_METADATA:
663         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
664                                             LIR_OprDesc::metadata_type|
665                                             LIR_OprDesc::cpu_register |
666                                             LIR_OprDesc::single_size  |
667                                             LIR_OprDesc::virtual_mask);
668         break;
669 
670       case T_INT:
671         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
672                                   LIR_OprDesc::int_type              |
673                                   LIR_OprDesc::cpu_register          |
674                                   LIR_OprDesc::single_size           |
675                                   LIR_OprDesc::virtual_mask);
676         break;
677 
678       case T_ADDRESS:
679         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
680                                   LIR_OprDesc::address_type          |
681                                   LIR_OprDesc::cpu_register          |
682                                   LIR_OprDesc::single_size           |
683                                   LIR_OprDesc::virtual_mask);
684         break;
685 
686       case T_LONG:
687         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
688                                   LIR_OprDesc::long_type             |
689                                   LIR_OprDesc::cpu_register          |
690                                   LIR_OprDesc::double_size           |
691                                   LIR_OprDesc::virtual_mask);
692         break;
693 
694 #ifdef __SOFTFP__
695       case T_FLOAT:
696         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
697                                   LIR_OprDesc::float_type  |
698                                   LIR_OprDesc::cpu_register |
699                                   LIR_OprDesc::single_size |
700                                   LIR_OprDesc::virtual_mask);
701         break;
702       case T_DOUBLE:
703         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
704                                   LIR_OprDesc::double_type |
705                                   LIR_OprDesc::cpu_register |
706                                   LIR_OprDesc::double_size |
707                                   LIR_OprDesc::virtual_mask);
708         break;
709 #else // __SOFTFP__
710       case T_FLOAT:
711         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
712                                   LIR_OprDesc::float_type           |
713                                   LIR_OprDesc::fpu_register         |
714                                   LIR_OprDesc::single_size          |
715                                   LIR_OprDesc::virtual_mask);
716         break;
717 
718       case
719         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
720                                             LIR_OprDesc::double_type           |
721                                             LIR_OprDesc::fpu_register          |
722                                             LIR_OprDesc::double_size           |
723                                             LIR_OprDesc::virtual_mask);
724         break;
725 #endif // __SOFTFP__
726       default:       ShouldNotReachHere(); res = illegalOpr;
727     }
728 
729 #ifdef ASSERT
730     res->validate_type();
731     assert(res->vreg_number() == index, "conversion check");
732     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
733     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
734 
735     // old-style calculation; check if old and new method are equal
736     LIR_OprDesc::OprType t = as_OprType(type);
737 #ifdef __SOFTFP__
738     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
739                                t |
740                                LIR_OprDesc::cpu_register |
741                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
742 #else // __SOFTFP__
743     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
744                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
745                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
746     assert(res == old_res, "old and new method not equal");
747 #endif // __SOFTFP__
748 #endif // ASSERT
749 
750     return res;
751   }
752 
753   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
754   // the index is platform independent; a double stack useing indeces 2 and 3 has always
755   // index 2.
stack(int index,BasicType type)756   static LIR_Opr stack(int index, BasicType type) {
757     LIR_Opr res;
758     switch (type) {
759       case T_OBJECT: // fall through
760       case T_ARRAY:
761         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
762                                   LIR_OprDesc::object_type           |
763                                   LIR_OprDesc::stack_value           |
764                                   LIR_OprDesc::single_size);
765         break;
766 
767       case T_METADATA:
768         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
769                                   LIR_OprDesc::metadata_type         |
770                                   LIR_OprDesc::stack_value           |
771                                   LIR_OprDesc::single_size);
772         break;
773       case T_INT:
774         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
775                                   LIR_OprDesc::int_type              |
776                                   LIR_OprDesc::stack_value           |
777                                   LIR_OprDesc::single_size);
778         break;
779 
780       case T_ADDRESS:
781         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
782                                   LIR_OprDesc::address_type          |
783                                   LIR_OprDesc::stack_value           |
784                                   LIR_OprDesc::single_size);
785         break;
786 
787       case T_LONG:
788         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
789                                   LIR_OprDesc::long_type             |
790                                   LIR_OprDesc::stack_value           |
791                                   LIR_OprDesc::double_size);
792         break;
793 
794       case T_FLOAT:
795         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
796                                   LIR_OprDesc::float_type            |
797                                   LIR_OprDesc::stack_value           |
798                                   LIR_OprDesc::single_size);
799         break;
800       case T_DOUBLE:
801         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
802                                   LIR_OprDesc::double_type           |
803                                   LIR_OprDesc::stack_value           |
804                                   LIR_OprDesc::double_size);
805         break;
806 
807       default:       ShouldNotReachHere(); res = illegalOpr;
808     }
809 
810 #ifdef ASSERT
811     assert(index >= 0, "index must be positive");
812     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
813 
814     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
815                                           LIR_OprDesc::stack_value           |
816                                           as_OprType(type)                   |
817                                           LIR_OprDesc::size_for(type));
818     assert(res == old_res, "old and new method not equal");
819 #endif
820 
821     return res;
822   }
823 
intConst(jint i)824   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
longConst(jlong l)825   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
floatConst(jfloat f)826   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
doubleConst(jdouble d)827   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
oopConst(jobject o)828   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
address(LIR_Address * a)829   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
intptrConst(void * p)830   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
intptrConst(intptr_t v)831   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
illegal()832   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
addressConst(jint i)833   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
metadataConst(Metadata * m)834   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
835 
836   static LIR_Opr value_type(ValueType* type);
837 };
838 
839 
840 //-------------------------------------------------------------------------------
841 //                   LIR Instructions
842 //-------------------------------------------------------------------------------
843 //
844 // Note:
845 //  - every instruction has a result operand
846 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
847 //  - every instruction has a LIR_OpCode operand
848 //  - LIR_OpN, means an instruction that has N input operands
849 //
850 // class hierarchy:
851 //
852 class  LIR_Op;
853 class    LIR_Op0;
854 class      LIR_OpLabel;
855 class    LIR_Op1;
856 class      LIR_OpBranch;
857 class      LIR_OpConvert;
858 class      LIR_OpAllocObj;
859 class      LIR_OpRoundFP;
860 class    LIR_Op2;
861 class    LIR_OpDelay;
862 class    LIR_Op3;
863 class      LIR_OpAllocArray;
864 class    LIR_OpCall;
865 class      LIR_OpJavaCall;
866 class      LIR_OpRTCall;
867 class    LIR_OpArrayCopy;
868 class    LIR_OpUpdateCRC32;
869 class    LIR_OpLock;
870 class    LIR_OpTypeCheck;
871 class    LIR_OpCompareAndSwap;
872 class    LIR_OpProfileCall;
873 class    LIR_OpProfileType;
874 #ifdef ASSERT
875 class    LIR_OpAssert;
876 #endif
877 
878 // LIR operation codes
879 enum LIR_Code {
880     lir_none
881   , begin_op0
882       , lir_label
883       , lir_nop
884       , lir_backwardbranch_target
885       , lir_std_entry
886       , lir_osr_entry
887       , lir_fpop_raw
888       , lir_breakpoint
889       , lir_rtcall
890       , lir_membar
891       , lir_membar_acquire
892       , lir_membar_release
893       , lir_membar_loadload
894       , lir_membar_storestore
895       , lir_membar_loadstore
896       , lir_membar_storeload
897       , lir_get_thread
898       , lir_on_spin_wait
899   , end_op0
900   , begin_op1
901       , lir_fxch
902       , lir_fld
903       , lir_push
904       , lir_pop
905       , lir_null_check
906       , lir_return
907       , lir_leal
908       , lir_branch
909       , lir_cond_float_branch
910       , lir_move
911       , lir_convert
912       , lir_alloc_object
913       , lir_monaddr
914       , lir_roundfp
915       , lir_safepoint
916       , lir_unwind
917   , end_op1
918   , begin_op2
919       , lir_cmp
920       , lir_cmp_l2i
921       , lir_ucmp_fd2i
922       , lir_cmp_fd2i
923       , lir_cmove
924       , lir_add
925       , lir_sub
926       , lir_mul
927       , lir_mul_strictfp
928       , lir_div
929       , lir_div_strictfp
930       , lir_rem
931       , lir_sqrt
932       , lir_abs
933       , lir_neg
934       , lir_tan
935       , lir_log10
936       , lir_logic_and
937       , lir_logic_or
938       , lir_logic_xor
939       , lir_shl
940       , lir_shr
941       , lir_ushr
942       , lir_alloc_array
943       , lir_throw
944       , lir_xadd
945       , lir_xchg
946   , end_op2
947   , begin_op3
948       , lir_idiv
949       , lir_irem
950       , lir_fmad
951       , lir_fmaf
952   , end_op3
953   , begin_opJavaCall
954       , lir_static_call
955       , lir_optvirtual_call
956       , lir_icvirtual_call
957       , lir_virtual_call
958       , lir_dynamic_call
959   , end_opJavaCall
960   , begin_opArrayCopy
961       , lir_arraycopy
962   , end_opArrayCopy
963   , begin_opUpdateCRC32
964       , lir_updatecrc32
965   , end_opUpdateCRC32
966   , begin_opLock
967     , lir_lock
968     , lir_unlock
969   , end_opLock
970   , begin_delay_slot
971     , lir_delay_slot
972   , end_delay_slot
973   , begin_opTypeCheck
974     , lir_instanceof
975     , lir_checkcast
976     , lir_store_check
977   , end_opTypeCheck
978   , begin_opCompareAndSwap
979     , lir_cas_long
980     , lir_cas_obj
981     , lir_cas_int
982   , end_opCompareAndSwap
983   , begin_opMDOProfile
984     , lir_profile_call
985     , lir_profile_type
986   , end_opMDOProfile
987   , begin_opAssert
988     , lir_assert
989   , end_opAssert
990 };
991 
992 
993 enum LIR_Condition {
994     lir_cond_equal
995   , lir_cond_notEqual
996   , lir_cond_less
997   , lir_cond_lessEqual
998   , lir_cond_greaterEqual
999   , lir_cond_greater
1000   , lir_cond_belowEqual
1001   , lir_cond_aboveEqual
1002   , lir_cond_always
1003   , lir_cond_unknown = -1
1004 };
1005 
1006 
1007 enum LIR_PatchCode {
1008   lir_patch_none,
1009   lir_patch_low,
1010   lir_patch_high,
1011   lir_patch_normal
1012 };
1013 
1014 
1015 enum LIR_MoveKind {
1016   lir_move_normal,
1017   lir_move_volatile,
1018   lir_move_unaligned,
1019   lir_move_wide,
1020   lir_move_max_flag
1021 };
1022 
1023 
1024 // --------------------------------------------------
1025 // LIR_Op
1026 // --------------------------------------------------
1027 class LIR_Op: public CompilationResourceObj {
1028  friend class LIR_OpVisitState;
1029 
1030 #ifdef ASSERT
1031  private:
1032   const char *  _file;
1033   int           _line;
1034 #endif
1035 
1036  protected:
1037   LIR_Opr       _result;
1038   unsigned short _code;
1039   unsigned short _flags;
1040   CodeEmitInfo* _info;
1041   int           _id;     // value id for register allocation
1042   int           _fpu_pop_count;
1043   Instruction*  _source; // for debugging
1044 
1045   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1046 
1047  protected:
is_in_range(LIR_Code test,LIR_Code start,LIR_Code end)1048   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1049 
1050  public:
LIR_Op()1051   LIR_Op()
1052     :
1053 #ifdef ASSERT
1054       _file(NULL)
1055     , _line(0),
1056 #endif
1057       _result(LIR_OprFact::illegalOpr)
1058     , _code(lir_none)
1059     , _flags(0)
1060     , _info(NULL)
1061     , _id(-1)
1062     , _fpu_pop_count(0)
1063     , _source(NULL) {}
1064 
LIR_Op(LIR_Code code,LIR_Opr result,CodeEmitInfo * info)1065   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1066     :
1067 #ifdef ASSERT
1068       _file(NULL)
1069     , _line(0),
1070 #endif
1071       _result(result)
1072     , _code(code)
1073     , _flags(0)
1074     , _info(info)
1075     , _id(-1)
1076     , _fpu_pop_count(0)
1077     , _source(NULL) {}
1078 
info() const1079   CodeEmitInfo* info() const                  { return _info;   }
code() const1080   LIR_Code code()      const                  { return (LIR_Code)_code;   }
result_opr() const1081   LIR_Opr result_opr() const                  { return _result; }
set_result_opr(LIR_Opr opr)1082   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1083 
1084 #ifdef ASSERT
set_file_and_line(const char * file,int line)1085   void set_file_and_line(const char * file, int line) {
1086     _file = file;
1087     _line = line;
1088   }
1089 #endif
1090 
1091   virtual const char * name() const PRODUCT_RETURN0;
1092   virtual void visit(LIR_OpVisitState* state);
1093 
id() const1094   int id()             const                  { return _id;     }
set_id(int id)1095   void set_id(int id)                         { _id = id; }
1096 
1097   // FPU stack simulation helpers -- only used on Intel
set_fpu_pop_count(int count)1098   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
fpu_pop_count() const1099   int  fpu_pop_count() const                  { return _fpu_pop_count; }
pop_fpu_stack()1100   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1101 
source() const1102   Instruction* source() const                 { return _source; }
set_source(Instruction * ins)1103   void set_source(Instruction* ins)           { _source = ins; }
1104 
1105   virtual void emit_code(LIR_Assembler* masm) = 0;
1106   virtual void print_instr(outputStream* out) const   = 0;
1107   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1108 
is_patching()1109   virtual bool is_patching() { return false; }
as_OpCall()1110   virtual LIR_OpCall* as_OpCall() { return NULL; }
as_OpJavaCall()1111   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
as_OpLabel()1112   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
as_OpDelay()1113   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
as_OpLock()1114   virtual LIR_OpLock* as_OpLock() { return NULL; }
as_OpAllocArray()1115   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
as_OpAllocObj()1116   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
as_OpRoundFP()1117   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
as_OpBranch()1118   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
as_OpRTCall()1119   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
as_OpConvert()1120   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
as_Op0()1121   virtual LIR_Op0* as_Op0() { return NULL; }
as_Op1()1122   virtual LIR_Op1* as_Op1() { return NULL; }
as_Op2()1123   virtual LIR_Op2* as_Op2() { return NULL; }
as_Op3()1124   virtual LIR_Op3* as_Op3() { return NULL; }
as_OpArrayCopy()1125   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
as_OpUpdateCRC32()1126   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
as_OpTypeCheck()1127   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
as_OpCompareAndSwap()1128   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
as_OpProfileCall()1129   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
as_OpProfileType()1130   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1131 #ifdef ASSERT
as_OpAssert()1132   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1133 #endif
1134 
verify() const1135   virtual void verify() const {}
1136 };
1137 
1138 // for calls
1139 class LIR_OpCall: public LIR_Op {
1140  friend class LIR_OpVisitState;
1141 
1142  protected:
1143   address      _addr;
1144   LIR_OprList* _arguments;
1145  protected:
LIR_OpCall(LIR_Code code,address addr,LIR_Opr result,LIR_OprList * arguments,CodeEmitInfo * info=NULL)1146   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1147              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1148     : LIR_Op(code, result, info)
1149     , _addr(addr)
1150     , _arguments(arguments) {}
1151 
1152  public:
addr() const1153   address addr() const                           { return _addr; }
arguments() const1154   const LIR_OprList* arguments() const           { return _arguments; }
as_OpCall()1155   virtual LIR_OpCall* as_OpCall()                { return this; }
1156 };
1157 
1158 
1159 // --------------------------------------------------
1160 // LIR_OpJavaCall
1161 // --------------------------------------------------
1162 class LIR_OpJavaCall: public LIR_OpCall {
1163  friend class LIR_OpVisitState;
1164 
1165  private:
1166   ciMethod* _method;
1167   LIR_Opr   _receiver;
1168   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1169 
1170  public:
LIR_OpJavaCall(LIR_Code code,ciMethod * method,LIR_Opr receiver,LIR_Opr result,address addr,LIR_OprList * arguments,CodeEmitInfo * info)1171   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1172                  LIR_Opr receiver, LIR_Opr result,
1173                  address addr, LIR_OprList* arguments,
1174                  CodeEmitInfo* info)
1175   : LIR_OpCall(code, addr, result, arguments, info)
1176   , _method(method)
1177   , _receiver(receiver)
1178   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1179   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1180 
LIR_OpJavaCall(LIR_Code code,ciMethod * method,LIR_Opr receiver,LIR_Opr result,intptr_t vtable_offset,LIR_OprList * arguments,CodeEmitInfo * info)1181   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1182                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1183                  LIR_OprList* arguments, CodeEmitInfo* info)
1184   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1185   , _method(method)
1186   , _receiver(receiver)
1187   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1188   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1189 
receiver() const1190   LIR_Opr receiver() const                       { return _receiver; }
method() const1191   ciMethod* method() const                       { return _method;   }
1192 
1193   // JSR 292 support.
is_invokedynamic() const1194   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
is_method_handle_invoke() const1195   bool is_method_handle_invoke() const {
1196     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1197            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1198   }
1199 
vtable_offset() const1200   intptr_t vtable_offset() const {
1201     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1202     return (intptr_t) addr();
1203   }
1204 
1205   virtual void emit_code(LIR_Assembler* masm);
as_OpJavaCall()1206   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1207   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1208 };
1209 
1210 // --------------------------------------------------
1211 // LIR_OpLabel
1212 // --------------------------------------------------
1213 // Location where a branch can continue
1214 class LIR_OpLabel: public LIR_Op {
1215  friend class LIR_OpVisitState;
1216 
1217  private:
1218   Label* _label;
1219  public:
LIR_OpLabel(Label * lbl)1220   LIR_OpLabel(Label* lbl)
1221    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1222    , _label(lbl)                                 {}
label() const1223   Label* label() const                           { return _label; }
1224 
1225   virtual void emit_code(LIR_Assembler* masm);
as_OpLabel()1226   virtual LIR_OpLabel* as_OpLabel() { return this; }
1227   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1228 };
1229 
1230 // LIR_OpArrayCopy
1231 class LIR_OpArrayCopy: public LIR_Op {
1232  friend class LIR_OpVisitState;
1233 
1234  private:
1235   ArrayCopyStub*  _stub;
1236   LIR_Opr   _src;
1237   LIR_Opr   _src_pos;
1238   LIR_Opr   _dst;
1239   LIR_Opr   _dst_pos;
1240   LIR_Opr   _length;
1241   LIR_Opr   _tmp;
1242   ciArrayKlass* _expected_type;
1243   int       _flags;
1244 
1245 public:
1246   enum Flags {
1247     src_null_check         = 1 << 0,
1248     dst_null_check         = 1 << 1,
1249     src_pos_positive_check = 1 << 2,
1250     dst_pos_positive_check = 1 << 3,
1251     length_positive_check  = 1 << 4,
1252     src_range_check        = 1 << 5,
1253     dst_range_check        = 1 << 6,
1254     type_check             = 1 << 7,
1255     overlapping            = 1 << 8,
1256     unaligned              = 1 << 9,
1257     src_objarray           = 1 << 10,
1258     dst_objarray           = 1 << 11,
1259     all_flags              = (1 << 12) - 1
1260   };
1261 
1262   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1263                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1264 
src() const1265   LIR_Opr src() const                            { return _src; }
src_pos() const1266   LIR_Opr src_pos() const                        { return _src_pos; }
dst() const1267   LIR_Opr dst() const                            { return _dst; }
dst_pos() const1268   LIR_Opr dst_pos() const                        { return _dst_pos; }
length() const1269   LIR_Opr length() const                         { return _length; }
tmp() const1270   LIR_Opr tmp() const                            { return _tmp; }
flags() const1271   int flags() const                              { return _flags; }
expected_type() const1272   ciArrayKlass* expected_type() const            { return _expected_type; }
stub() const1273   ArrayCopyStub* stub() const                    { return _stub; }
1274 
1275   virtual void emit_code(LIR_Assembler* masm);
as_OpArrayCopy()1276   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1277   void print_instr(outputStream* out) const PRODUCT_RETURN;
1278 };
1279 
1280 // LIR_OpUpdateCRC32
1281 class LIR_OpUpdateCRC32: public LIR_Op {
1282   friend class LIR_OpVisitState;
1283 
1284 private:
1285   LIR_Opr   _crc;
1286   LIR_Opr   _val;
1287 
1288 public:
1289 
1290   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1291 
crc() const1292   LIR_Opr crc() const                            { return _crc; }
val() const1293   LIR_Opr val() const                            { return _val; }
1294 
1295   virtual void emit_code(LIR_Assembler* masm);
as_OpUpdateCRC32()1296   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1297   void print_instr(outputStream* out) const PRODUCT_RETURN;
1298 };
1299 
1300 // --------------------------------------------------
1301 // LIR_Op0
1302 // --------------------------------------------------
1303 class LIR_Op0: public LIR_Op {
1304  friend class LIR_OpVisitState;
1305 
1306  public:
LIR_Op0(LIR_Code code)1307   LIR_Op0(LIR_Code code)
1308    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
LIR_Op0(LIR_Code code,LIR_Opr result,CodeEmitInfo * info=NULL)1309   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1310    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1311 
1312   virtual void emit_code(LIR_Assembler* masm);
as_Op0()1313   virtual LIR_Op0* as_Op0() { return this; }
1314   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1315 };
1316 
1317 
1318 // --------------------------------------------------
1319 // LIR_Op1
1320 // --------------------------------------------------
1321 
1322 class LIR_Op1: public LIR_Op {
1323  friend class LIR_OpVisitState;
1324 
1325  protected:
1326   LIR_Opr         _opr;   // input operand
1327   BasicType       _type;  // Operand types
1328   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1329 
1330   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1331 
set_kind(LIR_MoveKind kind)1332   void set_kind(LIR_MoveKind kind) {
1333     assert(code() == lir_move, "must be");
1334     _flags = kind;
1335   }
1336 
1337  public:
LIR_Op1(LIR_Code code,LIR_Opr opr,LIR_Opr result=LIR_OprFact::illegalOpr,BasicType type=T_ILLEGAL,LIR_PatchCode patch=lir_patch_none,CodeEmitInfo * info=NULL)1338   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1339     : LIR_Op(code, result, info)
1340     , _opr(opr)
1341     , _type(type)
1342     , _patch(patch)                    { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1343 
LIR_Op1(LIR_Code code,LIR_Opr opr,LIR_Opr result,BasicType type,LIR_PatchCode patch,CodeEmitInfo * info,LIR_MoveKind kind)1344   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1345     : LIR_Op(code, result, info)
1346     , _opr(opr)
1347     , _type(type)
1348     , _patch(patch)                    {
1349     assert(code == lir_move, "must be");
1350     set_kind(kind);
1351   }
1352 
LIR_Op1(LIR_Code code,LIR_Opr opr,CodeEmitInfo * info)1353   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1354     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1355     , _opr(opr)
1356     , _type(T_ILLEGAL)
1357     , _patch(lir_patch_none)           { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1358 
in_opr() const1359   LIR_Opr in_opr()           const               { return _opr;   }
patch_code() const1360   LIR_PatchCode patch_code() const               { return _patch; }
type() const1361   BasicType type()           const               { return _type;  }
1362 
move_kind() const1363   LIR_MoveKind move_kind() const {
1364     assert(code() == lir_move, "must be");
1365     return (LIR_MoveKind)_flags;
1366   }
1367 
is_patching()1368   virtual bool is_patching() { return _patch != lir_patch_none; }
1369   virtual void emit_code(LIR_Assembler* masm);
as_Op1()1370   virtual LIR_Op1* as_Op1() { return this; }
1371   virtual const char * name() const PRODUCT_RETURN0;
1372 
set_in_opr(LIR_Opr opr)1373   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1374 
1375   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1376   virtual void verify() const;
1377 };
1378 
1379 
1380 // for runtime calls
1381 class LIR_OpRTCall: public LIR_OpCall {
1382  friend class LIR_OpVisitState;
1383 
1384  private:
1385   LIR_Opr _tmp;
1386  public:
LIR_OpRTCall(address addr,LIR_Opr tmp,LIR_Opr result,LIR_OprList * arguments,CodeEmitInfo * info=NULL)1387   LIR_OpRTCall(address addr, LIR_Opr tmp,
1388                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1389     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1390     , _tmp(tmp) {}
1391 
1392   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1393   virtual void emit_code(LIR_Assembler* masm);
as_OpRTCall()1394   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1395 
tmp() const1396   LIR_Opr tmp() const                            { return _tmp; }
1397 
1398   virtual void verify() const;
1399 };
1400 
1401 
1402 class LIR_OpBranch: public LIR_Op {
1403  friend class LIR_OpVisitState;
1404 
1405  private:
1406   LIR_Condition _cond;
1407   Label*        _label;
1408   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1409   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1410   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1411 
1412  public:
LIR_OpBranch(LIR_Condition cond,Label * lbl)1413   LIR_OpBranch(LIR_Condition cond, Label* lbl)
1414     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1415     , _cond(cond)
1416     , _label(lbl)
1417     , _block(NULL)
1418     , _ublock(NULL)
1419     , _stub(NULL) { }
1420 
1421   LIR_OpBranch(LIR_Condition cond, BlockBegin* block);
1422   LIR_OpBranch(LIR_Condition cond, CodeStub* stub);
1423 
1424   // for unordered comparisons
1425   LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock);
1426 
cond() const1427   LIR_Condition cond()        const              { return _cond;        }
label() const1428   Label*        label()       const              { return _label;       }
block() const1429   BlockBegin*   block()       const              { return _block;       }
ublock() const1430   BlockBegin*   ublock()      const              { return _ublock;      }
stub() const1431   CodeStub*     stub()        const              { return _stub;       }
1432 
1433   void          change_block(BlockBegin* b);
1434   void          change_ublock(BlockBegin* b);
1435   void          negate_cond();
1436 
1437   virtual void emit_code(LIR_Assembler* masm);
as_OpBranch()1438   virtual LIR_OpBranch* as_OpBranch() { return this; }
1439   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1440 };
1441 
1442 
1443 class ConversionStub;
1444 
1445 class LIR_OpConvert: public LIR_Op1 {
1446  friend class LIR_OpVisitState;
1447 
1448  private:
1449    Bytecodes::Code _bytecode;
1450    ConversionStub* _stub;
1451 
1452  public:
LIR_OpConvert(Bytecodes::Code code,LIR_Opr opr,LIR_Opr result,ConversionStub * stub)1453    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1454      : LIR_Op1(lir_convert, opr, result)
1455      , _bytecode(code)
1456      , _stub(stub)                               {}
1457 
bytecode() const1458   Bytecodes::Code bytecode() const               { return _bytecode; }
stub() const1459   ConversionStub* stub() const                   { return _stub; }
1460 
1461   virtual void emit_code(LIR_Assembler* masm);
as_OpConvert()1462   virtual LIR_OpConvert* as_OpConvert() { return this; }
1463   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1464 
1465   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1466 };
1467 
1468 
1469 // LIR_OpAllocObj
1470 class LIR_OpAllocObj : public LIR_Op1 {
1471  friend class LIR_OpVisitState;
1472 
1473  private:
1474   LIR_Opr _tmp1;
1475   LIR_Opr _tmp2;
1476   LIR_Opr _tmp3;
1477   LIR_Opr _tmp4;
1478   int     _hdr_size;
1479   int     _obj_size;
1480   CodeStub* _stub;
1481   bool    _init_check;
1482 
1483  public:
LIR_OpAllocObj(LIR_Opr klass,LIR_Opr result,LIR_Opr t1,LIR_Opr t2,LIR_Opr t3,LIR_Opr t4,int hdr_size,int obj_size,bool init_check,CodeStub * stub)1484   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1485                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1486                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1487     : LIR_Op1(lir_alloc_object, klass, result)
1488     , _tmp1(t1)
1489     , _tmp2(t2)
1490     , _tmp3(t3)
1491     , _tmp4(t4)
1492     , _hdr_size(hdr_size)
1493     , _obj_size(obj_size)
1494     , _stub(stub)
1495     , _init_check(init_check)                    { }
1496 
klass() const1497   LIR_Opr klass()        const                   { return in_opr();     }
obj() const1498   LIR_Opr obj()          const                   { return result_opr(); }
tmp1() const1499   LIR_Opr tmp1()         const                   { return _tmp1;        }
tmp2() const1500   LIR_Opr tmp2()         const                   { return _tmp2;        }
tmp3() const1501   LIR_Opr tmp3()         const                   { return _tmp3;        }
tmp4() const1502   LIR_Opr tmp4()         const                   { return _tmp4;        }
header_size() const1503   int     header_size()  const                   { return _hdr_size;    }
object_size() const1504   int     object_size()  const                   { return _obj_size;    }
init_check() const1505   bool    init_check()   const                   { return _init_check;  }
stub() const1506   CodeStub* stub()       const                   { return _stub;        }
1507 
1508   virtual void emit_code(LIR_Assembler* masm);
as_OpAllocObj()1509   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1510   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1511 };
1512 
1513 
1514 // LIR_OpRoundFP
1515 class LIR_OpRoundFP : public LIR_Op1 {
1516  friend class LIR_OpVisitState;
1517 
1518  private:
1519   LIR_Opr _tmp;
1520 
1521  public:
LIR_OpRoundFP(LIR_Opr reg,LIR_Opr stack_loc_temp,LIR_Opr result)1522   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1523     : LIR_Op1(lir_roundfp, reg, result)
1524     , _tmp(stack_loc_temp) {}
1525 
tmp() const1526   LIR_Opr tmp() const                            { return _tmp; }
as_OpRoundFP()1527   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1528   void print_instr(outputStream* out) const PRODUCT_RETURN;
1529 };
1530 
1531 // LIR_OpTypeCheck
1532 class LIR_OpTypeCheck: public LIR_Op {
1533  friend class LIR_OpVisitState;
1534 
1535  private:
1536   LIR_Opr       _object;
1537   LIR_Opr       _array;
1538   ciKlass*      _klass;
1539   LIR_Opr       _tmp1;
1540   LIR_Opr       _tmp2;
1541   LIR_Opr       _tmp3;
1542   bool          _fast_check;
1543   CodeEmitInfo* _info_for_patch;
1544   CodeEmitInfo* _info_for_exception;
1545   CodeStub*     _stub;
1546   ciMethod*     _profiled_method;
1547   int           _profiled_bci;
1548   bool          _should_profile;
1549 
1550 public:
1551   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1552                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1553                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1554   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1555                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1556 
object() const1557   LIR_Opr object() const                         { return _object;         }
array() const1558   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
tmp1() const1559   LIR_Opr tmp1() const                           { return _tmp1;           }
tmp2() const1560   LIR_Opr tmp2() const                           { return _tmp2;           }
tmp3() const1561   LIR_Opr tmp3() const                           { return _tmp3;           }
klass() const1562   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
fast_check() const1563   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
info_for_patch() const1564   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
info_for_exception() const1565   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
stub() const1566   CodeStub* stub() const                         { return _stub;           }
1567 
1568   // MethodData* profiling
set_profiled_method(ciMethod * method)1569   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
set_profiled_bci(int bci)1570   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
set_should_profile(bool b)1571   void set_should_profile(bool b)                { _should_profile = b;       }
profiled_method() const1572   ciMethod* profiled_method() const              { return _profiled_method;   }
profiled_bci() const1573   int       profiled_bci() const                 { return _profiled_bci;      }
should_profile() const1574   bool      should_profile() const               { return _should_profile;    }
1575 
is_patching()1576   virtual bool is_patching() { return _info_for_patch != NULL; }
1577   virtual void emit_code(LIR_Assembler* masm);
as_OpTypeCheck()1578   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1579   void print_instr(outputStream* out) const PRODUCT_RETURN;
1580 };
1581 
1582 // LIR_Op2
1583 class LIR_Op2: public LIR_Op {
1584  friend class LIR_OpVisitState;
1585 
1586   int  _fpu_stack_size; // for sin/cos implementation on Intel
1587 
1588  protected:
1589   LIR_Opr   _opr1;
1590   LIR_Opr   _opr2;
1591   BasicType _type;
1592   LIR_Opr   _tmp1;
1593   LIR_Opr   _tmp2;
1594   LIR_Opr   _tmp3;
1595   LIR_Opr   _tmp4;
1596   LIR_Opr   _tmp5;
1597   LIR_Condition _condition;
1598 
1599   void verify() const;
1600 
1601  public:
LIR_Op2(LIR_Code code,LIR_Condition condition,LIR_Opr opr1,LIR_Opr opr2,CodeEmitInfo * info=NULL)1602   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1603     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1604     , _fpu_stack_size(0)
1605     , _opr1(opr1)
1606     , _opr2(opr2)
1607     , _type(T_ILLEGAL)
1608     , _tmp1(LIR_OprFact::illegalOpr)
1609     , _tmp2(LIR_OprFact::illegalOpr)
1610     , _tmp3(LIR_OprFact::illegalOpr)
1611     , _tmp4(LIR_OprFact::illegalOpr)
1612     , _tmp5(LIR_OprFact::illegalOpr)
1613     , _condition(condition) {
1614     assert(code == lir_cmp || code == lir_assert, "code check");
1615   }
1616 
LIR_Op2(LIR_Code code,LIR_Condition condition,LIR_Opr opr1,LIR_Opr opr2,LIR_Opr result,BasicType type)1617   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1618     : LIR_Op(code, result, NULL)
1619     , _fpu_stack_size(0)
1620     , _opr1(opr1)
1621     , _opr2(opr2)
1622     , _type(type)
1623     , _tmp1(LIR_OprFact::illegalOpr)
1624     , _tmp2(LIR_OprFact::illegalOpr)
1625     , _tmp3(LIR_OprFact::illegalOpr)
1626     , _tmp4(LIR_OprFact::illegalOpr)
1627     , _tmp5(LIR_OprFact::illegalOpr)
1628     , _condition(condition) {
1629     assert(code == lir_cmove, "code check");
1630     assert(type != T_ILLEGAL, "cmove should have type");
1631   }
1632 
LIR_Op2(LIR_Code code,LIR_Opr opr1,LIR_Opr opr2,LIR_Opr result=LIR_OprFact::illegalOpr,CodeEmitInfo * info=NULL,BasicType type=T_ILLEGAL)1633   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1634           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1635     : LIR_Op(code, result, info)
1636     , _fpu_stack_size(0)
1637     , _opr1(opr1)
1638     , _opr2(opr2)
1639     , _type(type)
1640     , _tmp1(LIR_OprFact::illegalOpr)
1641     , _tmp2(LIR_OprFact::illegalOpr)
1642     , _tmp3(LIR_OprFact::illegalOpr)
1643     , _tmp4(LIR_OprFact::illegalOpr)
1644     , _tmp5(LIR_OprFact::illegalOpr)
1645     , _condition(lir_cond_unknown) {
1646     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1647   }
1648 
LIR_Op2(LIR_Code code,LIR_Opr opr1,LIR_Opr opr2,LIR_Opr result,LIR_Opr tmp1,LIR_Opr tmp2=LIR_OprFact::illegalOpr,LIR_Opr tmp3=LIR_OprFact::illegalOpr,LIR_Opr tmp4=LIR_OprFact::illegalOpr,LIR_Opr tmp5=LIR_OprFact::illegalOpr)1649   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1650           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1651     : LIR_Op(code, result, NULL)
1652     , _fpu_stack_size(0)
1653     , _opr1(opr1)
1654     , _opr2(opr2)
1655     , _type(T_ILLEGAL)
1656     , _tmp1(tmp1)
1657     , _tmp2(tmp2)
1658     , _tmp3(tmp3)
1659     , _tmp4(tmp4)
1660     , _tmp5(tmp5)
1661     , _condition(lir_cond_unknown) {
1662     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1663   }
1664 
in_opr1() const1665   LIR_Opr in_opr1() const                        { return _opr1; }
in_opr2() const1666   LIR_Opr in_opr2() const                        { return _opr2; }
type() const1667   BasicType type()  const                        { return _type; }
tmp1_opr() const1668   LIR_Opr tmp1_opr() const                       { return _tmp1; }
tmp2_opr() const1669   LIR_Opr tmp2_opr() const                       { return _tmp2; }
tmp3_opr() const1670   LIR_Opr tmp3_opr() const                       { return _tmp3; }
tmp4_opr() const1671   LIR_Opr tmp4_opr() const                       { return _tmp4; }
tmp5_opr() const1672   LIR_Opr tmp5_opr() const                       { return _tmp5; }
condition() const1673   LIR_Condition condition() const  {
1674     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1675   }
set_condition(LIR_Condition condition)1676   void set_condition(LIR_Condition condition) {
1677     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1678   }
1679 
set_fpu_stack_size(int size)1680   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
fpu_stack_size() const1681   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1682 
set_in_opr1(LIR_Opr opr)1683   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
set_in_opr2(LIR_Opr opr)1684   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1685 
1686   virtual void emit_code(LIR_Assembler* masm);
as_Op2()1687   virtual LIR_Op2* as_Op2() { return this; }
1688   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1689 };
1690 
1691 class LIR_OpAllocArray : public LIR_Op {
1692  friend class LIR_OpVisitState;
1693 
1694  private:
1695   LIR_Opr   _klass;
1696   LIR_Opr   _len;
1697   LIR_Opr   _tmp1;
1698   LIR_Opr   _tmp2;
1699   LIR_Opr   _tmp3;
1700   LIR_Opr   _tmp4;
1701   BasicType _type;
1702   CodeStub* _stub;
1703 
1704  public:
LIR_OpAllocArray(LIR_Opr klass,LIR_Opr len,LIR_Opr result,LIR_Opr t1,LIR_Opr t2,LIR_Opr t3,LIR_Opr t4,BasicType type,CodeStub * stub)1705   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1706     : LIR_Op(lir_alloc_array, result, NULL)
1707     , _klass(klass)
1708     , _len(len)
1709     , _tmp1(t1)
1710     , _tmp2(t2)
1711     , _tmp3(t3)
1712     , _tmp4(t4)
1713     , _type(type)
1714     , _stub(stub) {}
1715 
klass() const1716   LIR_Opr   klass()   const                      { return _klass;       }
len() const1717   LIR_Opr   len()     const                      { return _len;         }
obj() const1718   LIR_Opr   obj()     const                      { return result_opr(); }
tmp1() const1719   LIR_Opr   tmp1()    const                      { return _tmp1;        }
tmp2() const1720   LIR_Opr   tmp2()    const                      { return _tmp2;        }
tmp3() const1721   LIR_Opr   tmp3()    const                      { return _tmp3;        }
tmp4() const1722   LIR_Opr   tmp4()    const                      { return _tmp4;        }
type() const1723   BasicType type()    const                      { return _type;        }
stub() const1724   CodeStub* stub()    const                      { return _stub;        }
1725 
1726   virtual void emit_code(LIR_Assembler* masm);
as_OpAllocArray()1727   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1728   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1729 };
1730 
1731 
1732 class LIR_Op3: public LIR_Op {
1733  friend class LIR_OpVisitState;
1734 
1735  private:
1736   LIR_Opr _opr1;
1737   LIR_Opr _opr2;
1738   LIR_Opr _opr3;
1739  public:
LIR_Op3(LIR_Code code,LIR_Opr opr1,LIR_Opr opr2,LIR_Opr opr3,LIR_Opr result,CodeEmitInfo * info=NULL)1740   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1741     : LIR_Op(code, result, info)
1742     , _opr1(opr1)
1743     , _opr2(opr2)
1744     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
in_opr1() const1745   LIR_Opr in_opr1() const                        { return _opr1; }
in_opr2() const1746   LIR_Opr in_opr2() const                        { return _opr2; }
in_opr3() const1747   LIR_Opr in_opr3() const                        { return _opr3; }
1748 
1749   virtual void emit_code(LIR_Assembler* masm);
as_Op3()1750   virtual LIR_Op3* as_Op3() { return this; }
1751   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1752 };
1753 
1754 
1755 //--------------------------------
1756 class LabelObj: public CompilationResourceObj {
1757  private:
1758   Label _label;
1759  public:
LabelObj()1760   LabelObj()                                     {}
label()1761   Label* label()                                 { return &_label; }
1762 };
1763 
1764 
1765 class LIR_OpLock: public LIR_Op {
1766  friend class LIR_OpVisitState;
1767 
1768  private:
1769   LIR_Opr _hdr;
1770   LIR_Opr _obj;
1771   LIR_Opr _lock;
1772   LIR_Opr _scratch;
1773   CodeStub* _stub;
1774  public:
LIR_OpLock(LIR_Code code,LIR_Opr hdr,LIR_Opr obj,LIR_Opr lock,LIR_Opr scratch,CodeStub * stub,CodeEmitInfo * info)1775   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1776     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1777     , _hdr(hdr)
1778     , _obj(obj)
1779     , _lock(lock)
1780     , _scratch(scratch)
1781     , _stub(stub)                      {}
1782 
hdr_opr() const1783   LIR_Opr hdr_opr() const                        { return _hdr; }
obj_opr() const1784   LIR_Opr obj_opr() const                        { return _obj; }
lock_opr() const1785   LIR_Opr lock_opr() const                       { return _lock; }
scratch_opr() const1786   LIR_Opr scratch_opr() const                    { return _scratch; }
stub() const1787   CodeStub* stub() const                         { return _stub; }
1788 
1789   virtual void emit_code(LIR_Assembler* masm);
as_OpLock()1790   virtual LIR_OpLock* as_OpLock() { return this; }
1791   void print_instr(outputStream* out) const PRODUCT_RETURN;
1792 };
1793 
1794 
1795 class LIR_OpDelay: public LIR_Op {
1796  friend class LIR_OpVisitState;
1797 
1798  private:
1799   LIR_Op* _op;
1800 
1801  public:
LIR_OpDelay(LIR_Op * op,CodeEmitInfo * info)1802   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1803     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1804     _op(op) {
1805     assert(op->code() == lir_nop, "should be filling with nops");
1806   }
1807   virtual void emit_code(LIR_Assembler* masm);
as_OpDelay()1808   virtual LIR_OpDelay* as_OpDelay() { return this; }
1809   void print_instr(outputStream* out) const PRODUCT_RETURN;
delay_op() const1810   LIR_Op* delay_op() const { return _op; }
call_info() const1811   CodeEmitInfo* call_info() const { return info(); }
1812 };
1813 
1814 #ifdef ASSERT
1815 // LIR_OpAssert
1816 class LIR_OpAssert : public LIR_Op2 {
1817  friend class LIR_OpVisitState;
1818 
1819  private:
1820   const char* _msg;
1821   bool        _halt;
1822 
1823  public:
LIR_OpAssert(LIR_Condition condition,LIR_Opr opr1,LIR_Opr opr2,const char * msg,bool halt)1824   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1825     : LIR_Op2(lir_assert, condition, opr1, opr2)
1826     , _msg(msg)
1827     , _halt(halt) {
1828   }
1829 
msg() const1830   const char* msg() const                        { return _msg; }
halt() const1831   bool        halt() const                       { return _halt; }
1832 
1833   virtual void emit_code(LIR_Assembler* masm);
as_OpAssert()1834   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1835   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1836 };
1837 #endif
1838 
1839 // LIR_OpCompareAndSwap
1840 class LIR_OpCompareAndSwap : public LIR_Op {
1841  friend class LIR_OpVisitState;
1842 
1843  private:
1844   LIR_Opr _addr;
1845   LIR_Opr _cmp_value;
1846   LIR_Opr _new_value;
1847   LIR_Opr _tmp1;
1848   LIR_Opr _tmp2;
1849 
1850  public:
LIR_OpCompareAndSwap(LIR_Code code,LIR_Opr addr,LIR_Opr cmp_value,LIR_Opr new_value,LIR_Opr t1,LIR_Opr t2,LIR_Opr result)1851   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1852                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1853     : LIR_Op(code, result, NULL)  // no result, no info
1854     , _addr(addr)
1855     , _cmp_value(cmp_value)
1856     , _new_value(new_value)
1857     , _tmp1(t1)
1858     , _tmp2(t2)                                  { }
1859 
addr() const1860   LIR_Opr addr()        const                    { return _addr;  }
cmp_value() const1861   LIR_Opr cmp_value()   const                    { return _cmp_value; }
new_value() const1862   LIR_Opr new_value()   const                    { return _new_value; }
tmp1() const1863   LIR_Opr tmp1()        const                    { return _tmp1;      }
tmp2() const1864   LIR_Opr tmp2()        const                    { return _tmp2;      }
1865 
1866   virtual void emit_code(LIR_Assembler* masm);
as_OpCompareAndSwap()1867   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1868   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1869 };
1870 
1871 // LIR_OpProfileCall
1872 class LIR_OpProfileCall : public LIR_Op {
1873  friend class LIR_OpVisitState;
1874 
1875  private:
1876   ciMethod* _profiled_method;
1877   int       _profiled_bci;
1878   ciMethod* _profiled_callee;
1879   LIR_Opr   _mdo;
1880   LIR_Opr   _recv;
1881   LIR_Opr   _tmp1;
1882   ciKlass*  _known_holder;
1883 
1884  public:
1885   // Destroys recv
LIR_OpProfileCall(ciMethod * profiled_method,int profiled_bci,ciMethod * profiled_callee,LIR_Opr mdo,LIR_Opr recv,LIR_Opr t1,ciKlass * known_holder)1886   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1887     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1888     , _profiled_method(profiled_method)
1889     , _profiled_bci(profiled_bci)
1890     , _profiled_callee(profiled_callee)
1891     , _mdo(mdo)
1892     , _recv(recv)
1893     , _tmp1(t1)
1894     , _known_holder(known_holder)                { }
1895 
profiled_method() const1896   ciMethod* profiled_method() const              { return _profiled_method;  }
profiled_bci() const1897   int       profiled_bci()    const              { return _profiled_bci;     }
profiled_callee() const1898   ciMethod* profiled_callee() const              { return _profiled_callee;  }
mdo() const1899   LIR_Opr   mdo()             const              { return _mdo;              }
recv() const1900   LIR_Opr   recv()            const              { return _recv;             }
tmp1() const1901   LIR_Opr   tmp1()            const              { return _tmp1;             }
known_holder() const1902   ciKlass*  known_holder()    const              { return _known_holder;     }
1903 
1904   virtual void emit_code(LIR_Assembler* masm);
as_OpProfileCall()1905   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1906   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
should_profile_receiver_type() const1907   bool should_profile_receiver_type() const {
1908     bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
1909     Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
1910     bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface;
1911     return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
1912   }
1913 };
1914 
1915 // LIR_OpProfileType
1916 class LIR_OpProfileType : public LIR_Op {
1917  friend class LIR_OpVisitState;
1918 
1919  private:
1920   LIR_Opr      _mdp;
1921   LIR_Opr      _obj;
1922   LIR_Opr      _tmp;
1923   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1924   intptr_t     _current_klass; // what the profiling currently reports
1925   bool         _not_null;      // true if we know statically that _obj cannot be null
1926   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1927                                // _exact_klass it the only possible type for this parameter in any context.
1928 
1929  public:
1930   // Destroys recv
LIR_OpProfileType(LIR_Opr mdp,LIR_Opr obj,ciKlass * exact_klass,intptr_t current_klass,LIR_Opr tmp,bool not_null,bool no_conflict)1931   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1932     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1933     , _mdp(mdp)
1934     , _obj(obj)
1935     , _tmp(tmp)
1936     , _exact_klass(exact_klass)
1937     , _current_klass(current_klass)
1938     , _not_null(not_null)
1939     , _no_conflict(no_conflict) { }
1940 
mdp() const1941   LIR_Opr      mdp()              const             { return _mdp;              }
obj() const1942   LIR_Opr      obj()              const             { return _obj;              }
tmp() const1943   LIR_Opr      tmp()              const             { return _tmp;              }
exact_klass() const1944   ciKlass*     exact_klass()      const             { return _exact_klass;      }
current_klass() const1945   intptr_t     current_klass()    const             { return _current_klass;    }
not_null() const1946   bool         not_null()         const             { return _not_null;         }
no_conflict() const1947   bool         no_conflict()      const             { return _no_conflict;      }
1948 
1949   virtual void emit_code(LIR_Assembler* masm);
as_OpProfileType()1950   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1951   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1952 };
1953 
1954 class LIR_InsertionBuffer;
1955 
1956 //--------------------------------LIR_List---------------------------------------------------
1957 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1958 // The LIR instructions are appended by the LIR_List class itself;
1959 //
1960 // Notes:
1961 // - all offsets are(should be) in bytes
1962 // - local positions are specified with an offset, with offset 0 being local 0
1963 
1964 class LIR_List: public CompilationResourceObj {
1965  private:
1966   LIR_OpList  _operations;
1967 
1968   Compilation*  _compilation;
1969 #ifndef PRODUCT
1970   BlockBegin*   _block;
1971 #endif
1972 #ifdef ASSERT
1973   const char *  _file;
1974   int           _line;
1975 #endif
1976 
1977  public:
append(LIR_Op * op)1978   void append(LIR_Op* op) {
1979     if (op->source() == NULL)
1980       op->set_source(_compilation->current_instruction());
1981 #ifndef PRODUCT
1982     if (PrintIRWithLIR) {
1983       _compilation->maybe_print_current_instruction();
1984       op->print(); tty->cr();
1985     }
1986 #endif // PRODUCT
1987 
1988     _operations.append(op);
1989 
1990 #ifdef ASSERT
1991     op->verify();
1992     op->set_file_and_line(_file, _line);
1993     _file = NULL;
1994     _line = 0;
1995 #endif
1996   }
1997 
1998   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1999 
2000 #ifdef ASSERT
2001   void set_file_and_line(const char * file, int line);
2002 #endif
2003 
2004   //---------- accessors ---------------
instructions_list()2005   LIR_OpList* instructions_list()                { return &_operations; }
length() const2006   int         length() const                     { return _operations.length(); }
at(int i) const2007   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2008 
2009   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2010 
2011   // insert LIR_Ops in buffer to right places in LIR_List
2012   void append(LIR_InsertionBuffer* buffer);
2013 
2014   //---------- mutators ---------------
insert_before(int i,LIR_List * op_list)2015   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
insert_before(int i,LIR_Op * op)2016   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
remove_at(int i)2017   void remove_at(int i)                          { _operations.remove_at(i); }
2018 
2019   //---------- printing -------------
2020   void print_instructions() PRODUCT_RETURN;
2021 
2022 
2023   //---------- instructions -------------
call_opt_virtual(ciMethod * method,LIR_Opr receiver,LIR_Opr result,address dest,LIR_OprList * arguments,CodeEmitInfo * info)2024   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2025                         address dest, LIR_OprList* arguments,
2026                         CodeEmitInfo* info) {
2027     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2028   }
call_static(ciMethod * method,LIR_Opr result,address dest,LIR_OprList * arguments,CodeEmitInfo * info)2029   void call_static(ciMethod* method, LIR_Opr result,
2030                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2031     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2032   }
call_icvirtual(ciMethod * method,LIR_Opr receiver,LIR_Opr result,address dest,LIR_OprList * arguments,CodeEmitInfo * info)2033   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2034                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2035     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2036   }
call_virtual(ciMethod * method,LIR_Opr receiver,LIR_Opr result,intptr_t vtable_offset,LIR_OprList * arguments,CodeEmitInfo * info)2037   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2038                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2039     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2040   }
call_dynamic(ciMethod * method,LIR_Opr receiver,LIR_Opr result,address dest,LIR_OprList * arguments,CodeEmitInfo * info)2041   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2042                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2043     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2044   }
2045 
get_thread(LIR_Opr result)2046   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
membar()2047   void membar()                                  { append(new LIR_Op0(lir_membar)); }
membar_acquire()2048   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
membar_release()2049   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
membar_loadload()2050   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
membar_storestore()2051   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
membar_loadstore()2052   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
membar_storeload()2053   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2054 
nop()2055   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2056 
std_entry(LIR_Opr receiver)2057   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
osr_entry(LIR_Opr osrPointer)2058   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2059 
on_spin_wait()2060   void on_spin_wait()                            { append(new LIR_Op0(lir_on_spin_wait)); }
2061 
branch_destination(Label * lbl)2062   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2063 
leal(LIR_Opr from,LIR_Opr result_reg,LIR_PatchCode patch_code=lir_patch_none,CodeEmitInfo * info=NULL)2064   void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2065 
2066   // result is a stack location for old backend and vreg for UseLinearScan
2067   // stack_loc_temp is an illegal register for old backend
roundfp(LIR_Opr reg,LIR_Opr stack_loc_temp,LIR_Opr result)2068   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
unaligned_move(LIR_Address * src,LIR_Opr dst)2069   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
unaligned_move(LIR_Opr src,LIR_Address * dst)2070   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
unaligned_move(LIR_Opr src,LIR_Opr dst)2071   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
move(LIR_Opr src,LIR_Opr dst,CodeEmitInfo * info=NULL)2072   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
move(LIR_Address * src,LIR_Opr dst,CodeEmitInfo * info=NULL)2073   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
move(LIR_Opr src,LIR_Address * dst,CodeEmitInfo * info=NULL)2074   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
move_wide(LIR_Address * src,LIR_Opr dst,CodeEmitInfo * info=NULL)2075   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2076     if (UseCompressedOops) {
2077       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2078     } else {
2079       move(src, dst, info);
2080     }
2081   }
move_wide(LIR_Opr src,LIR_Address * dst,CodeEmitInfo * info=NULL)2082   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2083     if (UseCompressedOops) {
2084       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2085     } else {
2086       move(src, dst, info);
2087     }
2088   }
volatile_move(LIR_Opr src,LIR_Opr dst,BasicType type,CodeEmitInfo * info=NULL,LIR_PatchCode patch_code=lir_patch_none)2089   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2090 
oop2reg(jobject o,LIR_Opr reg)2091   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2092   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2093 
metadata2reg(Metadata * o,LIR_Opr reg)2094   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2095   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2096 
return_op(LIR_Opr result)2097   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2098 
safepoint(LIR_Opr tmp,CodeEmitInfo * info)2099   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2100 
convert(Bytecodes::Code code,LIR_Opr left,LIR_Opr dst,ConversionStub * stub=NULL)2101   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2102 
logical_and(LIR_Opr left,LIR_Opr right,LIR_Opr dst)2103   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
logical_or(LIR_Opr left,LIR_Opr right,LIR_Opr dst)2104   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
logical_xor(LIR_Opr left,LIR_Opr right,LIR_Opr dst)2105   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2106 
2107   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
throw_exception(LIR_Opr exceptionPC,LIR_Opr exceptionOop,CodeEmitInfo * info)2108   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2109     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2110   }
unwind_exception(LIR_Opr exceptionOop)2111   void unwind_exception(LIR_Opr exceptionOop) {
2112     append(new LIR_Op1(lir_unwind, exceptionOop));
2113   }
2114 
push(LIR_Opr opr)2115   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
pop(LIR_Opr reg)2116   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2117 
cmp(LIR_Condition condition,LIR_Opr left,LIR_Opr right,CodeEmitInfo * info=NULL)2118   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2119     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2120   }
cmp(LIR_Condition condition,LIR_Opr left,int right,CodeEmitInfo * info=NULL)2121   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2122     cmp(condition, left, LIR_OprFact::intConst(right), info);
2123   }
2124 
2125   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2126   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2127 
cmove(LIR_Condition condition,LIR_Opr src1,LIR_Opr src2,LIR_Opr dst,BasicType type)2128   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2129     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2130   }
2131 
2132   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2133                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2134   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2135                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2136   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2137                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2138 
abs(LIR_Opr from,LIR_Opr to,LIR_Opr tmp)2139   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
negate(LIR_Opr from,LIR_Opr to,LIR_Opr tmp=LIR_OprFact::illegalOpr)2140   void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr)              { append(new LIR_Op2(lir_neg, from, tmp, to)); }
sqrt(LIR_Opr from,LIR_Opr to,LIR_Opr tmp)2141   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
fmad(LIR_Opr from,LIR_Opr from1,LIR_Opr from2,LIR_Opr to)2142   void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
fmaf(LIR_Opr from,LIR_Opr from1,LIR_Opr from2,LIR_Opr to)2143   void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
log10(LIR_Opr from,LIR_Opr to,LIR_Opr tmp)2144   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
tan(LIR_Opr from,LIR_Opr to,LIR_Opr tmp1,LIR_Opr tmp2)2145   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2146 
add(LIR_Opr left,LIR_Opr right,LIR_Opr res)2147   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
sub(LIR_Opr left,LIR_Opr right,LIR_Opr res,CodeEmitInfo * info=NULL)2148   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
mul(LIR_Opr left,LIR_Opr right,LIR_Opr res)2149   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
mul_strictfp(LIR_Opr left,LIR_Opr right,LIR_Opr res,LIR_Opr tmp)2150   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
div(LIR_Opr left,LIR_Opr right,LIR_Opr res,CodeEmitInfo * info=NULL)2151   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
div_strictfp(LIR_Opr left,LIR_Opr right,LIR_Opr res,LIR_Opr tmp)2152   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
rem(LIR_Opr left,LIR_Opr right,LIR_Opr res,CodeEmitInfo * info=NULL)2153   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2154 
2155   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2156   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2157 
2158   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2159 
2160   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2161   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2162   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2163   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2164   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2165 
2166   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2167   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2168   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2169   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2170 
2171   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2172   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2173 
2174   // jump is an unconditional branch
jump(BlockBegin * block)2175   void jump(BlockBegin* block) {
2176     append(new LIR_OpBranch(lir_cond_always, block));
2177   }
jump(CodeStub * stub)2178   void jump(CodeStub* stub) {
2179     append(new LIR_OpBranch(lir_cond_always, stub));
2180   }
branch(LIR_Condition cond,Label * lbl)2181   void branch(LIR_Condition cond, Label* lbl) {
2182     append(new LIR_OpBranch(cond, lbl));
2183   }
2184   // Should not be used for fp comparisons
branch(LIR_Condition cond,BlockBegin * block)2185   void branch(LIR_Condition cond, BlockBegin* block) {
2186     append(new LIR_OpBranch(cond, block));
2187   }
2188   // Should not be used for fp comparisons
branch(LIR_Condition cond,CodeStub * stub)2189   void branch(LIR_Condition cond, CodeStub* stub) {
2190     append(new LIR_OpBranch(cond, stub));
2191   }
2192   // Should only be used for fp comparisons
branch(LIR_Condition cond,BlockBegin * block,BlockBegin * unordered)2193   void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) {
2194     append(new LIR_OpBranch(cond, block, unordered));
2195   }
2196 
2197   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2198   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2199   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2200 
shift_left(LIR_Opr value,int count,LIR_Opr dst)2201   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
shift_right(LIR_Opr value,int count,LIR_Opr dst)2202   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
unsigned_shift_right(LIR_Opr value,int count,LIR_Opr dst)2203   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2204 
lcmp2int(LIR_Opr left,LIR_Opr right,LIR_Opr dst)2205   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2206   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2207 
call_runtime_leaf(address routine,LIR_Opr tmp,LIR_Opr result,LIR_OprList * arguments)2208   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2209     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2210   }
2211 
call_runtime(address routine,LIR_Opr tmp,LIR_Opr result,LIR_OprList * arguments,CodeEmitInfo * info)2212   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2213                     LIR_OprList* arguments, CodeEmitInfo* info) {
2214     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2215   }
2216 
load_stack_address_monitor(int monitor_ix,LIR_Opr dst)2217   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2218   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2219   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2220 
breakpoint()2221   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2222 
arraycopy(LIR_Opr src,LIR_Opr src_pos,LIR_Opr dst,LIR_Opr dst_pos,LIR_Opr length,LIR_Opr tmp,ciArrayKlass * expected_type,int flags,CodeEmitInfo * info)2223   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2224 
update_crc32(LIR_Opr crc,LIR_Opr val,LIR_Opr res)2225   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2226 
2227   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2228   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2229 
2230   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2231                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2232                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2233                   ciMethod* profiled_method, int profiled_bci);
2234   // MethodData* profiling
profile_call(ciMethod * method,int bci,ciMethod * callee,LIR_Opr mdo,LIR_Opr recv,LIR_Opr t1,ciKlass * cha_klass)2235   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2236     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2237   }
profile_type(LIR_Address * mdp,LIR_Opr obj,ciKlass * exact_klass,intptr_t current_klass,LIR_Opr tmp,bool not_null,bool no_conflict)2238   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2239     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2240   }
2241 
xadd(LIR_Opr src,LIR_Opr add,LIR_Opr res,LIR_Opr tmp)2242   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
xchg(LIR_Opr src,LIR_Opr set,LIR_Opr res,LIR_Opr tmp)2243   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2244 #ifdef ASSERT
lir_assert(LIR_Condition condition,LIR_Opr opr1,LIR_Opr opr2,const char * msg,bool halt)2245   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2246 #endif
2247 };
2248 
2249 void print_LIR(BlockList* blocks);
2250 
2251 class LIR_InsertionBuffer : public CompilationResourceObj {
2252  private:
2253   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2254 
2255   // list of insertion points. index and count are stored alternately:
2256   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2257   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2258   intStack    _index_and_count;
2259 
2260   // the LIR_Ops to be inserted
2261   LIR_OpList  _ops;
2262 
append_new(int index,int count)2263   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
set_index_at(int i,int value)2264   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
set_count_at(int i,int value)2265   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2266 
2267 #ifdef ASSERT
2268   void verify();
2269 #endif
2270  public:
LIR_InsertionBuffer()2271   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2272 
2273   // must be called before using the insertion buffer
init(LIR_List * lir)2274   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
initialized() const2275   bool initialized() const  { return _lir != NULL; }
2276   // called automatically when the buffer is appended to the LIR_List
finish()2277   void finish()             { _lir = NULL; }
2278 
2279   // accessors
lir_list() const2280   LIR_List*  lir_list() const             { return _lir; }
number_of_insertion_points() const2281   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
index_at(int i) const2282   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
count_at(int i) const2283   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2284 
number_of_ops() const2285   int number_of_ops() const               { return _ops.length(); }
op_at(int i) const2286   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2287 
2288   // append an instruction to the buffer
2289   void append(int index, LIR_Op* op);
2290 
2291   // instruction
move(int index,LIR_Opr src,LIR_Opr dst,CodeEmitInfo * info=NULL)2292   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2293 };
2294 
2295 
2296 //
2297 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2298 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2299 // information about the input, output and temporaries used by the
2300 // op to be recorded.  It also records whether the op has call semantics
2301 // and also records all the CodeEmitInfos used by this op.
2302 //
2303 
2304 
2305 class LIR_OpVisitState: public StackObj {
2306  public:
2307   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2308 
2309   enum {
2310     maxNumberOfOperands = 20,
2311     maxNumberOfInfos = 4
2312   };
2313 
2314  private:
2315   LIR_Op*          _op;
2316 
2317   // optimization: the operands and infos are not stored in a variable-length
2318   //               list, but in a fixed-size array to save time of size checks and resizing
2319   int              _oprs_len[numModes];
2320   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2321   int _info_len;
2322   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2323 
2324   bool             _has_call;
2325   bool             _has_slow_case;
2326 
2327 
2328   // only include register operands
2329   // addresses are decomposed to the base and index registers
2330   // constants and stack operands are ignored
append(LIR_Opr & opr,OprMode mode)2331   void append(LIR_Opr& opr, OprMode mode) {
2332     assert(opr->is_valid(), "should not call this otherwise");
2333     assert(mode >= 0 && mode < numModes, "bad mode");
2334 
2335     if (opr->is_register()) {
2336        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2337       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2338 
2339     } else if (opr->is_pointer()) {
2340       LIR_Address* address = opr->as_address_ptr();
2341       if (address != NULL) {
2342         // special handling for addresses: add base and index register of the address
2343         // both are always input operands or temp if we want to extend
2344         // their liveness!
2345         if (mode == outputMode) {
2346           mode = inputMode;
2347         }
2348         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2349         if (address->_base->is_valid()) {
2350           assert(address->_base->is_register(), "must be");
2351           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2352           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2353         }
2354         if (address->_index->is_valid()) {
2355           assert(address->_index->is_register(), "must be");
2356           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2357           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2358         }
2359 
2360       } else {
2361         assert(opr->is_constant(), "constant operands are not processed");
2362       }
2363     } else {
2364       assert(opr->is_stack(), "stack operands are not processed");
2365     }
2366   }
2367 
append(CodeEmitInfo * info)2368   void append(CodeEmitInfo* info) {
2369     assert(info != NULL, "should not call this otherwise");
2370     assert(_info_len < maxNumberOfInfos, "array overflow");
2371     _info_new[_info_len++] = info;
2372   }
2373 
2374  public:
LIR_OpVisitState()2375   LIR_OpVisitState()         { reset(); }
2376 
op() const2377   LIR_Op* op() const         { return _op; }
set_op(LIR_Op * op)2378   void set_op(LIR_Op* op)    { reset(); _op = op; }
2379 
has_call() const2380   bool has_call() const      { return _has_call; }
has_slow_case() const2381   bool has_slow_case() const { return _has_slow_case; }
2382 
reset()2383   void reset() {
2384     _op = NULL;
2385     _has_call = false;
2386     _has_slow_case = false;
2387 
2388     _oprs_len[inputMode] = 0;
2389     _oprs_len[tempMode] = 0;
2390     _oprs_len[outputMode] = 0;
2391     _info_len = 0;
2392   }
2393 
2394 
opr_count(OprMode mode) const2395   int opr_count(OprMode mode) const {
2396     assert(mode >= 0 && mode < numModes, "bad mode");
2397     return _oprs_len[mode];
2398   }
2399 
opr_at(OprMode mode,int index) const2400   LIR_Opr opr_at(OprMode mode, int index) const {
2401     assert(mode >= 0 && mode < numModes, "bad mode");
2402     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2403     return *_oprs_new[mode][index];
2404   }
2405 
set_opr_at(OprMode mode,int index,LIR_Opr opr) const2406   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2407     assert(mode >= 0 && mode < numModes, "bad mode");
2408     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2409     *_oprs_new[mode][index] = opr;
2410   }
2411 
info_count() const2412   int info_count() const {
2413     return _info_len;
2414   }
2415 
info_at(int index) const2416   CodeEmitInfo* info_at(int index) const {
2417     assert(index < _info_len, "index out of bounds");
2418     return _info_new[index];
2419   }
2420 
2421   XHandlers* all_xhandler();
2422 
2423   // collects all register operands of the instruction
2424   void visit(LIR_Op* op);
2425 
2426 #ifdef ASSERT
2427   // check that an operation has no operands
2428   bool no_operands(LIR_Op* op);
2429 #endif
2430 
2431   // LIR_Op visitor functions use these to fill in the state
do_input(LIR_Opr & opr)2432   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
do_output(LIR_Opr & opr)2433   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
do_temp(LIR_Opr & opr)2434   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
do_info(CodeEmitInfo * info)2435   void do_info(CodeEmitInfo* info)        { append(info); }
2436 
2437   void do_stub(CodeStub* stub);
do_call()2438   void do_call()                          { _has_call = true; }
do_slow_case()2439   void do_slow_case()                     { _has_slow_case = true; }
do_slow_case(CodeEmitInfo * info)2440   void do_slow_case(CodeEmitInfo* info) {
2441     _has_slow_case = true;
2442     append(info);
2443   }
2444 };
2445 
2446 
illegalOpr()2447 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2448 
2449 #endif // SHARE_C1_C1_LIR_HPP
2450