1 /*
2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "jvm.h"
27 #include "classfile/symbolTable.hpp"
28 #include "classfile/systemDictionary.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "code/codeCache.hpp"
31 #include "code/codeHeapState.hpp"
32 #include "code/dependencyContext.hpp"
33 #include "compiler/compilationPolicy.hpp"
34 #include "compiler/compileBroker.hpp"
35 #include "compiler/compileLog.hpp"
36 #include "compiler/compilerEvent.hpp"
37 #include "compiler/compilerOracle.hpp"
38 #include "compiler/directivesParser.hpp"
39 #include "interpreter/linkResolver.hpp"
40 #include "jfr/jfrEvents.hpp"
41 #include "logging/log.hpp"
42 #include "logging/logStream.hpp"
43 #include "memory/allocation.inline.hpp"
44 #include "memory/resourceArea.hpp"
45 #include "memory/universe.hpp"
46 #include "oops/methodData.hpp"
47 #include "oops/method.inline.hpp"
48 #include "oops/oop.inline.hpp"
49 #include "prims/nativeLookup.hpp"
50 #include "prims/whitebox.hpp"
51 #include "runtime/arguments.hpp"
52 #include "runtime/atomic.hpp"
53 #include "runtime/handles.inline.hpp"
54 #include "runtime/init.hpp"
55 #include "runtime/interfaceSupport.inline.hpp"
56 #include "runtime/javaCalls.hpp"
57 #include "runtime/jniHandles.inline.hpp"
58 #include "runtime/os.hpp"
59 #include "runtime/safepointVerifiers.hpp"
60 #include "runtime/sharedRuntime.hpp"
61 #include "runtime/sweeper.hpp"
62 #include "runtime/timerTrace.hpp"
63 #include "runtime/vframe.inline.hpp"
64 #include "utilities/debug.hpp"
65 #include "utilities/dtrace.hpp"
66 #include "utilities/events.hpp"
67 #include "utilities/formatBuffer.hpp"
68 #include "utilities/macros.hpp"
69 #ifdef COMPILER1
70 #include "c1/c1_Compiler.hpp"
71 #endif
72 #if INCLUDE_JVMCI
73 #include "jvmci/jvmciEnv.hpp"
74 #include "jvmci/jvmciRuntime.hpp"
75 #endif
76 #ifdef COMPILER2
77 #include "opto/c2compiler.hpp"
78 #endif
79 
80 #ifdef DTRACE_ENABLED
81 
82 // Only bother with this argument setup if dtrace is available
83 
84 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
85   {                                                                      \
86     Symbol* klass_name = (method)->klass_name();                         \
87     Symbol* name = (method)->name();                                     \
88     Symbol* signature = (method)->signature();                           \
89     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
90       (char *) comp_name, strlen(comp_name),                             \
91       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
92       (char *) name->bytes(), name->utf8_length(),                       \
93       (char *) signature->bytes(), signature->utf8_length());            \
94   }
95 
96 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
97   {                                                                      \
98     Symbol* klass_name = (method)->klass_name();                         \
99     Symbol* name = (method)->name();                                     \
100     Symbol* signature = (method)->signature();                           \
101     HOTSPOT_METHOD_COMPILE_END(                                          \
102       (char *) comp_name, strlen(comp_name),                             \
103       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
104       (char *) name->bytes(), name->utf8_length(),                       \
105       (char *) signature->bytes(), signature->utf8_length(), (success)); \
106   }
107 
108 #else //  ndef DTRACE_ENABLED
109 
110 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
112 
113 #endif // ndef DTRACE_ENABLED
114 
115 bool CompileBroker::_initialized = false;
116 volatile bool CompileBroker::_should_block = false;
117 volatile int  CompileBroker::_print_compilation_warning = 0;
118 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
119 
120 // The installed compiler(s)
121 AbstractCompiler* CompileBroker::_compilers[2];
122 
123 // The maximum numbers of compiler threads to be determined during startup.
124 int CompileBroker::_c1_count = 0;
125 int CompileBroker::_c2_count = 0;
126 
127 // An array of compiler names as Java String objects
128 jobject* CompileBroker::_compiler1_objects = NULL;
129 jobject* CompileBroker::_compiler2_objects = NULL;
130 
131 CompileLog** CompileBroker::_compiler1_logs = NULL;
132 CompileLog** CompileBroker::_compiler2_logs = NULL;
133 
134 // These counters are used to assign an unique ID to each compilation.
135 volatile jint CompileBroker::_compilation_id     = 0;
136 volatile jint CompileBroker::_osr_compilation_id = 0;
137 
138 // Performance counters
139 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
140 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
141 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
142 
143 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
144 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
145 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
146 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
147 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
148 
149 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
150 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
151 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
152 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
153 
154 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
155 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
156 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
157 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
158 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
159 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
160 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
161 
162 // Timers and counters for generating statistics
163 elapsedTimer CompileBroker::_t_total_compilation;
164 elapsedTimer CompileBroker::_t_osr_compilation;
165 elapsedTimer CompileBroker::_t_standard_compilation;
166 elapsedTimer CompileBroker::_t_invalidated_compilation;
167 elapsedTimer CompileBroker::_t_bailedout_compilation;
168 
169 int CompileBroker::_total_bailout_count            = 0;
170 int CompileBroker::_total_invalidated_count        = 0;
171 int CompileBroker::_total_compile_count            = 0;
172 int CompileBroker::_total_osr_compile_count        = 0;
173 int CompileBroker::_total_standard_compile_count   = 0;
174 int CompileBroker::_total_compiler_stopped_count   = 0;
175 int CompileBroker::_total_compiler_restarted_count = 0;
176 
177 int CompileBroker::_sum_osr_bytes_compiled         = 0;
178 int CompileBroker::_sum_standard_bytes_compiled    = 0;
179 int CompileBroker::_sum_nmethod_size               = 0;
180 int CompileBroker::_sum_nmethod_code_size          = 0;
181 
182 long CompileBroker::_peak_compilation_time         = 0;
183 
184 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
185 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
186 
187 
188 
189 class CompilationLog : public StringEventLog {
190  public:
CompilationLog()191   CompilationLog() : StringEventLog("Compilation events", "jit") {
192   }
193 
log_compile(JavaThread * thread,CompileTask * task)194   void log_compile(JavaThread* thread, CompileTask* task) {
195     StringLogMessage lm;
196     stringStream sstr(lm.buffer(), lm.size());
197     // msg.time_stamp().update_to(tty->time_stamp().ticks());
198     task->print(&sstr, NULL, true, false);
199     log(thread, "%s", (const char*)lm);
200   }
201 
log_nmethod(JavaThread * thread,nmethod * nm)202   void log_nmethod(JavaThread* thread, nmethod* nm) {
203     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
204         nm->compile_id(), nm->is_osr_method() ? "%" : "",
205         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
206   }
207 
log_failure(JavaThread * thread,CompileTask * task,const char * reason,const char * retry_message)208   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
209     StringLogMessage lm;
210     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
211     if (retry_message != NULL) {
212       lm.append(" (%s)", retry_message);
213     }
214     lm.print("\n");
215     log(thread, "%s", (const char*)lm);
216   }
217 
log_metaspace_failure(const char * reason)218   void log_metaspace_failure(const char* reason) {
219     ResourceMark rm;
220     StringLogMessage lm;
221     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
222     lm.print("\n");
223     log(JavaThread::current(), "%s", (const char*)lm);
224   }
225 };
226 
227 static CompilationLog* _compilation_log = NULL;
228 
compileBroker_init()229 bool compileBroker_init() {
230   if (LogEvents) {
231     _compilation_log = new CompilationLog();
232   }
233 
234   // init directives stack, adding default directive
235   DirectivesStack::init();
236 
237   if (DirectivesParser::has_file()) {
238     return DirectivesParser::parse_from_flag();
239   } else if (CompilerDirectivesPrint) {
240     // Print default directive even when no other was added
241     DirectivesStack::print(tty);
242   }
243 
244   return true;
245 }
246 
CompileTaskWrapper(CompileTask * task)247 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
248   CompilerThread* thread = CompilerThread::current();
249   thread->set_task(task);
250 #if INCLUDE_JVMCI
251   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
252     task->set_jvmci_compiler_thread(thread);
253   }
254 #endif
255   CompileLog*     log  = thread->log();
256   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
257 }
258 
~CompileTaskWrapper()259 CompileTaskWrapper::~CompileTaskWrapper() {
260   CompilerThread* thread = CompilerThread::current();
261   CompileTask* task = thread->task();
262   CompileLog*  log  = thread->log();
263   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
264   thread->set_task(NULL);
265   task->set_code_handle(NULL);
266   thread->set_env(NULL);
267   if (task->is_blocking()) {
268     bool free_task = false;
269     {
270       MutexLocker notifier(thread, task->lock());
271       task->mark_complete();
272 #if INCLUDE_JVMCI
273       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
274         if (!task->has_waiter()) {
275           // The waiting thread timed out and thus did not free the task.
276           free_task = true;
277         }
278         task->set_jvmci_compiler_thread(NULL);
279       }
280 #endif
281       if (!free_task) {
282         // Notify the waiting thread that the compilation has completed
283         // so that it can free the task.
284         task->lock()->notify_all();
285       }
286     }
287     if (free_task) {
288       // The task can only be freed once the task lock is released.
289       CompileTask::free(task);
290     }
291   } else {
292     task->mark_complete();
293 
294     // By convention, the compiling thread is responsible for
295     // recycling a non-blocking CompileTask.
296     CompileTask::free(task);
297   }
298 }
299 
300 /**
301  * Check if a CompilerThread can be removed and update count if requested.
302  */
can_remove(CompilerThread * ct,bool do_it)303 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
304   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
305   if (!ReduceNumberOfCompilerThreads) return false;
306 
307   AbstractCompiler *compiler = ct->compiler();
308   int compiler_count = compiler->num_compiler_threads();
309   bool c1 = compiler->is_c1();
310 
311   // Keep at least 1 compiler thread of each type.
312   if (compiler_count < 2) return false;
313 
314   // Keep thread alive for at least some time.
315   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
316 
317 #if INCLUDE_JVMCI
318   if (compiler->is_jvmci()) {
319     // Handles for JVMCI thread objects may get released concurrently.
320     if (do_it) {
321       assert(CompileThread_lock->owner() == ct, "must be holding lock");
322     } else {
323       // Skip check if it's the last thread and let caller check again.
324       return true;
325     }
326   }
327 #endif
328 
329   // We only allow the last compiler thread of each type to get removed.
330   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
331                              : compiler2_object(compiler_count - 1);
332   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
333     if (do_it) {
334       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
335       compiler->set_num_compiler_threads(compiler_count - 1);
336 #if INCLUDE_JVMCI
337       if (compiler->is_jvmci()) {
338         // Old j.l.Thread object can die when no longer referenced elsewhere.
339         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
340         _compiler2_objects[compiler_count - 1] = NULL;
341       }
342 #endif
343     }
344     return true;
345   }
346   return false;
347 }
348 
349 /**
350  * Add a CompileTask to a CompileQueue.
351  */
add(CompileTask * task)352 void CompileQueue::add(CompileTask* task) {
353   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
354 
355   task->set_next(NULL);
356   task->set_prev(NULL);
357 
358   if (_last == NULL) {
359     // The compile queue is empty.
360     assert(_first == NULL, "queue is empty");
361     _first = task;
362     _last = task;
363   } else {
364     // Append the task to the queue.
365     assert(_last->next() == NULL, "not last");
366     _last->set_next(task);
367     task->set_prev(_last);
368     _last = task;
369   }
370   ++_size;
371 
372   // Mark the method as being in the compile queue.
373   task->method()->set_queued_for_compilation();
374 
375   if (CIPrintCompileQueue) {
376     print_tty();
377   }
378 
379   if (LogCompilation && xtty != NULL) {
380     task->log_task_queued();
381   }
382 
383   // Notify CompilerThreads that a task is available.
384   MethodCompileQueue_lock->notify_all();
385 }
386 
387 /**
388  * Empties compilation queue by putting all compilation tasks onto
389  * a freelist. Furthermore, the method wakes up all threads that are
390  * waiting on a compilation task to finish. This can happen if background
391  * compilation is disabled.
392  */
free_all()393 void CompileQueue::free_all() {
394   MutexLocker mu(MethodCompileQueue_lock);
395   CompileTask* next = _first;
396 
397   // Iterate over all tasks in the compile queue
398   while (next != NULL) {
399     CompileTask* current = next;
400     next = current->next();
401     {
402       // Wake up thread that blocks on the compile task.
403       MutexLocker ct_lock(current->lock());
404       current->lock()->notify();
405     }
406     // Put the task back on the freelist.
407     CompileTask::free(current);
408   }
409   _first = NULL;
410 
411   // Wake up all threads that block on the queue.
412   MethodCompileQueue_lock->notify_all();
413 }
414 
415 /**
416  * Get the next CompileTask from a CompileQueue
417  */
get()418 CompileTask* CompileQueue::get() {
419   // save methods from RedefineClasses across safepoint
420   // across MethodCompileQueue_lock below.
421   methodHandle save_method;
422   methodHandle save_hot_method;
423 
424   MonitorLocker locker(MethodCompileQueue_lock);
425   // If _first is NULL we have no more compile jobs. There are two reasons for
426   // having no compile jobs: First, we compiled everything we wanted. Second,
427   // we ran out of code cache so compilation has been disabled. In the latter
428   // case we perform code cache sweeps to free memory such that we can re-enable
429   // compilation.
430   while (_first == NULL) {
431     // Exit loop if compilation is disabled forever
432     if (CompileBroker::is_compilation_disabled_forever()) {
433       return NULL;
434     }
435 
436     // If there are no compilation tasks and we can compile new jobs
437     // (i.e., there is enough free space in the code cache) there is
438     // no need to invoke the sweeper. As a result, the hotness of methods
439     // remains unchanged. This behavior is desired, since we want to keep
440     // the stable state, i.e., we do not want to evict methods from the
441     // code cache if it is unnecessary.
442     // We need a timed wait here, since compiler threads can exit if compilation
443     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
444     // is not critical and we do not want idle compiler threads to wake up too often.
445     locker.wait(5*1000);
446 
447     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
448       // Still nothing to compile. Give caller a chance to stop this thread.
449       if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
450     }
451   }
452 
453   if (CompileBroker::is_compilation_disabled_forever()) {
454     return NULL;
455   }
456 
457   CompileTask* task;
458   {
459     NoSafepointVerifier nsv;
460     task = CompilationPolicy::policy()->select_task(this);
461     if (task != NULL) {
462       task = task->select_for_compilation();
463     }
464   }
465 
466   if (task != NULL) {
467     // Save method pointers across unlock safepoint.  The task is removed from
468     // the compilation queue, which is walked during RedefineClasses.
469     Thread* thread = Thread::current();
470     save_method = methodHandle(thread, task->method());
471     save_hot_method = methodHandle(thread, task->hot_method());
472 
473     remove(task);
474   }
475   purge_stale_tasks(); // may temporarily release MCQ lock
476   return task;
477 }
478 
479 // Clean & deallocate stale compile tasks.
480 // Temporarily releases MethodCompileQueue lock.
purge_stale_tasks()481 void CompileQueue::purge_stale_tasks() {
482   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
483   if (_first_stale != NULL) {
484     // Stale tasks are purged when MCQ lock is released,
485     // but _first_stale updates are protected by MCQ lock.
486     // Once task processing starts and MCQ lock is released,
487     // other compiler threads can reuse _first_stale.
488     CompileTask* head = _first_stale;
489     _first_stale = NULL;
490     {
491       MutexUnlocker ul(MethodCompileQueue_lock);
492       for (CompileTask* task = head; task != NULL; ) {
493         CompileTask* next_task = task->next();
494         CompileTaskWrapper ctw(task); // Frees the task
495         task->set_failure_reason("stale task");
496         task = next_task;
497       }
498     }
499   }
500 }
501 
remove(CompileTask * task)502 void CompileQueue::remove(CompileTask* task) {
503   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
504   if (task->prev() != NULL) {
505     task->prev()->set_next(task->next());
506   } else {
507     // max is the first element
508     assert(task == _first, "Sanity");
509     _first = task->next();
510   }
511 
512   if (task->next() != NULL) {
513     task->next()->set_prev(task->prev());
514   } else {
515     // max is the last element
516     assert(task == _last, "Sanity");
517     _last = task->prev();
518   }
519   --_size;
520 }
521 
remove_and_mark_stale(CompileTask * task)522 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
523   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
524   remove(task);
525 
526   // Enqueue the task for reclamation (should be done outside MCQ lock)
527   task->set_next(_first_stale);
528   task->set_prev(NULL);
529   _first_stale = task;
530 }
531 
532 // methods in the compile queue need to be marked as used on the stack
533 // so that they don't get reclaimed by Redefine Classes
mark_on_stack()534 void CompileQueue::mark_on_stack() {
535   CompileTask* task = _first;
536   while (task != NULL) {
537     task->mark_on_stack();
538     task = task->next();
539   }
540 }
541 
542 
compile_queue(int comp_level)543 CompileQueue* CompileBroker::compile_queue(int comp_level) {
544   if (is_c2_compile(comp_level)) return _c2_compile_queue;
545   if (is_c1_compile(comp_level)) return _c1_compile_queue;
546   return NULL;
547 }
548 
print_compile_queues(outputStream * st)549 void CompileBroker::print_compile_queues(outputStream* st) {
550   st->print_cr("Current compiles: ");
551 
552   char buf[2000];
553   int buflen = sizeof(buf);
554   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
555 
556   st->cr();
557   if (_c1_compile_queue != NULL) {
558     _c1_compile_queue->print(st);
559   }
560   if (_c2_compile_queue != NULL) {
561     _c2_compile_queue->print(st);
562   }
563 }
564 
print(outputStream * st)565 void CompileQueue::print(outputStream* st) {
566   assert_locked_or_safepoint(MethodCompileQueue_lock);
567   st->print_cr("%s:", name());
568   CompileTask* task = _first;
569   if (task == NULL) {
570     st->print_cr("Empty");
571   } else {
572     while (task != NULL) {
573       task->print(st, NULL, true, true);
574       task = task->next();
575     }
576   }
577   st->cr();
578 }
579 
print_tty()580 void CompileQueue::print_tty() {
581   ResourceMark rm;
582   stringStream ss;
583   // Dump the compile queue into a buffer before locking the tty
584   print(&ss);
585   {
586     ttyLocker ttyl;
587     tty->print("%s", ss.as_string());
588   }
589 }
590 
CompilerCounters()591 CompilerCounters::CompilerCounters() {
592   _current_method[0] = '\0';
593   _compile_type = CompileBroker::no_compile;
594 }
595 
596 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
597 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
598 // in compiler/compilerEvent.cpp) and registers it with its serializer.
599 //
600 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
601 // so if c2 is used, it should be always registered first.
602 // This function is called during vm initialization.
register_jfr_phasetype_serializer(CompilerType compiler_type)603 void register_jfr_phasetype_serializer(CompilerType compiler_type) {
604   ResourceMark rm;
605   static bool first_registration = true;
606   if (compiler_type == compiler_jvmci) {
607     // register serializer, phases will be added later lazily.
608     GrowableArray<const char*>* jvmci_phase_names = new GrowableArray<const char*>(1);
609     jvmci_phase_names->append("NOT_A_PHASE_NAME");
610     CompilerEvent::PhaseEvent::register_phases(jvmci_phase_names);
611     first_registration = false;
612 #ifdef COMPILER2
613   } else if (compiler_type == compiler_c2) {
614     assert(first_registration, "invariant"); // c2 must be registered first.
615     GrowableArray<const char*>* c2_phase_names = new GrowableArray<const char*>(PHASE_NUM_TYPES);
616     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
617       c2_phase_names->append(CompilerPhaseTypeHelper::to_string((CompilerPhaseType)i));
618     }
619     CompilerEvent::PhaseEvent::register_phases(c2_phase_names);
620     first_registration = false;
621 #endif // COMPILER2
622   }
623 }
624 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
625 
626 // ------------------------------------------------------------------
627 // CompileBroker::compilation_init
628 //
629 // Initialize the Compilation object
compilation_init_phase1(Thread * THREAD)630 void CompileBroker::compilation_init_phase1(Thread* THREAD) {
631   // No need to initialize compilation system if we do not use it.
632   if (!UseCompiler) {
633     return;
634   }
635   // Set the interface to the current compiler(s).
636   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
637   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
638 
639 #if INCLUDE_JVMCI
640   if (EnableJVMCI) {
641     // This is creating a JVMCICompiler singleton.
642     JVMCICompiler* jvmci = new JVMCICompiler();
643 
644     if (UseJVMCICompiler) {
645       _compilers[1] = jvmci;
646       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
647         if (BootstrapJVMCI) {
648           // JVMCI will bootstrap so give it more threads
649           _c2_count = MIN2(32, os::active_processor_count());
650         }
651       } else {
652         _c2_count = JVMCIThreads;
653       }
654       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
655       } else {
656         _c1_count = JVMCIHostThreads;
657       }
658     }
659   }
660 #endif // INCLUDE_JVMCI
661 
662 #ifdef COMPILER1
663   if (_c1_count > 0) {
664     _compilers[0] = new Compiler();
665   }
666 #endif // COMPILER1
667 
668 #ifdef COMPILER2
669   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
670     if (_c2_count > 0) {
671       _compilers[1] = new C2Compiler();
672       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
673       // idToPhase mapping for c2 is in opto/phasetype.hpp
674       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
675     }
676   }
677 #endif // COMPILER2
678 
679 #if INCLUDE_JVMCI
680    // Register after c2 registration.
681    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
682    if (EnableJVMCI) {
683      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
684    }
685 #endif // INCLUDE_JVMCI
686 
687   // Start the compiler thread(s) and the sweeper thread
688   init_compiler_sweeper_threads();
689   // totalTime performance counter is always created as it is required
690   // by the implementation of java.lang.management.CompilationMBean.
691   {
692     // Ensure OOM leads to vm_exit_during_initialization.
693     EXCEPTION_MARK;
694     _perf_total_compilation =
695                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
696                                                  PerfData::U_Ticks, CHECK);
697   }
698 
699   if (UsePerfData) {
700 
701     EXCEPTION_MARK;
702 
703     // create the jvmstat performance counters
704     _perf_osr_compilation =
705                  PerfDataManager::create_counter(SUN_CI, "osrTime",
706                                                  PerfData::U_Ticks, CHECK);
707 
708     _perf_standard_compilation =
709                  PerfDataManager::create_counter(SUN_CI, "standardTime",
710                                                  PerfData::U_Ticks, CHECK);
711 
712     _perf_total_bailout_count =
713                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
714                                                  PerfData::U_Events, CHECK);
715 
716     _perf_total_invalidated_count =
717                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
718                                                  PerfData::U_Events, CHECK);
719 
720     _perf_total_compile_count =
721                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
722                                                  PerfData::U_Events, CHECK);
723     _perf_total_osr_compile_count =
724                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
725                                                  PerfData::U_Events, CHECK);
726 
727     _perf_total_standard_compile_count =
728                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
729                                                  PerfData::U_Events, CHECK);
730 
731     _perf_sum_osr_bytes_compiled =
732                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
733                                                  PerfData::U_Bytes, CHECK);
734 
735     _perf_sum_standard_bytes_compiled =
736                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
737                                                  PerfData::U_Bytes, CHECK);
738 
739     _perf_sum_nmethod_size =
740                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
741                                                  PerfData::U_Bytes, CHECK);
742 
743     _perf_sum_nmethod_code_size =
744                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
745                                                  PerfData::U_Bytes, CHECK);
746 
747     _perf_last_method =
748                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
749                                        CompilerCounters::cmname_buffer_length,
750                                        "", CHECK);
751 
752     _perf_last_failed_method =
753             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
754                                        CompilerCounters::cmname_buffer_length,
755                                        "", CHECK);
756 
757     _perf_last_invalidated_method =
758         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
759                                      CompilerCounters::cmname_buffer_length,
760                                      "", CHECK);
761 
762     _perf_last_compile_type =
763              PerfDataManager::create_variable(SUN_CI, "lastType",
764                                               PerfData::U_None,
765                                               (jlong)CompileBroker::no_compile,
766                                               CHECK);
767 
768     _perf_last_compile_size =
769              PerfDataManager::create_variable(SUN_CI, "lastSize",
770                                               PerfData::U_Bytes,
771                                               (jlong)CompileBroker::no_compile,
772                                               CHECK);
773 
774 
775     _perf_last_failed_type =
776              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
777                                               PerfData::U_None,
778                                               (jlong)CompileBroker::no_compile,
779                                               CHECK);
780 
781     _perf_last_invalidated_type =
782          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
783                                           PerfData::U_None,
784                                           (jlong)CompileBroker::no_compile,
785                                           CHECK);
786   }
787 }
788 
789 // Completes compiler initialization. Compilation requests submitted
790 // prior to this will be silently ignored.
compilation_init_phase2()791 void CompileBroker::compilation_init_phase2() {
792   _initialized = true;
793 }
794 
create_thread_oop(const char * name,TRAPS)795 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
796   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
797   Handle thread_group(THREAD, Universe::system_thread_group());
798   return JavaCalls::construct_new_instance(
799                        SystemDictionary::Thread_klass(),
800                        vmSymbols::threadgroup_string_void_signature(),
801                        thread_group,
802                        string,
803                        CHECK_NH);
804 }
805 
806 
make_thread(jobject thread_handle,CompileQueue * queue,AbstractCompiler * comp,Thread * THREAD)807 JavaThread* CompileBroker::make_thread(jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, Thread* THREAD) {
808   JavaThread* new_thread = NULL;
809   {
810     MutexLocker mu(THREAD, Threads_lock);
811     if (comp != NULL) {
812       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
813         CompilerCounters* counters = new CompilerCounters();
814         new_thread = new CompilerThread(queue, counters);
815       }
816     } else {
817       new_thread = new CodeCacheSweeperThread();
818     }
819     // At this point the new CompilerThread data-races with this startup
820     // thread (which I believe is the primoridal thread and NOT the VM
821     // thread).  This means Java bytecodes being executed at startup can
822     // queue compile jobs which will run at whatever default priority the
823     // newly created CompilerThread runs at.
824 
825 
826     // At this point it may be possible that no osthread was created for the
827     // JavaThread due to lack of memory. We would have to throw an exception
828     // in that case. However, since this must work and we do not allow
829     // exceptions anyway, check and abort if this fails. But first release the
830     // lock.
831 
832     if (new_thread != NULL && new_thread->osthread() != NULL) {
833 
834       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), new_thread);
835 
836       // Note that this only sets the JavaThread _priority field, which by
837       // definition is limited to Java priorities and not OS priorities.
838       // The os-priority is set in the CompilerThread startup code itself
839 
840       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
841 
842       // Note that we cannot call os::set_priority because it expects Java
843       // priorities and we are *explicitly* using OS priorities so that it's
844       // possible to set the compiler thread priority higher than any Java
845       // thread.
846 
847       int native_prio = CompilerThreadPriority;
848       if (native_prio == -1) {
849         if (UseCriticalCompilerThreadPriority) {
850           native_prio = os::java_to_os_priority[CriticalPriority];
851         } else {
852           native_prio = os::java_to_os_priority[NearMaxPriority];
853         }
854       }
855       os::set_native_priority(new_thread, native_prio);
856 
857       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
858 
859       new_thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
860       if (comp != NULL) {
861         new_thread->as_CompilerThread()->set_compiler(comp);
862       }
863       Threads::add(new_thread);
864       Thread::start(new_thread);
865     }
866   }
867 
868   // First release lock before aborting VM.
869   if (new_thread == NULL || new_thread->osthread() == NULL) {
870     if (UseDynamicNumberOfCompilerThreads && comp != NULL && comp->num_compiler_threads() > 0) {
871       if (new_thread != NULL) {
872         new_thread->smr_delete();
873       }
874       return NULL;
875     }
876     vm_exit_during_initialization("java.lang.OutOfMemoryError",
877                                   os::native_thread_creation_failed_msg());
878   }
879 
880   // Let go of Threads_lock before yielding
881   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
882 
883   return new_thread;
884 }
885 
886 
init_compiler_sweeper_threads()887 void CompileBroker::init_compiler_sweeper_threads() {
888   NMethodSweeper::set_sweep_threshold_bytes(static_cast<size_t>(SweeperThreshold * ReservedCodeCacheSize / 100.0));
889   log_info(codecache, sweep)("Sweeper threshold: " SIZE_FORMAT " bytes", NMethodSweeper::sweep_threshold_bytes());
890 
891   // Ensure any exceptions lead to vm_exit_during_initialization.
892   EXCEPTION_MARK;
893 #if !defined(ZERO)
894   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
895 #endif // !ZERO
896   // Initialize the compilation queue
897   if (_c2_count > 0) {
898     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
899     _c2_compile_queue  = new CompileQueue(name);
900     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
901     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
902   }
903   if (_c1_count > 0) {
904     _c1_compile_queue  = new CompileQueue("C1 compile queue");
905     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
906     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
907   }
908 
909   char name_buffer[256];
910 
911   for (int i = 0; i < _c2_count; i++) {
912     jobject thread_handle = NULL;
913     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
914     // for JVMCI compiler which can create further ones on demand.
915     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
916     // Create a name for our thread.
917     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
918     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
919     thread_handle = JNIHandles::make_global(thread_oop);
920     JVMCI_ONLY(})
921     _compiler2_objects[i] = thread_handle;
922     _compiler2_logs[i] = NULL;
923 
924     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
925       JavaThread *ct = make_thread(thread_handle, _c2_compile_queue, _compilers[1], THREAD);
926       assert(ct != NULL, "should have been handled for initial thread");
927       _compilers[1]->set_num_compiler_threads(i + 1);
928       if (TraceCompilerThreads) {
929         ResourceMark rm;
930         MutexLocker mu(Threads_lock);
931         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
932       }
933     }
934   }
935 
936   for (int i = 0; i < _c1_count; i++) {
937     // Create a name for our thread.
938     sprintf(name_buffer, "C1 CompilerThread%d", i);
939     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
940     jobject thread_handle = JNIHandles::make_global(thread_oop);
941     _compiler1_objects[i] = thread_handle;
942     _compiler1_logs[i] = NULL;
943 
944     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
945       JavaThread *ct = make_thread(thread_handle, _c1_compile_queue, _compilers[0], THREAD);
946       assert(ct != NULL, "should have been handled for initial thread");
947       _compilers[0]->set_num_compiler_threads(i + 1);
948       if (TraceCompilerThreads) {
949         ResourceMark rm;
950         MutexLocker mu(Threads_lock);
951         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
952       }
953     }
954   }
955 
956   if (UsePerfData) {
957     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
958   }
959 
960   if (MethodFlushing) {
961     // Initialize the sweeper thread
962     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
963     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
964     make_thread(thread_handle, NULL, NULL, THREAD);
965   }
966 }
967 
968 void CompileBroker::possibly_add_compiler_threads(Thread* THREAD) {
969 
970   julong available_memory = os::available_memory();
971   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
972   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
973          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
974 
975   // Only do attempt to start additional threads if the lock is free.
976   if (!CompileThread_lock->try_lock()) return;
977 
978   if (_c2_compile_queue != NULL) {
979     int old_c2_count = _compilers[1]->num_compiler_threads();
980     int new_c2_count = MIN4(_c2_count,
981         _c2_compile_queue->size() / 2,
982         (int)(available_memory / (200*M)),
983         (int)(available_cc_np / (128*K)));
984 
985     for (int i = old_c2_count; i < new_c2_count; i++) {
986 #if INCLUDE_JVMCI
987       if (UseJVMCICompiler) {
988         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
989         // objects as their existence is completely hidden from the rest of
990         // the VM (and those compiler threads can't call Java code to do the
991         // creation anyway). For JVMCI we have to create new j.l.Thread objects
992         // as they are visible and we can see unexpected thread lifecycle
993         // transitions if we bind them to new JavaThreads.
994         if (!THREAD->can_call_java()) break;
995         char name_buffer[256];
996         sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
997         Handle thread_oop;
998         {
999           // We have to give up the lock temporarily for the Java calls.
1000           MutexUnlocker mu(CompileThread_lock);
1001           thread_oop = create_thread_oop(name_buffer, THREAD);
1002         }
1003         if (HAS_PENDING_EXCEPTION) {
1004           if (TraceCompilerThreads) {
1005             ResourceMark rm;
1006             tty->print_cr("JVMCI compiler thread creation failed:");
1007             PENDING_EXCEPTION->print();
1008           }
1009           CLEAR_PENDING_EXCEPTION;
1010           break;
1011         }
1012         // Check if another thread has beaten us during the Java calls.
1013         if (_compilers[1]->num_compiler_threads() != i) break;
1014         jobject thread_handle = JNIHandles::make_global(thread_oop);
1015         assert(compiler2_object(i) == NULL, "Old one must be released!");
1016         _compiler2_objects[i] = thread_handle;
1017       }
1018 #endif
1019       JavaThread *ct = make_thread(compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1020       if (ct == NULL) break;
1021       _compilers[1]->set_num_compiler_threads(i + 1);
1022       if (TraceCompilerThreads) {
1023         ResourceMark rm;
1024         MutexLocker mu(Threads_lock);
1025         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
1026                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
1027       }
1028     }
1029   }
1030 
1031   if (_c1_compile_queue != NULL) {
1032     int old_c1_count = _compilers[0]->num_compiler_threads();
1033     int new_c1_count = MIN4(_c1_count,
1034         _c1_compile_queue->size() / 4,
1035         (int)(available_memory / (100*M)),
1036         (int)(available_cc_p / (128*K)));
1037 
1038     for (int i = old_c1_count; i < new_c1_count; i++) {
1039       JavaThread *ct = make_thread(compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1040       if (ct == NULL) break;
1041       _compilers[0]->set_num_compiler_threads(i + 1);
1042       if (TraceCompilerThreads) {
1043         ResourceMark rm;
1044         MutexLocker mu(Threads_lock);
1045         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
1046                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
1047       }
1048     }
1049   }
1050 
1051   CompileThread_lock->unlock();
1052 }
1053 
1054 
1055 /**
1056  * Set the methods on the stack as on_stack so that redefine classes doesn't
1057  * reclaim them. This method is executed at a safepoint.
1058  */
1059 void CompileBroker::mark_on_stack() {
1060   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1061   // Since we are at a safepoint, we do not need a lock to access
1062   // the compile queues.
1063   if (_c2_compile_queue != NULL) {
1064     _c2_compile_queue->mark_on_stack();
1065   }
1066   if (_c1_compile_queue != NULL) {
1067     _c1_compile_queue->mark_on_stack();
1068   }
1069 }
1070 
1071 // ------------------------------------------------------------------
1072 // CompileBroker::compile_method
1073 //
1074 // Request compilation of a method.
1075 void CompileBroker::compile_method_base(const methodHandle& method,
1076                                         int osr_bci,
1077                                         int comp_level,
1078                                         const methodHandle& hot_method,
1079                                         int hot_count,
1080                                         CompileTask::CompileReason compile_reason,
1081                                         bool blocking,
1082                                         Thread* thread) {
1083   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1084   assert(method->method_holder()->is_instance_klass(),
1085          "sanity check");
1086   assert(!method->method_holder()->is_not_initialized(),
1087          "method holder must be initialized");
1088   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1089 
1090   if (CIPrintRequests) {
1091     tty->print("request: ");
1092     method->print_short_name(tty);
1093     if (osr_bci != InvocationEntryBci) {
1094       tty->print(" osr_bci: %d", osr_bci);
1095     }
1096     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1097     if (!hot_method.is_null()) {
1098       tty->print(" hot: ");
1099       if (hot_method() != method()) {
1100           hot_method->print_short_name(tty);
1101       } else {
1102         tty->print("yes");
1103       }
1104     }
1105     tty->cr();
1106   }
1107 
1108   // A request has been made for compilation.  Before we do any
1109   // real work, check to see if the method has been compiled
1110   // in the meantime with a definitive result.
1111   if (compilation_is_complete(method, osr_bci, comp_level)) {
1112     return;
1113   }
1114 
1115 #ifndef PRODUCT
1116   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1117     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1118       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1119       return;
1120     }
1121   }
1122 #endif
1123 
1124   // If this method is already in the compile queue, then
1125   // we do not block the current thread.
1126   if (compilation_is_in_queue(method)) {
1127     // We may want to decay our counter a bit here to prevent
1128     // multiple denied requests for compilation.  This is an
1129     // open compilation policy issue. Note: The other possibility,
1130     // in the case that this is a blocking compile request, is to have
1131     // all subsequent blocking requesters wait for completion of
1132     // ongoing compiles. Note that in this case we'll need a protocol
1133     // for freeing the associated compile tasks. [Or we could have
1134     // a single static monitor on which all these waiters sleep.]
1135     return;
1136   }
1137 
1138   if (TieredCompilation) {
1139     // Tiered policy requires MethodCounters to exist before adding a method to
1140     // the queue. Create if we don't have them yet.
1141     method->get_method_counters(thread);
1142   }
1143 
1144   // Outputs from the following MutexLocker block:
1145   CompileTask* task     = NULL;
1146   CompileQueue* queue  = compile_queue(comp_level);
1147 
1148   // Acquire our lock.
1149   {
1150     MutexLocker locker(thread, MethodCompileQueue_lock);
1151 
1152     // Make sure the method has not slipped into the queues since
1153     // last we checked; note that those checks were "fast bail-outs".
1154     // Here we need to be more careful, see 14012000 below.
1155     if (compilation_is_in_queue(method)) {
1156       return;
1157     }
1158 
1159     // We need to check again to see if the compilation has
1160     // completed.  A previous compilation may have registered
1161     // some result.
1162     if (compilation_is_complete(method, osr_bci, comp_level)) {
1163       return;
1164     }
1165 
1166     // We now know that this compilation is not pending, complete,
1167     // or prohibited.  Assign a compile_id to this compilation
1168     // and check to see if it is in our [Start..Stop) range.
1169     int compile_id = assign_compile_id(method, osr_bci);
1170     if (compile_id == 0) {
1171       // The compilation falls outside the allowed range.
1172       return;
1173     }
1174 
1175 #if INCLUDE_JVMCI
1176     if (UseJVMCICompiler && blocking) {
1177       // Don't allow blocking compiles for requests triggered by JVMCI.
1178       if (thread->is_Compiler_thread()) {
1179         blocking = false;
1180       }
1181 
1182       if (!UseJVMCINativeLibrary) {
1183         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1184         vframeStream vfst((JavaThread*) thread);
1185         for (; !vfst.at_end(); vfst.next()) {
1186           if (vfst.method()->is_static_initializer() ||
1187               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1188                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1189             blocking = false;
1190             break;
1191           }
1192         }
1193       }
1194 
1195       // Don't allow blocking compilation requests to JVMCI
1196       // if JVMCI itself is not yet initialized
1197       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1198         blocking = false;
1199       }
1200 
1201       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1202       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1203       // such as the DestroyJavaVM thread.
1204       if (JVMCI::shutdown_called()) {
1205         blocking = false;
1206       }
1207     }
1208 #endif // INCLUDE_JVMCI
1209 
1210     // We will enter the compilation in the queue.
1211     // 14012000: Note that this sets the queued_for_compile bits in
1212     // the target method. We can now reason that a method cannot be
1213     // queued for compilation more than once, as follows:
1214     // Before a thread queues a task for compilation, it first acquires
1215     // the compile queue lock, then checks if the method's queued bits
1216     // are set or it has already been compiled. Thus there can not be two
1217     // instances of a compilation task for the same method on the
1218     // compilation queue. Consider now the case where the compilation
1219     // thread has already removed a task for that method from the queue
1220     // and is in the midst of compiling it. In this case, the
1221     // queued_for_compile bits must be set in the method (and these
1222     // will be visible to the current thread, since the bits were set
1223     // under protection of the compile queue lock, which we hold now.
1224     // When the compilation completes, the compiler thread first sets
1225     // the compilation result and then clears the queued_for_compile
1226     // bits. Neither of these actions are protected by a barrier (or done
1227     // under the protection of a lock), so the only guarantee we have
1228     // (on machines with TSO (Total Store Order)) is that these values
1229     // will update in that order. As a result, the only combinations of
1230     // these bits that the current thread will see are, in temporal order:
1231     // <RESULT, QUEUE> :
1232     //     <0, 1> : in compile queue, but not yet compiled
1233     //     <1, 1> : compiled but queue bit not cleared
1234     //     <1, 0> : compiled and queue bit cleared
1235     // Because we first check the queue bits then check the result bits,
1236     // we are assured that we cannot introduce a duplicate task.
1237     // Note that if we did the tests in the reverse order (i.e. check
1238     // result then check queued bit), we could get the result bit before
1239     // the compilation completed, and the queue bit after the compilation
1240     // completed, and end up introducing a "duplicate" (redundant) task.
1241     // In that case, the compiler thread should first check if a method
1242     // has already been compiled before trying to compile it.
1243     // NOTE: in the event that there are multiple compiler threads and
1244     // there is de-optimization/recompilation, things will get hairy,
1245     // and in that case it's best to protect both the testing (here) of
1246     // these bits, and their updating (here and elsewhere) under a
1247     // common lock.
1248     task = create_compile_task(queue,
1249                                compile_id, method,
1250                                osr_bci, comp_level,
1251                                hot_method, hot_count, compile_reason,
1252                                blocking);
1253   }
1254 
1255   if (blocking) {
1256     wait_for_completion(task);
1257   }
1258 }
1259 
1260 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1261                                        int comp_level,
1262                                        const methodHandle& hot_method, int hot_count,
1263                                        CompileTask::CompileReason compile_reason,
1264                                        Thread* THREAD) {
1265   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1266   if (!_initialized || comp_level == CompLevel_none) {
1267     return NULL;
1268   }
1269 
1270   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1271   assert(comp != NULL, "Ensure we have a compiler");
1272 
1273   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1274   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1275   DirectivesStack::release(directive);
1276   return nm;
1277 }
1278 
1279 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1280                                          int comp_level,
1281                                          const methodHandle& hot_method, int hot_count,
1282                                          CompileTask::CompileReason compile_reason,
1283                                          DirectiveSet* directive,
1284                                          Thread* THREAD) {
1285 
1286   // make sure arguments make sense
1287   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1288   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1289   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1290   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1291   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1292   // allow any levels for WhiteBox
1293   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1294   // return quickly if possible
1295 
1296   // lock, make sure that the compilation
1297   // isn't prohibited in a straightforward way.
1298   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1299   if (comp == NULL || !comp->can_compile_method(method) ||
1300       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1301     return NULL;
1302   }
1303 
1304 #if INCLUDE_JVMCI
1305   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1306     return NULL;
1307   }
1308 #endif
1309 
1310   if (osr_bci == InvocationEntryBci) {
1311     // standard compilation
1312     CompiledMethod* method_code = method->code();
1313     if (method_code != NULL && method_code->is_nmethod()) {
1314       if (compilation_is_complete(method, osr_bci, comp_level)) {
1315         return (nmethod*) method_code;
1316       }
1317     }
1318     if (method->is_not_compilable(comp_level)) {
1319       return NULL;
1320     }
1321   } else {
1322     // osr compilation
1323 #ifndef TIERED
1324     // seems like an assert of dubious value
1325     assert(comp_level == CompLevel_highest_tier,
1326            "all OSR compiles are assumed to be at a single compilation level");
1327 #endif // TIERED
1328     // We accept a higher level osr method
1329     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1330     if (nm != NULL) return nm;
1331     if (method->is_not_osr_compilable(comp_level)) return NULL;
1332   }
1333 
1334   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1335   // some prerequisites that are compiler specific
1336   if (comp->is_c2()) {
1337     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1338     // Resolve all classes seen in the signature of the method
1339     // we are compiling.
1340     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1341   }
1342 
1343   // If the method is native, do the lookup in the thread requesting
1344   // the compilation. Native lookups can load code, which is not
1345   // permitted during compilation.
1346   //
1347   // Note: A native method implies non-osr compilation which is
1348   //       checked with an assertion at the entry of this method.
1349   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1350     bool in_base_library;
1351     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1352     if (HAS_PENDING_EXCEPTION) {
1353       // In case of an exception looking up the method, we just forget
1354       // about it. The interpreter will kick-in and throw the exception.
1355       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1356       CLEAR_PENDING_EXCEPTION;
1357       return NULL;
1358     }
1359     assert(method->has_native_function(), "must have native code by now");
1360   }
1361 
1362   // RedefineClasses() has replaced this method; just return
1363   if (method->is_old()) {
1364     return NULL;
1365   }
1366 
1367   // JVMTI -- post_compile_event requires jmethod_id() that may require
1368   // a lock the compiling thread can not acquire. Prefetch it here.
1369   if (JvmtiExport::should_post_compiled_method_load()) {
1370     method->jmethod_id();
1371   }
1372 
1373   // do the compilation
1374   if (method->is_native()) {
1375     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1376 #if defined(X86) && !defined(ZERO)
1377       // The following native methods:
1378       //
1379       // java.lang.Float.intBitsToFloat
1380       // java.lang.Float.floatToRawIntBits
1381       // java.lang.Double.longBitsToDouble
1382       // java.lang.Double.doubleToRawLongBits
1383       //
1384       // are called through the interpreter even if interpreter native stubs
1385       // are not preferred (i.e., calling through adapter handlers is preferred).
1386       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1387       // if the version of the methods from the native libraries is called.
1388       // As the interpreter and the C2-intrinsified version of the methods preserves
1389       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1390       if ((UseSSE >= 1 &&
1391           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1392            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1393           (UseSSE >= 2 &&
1394            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1395             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1396         return NULL;
1397       }
1398 #endif // X86 && !ZERO
1399 
1400       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1401       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1402       //
1403       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1404       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1405       AdapterHandlerLibrary::create_native_wrapper(method);
1406     } else {
1407       return NULL;
1408     }
1409   } else {
1410     // If the compiler is shut off due to code cache getting full
1411     // fail out now so blocking compiles dont hang the java thread
1412     if (!should_compile_new_jobs()) {
1413       CompilationPolicy::policy()->delay_compilation(method());
1414       return NULL;
1415     }
1416     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1417     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1418   }
1419 
1420   // return requested nmethod
1421   // We accept a higher level osr method
1422   if (osr_bci == InvocationEntryBci) {
1423     CompiledMethod* code = method->code();
1424     if (code == NULL) {
1425       return (nmethod*) code;
1426     } else {
1427       return code->as_nmethod_or_null();
1428     }
1429   }
1430   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1431 }
1432 
1433 
1434 // ------------------------------------------------------------------
1435 // CompileBroker::compilation_is_complete
1436 //
1437 // See if compilation of this method is already complete.
1438 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1439                                             int                 osr_bci,
1440                                             int                 comp_level) {
1441   bool is_osr = (osr_bci != standard_entry_bci);
1442   if (is_osr) {
1443     if (method->is_not_osr_compilable(comp_level)) {
1444       return true;
1445     } else {
1446       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1447       return (result != NULL);
1448     }
1449   } else {
1450     if (method->is_not_compilable(comp_level)) {
1451       return true;
1452     } else {
1453       CompiledMethod* result = method->code();
1454       if (result == NULL) return false;
1455       return comp_level == result->comp_level();
1456     }
1457   }
1458 }
1459 
1460 
1461 /**
1462  * See if this compilation is already requested.
1463  *
1464  * Implementation note: there is only a single "is in queue" bit
1465  * for each method.  This means that the check below is overly
1466  * conservative in the sense that an osr compilation in the queue
1467  * will block a normal compilation from entering the queue (and vice
1468  * versa).  This can be remedied by a full queue search to disambiguate
1469  * cases.  If it is deemed profitable, this may be done.
1470  */
1471 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1472   return method->queued_for_compilation();
1473 }
1474 
1475 // ------------------------------------------------------------------
1476 // CompileBroker::compilation_is_prohibited
1477 //
1478 // See if this compilation is not allowed.
1479 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1480   bool is_native = method->is_native();
1481   // Some compilers may not support the compilation of natives.
1482   AbstractCompiler *comp = compiler(comp_level);
1483   if (is_native &&
1484       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1485     method->set_not_compilable_quietly("native methods not supported", comp_level);
1486     return true;
1487   }
1488 
1489   bool is_osr = (osr_bci != standard_entry_bci);
1490   // Some compilers may not support on stack replacement.
1491   if (is_osr &&
1492       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1493     method->set_not_osr_compilable("OSR not supported", comp_level);
1494     return true;
1495   }
1496 
1497   // The method may be explicitly excluded by the user.
1498   double scale;
1499   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1500     bool quietly = CompilerOracle::should_exclude_quietly();
1501     if (PrintCompilation && !quietly) {
1502       // This does not happen quietly...
1503       ResourceMark rm;
1504       tty->print("### Excluding %s:%s",
1505                  method->is_native() ? "generation of native wrapper" : "compile",
1506                  (method->is_static() ? " static" : ""));
1507       method->print_short_name(tty);
1508       tty->cr();
1509     }
1510     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1511   }
1512 
1513   return false;
1514 }
1515 
1516 /**
1517  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1518  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1519  * The function also allows to generate separate compilation IDs for OSR compilations.
1520  */
1521 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1522 #ifdef ASSERT
1523   bool is_osr = (osr_bci != standard_entry_bci);
1524   int id;
1525   if (method->is_native()) {
1526     assert(!is_osr, "can't be osr");
1527     // Adapters, native wrappers and method handle intrinsics
1528     // should be generated always.
1529     return Atomic::add(&_compilation_id, 1);
1530   } else if (CICountOSR && is_osr) {
1531     id = Atomic::add(&_osr_compilation_id, 1);
1532     if (CIStartOSR <= id && id < CIStopOSR) {
1533       return id;
1534     }
1535   } else {
1536     id = Atomic::add(&_compilation_id, 1);
1537     if (CIStart <= id && id < CIStop) {
1538       return id;
1539     }
1540   }
1541 
1542   // Method was not in the appropriate compilation range.
1543   method->set_not_compilable_quietly("Not in requested compile id range");
1544   return 0;
1545 #else
1546   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1547   // only _compilation_id is incremented.
1548   return Atomic::add(&_compilation_id, 1);
1549 #endif
1550 }
1551 
1552 // ------------------------------------------------------------------
1553 // CompileBroker::assign_compile_id_unlocked
1554 //
1555 // Public wrapper for assign_compile_id that acquires the needed locks
1556 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1557   MutexLocker locker(thread, MethodCompileQueue_lock);
1558   return assign_compile_id(method, osr_bci);
1559 }
1560 
1561 // ------------------------------------------------------------------
1562 // CompileBroker::create_compile_task
1563 //
1564 // Create a CompileTask object representing the current request for
1565 // compilation.  Add this task to the queue.
1566 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1567                                                 int                 compile_id,
1568                                                 const methodHandle& method,
1569                                                 int                 osr_bci,
1570                                                 int                 comp_level,
1571                                                 const methodHandle& hot_method,
1572                                                 int                 hot_count,
1573                                                 CompileTask::CompileReason compile_reason,
1574                                                 bool                blocking) {
1575   CompileTask* new_task = CompileTask::allocate();
1576   new_task->initialize(compile_id, method, osr_bci, comp_level,
1577                        hot_method, hot_count, compile_reason,
1578                        blocking);
1579   queue->add(new_task);
1580   return new_task;
1581 }
1582 
1583 #if INCLUDE_JVMCI
1584 // The number of milliseconds to wait before checking if
1585 // JVMCI compilation has made progress.
1586 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1587 
1588 // The number of JVMCI compilation progress checks that must fail
1589 // before unblocking a thread waiting for a blocking compilation.
1590 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1591 
1592 /**
1593  * Waits for a JVMCI compiler to complete a given task. This thread
1594  * waits until either the task completes or it sees no JVMCI compilation
1595  * progress for N consecutive milliseconds where N is
1596  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1597  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1598  *
1599  * @return true if this thread needs to free/recycle the task
1600  */
1601 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1602   MonitorLocker ml(thread, task->lock());
1603   int progress_wait_attempts = 0;
1604   int methods_compiled = jvmci->methods_compiled();
1605   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1606          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1607     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1608 
1609     bool progress;
1610     if (jvmci_compiler_thread != NULL) {
1611       // If the JVMCI compiler thread is not blocked or suspended, we deem it to be making progress.
1612       progress = jvmci_compiler_thread->thread_state() != _thread_blocked &&
1613         !jvmci_compiler_thread->is_external_suspend();
1614     } else {
1615       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1616       // that all JVMCI compiler threads are blocked on. We use the counter for
1617       // successful JVMCI compilations to determine whether JVMCI compilation
1618       // is still making progress through the JVMCI compiler queue.
1619       progress = jvmci->methods_compiled() != methods_compiled;
1620     }
1621 
1622     if (!progress) {
1623       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1624         if (PrintCompilation) {
1625           task->print(tty, "wait for blocking compilation timed out");
1626         }
1627         break;
1628       }
1629     } else {
1630       progress_wait_attempts = 0;
1631       if (jvmci_compiler_thread == NULL) {
1632         methods_compiled = jvmci->methods_compiled();
1633       }
1634     }
1635   }
1636   task->clear_waiter();
1637   return task->is_complete();
1638 }
1639 #endif
1640 
1641 /**
1642  *  Wait for the compilation task to complete.
1643  */
1644 void CompileBroker::wait_for_completion(CompileTask* task) {
1645   if (CIPrintCompileQueue) {
1646     ttyLocker ttyl;
1647     tty->print_cr("BLOCKING FOR COMPILE");
1648   }
1649 
1650   assert(task->is_blocking(), "can only wait on blocking task");
1651 
1652   JavaThread* thread = JavaThread::current();
1653 
1654   methodHandle method(thread, task->method());
1655   bool free_task;
1656 #if INCLUDE_JVMCI
1657   AbstractCompiler* comp = compiler(task->comp_level());
1658   if (comp->is_jvmci() && !task->should_wait_for_compilation()) {
1659     // It may return before compilation is completed.
1660     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1661   } else
1662 #endif
1663   {
1664     MonitorLocker ml(thread, task->lock());
1665     free_task = true;
1666     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1667       ml.wait();
1668     }
1669   }
1670 
1671   if (free_task) {
1672     if (is_compilation_disabled_forever()) {
1673       CompileTask::free(task);
1674       return;
1675     }
1676 
1677     // It is harmless to check this status without the lock, because
1678     // completion is a stable property (until the task object is recycled).
1679     assert(task->is_complete(), "Compilation should have completed");
1680     assert(task->code_handle() == NULL, "must be reset");
1681 
1682     // By convention, the waiter is responsible for recycling a
1683     // blocking CompileTask. Since there is only one waiter ever
1684     // waiting on a CompileTask, we know that no one else will
1685     // be using this CompileTask; we can free it.
1686     CompileTask::free(task);
1687   }
1688 }
1689 
1690 /**
1691  * Initialize compiler thread(s) + compiler object(s). The postcondition
1692  * of this function is that the compiler runtimes are initialized and that
1693  * compiler threads can start compiling.
1694  */
1695 bool CompileBroker::init_compiler_runtime() {
1696   CompilerThread* thread = CompilerThread::current();
1697   AbstractCompiler* comp = thread->compiler();
1698   // Final sanity check - the compiler object must exist
1699   guarantee(comp != NULL, "Compiler object must exist");
1700 
1701   {
1702     // Must switch to native to allocate ci_env
1703     ThreadToNativeFromVM ttn(thread);
1704     ciEnv ci_env((CompileTask*)NULL);
1705     // Cache Jvmti state
1706     ci_env.cache_jvmti_state();
1707     // Cache DTrace flags
1708     ci_env.cache_dtrace_flags();
1709 
1710     // Switch back to VM state to do compiler initialization
1711     ThreadInVMfromNative tv(thread);
1712     ResetNoHandleMark rnhm;
1713 
1714     // Perform per-thread and global initializations
1715     comp->initialize();
1716   }
1717 
1718   if (comp->is_failed()) {
1719     disable_compilation_forever();
1720     // If compiler initialization failed, no compiler thread that is specific to a
1721     // particular compiler runtime will ever start to compile methods.
1722     shutdown_compiler_runtime(comp, thread);
1723     return false;
1724   }
1725 
1726   // C1 specific check
1727   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1728     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1729     return false;
1730   }
1731 
1732   return true;
1733 }
1734 
1735 /**
1736  * If C1 and/or C2 initialization failed, we shut down all compilation.
1737  * We do this to keep things simple. This can be changed if it ever turns
1738  * out to be a problem.
1739  */
1740 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1741   // Free buffer blob, if allocated
1742   if (thread->get_buffer_blob() != NULL) {
1743     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1744     CodeCache::free(thread->get_buffer_blob());
1745   }
1746 
1747   if (comp->should_perform_shutdown()) {
1748     // There are two reasons for shutting down the compiler
1749     // 1) compiler runtime initialization failed
1750     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1751     warning("%s initialization failed. Shutting down all compilers", comp->name());
1752 
1753     // Only one thread per compiler runtime object enters here
1754     // Set state to shut down
1755     comp->set_shut_down();
1756 
1757     // Delete all queued compilation tasks to make compiler threads exit faster.
1758     if (_c1_compile_queue != NULL) {
1759       _c1_compile_queue->free_all();
1760     }
1761 
1762     if (_c2_compile_queue != NULL) {
1763       _c2_compile_queue->free_all();
1764     }
1765 
1766     // Set flags so that we continue execution with using interpreter only.
1767     UseCompiler    = false;
1768     UseInterpreter = true;
1769 
1770     // We could delete compiler runtimes also. However, there are references to
1771     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1772     // fail. This can be done later if necessary.
1773   }
1774 }
1775 
1776 /**
1777  * Helper function to create new or reuse old CompileLog.
1778  */
1779 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1780   if (!LogCompilation) return NULL;
1781 
1782   AbstractCompiler *compiler = ct->compiler();
1783   bool c1 = compiler->is_c1();
1784   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1785   assert(compiler_objects != NULL, "must be initialized at this point");
1786   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1787   assert(logs != NULL, "must be initialized at this point");
1788   int count = c1 ? _c1_count : _c2_count;
1789 
1790   // Find Compiler number by its threadObj.
1791   oop compiler_obj = ct->threadObj();
1792   int compiler_number = 0;
1793   bool found = false;
1794   for (; compiler_number < count; compiler_number++) {
1795     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1796       found = true;
1797       break;
1798     }
1799   }
1800   assert(found, "Compiler must exist at this point");
1801 
1802   // Determine pointer for this thread's log.
1803   CompileLog** log_ptr = &logs[compiler_number];
1804 
1805   // Return old one if it exists.
1806   CompileLog* log = *log_ptr;
1807   if (log != NULL) {
1808     ct->init_log(log);
1809     return log;
1810   }
1811 
1812   // Create a new one and remember it.
1813   init_compiler_thread_log();
1814   log = ct->log();
1815   *log_ptr = log;
1816   return log;
1817 }
1818 
1819 // ------------------------------------------------------------------
1820 // CompileBroker::compiler_thread_loop
1821 //
1822 // The main loop run by a CompilerThread.
1823 void CompileBroker::compiler_thread_loop() {
1824   CompilerThread* thread = CompilerThread::current();
1825   CompileQueue* queue = thread->queue();
1826   // For the thread that initializes the ciObjectFactory
1827   // this resource mark holds all the shared objects
1828   ResourceMark rm;
1829 
1830   // First thread to get here will initialize the compiler interface
1831 
1832   {
1833     ASSERT_IN_VM;
1834     MutexLocker only_one (thread, CompileThread_lock);
1835     if (!ciObjectFactory::is_initialized()) {
1836       ciObjectFactory::initialize();
1837     }
1838   }
1839 
1840   // Open a log.
1841   CompileLog* log = get_log(thread);
1842   if (log != NULL) {
1843     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1844                     thread->name(),
1845                     os::current_thread_id(),
1846                     os::current_process_id());
1847     log->stamp();
1848     log->end_elem();
1849   }
1850 
1851   // If compiler thread/runtime initialization fails, exit the compiler thread
1852   if (!init_compiler_runtime()) {
1853     return;
1854   }
1855 
1856   thread->start_idle_timer();
1857 
1858   // Poll for new compilation tasks as long as the JVM runs. Compilation
1859   // should only be disabled if something went wrong while initializing the
1860   // compiler runtimes. This, in turn, should not happen. The only known case
1861   // when compiler runtime initialization fails is if there is not enough free
1862   // space in the code cache to generate the necessary stubs, etc.
1863   while (!is_compilation_disabled_forever()) {
1864     // We need this HandleMark to avoid leaking VM handles.
1865     HandleMark hm(thread);
1866 
1867     CompileTask* task = queue->get();
1868     if (task == NULL) {
1869       if (UseDynamicNumberOfCompilerThreads) {
1870         // Access compiler_count under lock to enforce consistency.
1871         MutexLocker only_one(CompileThread_lock);
1872         if (can_remove(thread, true)) {
1873           if (TraceCompilerThreads) {
1874             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1875                           thread->name(), thread->idle_time_millis());
1876           }
1877           // Free buffer blob, if allocated
1878           if (thread->get_buffer_blob() != NULL) {
1879             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1880             CodeCache::free(thread->get_buffer_blob());
1881           }
1882           return; // Stop this thread.
1883         }
1884       }
1885     } else {
1886       // Assign the task to the current thread.  Mark this compilation
1887       // thread as active for the profiler.
1888       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1889       // occurs after fetching the compile task off the queue.
1890       CompileTaskWrapper ctw(task);
1891       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1892       task->set_code_handle(&result_handle);
1893       methodHandle method(thread, task->method());
1894 
1895       // Never compile a method if breakpoints are present in it
1896       if (method()->number_of_breakpoints() == 0) {
1897         // Compile the method.
1898         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1899           invoke_compiler_on_method(task);
1900           thread->start_idle_timer();
1901         } else {
1902           // After compilation is disabled, remove remaining methods from queue
1903           method->clear_queued_for_compilation();
1904           task->set_failure_reason("compilation is disabled");
1905         }
1906       }
1907 
1908       if (UseDynamicNumberOfCompilerThreads) {
1909         possibly_add_compiler_threads(thread);
1910         assert(!thread->has_pending_exception(), "should have been handled");
1911       }
1912     }
1913   }
1914 
1915   // Shut down compiler runtime
1916   shutdown_compiler_runtime(thread->compiler(), thread);
1917 }
1918 
1919 // ------------------------------------------------------------------
1920 // CompileBroker::init_compiler_thread_log
1921 //
1922 // Set up state required by +LogCompilation.
1923 void CompileBroker::init_compiler_thread_log() {
1924     CompilerThread* thread = CompilerThread::current();
1925     char  file_name[4*K];
1926     FILE* fp = NULL;
1927     intx thread_id = os::current_thread_id();
1928     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1929       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
1930       if (dir == NULL) {
1931         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1932                      thread_id, os::current_process_id());
1933       } else {
1934         jio_snprintf(file_name, sizeof(file_name),
1935                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1936                      os::file_separator(), thread_id, os::current_process_id());
1937       }
1938 
1939       fp = fopen(file_name, "wt");
1940       if (fp != NULL) {
1941         if (LogCompilation && Verbose) {
1942           tty->print_cr("Opening compilation log %s", file_name);
1943         }
1944         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
1945         if (log == NULL) {
1946           fclose(fp);
1947           return;
1948         }
1949         thread->init_log(log);
1950 
1951         if (xtty != NULL) {
1952           ttyLocker ttyl;
1953           // Record any per thread log files
1954           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
1955         }
1956         return;
1957       }
1958     }
1959     warning("Cannot open log file: %s", file_name);
1960 }
1961 
1962 void CompileBroker::log_metaspace_failure() {
1963   const char* message = "some methods may not be compiled because metaspace "
1964                         "is out of memory";
1965   if (_compilation_log != NULL) {
1966     _compilation_log->log_metaspace_failure(message);
1967   }
1968   if (PrintCompilation) {
1969     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
1970   }
1971 }
1972 
1973 
1974 // ------------------------------------------------------------------
1975 // CompileBroker::set_should_block
1976 //
1977 // Set _should_block.
1978 // Call this from the VM, with Threads_lock held and a safepoint requested.
1979 void CompileBroker::set_should_block() {
1980   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
1981   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
1982 #ifndef PRODUCT
1983   if (PrintCompilation && (Verbose || WizardMode))
1984     tty->print_cr("notifying compiler thread pool to block");
1985 #endif
1986   _should_block = true;
1987 }
1988 
1989 // ------------------------------------------------------------------
1990 // CompileBroker::maybe_block
1991 //
1992 // Call this from the compiler at convenient points, to poll for _should_block.
1993 void CompileBroker::maybe_block() {
1994   if (_should_block) {
1995 #ifndef PRODUCT
1996     if (PrintCompilation && (Verbose || WizardMode))
1997       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
1998 #endif
1999     ThreadInVMfromNative tivfn(JavaThread::current());
2000   }
2001 }
2002 
2003 // wrapper for CodeCache::print_summary()
2004 static void codecache_print(bool detailed)
2005 {
2006   ResourceMark rm;
2007   stringStream s;
2008   // Dump code cache  into a buffer before locking the tty,
2009   {
2010     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2011     CodeCache::print_summary(&s, detailed);
2012   }
2013   ttyLocker ttyl;
2014   tty->print("%s", s.as_string());
2015 }
2016 
2017 // wrapper for CodeCache::print_summary() using outputStream
2018 static void codecache_print(outputStream* out, bool detailed) {
2019   ResourceMark rm;
2020   stringStream s;
2021 
2022   // Dump code cache into a buffer
2023   {
2024     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2025     CodeCache::print_summary(&s, detailed);
2026   }
2027 
2028   char* remaining_log = s.as_string();
2029   while (*remaining_log != '\0') {
2030     char* eol = strchr(remaining_log, '\n');
2031     if (eol == NULL) {
2032       out->print_cr("%s", remaining_log);
2033       remaining_log = remaining_log + strlen(remaining_log);
2034     } else {
2035       *eol = '\0';
2036       out->print_cr("%s", remaining_log);
2037       remaining_log = eol + 1;
2038     }
2039   }
2040 }
2041 
2042 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
2043                                  int compilable, const char* failure_reason) {
2044   if (success) {
2045     task->mark_success();
2046     if (ci_env != NULL) {
2047       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
2048     }
2049     if (_compilation_log != NULL) {
2050       nmethod* code = task->code();
2051       if (code != NULL) {
2052         _compilation_log->log_nmethod(thread, code);
2053       }
2054     }
2055   } else if (AbortVMOnCompilationFailure) {
2056     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2057       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2058     }
2059     if (compilable == ciEnv::MethodCompilable_never) {
2060       fatal("Never compilable: %s", failure_reason);
2061     }
2062   }
2063   // simulate crash during compilation
2064   assert(task->compile_id() != CICrashAt, "just as planned");
2065 }
2066 
2067 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2068   assert(task != NULL, "invariant");
2069   CompilerEvent::CompilationEvent::post(event,
2070                                         task->compile_id(),
2071                                         task->compiler()->type(),
2072                                         task->method(),
2073                                         task->comp_level(),
2074                                         task->is_success(),
2075                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2076                                         (task->code() == NULL) ? 0 : task->code()->total_size(),
2077                                         task->num_inlined_bytecodes());
2078 }
2079 
2080 int DirectivesStack::_depth = 0;
2081 CompilerDirectives* DirectivesStack::_top = NULL;
2082 CompilerDirectives* DirectivesStack::_bottom = NULL;
2083 
2084 // ------------------------------------------------------------------
2085 // CompileBroker::invoke_compiler_on_method
2086 //
2087 // Compile a method.
2088 //
2089 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2090   task->print_ul();
2091   if (PrintCompilation) {
2092     ResourceMark rm;
2093     task->print_tty();
2094   }
2095   elapsedTimer time;
2096 
2097   CompilerThread* thread = CompilerThread::current();
2098   ResourceMark rm(thread);
2099 
2100   if (LogEvents) {
2101     _compilation_log->log_compile(thread, task);
2102   }
2103 
2104   // Common flags.
2105   uint compile_id = task->compile_id();
2106   int osr_bci = task->osr_bci();
2107   bool is_osr = (osr_bci != standard_entry_bci);
2108   bool should_log = (thread->log() != NULL);
2109   bool should_break = false;
2110   const int task_level = task->comp_level();
2111   AbstractCompiler* comp = task->compiler();
2112 
2113   DirectiveSet* directive;
2114   {
2115     // create the handle inside it's own block so it can't
2116     // accidentally be referenced once the thread transitions to
2117     // native.  The NoHandleMark before the transition should catch
2118     // any cases where this occurs in the future.
2119     methodHandle method(thread, task->method());
2120     assert(!method->is_native(), "no longer compile natives");
2121 
2122     // Look up matching directives
2123     directive = DirectivesStack::getMatchingDirective(method, comp);
2124 
2125     // Update compile information when using perfdata.
2126     if (UsePerfData) {
2127       update_compile_perf_data(thread, method, is_osr);
2128     }
2129 
2130     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2131   }
2132 
2133   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2134   if (should_log && !directive->LogOption) {
2135     should_log = false;
2136   }
2137 
2138   // Allocate a new set of JNI handles.
2139   push_jni_handle_block();
2140   Method* target_handle = task->method();
2141   int compilable = ciEnv::MethodCompilable;
2142   const char* failure_reason = NULL;
2143   bool failure_reason_on_C_heap = false;
2144   const char* retry_message = NULL;
2145 
2146 #if INCLUDE_JVMCI
2147   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2148     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2149 
2150     TraceTime t1("compilation", &time);
2151     EventCompilation event;
2152     JVMCICompileState compile_state(task);
2153 
2154     // Skip redefined methods
2155     if (compile_state.target_method_is_old()) {
2156       failure_reason = "redefined method";
2157       retry_message = "not retryable";
2158       compilable = ciEnv::MethodCompilable_never;
2159     } else {
2160       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2161       methodHandle method(thread, target_handle);
2162       env.runtime()->compile_method(&env, jvmci, method, osr_bci);
2163 
2164       failure_reason = compile_state.failure_reason();
2165       failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2166       if (!compile_state.retryable()) {
2167         retry_message = "not retryable";
2168         compilable = ciEnv::MethodCompilable_not_at_tier;
2169       }
2170       if (task->code() == NULL) {
2171         assert(failure_reason != NULL, "must specify failure_reason");
2172       }
2173     }
2174     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2175     if (event.should_commit()) {
2176       post_compilation_event(event, task);
2177     }
2178 
2179   } else
2180 #endif // INCLUDE_JVMCI
2181   {
2182     NoHandleMark  nhm;
2183     ThreadToNativeFromVM ttn(thread);
2184 
2185     ciEnv ci_env(task);
2186     if (should_break) {
2187       ci_env.set_break_at_compile(true);
2188     }
2189     if (should_log) {
2190       ci_env.set_log(thread->log());
2191     }
2192     assert(thread->env() == &ci_env, "set by ci_env");
2193     // The thread-env() field is cleared in ~CompileTaskWrapper.
2194 
2195     // Cache Jvmti state
2196     bool method_is_old = ci_env.cache_jvmti_state();
2197 
2198     // Skip redefined methods
2199     if (method_is_old) {
2200       ci_env.record_method_not_compilable("redefined method", true);
2201     }
2202 
2203     // Cache DTrace flags
2204     ci_env.cache_dtrace_flags();
2205 
2206     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2207 
2208     TraceTime t1("compilation", &time);
2209     EventCompilation event;
2210 
2211     if (comp == NULL) {
2212       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2213     } else if (!ci_env.failing()) {
2214       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2215         MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2216         while (WhiteBox::compilation_locked) {
2217           locker.wait();
2218         }
2219       }
2220       comp->compile_method(&ci_env, target, osr_bci, directive);
2221     }
2222 
2223     if (!ci_env.failing() && task->code() == NULL) {
2224       //assert(false, "compiler should always document failure");
2225       // The compiler elected, without comment, not to register a result.
2226       // Do not attempt further compilations of this method.
2227       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2228     }
2229 
2230     // Copy this bit to the enclosing block:
2231     compilable = ci_env.compilable();
2232 
2233     if (ci_env.failing()) {
2234       failure_reason = ci_env.failure_reason();
2235       retry_message = ci_env.retry_message();
2236       ci_env.report_failure(failure_reason);
2237     }
2238 
2239     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2240     if (event.should_commit()) {
2241       post_compilation_event(event, task);
2242     }
2243   }
2244   // Remove the JNI handle block after the ciEnv destructor has run in
2245   // the previous block.
2246   pop_jni_handle_block();
2247 
2248   if (failure_reason != NULL) {
2249     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2250     if (_compilation_log != NULL) {
2251       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2252     }
2253     if (PrintCompilation) {
2254       FormatBufferResource msg = retry_message != NULL ?
2255         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2256         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2257       task->print(tty, msg);
2258     }
2259   }
2260 
2261   methodHandle method(thread, task->method());
2262 
2263   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2264 
2265   collect_statistics(thread, time, task);
2266 
2267   nmethod* nm = task->code();
2268   if (nm != NULL) {
2269     nm->maybe_print_nmethod(directive);
2270   }
2271   DirectivesStack::release(directive);
2272 
2273   if (PrintCompilation && PrintCompilation2) {
2274     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2275     tty->print("%4d ", compile_id);    // print compilation number
2276     tty->print("%s ", (is_osr ? "%" : " "));
2277     if (task->code() != NULL) {
2278       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2279     }
2280     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2281   }
2282 
2283   Log(compilation, codecache) log;
2284   if (log.is_debug()) {
2285     LogStream ls(log.debug());
2286     codecache_print(&ls, /* detailed= */ false);
2287   }
2288   if (PrintCodeCacheOnCompilation) {
2289     codecache_print(/* detailed= */ false);
2290   }
2291   // Disable compilation, if required.
2292   switch (compilable) {
2293   case ciEnv::MethodCompilable_never:
2294     if (is_osr)
2295       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2296     else
2297       method->set_not_compilable_quietly("MethodCompilable_never");
2298     break;
2299   case ciEnv::MethodCompilable_not_at_tier:
2300     if (is_osr)
2301       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2302     else
2303       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2304     break;
2305   }
2306 
2307   // Note that the queued_for_compilation bits are cleared without
2308   // protection of a mutex. [They were set by the requester thread,
2309   // when adding the task to the compile queue -- at which time the
2310   // compile queue lock was held. Subsequently, we acquired the compile
2311   // queue lock to get this task off the compile queue; thus (to belabour
2312   // the point somewhat) our clearing of the bits must be occurring
2313   // only after the setting of the bits. See also 14012000 above.
2314   method->clear_queued_for_compilation();
2315 }
2316 
2317 /**
2318  * The CodeCache is full. Print warning and disable compilation.
2319  * Schedule code cache cleaning so compilation can continue later.
2320  * This function needs to be called only from CodeCache::allocate(),
2321  * since we currently handle a full code cache uniformly.
2322  */
2323 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2324   UseInterpreter = true;
2325   if (UseCompiler || AlwaysCompileLoopMethods ) {
2326     if (xtty != NULL) {
2327       ResourceMark rm;
2328       stringStream s;
2329       // Dump code cache state into a buffer before locking the tty,
2330       // because log_state() will use locks causing lock conflicts.
2331       CodeCache::log_state(&s);
2332       // Lock to prevent tearing
2333       ttyLocker ttyl;
2334       xtty->begin_elem("code_cache_full");
2335       xtty->print("%s", s.as_string());
2336       xtty->stamp();
2337       xtty->end_elem();
2338     }
2339 
2340 #ifndef PRODUCT
2341     if (ExitOnFullCodeCache) {
2342       codecache_print(/* detailed= */ true);
2343       before_exit(JavaThread::current());
2344       exit_globals(); // will delete tty
2345       vm_direct_exit(1);
2346     }
2347 #endif
2348     if (UseCodeCacheFlushing) {
2349       // Since code cache is full, immediately stop new compiles
2350       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2351         NMethodSweeper::log_sweep("disable_compiler");
2352       }
2353     } else {
2354       disable_compilation_forever();
2355     }
2356 
2357     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2358   }
2359 }
2360 
2361 // ------------------------------------------------------------------
2362 // CompileBroker::update_compile_perf_data
2363 //
2364 // Record this compilation for debugging purposes.
2365 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2366   ResourceMark rm;
2367   char* method_name = method->name()->as_C_string();
2368   char current_method[CompilerCounters::cmname_buffer_length];
2369   size_t maxLen = CompilerCounters::cmname_buffer_length;
2370 
2371   const char* class_name = method->method_holder()->name()->as_C_string();
2372 
2373   size_t s1len = strlen(class_name);
2374   size_t s2len = strlen(method_name);
2375 
2376   // check if we need to truncate the string
2377   if (s1len + s2len + 2 > maxLen) {
2378 
2379     // the strategy is to lop off the leading characters of the
2380     // class name and the trailing characters of the method name.
2381 
2382     if (s2len + 2 > maxLen) {
2383       // lop of the entire class name string, let snprintf handle
2384       // truncation of the method name.
2385       class_name += s1len; // null string
2386     }
2387     else {
2388       // lop off the extra characters from the front of the class name
2389       class_name += ((s1len + s2len + 2) - maxLen);
2390     }
2391   }
2392 
2393   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2394 
2395   int last_compile_type = normal_compile;
2396   if (CICountOSR && is_osr) {
2397     last_compile_type = osr_compile;
2398   }
2399 
2400   CompilerCounters* counters = thread->counters();
2401   counters->set_current_method(current_method);
2402   counters->set_compile_type((jlong) last_compile_type);
2403 }
2404 
2405 // ------------------------------------------------------------------
2406 // CompileBroker::push_jni_handle_block
2407 //
2408 // Push on a new block of JNI handles.
2409 void CompileBroker::push_jni_handle_block() {
2410   JavaThread* thread = JavaThread::current();
2411 
2412   // Allocate a new block for JNI handles.
2413   // Inlined code from jni_PushLocalFrame()
2414   JNIHandleBlock* java_handles = thread->active_handles();
2415   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2416   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2417   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2418   thread->set_active_handles(compile_handles);
2419 }
2420 
2421 
2422 // ------------------------------------------------------------------
2423 // CompileBroker::pop_jni_handle_block
2424 //
2425 // Pop off the current block of JNI handles.
2426 void CompileBroker::pop_jni_handle_block() {
2427   JavaThread* thread = JavaThread::current();
2428 
2429   // Release our JNI handle block
2430   JNIHandleBlock* compile_handles = thread->active_handles();
2431   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2432   thread->set_active_handles(java_handles);
2433   compile_handles->set_pop_frame_link(NULL);
2434   JNIHandleBlock::release_block(compile_handles, thread); // may block
2435 }
2436 
2437 // ------------------------------------------------------------------
2438 // CompileBroker::collect_statistics
2439 //
2440 // Collect statistics about the compilation.
2441 
2442 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2443   bool success = task->is_success();
2444   methodHandle method (thread, task->method());
2445   uint compile_id = task->compile_id();
2446   bool is_osr = (task->osr_bci() != standard_entry_bci);
2447   nmethod* code = task->code();
2448   CompilerCounters* counters = thread->counters();
2449 
2450   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2451   MutexLocker locker(CompileStatistics_lock);
2452 
2453   // _perf variables are production performance counters which are
2454   // updated regardless of the setting of the CITime and CITimeEach flags
2455   //
2456 
2457   // account all time, including bailouts and failures in this counter;
2458   // C1 and C2 counters are counting both successful and unsuccessful compiles
2459   _t_total_compilation.add(time);
2460 
2461   if (!success) {
2462     _total_bailout_count++;
2463     if (UsePerfData) {
2464       _perf_last_failed_method->set_value(counters->current_method());
2465       _perf_last_failed_type->set_value(counters->compile_type());
2466       _perf_total_bailout_count->inc();
2467     }
2468     _t_bailedout_compilation.add(time);
2469   } else if (code == NULL) {
2470     if (UsePerfData) {
2471       _perf_last_invalidated_method->set_value(counters->current_method());
2472       _perf_last_invalidated_type->set_value(counters->compile_type());
2473       _perf_total_invalidated_count->inc();
2474     }
2475     _total_invalidated_count++;
2476     _t_invalidated_compilation.add(time);
2477   } else {
2478     // Compilation succeeded
2479 
2480     // update compilation ticks - used by the implementation of
2481     // java.lang.management.CompilationMBean
2482     _perf_total_compilation->inc(time.ticks());
2483     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2484 
2485     if (CITime) {
2486       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2487       if (is_osr) {
2488         _t_osr_compilation.add(time);
2489         _sum_osr_bytes_compiled += bytes_compiled;
2490       } else {
2491         _t_standard_compilation.add(time);
2492         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2493       }
2494 
2495 #if INCLUDE_JVMCI
2496       AbstractCompiler* comp = compiler(task->comp_level());
2497       if (comp) {
2498         CompilerStatistics* stats = comp->stats();
2499         if (stats) {
2500           if (is_osr) {
2501             stats->_osr.update(time, bytes_compiled);
2502           } else {
2503             stats->_standard.update(time, bytes_compiled);
2504           }
2505           stats->_nmethods_size += code->total_size();
2506           stats->_nmethods_code_size += code->insts_size();
2507         } else { // if (!stats)
2508           assert(false, "Compiler statistics object must exist");
2509         }
2510       } else { // if (!comp)
2511         assert(false, "Compiler object must exist");
2512       }
2513 #endif // INCLUDE_JVMCI
2514     }
2515 
2516     if (UsePerfData) {
2517       // save the name of the last method compiled
2518       _perf_last_method->set_value(counters->current_method());
2519       _perf_last_compile_type->set_value(counters->compile_type());
2520       _perf_last_compile_size->set_value(method->code_size() +
2521                                          task->num_inlined_bytecodes());
2522       if (is_osr) {
2523         _perf_osr_compilation->inc(time.ticks());
2524         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2525       } else {
2526         _perf_standard_compilation->inc(time.ticks());
2527         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2528       }
2529     }
2530 
2531     if (CITimeEach) {
2532       float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds();
2533       tty->print_cr("%3d   seconds: %f bytes/sec : %f (bytes %d + %d inlined)",
2534                     compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2535     }
2536 
2537     // Collect counts of successful compilations
2538     _sum_nmethod_size      += code->total_size();
2539     _sum_nmethod_code_size += code->insts_size();
2540     _total_compile_count++;
2541 
2542     if (UsePerfData) {
2543       _perf_sum_nmethod_size->inc(     code->total_size());
2544       _perf_sum_nmethod_code_size->inc(code->insts_size());
2545       _perf_total_compile_count->inc();
2546     }
2547 
2548     if (is_osr) {
2549       if (UsePerfData) _perf_total_osr_compile_count->inc();
2550       _total_osr_compile_count++;
2551     } else {
2552       if (UsePerfData) _perf_total_standard_compile_count->inc();
2553       _total_standard_compile_count++;
2554     }
2555   }
2556   // set the current method for the thread to null
2557   if (UsePerfData) counters->set_current_method("");
2558 }
2559 
2560 const char* CompileBroker::compiler_name(int comp_level) {
2561   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2562   if (comp == NULL) {
2563     return "no compiler";
2564   } else {
2565     return (comp->name());
2566   }
2567 }
2568 
2569 #if INCLUDE_JVMCI
2570 void CompileBroker::print_times(AbstractCompiler* comp) {
2571   CompilerStatistics* stats = comp->stats();
2572   if (stats) {
2573     tty->print_cr("  %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2574                 comp->name(), stats->bytes_per_second(),
2575                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2576                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2577                 stats->_nmethods_size, stats->_nmethods_code_size);
2578   } else { // if (!stats)
2579     assert(false, "Compiler statistics object must exist");
2580   }
2581   comp->print_timers();
2582 }
2583 #endif // INCLUDE_JVMCI
2584 
2585 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2586 #if INCLUDE_JVMCI
2587   elapsedTimer standard_compilation;
2588   elapsedTimer total_compilation;
2589   elapsedTimer osr_compilation;
2590 
2591   int standard_bytes_compiled = 0;
2592   int osr_bytes_compiled = 0;
2593 
2594   int standard_compile_count = 0;
2595   int osr_compile_count = 0;
2596   int total_compile_count = 0;
2597 
2598   int nmethods_size = 0;
2599   int nmethods_code_size = 0;
2600   bool printedHeader = false;
2601 
2602   for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2603     AbstractCompiler* comp = _compilers[i];
2604     if (comp != NULL) {
2605       if (per_compiler && aggregate && !printedHeader) {
2606         printedHeader = true;
2607         tty->cr();
2608         tty->print_cr("Individual compiler times (for compiled methods only)");
2609         tty->print_cr("------------------------------------------------");
2610         tty->cr();
2611       }
2612       CompilerStatistics* stats = comp->stats();
2613 
2614       if (stats) {
2615         standard_compilation.add(stats->_standard._time);
2616         osr_compilation.add(stats->_osr._time);
2617 
2618         standard_bytes_compiled += stats->_standard._bytes;
2619         osr_bytes_compiled += stats->_osr._bytes;
2620 
2621         standard_compile_count += stats->_standard._count;
2622         osr_compile_count += stats->_osr._count;
2623 
2624         nmethods_size += stats->_nmethods_size;
2625         nmethods_code_size += stats->_nmethods_code_size;
2626       } else { // if (!stats)
2627         assert(false, "Compiler statistics object must exist");
2628       }
2629 
2630       if (per_compiler) {
2631         print_times(comp);
2632       }
2633     }
2634   }
2635   total_compile_count = osr_compile_count + standard_compile_count;
2636   total_compilation.add(osr_compilation);
2637   total_compilation.add(standard_compilation);
2638 
2639   // In hosted mode, print the JVMCI compiler specific counters manually.
2640   if (!UseJVMCICompiler) {
2641     JVMCICompiler::print_compilation_timers();
2642   }
2643 #else // INCLUDE_JVMCI
2644   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2645   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2646   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2647 
2648   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2649   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2650 
2651   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2652   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2653   int total_compile_count = CompileBroker::_total_compile_count;
2654 
2655   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2656   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2657 #endif // INCLUDE_JVMCI
2658 
2659   if (!aggregate) {
2660     return;
2661   }
2662   tty->cr();
2663   tty->print_cr("Accumulated compiler times");
2664   tty->print_cr("----------------------------------------------------------");
2665                //0000000000111111111122222222223333333333444444444455555555556666666666
2666                //0123456789012345678901234567890123456789012345678901234567890123456789
2667   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2668   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2669                 standard_compilation.seconds(),
2670                 standard_compilation.seconds() / standard_compile_count);
2671   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2672                 CompileBroker::_t_bailedout_compilation.seconds(),
2673                 CompileBroker::_t_bailedout_compilation.seconds() / CompileBroker::_total_bailout_count);
2674   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2675                 osr_compilation.seconds(),
2676                 osr_compilation.seconds() / osr_compile_count);
2677   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2678                 CompileBroker::_t_invalidated_compilation.seconds(),
2679                 CompileBroker::_t_invalidated_compilation.seconds() / CompileBroker::_total_invalidated_count);
2680 
2681   AbstractCompiler *comp = compiler(CompLevel_simple);
2682   if (comp != NULL) {
2683     tty->cr();
2684     comp->print_timers();
2685   }
2686   comp = compiler(CompLevel_full_optimization);
2687   if (comp != NULL) {
2688     tty->cr();
2689     comp->print_timers();
2690   }
2691   tty->cr();
2692   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2693   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2694   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2695   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2696   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2697   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2698   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2699   double tcs = total_compilation.seconds();
2700   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2701   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2702   tty->cr();
2703   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2704   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2705 }
2706 
2707 // Print general/accumulated JIT information.
2708 void CompileBroker::print_info(outputStream *out) {
2709   if (out == NULL) out = tty;
2710   out->cr();
2711   out->print_cr("======================");
2712   out->print_cr("   General JIT info   ");
2713   out->print_cr("======================");
2714   out->cr();
2715   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2716   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2717   out->cr();
2718   out->print_cr("CodeCache overview");
2719   out->print_cr("--------------------------------------------------------");
2720   out->cr();
2721   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2722   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2723   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2724   out->cr();
2725 
2726   out->cr();
2727   out->print_cr("CodeCache cleaning overview");
2728   out->print_cr("--------------------------------------------------------");
2729   out->cr();
2730   NMethodSweeper::print(out);
2731   out->print_cr("--------------------------------------------------------");
2732   out->cr();
2733 }
2734 
2735 // Note: tty_lock must not be held upon entry to this function.
2736 //       Print functions called from herein do "micro-locking" on tty_lock.
2737 //       That's a tradeoff which keeps together important blocks of output.
2738 //       At the same time, continuous tty_lock hold time is kept in check,
2739 //       preventing concurrently printing threads from stalling a long time.
2740 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2741   TimeStamp ts_total;
2742   TimeStamp ts_global;
2743   TimeStamp ts;
2744 
2745   bool allFun = !strcmp(function, "all");
2746   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2747   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2748   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2749   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2750   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2751   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2752   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2753   bool discard = !strcmp(function, "discard") || allFun;
2754 
2755   if (out == NULL) {
2756     out = tty;
2757   }
2758 
2759   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2760     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2761     out->cr();
2762     return;
2763   }
2764 
2765   ts_total.update(); // record starting point
2766 
2767   if (aggregate) {
2768     print_info(out);
2769   }
2770 
2771   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2772   // That prevents another thread from destroying our view on the CodeHeap.
2773   // When we request individual parts of the analysis via the jcmd interface, it is possible
2774   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2775   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2776   // across user interaction.
2777   // Acquire this lock before acquiring the CodeCache_lock.
2778   // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2779   // leading to an unnecessarily long hold time of the CodeCache_lock.
2780   ts.update(); // record starting point
2781   MutexLocker mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2782   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2783 
2784   // If we serve an "allFun" call, it is beneficial to hold the CodeCache_lock
2785   // for the entire duration of aggregation and printing. That makes sure
2786   // we see a consistent picture and do not run into issues caused by
2787   // the CodeHeap being altered concurrently.
2788   Mutex* global_lock   = allFun ? CodeCache_lock : NULL;
2789   Mutex* function_lock = allFun ? NULL : CodeCache_lock;
2790   ts_global.update(); // record starting point
2791   MutexLocker mu2(global_lock, Mutex::_no_safepoint_check_flag);
2792   if (global_lock != NULL) {
2793     out->print_cr("\n__ CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2794     ts_global.update(); // record starting point
2795   }
2796 
2797   if (aggregate) {
2798     ts.update(); // record starting point
2799     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2800     if (function_lock != NULL) {
2801       out->print_cr("\n__ CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2802     }
2803 
2804     ts.update(); // record starting point
2805     CodeCache::aggregate(out, granularity);
2806     if (function_lock != NULL) {
2807       out->print_cr("\n__ CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2808     }
2809   }
2810 
2811   if (usedSpace) CodeCache::print_usedSpace(out);
2812   if (freeSpace) CodeCache::print_freeSpace(out);
2813   if (methodCount) CodeCache::print_count(out);
2814   if (methodSpace) CodeCache::print_space(out);
2815   if (methodAge) CodeCache::print_age(out);
2816   if (methodNames) {
2817     // print_names() has shown to be sensitive to concurrent CodeHeap modifications.
2818     // Therefore, request  the CodeCache_lock before calling...
2819     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2820     CodeCache::print_names(out);
2821   }
2822   if (discard) CodeCache::discard(out);
2823 
2824   if (global_lock != NULL) {
2825     out->print_cr("\n__ CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2826   }
2827   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2828 }
2829