1 /*
2  * Copyright (c) 2011, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_GC_G1_G1ALLOCREGION_HPP
26 #define SHARE_GC_G1_G1ALLOCREGION_HPP
27 
28 #include "gc/g1/heapRegion.hpp"
29 #include "gc/g1/g1EvacStats.hpp"
30 #include "gc/g1/g1HeapRegionAttr.hpp"
31 #include "gc/g1/g1NUMA.hpp"
32 
33 class G1CollectedHeap;
34 
35 // A class that holds a region that is active in satisfying allocation
36 // requests, potentially issued in parallel. When the active region is
37 // full it will be retired and replaced with a new one. The
38 // implementation assumes that fast-path allocations will be lock-free
39 // and a lock will need to be taken when the active region needs to be
40 // replaced.
41 
42 class G1AllocRegion : public CHeapObj<mtGC> {
43 
44 private:
45   // The active allocating region we are currently allocating out
46   // of. The invariant is that if this object is initialized (i.e.,
47   // init() has been called and release() has not) then _alloc_region
48   // is either an active allocating region or the dummy region (i.e.,
49   // it can never be NULL) and this object can be used to satisfy
50   // allocation requests. If this object is not initialized
51   // (i.e. init() has not been called or release() has been called)
52   // then _alloc_region is NULL and this object should not be used to
53   // satisfy allocation requests (it was done this way to force the
54   // correct use of init() and release()).
55   HeapRegion* volatile _alloc_region;
56 
57   // It keeps track of the distinct number of regions that are used
58   // for allocation in the active interval of this object, i.e.,
59   // between a call to init() and a call to release(). The count
60   // mostly includes regions that are freshly allocated, as well as
61   // the region that is re-used using the set() method. This count can
62   // be used in any heuristics that might want to bound how many
63   // distinct regions this object can used during an active interval.
64   uint _count;
65 
66   // When we set up a new active region we save its used bytes in this
67   // field so that, when we retire it, we can calculate how much space
68   // we allocated in it.
69   size_t _used_bytes_before;
70 
71   // When true, indicates that allocate calls should do BOT updates.
72   const bool _bot_updates;
73 
74   // Useful for debugging and tracing.
75   const char* _name;
76 
77   // A dummy region (i.e., it's been allocated specially for this
78   // purpose and it is not part of the heap) that is full (i.e., top()
79   // == end()). When we don't have a valid active region we make
80   // _alloc_region point to this. This allows us to skip checking
81   // whether the _alloc_region is NULL or not.
82   static HeapRegion* _dummy_region;
83 
84   // After a region is allocated by alloc_new_region, this
85   // method is used to set it as the active alloc_region
86   void update_alloc_region(HeapRegion* alloc_region);
87 
88   // Allocate a new active region and use it to perform a word_size
89   // allocation. The force parameter will be passed on to
90   // G1CollectedHeap::allocate_new_alloc_region() and tells it to try
91   // to allocate a new region even if the max has been reached.
92   HeapWord* new_alloc_region_and_allocate(size_t word_size, bool force);
93 
94 protected:
95   // The memory node index this allocation region belongs to.
96   uint _node_index;
97 
98   // Reset the alloc region to point a the dummy region.
99   void reset_alloc_region();
100 
101   // Perform a non-MT-safe allocation out of the given region.
102   inline HeapWord* allocate(HeapRegion* alloc_region,
103                             size_t word_size);
104 
105   // Perform a MT-safe allocation out of the given region.
106   inline HeapWord* par_allocate(HeapRegion* alloc_region,
107                                 size_t word_size);
108   // Perform a MT-safe allocation out of the given region, with the given
109   // minimum and desired size. Returns the actual size allocated (between
110   // minimum and desired size) in actual_word_size if the allocation has been
111   // successful.
112   inline HeapWord* par_allocate(HeapRegion* alloc_region,
113                                 size_t min_word_size,
114                                 size_t desired_word_size,
115                                 size_t* actual_word_size);
116 
117   // Ensure that the region passed as a parameter has been filled up
118   // so that noone else can allocate out of it any more.
119   // Returns the number of bytes that have been wasted by filled up
120   // the space.
121   size_t fill_up_remaining_space(HeapRegion* alloc_region);
122 
123   // Retire the active allocating region. If fill_up is true then make
124   // sure that the region is full before we retire it so that no one
125   // else can allocate out of it.
126   // Returns the number of bytes that have been filled up during retire.
127   virtual size_t retire(bool fill_up);
128 
129   size_t retire_internal(HeapRegion* alloc_region, bool fill_up);
130 
131   // For convenience as subclasses use it.
132   static G1CollectedHeap* _g1h;
133 
134   virtual HeapRegion* allocate_new_region(size_t word_size, bool force) = 0;
135   virtual void retire_region(HeapRegion* alloc_region,
136                              size_t allocated_bytes) = 0;
137 
138   G1AllocRegion(const char* name, bool bot_updates, uint node_index);
139 
140 public:
141   static void setup(G1CollectedHeap* g1h, HeapRegion* dummy_region);
142 
get() const143   HeapRegion* get() const {
144     HeapRegion * hr = _alloc_region;
145     // Make sure that the dummy region does not escape this class.
146     return (hr == _dummy_region) ? NULL : hr;
147   }
148 
count()149   uint count() { return _count; }
150 
151   // The following two are the building blocks for the allocation method.
152 
153   // First-level allocation: Should be called without holding a
154   // lock. It will try to allocate lock-free out of the active region,
155   // or return NULL if it was unable to.
156   inline HeapWord* attempt_allocation(size_t word_size);
157   // Perform an allocation out of the current allocation region, with the given
158   // minimum and desired size. Returns the actual size allocated (between
159   // minimum and desired size) in actual_word_size if the allocation has been
160   // successful.
161   // Should be called without holding a lock. It will try to allocate lock-free
162   // out of the active region, or return NULL if it was unable to.
163   inline HeapWord* attempt_allocation(size_t min_word_size,
164                                       size_t desired_word_size,
165                                       size_t* actual_word_size);
166 
167   // Second-level allocation: Should be called while holding a
168   // lock. It will try to first allocate lock-free out of the active
169   // region or, if it's unable to, it will try to replace the active
170   // alloc region with a new one. We require that the caller takes the
171   // appropriate lock before calling this so that it is easier to make
172   // it conform to its locking protocol.
173   inline HeapWord* attempt_allocation_locked(size_t word_size);
174   // Same as attempt_allocation_locked(size_t, bool), but allowing specification
175   // of minimum word size of the block in min_word_size, and the maximum word
176   // size of the allocation in desired_word_size. The actual size of the block is
177   // returned in actual_word_size.
178   inline HeapWord* attempt_allocation_locked(size_t min_word_size,
179                                              size_t desired_word_size,
180                                              size_t* actual_word_size);
181 
182   // Should be called to allocate a new region even if the max of this
183   // type of regions has been reached. Should only be called if other
184   // allocation attempts have failed and we are not holding a valid
185   // active region.
186   inline HeapWord* attempt_allocation_force(size_t word_size);
187 
188   // Should be called before we start using this object.
189   virtual void init();
190 
191   // This can be used to set the active region to a specific
192   // region. (Use Example: we try to retain the last old GC alloc
193   // region that we've used during a GC and we can use set() to
194   // re-instate it at the beginning of the next GC.)
195   void set(HeapRegion* alloc_region);
196 
197   // Should be called when we want to release the active region which
198   // is returned after it's been retired.
199   virtual HeapRegion* release();
200 
201   void trace(const char* str,
202              size_t min_word_size = 0,
203              size_t desired_word_size = 0,
204              size_t actual_word_size = 0,
205              HeapWord* result = NULL) PRODUCT_RETURN;
206 };
207 
208 class MutatorAllocRegion : public G1AllocRegion {
209 private:
210   // Keeps track of the total waste generated during the current
211   // mutator phase.
212   size_t _wasted_bytes;
213 
214   // Retained allocation region. Used to lower the waste generated
215   // during mutation by having two active regions if the free space
216   // in a region about to be retired still could fit a TLAB.
217   HeapRegion* volatile _retained_alloc_region;
218 
219   // Decide if the region should be retained, based on the free size
220   // in it and the free size in the currently retained region, if any.
221   bool should_retain(HeapRegion* region);
222 protected:
223   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
224   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
225   virtual size_t retire(bool fill_up);
226 public:
MutatorAllocRegion(uint node_index)227   MutatorAllocRegion(uint node_index)
228     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */, node_index),
229       _wasted_bytes(0),
230       _retained_alloc_region(NULL) { }
231 
232   // Returns the combined used memory in the current alloc region and
233   // the retained alloc region.
234   size_t used_in_alloc_regions();
235 
236   // Perform an allocation out of the retained allocation region, with the given
237   // minimum and desired size. Returns the actual size allocated (between
238   // minimum and desired size) in actual_word_size if the allocation has been
239   // successful.
240   // Should be called without holding a lock. It will try to allocate lock-free
241   // out of the retained region, or return NULL if it was unable to.
242   inline HeapWord* attempt_retained_allocation(size_t min_word_size,
243                                                size_t desired_word_size,
244                                                size_t* actual_word_size);
245 
246   // This specialization of release() makes sure that the retained alloc
247   // region is retired and set to NULL.
248   virtual HeapRegion* release();
249 
250   virtual void init();
251 };
252 
253 // Common base class for allocation regions used during GC.
254 class G1GCAllocRegion : public G1AllocRegion {
255 protected:
256   G1EvacStats* _stats;
257   G1HeapRegionAttr::region_type_t _purpose;
258 
259   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
260   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
261 
262   virtual size_t retire(bool fill_up);
263 
G1GCAllocRegion(const char * name,bool bot_updates,G1EvacStats * stats,G1HeapRegionAttr::region_type_t purpose,uint node_index=G1NUMA::AnyNodeIndex)264   G1GCAllocRegion(const char* name, bool bot_updates, G1EvacStats* stats,
265                   G1HeapRegionAttr::region_type_t purpose, uint node_index = G1NUMA::AnyNodeIndex)
266   : G1AllocRegion(name, bot_updates, node_index), _stats(stats), _purpose(purpose) {
267     assert(stats != NULL, "Must pass non-NULL PLAB statistics");
268   }
269 };
270 
271 class SurvivorGCAllocRegion : public G1GCAllocRegion {
272 public:
SurvivorGCAllocRegion(G1EvacStats * stats,uint node_index)273   SurvivorGCAllocRegion(G1EvacStats* stats, uint node_index)
274   : G1GCAllocRegion("Survivor GC Alloc Region", false /* bot_updates */, stats, G1HeapRegionAttr::Young, node_index) { }
275 };
276 
277 class OldGCAllocRegion : public G1GCAllocRegion {
278 public:
OldGCAllocRegion(G1EvacStats * stats)279   OldGCAllocRegion(G1EvacStats* stats)
280   : G1GCAllocRegion("Old GC Alloc Region", true /* bot_updates */, stats, G1HeapRegionAttr::Old) { }
281 
282   // This specialization of release() makes sure that the last card that has
283   // been allocated into has been completely filled by a dummy object.  This
284   // avoids races when remembered set scanning wants to update the BOT of the
285   // last card in the retained old gc alloc region, and allocation threads
286   // allocating into that card at the same time.
287   virtual HeapRegion* release();
288 };
289 
290 #endif // SHARE_GC_G1_G1ALLOCREGION_HPP
291