1 /*
2  * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 #include "precompiled.hpp"
25 #include "classfile/javaClasses.hpp"
26 #include "gc/z/c2/zBarrierSetC2.hpp"
27 #include "gc/z/zBarrierSet.hpp"
28 #include "gc/z/zBarrierSetAssembler.hpp"
29 #include "gc/z/zBarrierSetRuntime.hpp"
30 #include "opto/arraycopynode.hpp"
31 #include "opto/addnode.hpp"
32 #include "opto/block.hpp"
33 #include "opto/compile.hpp"
34 #include "opto/graphKit.hpp"
35 #include "opto/machnode.hpp"
36 #include "opto/macro.hpp"
37 #include "opto/memnode.hpp"
38 #include "opto/node.hpp"
39 #include "opto/output.hpp"
40 #include "opto/regalloc.hpp"
41 #include "opto/rootnode.hpp"
42 #include "opto/type.hpp"
43 #include "utilities/growableArray.hpp"
44 #include "utilities/macros.hpp"
45 
46 class ZBarrierSetC2State : public ResourceObj {
47 private:
48   GrowableArray<ZLoadBarrierStubC2*>* _stubs;
49   Node_Array                          _live;
50 
51 public:
ZBarrierSetC2State(Arena * arena)52   ZBarrierSetC2State(Arena* arena) :
53     _stubs(new (arena) GrowableArray<ZLoadBarrierStubC2*>(arena, 8,  0, NULL)),
54     _live(arena) {}
55 
stubs()56   GrowableArray<ZLoadBarrierStubC2*>* stubs() {
57     return _stubs;
58   }
59 
live(const Node * node)60   RegMask* live(const Node* node) {
61     if (!node->is_Mach()) {
62       // Don't need liveness for non-MachNodes
63       return NULL;
64     }
65 
66     const MachNode* const mach = node->as_Mach();
67     if (mach->barrier_data() != ZLoadBarrierStrong &&
68         mach->barrier_data() != ZLoadBarrierWeak) {
69       // Don't need liveness data for nodes without barriers
70       return NULL;
71     }
72 
73     RegMask* live = (RegMask*)_live[node->_idx];
74     if (live == NULL) {
75       live = new (Compile::current()->comp_arena()->Amalloc_D(sizeof(RegMask))) RegMask();
76       _live.map(node->_idx, (Node*)live);
77     }
78 
79     return live;
80   }
81 };
82 
barrier_set_state()83 static ZBarrierSetC2State* barrier_set_state() {
84   return reinterpret_cast<ZBarrierSetC2State*>(Compile::current()->barrier_set_state());
85 }
86 
create(const MachNode * node,Address ref_addr,Register ref,Register tmp,bool weak)87 ZLoadBarrierStubC2* ZLoadBarrierStubC2::create(const MachNode* node, Address ref_addr, Register ref, Register tmp, bool weak) {
88   ZLoadBarrierStubC2* const stub = new (Compile::current()->comp_arena()) ZLoadBarrierStubC2(node, ref_addr, ref, tmp, weak);
89   if (!Compile::current()->output()->in_scratch_emit_size()) {
90     barrier_set_state()->stubs()->append(stub);
91   }
92 
93   return stub;
94 }
95 
ZLoadBarrierStubC2(const MachNode * node,Address ref_addr,Register ref,Register tmp,bool weak)96 ZLoadBarrierStubC2::ZLoadBarrierStubC2(const MachNode* node, Address ref_addr, Register ref, Register tmp, bool weak) :
97     _node(node),
98     _ref_addr(ref_addr),
99     _ref(ref),
100     _tmp(tmp),
101     _weak(weak),
102     _entry(),
103     _continuation() {
104   assert_different_registers(ref, ref_addr.base());
105   assert_different_registers(ref, ref_addr.index());
106 }
107 
ref_addr() const108 Address ZLoadBarrierStubC2::ref_addr() const {
109   return _ref_addr;
110 }
111 
ref() const112 Register ZLoadBarrierStubC2::ref() const {
113   return _ref;
114 }
115 
tmp() const116 Register ZLoadBarrierStubC2::tmp() const {
117   return _tmp;
118 }
119 
slow_path() const120 address ZLoadBarrierStubC2::slow_path() const {
121   const DecoratorSet decorators = _weak ? ON_WEAK_OOP_REF : ON_STRONG_OOP_REF;
122   return ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(decorators);
123 }
124 
live() const125 RegMask& ZLoadBarrierStubC2::live() const {
126   return *barrier_set_state()->live(_node);
127 }
128 
entry()129 Label* ZLoadBarrierStubC2::entry() {
130   // The _entry will never be bound when in_scratch_emit_size() is true.
131   // However, we still need to return a label that is not bound now, but
132   // will eventually be bound. Any lable will do, as it will only act as
133   // a placeholder, so we return the _continuation label.
134   return Compile::current()->output()->in_scratch_emit_size() ? &_continuation : &_entry;
135 }
136 
continuation()137 Label* ZLoadBarrierStubC2::continuation() {
138   return &_continuation;
139 }
140 
create_barrier_state(Arena * comp_arena) const141 void* ZBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
142   return new (comp_arena) ZBarrierSetC2State(comp_arena);
143 }
144 
late_barrier_analysis() const145 void ZBarrierSetC2::late_barrier_analysis() const {
146   analyze_dominating_barriers();
147   compute_liveness_at_stubs();
148 }
149 
emit_stubs(CodeBuffer & cb) const150 void ZBarrierSetC2::emit_stubs(CodeBuffer& cb) const {
151   MacroAssembler masm(&cb);
152   GrowableArray<ZLoadBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
153 
154   for (int i = 0; i < stubs->length(); i++) {
155     // Make sure there is enough space in the code buffer
156     if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == NULL) {
157       ciEnv::current()->record_failure("CodeCache is full");
158       return;
159     }
160 
161     ZBarrierSet::assembler()->generate_c2_load_barrier_stub(&masm, stubs->at(i));
162   }
163 
164   masm.flush();
165 }
166 
estimate_stub_size() const167 int ZBarrierSetC2::estimate_stub_size() const {
168   Compile* const C = Compile::current();
169   BufferBlob* const blob = C->output()->scratch_buffer_blob();
170   GrowableArray<ZLoadBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
171   int size = 0;
172 
173   for (int i = 0; i < stubs->length(); i++) {
174     CodeBuffer cb(blob->content_begin(), (address)C->output()->scratch_locs_memory() - blob->content_begin());
175     MacroAssembler masm(&cb);
176     ZBarrierSet::assembler()->generate_c2_load_barrier_stub(&masm, stubs->at(i));
177     size += cb.insts_size();
178   }
179 
180   return size;
181 }
182 
set_barrier_data(C2Access & access)183 static void set_barrier_data(C2Access& access) {
184   if (ZBarrierSet::barrier_needed(access.decorators(), access.type())) {
185     if (access.decorators() & ON_WEAK_OOP_REF) {
186       access.set_barrier_data(ZLoadBarrierWeak);
187     } else {
188       access.set_barrier_data(ZLoadBarrierStrong);
189     }
190   }
191 }
192 
load_at_resolved(C2Access & access,const Type * val_type) const193 Node* ZBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
194   set_barrier_data(access);
195   return BarrierSetC2::load_at_resolved(access, val_type);
196 }
197 
atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess & access,Node * expected_val,Node * new_val,const Type * val_type) const198 Node* ZBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
199                                                     Node* new_val, const Type* val_type) const {
200   set_barrier_data(access);
201   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, val_type);
202 }
203 
atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess & access,Node * expected_val,Node * new_val,const Type * value_type) const204 Node* ZBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
205                                                      Node* new_val, const Type* value_type) const {
206   set_barrier_data(access);
207   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
208 }
209 
atomic_xchg_at_resolved(C2AtomicParseAccess & access,Node * new_val,const Type * val_type) const210 Node* ZBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* val_type) const {
211   set_barrier_data(access);
212   return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, val_type);
213 }
214 
array_copy_requires_gc_barriers(bool tightly_coupled_alloc,BasicType type,bool is_clone,ArrayCopyPhase phase) const215 bool ZBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type,
216                                                     bool is_clone, ArrayCopyPhase phase) const {
217   return type == T_OBJECT || type == T_ARRAY;
218 }
219 
220 // This TypeFunc assumes a 64bit system
clone_type()221 static const TypeFunc* clone_type() {
222   // Create input type (domain)
223   const Type** domain_fields = TypeTuple::fields(4);
224   domain_fields[TypeFunc::Parms + 0] = TypeInstPtr::NOTNULL;  // src
225   domain_fields[TypeFunc::Parms + 1] = TypeInstPtr::NOTNULL;  // dst
226   domain_fields[TypeFunc::Parms + 2] = TypeLong::LONG;        // size lower
227   domain_fields[TypeFunc::Parms + 3] = Type::HALF;            // size upper
228   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + 4, domain_fields);
229 
230   // Create result type (range)
231   const Type** range_fields = TypeTuple::fields(0);
232   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 0, range_fields);
233 
234   return TypeFunc::make(domain, range);
235 }
236 
clone_at_expansion(PhaseMacroExpand * phase,ArrayCopyNode * ac) const237 void ZBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
238   Node* const src = ac->in(ArrayCopyNode::Src);
239   if (ac->is_clone_array()) {
240     // Clone primitive array
241     BarrierSetC2::clone_at_expansion(phase, ac);
242     return;
243   }
244 
245   // Clone instance
246   Node* const ctrl       = ac->in(TypeFunc::Control);
247   Node* const mem        = ac->in(TypeFunc::Memory);
248   Node* const dst        = ac->in(ArrayCopyNode::Dest);
249   Node* const size       = ac->in(ArrayCopyNode::Length);
250 
251   assert(ac->is_clone_inst(), "Sanity check");
252   assert(size->bottom_type()->is_long(), "Should be long");
253 
254   // The native clone we are calling here expects the instance size in words
255   // Add header/offset size to payload size to get instance size.
256   Node* const base_offset = phase->longcon(arraycopy_payload_base_offset(false) >> LogBytesPerLong);
257   Node* const full_size = phase->transform_later(new AddLNode(size, base_offset));
258 
259   Node* const call = phase->make_leaf_call(ctrl,
260                                            mem,
261                                            clone_type(),
262                                            ZBarrierSetRuntime::clone_addr(),
263                                            "ZBarrierSetRuntime::clone",
264                                            TypeRawPtr::BOTTOM,
265                                            src,
266                                            dst,
267                                            full_size,
268                                            phase->top());
269   phase->transform_later(call);
270   phase->igvn().replace_node(ac, call);
271 }
272 
273 // == Dominating barrier elision ==
274 
block_has_safepoint(const Block * block,uint from,uint to)275 static bool block_has_safepoint(const Block* block, uint from, uint to) {
276   for (uint i = from; i < to; i++) {
277     if (block->get_node(i)->is_MachSafePoint()) {
278       // Safepoint found
279       return true;
280     }
281   }
282 
283   // Safepoint not found
284   return false;
285 }
286 
block_has_safepoint(const Block * block)287 static bool block_has_safepoint(const Block* block) {
288   return block_has_safepoint(block, 0, block->number_of_nodes());
289 }
290 
block_index(const Block * block,const Node * node)291 static uint block_index(const Block* block, const Node* node) {
292   for (uint j = 0; j < block->number_of_nodes(); ++j) {
293     if (block->get_node(j) == node) {
294       return j;
295     }
296   }
297   ShouldNotReachHere();
298   return 0;
299 }
300 
analyze_dominating_barriers() const301 void ZBarrierSetC2::analyze_dominating_barriers() const {
302   ResourceMark rm;
303   Compile* const C = Compile::current();
304   PhaseCFG* const cfg = C->cfg();
305   Block_List worklist;
306   Node_List mem_ops;
307   Node_List barrier_loads;
308 
309   // Step 1 - Find accesses, and track them in lists
310   for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
311     const Block* const block = cfg->get_block(i);
312     for (uint j = 0; j < block->number_of_nodes(); ++j) {
313       const Node* const node = block->get_node(j);
314       if (!node->is_Mach()) {
315         continue;
316       }
317 
318       MachNode* const mach = node->as_Mach();
319       switch (mach->ideal_Opcode()) {
320       case Op_LoadP:
321       case Op_CompareAndExchangeP:
322       case Op_CompareAndSwapP:
323       case Op_GetAndSetP:
324         if (mach->barrier_data() == ZLoadBarrierStrong) {
325           barrier_loads.push(mach);
326         }
327       case Op_StoreP:
328         mem_ops.push(mach);
329         break;
330 
331       default:
332         break;
333       }
334     }
335   }
336 
337   // Step 2 - Find dominating accesses for each load
338   for (uint i = 0; i < barrier_loads.size(); i++) {
339     MachNode* const load = barrier_loads.at(i)->as_Mach();
340     const TypePtr* load_adr_type = NULL;
341     intptr_t load_offset = 0;
342     const Node* const load_obj = load->get_base_and_disp(load_offset, load_adr_type);
343     Block* const load_block = cfg->get_block_for_node(load);
344     const uint load_index = block_index(load_block, load);
345 
346     for (uint j = 0; j < mem_ops.size(); j++) {
347       MachNode* mem = mem_ops.at(j)->as_Mach();
348       const TypePtr* mem_adr_type = NULL;
349       intptr_t mem_offset = 0;
350       const Node* mem_obj = mem->get_base_and_disp(mem_offset, mem_adr_type);
351       Block* mem_block = cfg->get_block_for_node(mem);
352       uint mem_index = block_index(mem_block, mem);
353 
354       if (load_obj == NodeSentinel || mem_obj == NodeSentinel ||
355           load_obj == NULL || mem_obj == NULL ||
356           load_offset < 0 || mem_offset < 0) {
357         continue;
358       }
359 
360       if (mem_obj != load_obj || mem_offset != load_offset) {
361         // Not the same addresses, not a candidate
362         continue;
363       }
364 
365       if (load_block == mem_block) {
366         // Earlier accesses in the same block
367         if (mem_index < load_index && !block_has_safepoint(mem_block, mem_index + 1, load_index)) {
368           load->set_barrier_data(ZLoadBarrierElided);
369         }
370       } else if (mem_block->dominates(load_block)) {
371         // Dominating block? Look around for safepoints
372         ResourceMark rm;
373         Block_List stack;
374         VectorSet visited(Thread::current()->resource_area());
375         stack.push(load_block);
376         bool safepoint_found = block_has_safepoint(load_block);
377         while (!safepoint_found && stack.size() > 0) {
378           Block* block = stack.pop();
379           if (visited.test_set(block->_pre_order)) {
380             continue;
381           }
382           if (block_has_safepoint(block)) {
383             safepoint_found = true;
384             break;
385           }
386           if (block == mem_block) {
387             continue;
388           }
389 
390           // Push predecessor blocks
391           for (uint p = 1; p < block->num_preds(); ++p) {
392             Block* pred = cfg->get_block_for_node(block->pred(p));
393             stack.push(pred);
394           }
395         }
396 
397         if (!safepoint_found) {
398           load->set_barrier_data(ZLoadBarrierElided);
399         }
400       }
401     }
402   }
403 }
404 
405 // == Reduced spilling optimization ==
406 
compute_liveness_at_stubs() const407 void ZBarrierSetC2::compute_liveness_at_stubs() const {
408   ResourceMark rm;
409   Compile* const C = Compile::current();
410   Arena* const A = Thread::current()->resource_area();
411   PhaseCFG* const cfg = C->cfg();
412   PhaseRegAlloc* const regalloc = C->regalloc();
413   RegMask* const live = NEW_ARENA_ARRAY(A, RegMask, cfg->number_of_blocks() * sizeof(RegMask));
414   ZBarrierSetAssembler* const bs = ZBarrierSet::assembler();
415   Block_List worklist;
416 
417   for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
418     new ((void*)(live + i)) RegMask();
419     worklist.push(cfg->get_block(i));
420   }
421 
422   while (worklist.size() > 0) {
423     const Block* const block = worklist.pop();
424     RegMask& old_live = live[block->_pre_order];
425     RegMask new_live;
426 
427     // Initialize to union of successors
428     for (uint i = 0; i < block->_num_succs; i++) {
429       const uint succ_id = block->_succs[i]->_pre_order;
430       new_live.OR(live[succ_id]);
431     }
432 
433     // Walk block backwards, computing liveness
434     for (int i = block->number_of_nodes() - 1; i >= 0; --i) {
435       const Node* const node = block->get_node(i);
436 
437       // Remove def bits
438       const OptoReg::Name first = bs->refine_register(node, regalloc->get_reg_first(node));
439       const OptoReg::Name second = bs->refine_register(node, regalloc->get_reg_second(node));
440       if (first != OptoReg::Bad) {
441         new_live.Remove(first);
442       }
443       if (second != OptoReg::Bad) {
444         new_live.Remove(second);
445       }
446 
447       // Add use bits
448       for (uint j = 1; j < node->req(); ++j) {
449         const Node* const use = node->in(j);
450         const OptoReg::Name first = bs->refine_register(use, regalloc->get_reg_first(use));
451         const OptoReg::Name second = bs->refine_register(use, regalloc->get_reg_second(use));
452         if (first != OptoReg::Bad) {
453           new_live.Insert(first);
454         }
455         if (second != OptoReg::Bad) {
456           new_live.Insert(second);
457         }
458       }
459 
460       // If this node tracks liveness, update it
461       RegMask* const regs = barrier_set_state()->live(node);
462       if (regs != NULL) {
463         regs->OR(new_live);
464       }
465     }
466 
467     // Now at block top, see if we have any changes
468     new_live.SUBTRACT(old_live);
469     if (new_live.is_NotEmpty()) {
470       // Liveness has refined, update and propagate to prior blocks
471       old_live.OR(new_live);
472       for (uint i = 1; i < block->num_preds(); ++i) {
473         Block* const pred = cfg->get_block_for_node(block->pred(i));
474         worklist.push(pred);
475       }
476     }
477   }
478 }
479