1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "libadt/vectset.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "compiler/compilerDirectives.hpp"
30 #include "opto/block.hpp"
31 #include "opto/cfgnode.hpp"
32 #include "opto/chaitin.hpp"
33 #include "opto/loopnode.hpp"
34 #include "opto/machnode.hpp"
35 #include "opto/matcher.hpp"
36 #include "opto/opcodes.hpp"
37 #include "opto/rootnode.hpp"
38 #include "utilities/copy.hpp"
39 #include "utilities/powerOfTwo.hpp"
40 
grow(uint i)41 void Block_Array::grow( uint i ) {
42   assert(i >= Max(), "must be an overflow");
43   debug_only(_limit = i+1);
44   if( i < _size )  return;
45   if( !_size ) {
46     _size = 1;
47     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
48     _blocks[0] = NULL;
49   }
50   uint old = _size;
51   _size = next_power_of_2(i);
52   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
53   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
54 }
55 
remove(uint i)56 void Block_List::remove(uint i) {
57   assert(i < _cnt, "index out of bounds");
58   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
59   pop(); // shrink list by one block
60 }
61 
insert(uint i,Block * b)62 void Block_List::insert(uint i, Block *b) {
63   push(b); // grow list by one block
64   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
65   _blocks[i] = b;
66 }
67 
68 #ifndef PRODUCT
print()69 void Block_List::print() {
70   for (uint i=0; i < size(); i++) {
71     tty->print("B%d ", _blocks[i]->_pre_order);
72   }
73   tty->print("size = %d\n", size());
74 }
75 #endif
76 
code_alignment() const77 uint Block::code_alignment() const {
78   // Check for Root block
79   if (_pre_order == 0) return CodeEntryAlignment;
80   // Check for Start block
81   if (_pre_order == 1) return InteriorEntryAlignment;
82   // Check for loop alignment
83   if (has_loop_alignment()) return loop_alignment();
84 
85   return relocInfo::addr_unit(); // no particular alignment
86 }
87 
compute_loop_alignment()88 uint Block::compute_loop_alignment() {
89   Node *h = head();
90   int unit_sz = relocInfo::addr_unit();
91   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
92     // Pre- and post-loops have low trip count so do not bother with
93     // NOPs for align loop head.  The constants are hidden from tuning
94     // but only because my "divide by 4" heuristic surely gets nearly
95     // all possible gain (a "do not align at all" heuristic has a
96     // chance of getting a really tiny gain).
97     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
98                                 h->as_CountedLoop()->is_post_loop())) {
99       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
100     }
101     // Loops with low backedge frequency should not be aligned.
102     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
103     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
104       return unit_sz; // Loop does not loop, more often than not!
105     }
106     return OptoLoopAlignment; // Otherwise align loop head
107   }
108 
109   return unit_sz; // no particular alignment
110 }
111 
112 // Compute the size of first 'inst_cnt' instructions in this block.
113 // Return the number of instructions left to compute if the block has
114 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
115 // exceeds OptoLoopAlignment.
compute_first_inst_size(uint & sum_size,uint inst_cnt,PhaseRegAlloc * ra)116 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
117                                     PhaseRegAlloc* ra) {
118   uint last_inst = number_of_nodes();
119   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
120     uint inst_size = get_node(j)->size(ra);
121     if( inst_size > 0 ) {
122       inst_cnt--;
123       uint sz = sum_size + inst_size;
124       if( sz <= (uint)OptoLoopAlignment ) {
125         // Compute size of instructions which fit into fetch buffer only
126         // since all inst_cnt instructions will not fit even if we align them.
127         sum_size = sz;
128       } else {
129         return 0;
130       }
131     }
132   }
133   return inst_cnt;
134 }
135 
find_node(const Node * n) const136 uint Block::find_node( const Node *n ) const {
137   for( uint i = 0; i < number_of_nodes(); i++ ) {
138     if( get_node(i) == n )
139       return i;
140   }
141   ShouldNotReachHere();
142   return 0;
143 }
144 
145 // Find and remove n from block list
find_remove(const Node * n)146 void Block::find_remove( const Node *n ) {
147   remove_node(find_node(n));
148 }
149 
contains(const Node * n) const150 bool Block::contains(const Node *n) const {
151   return _nodes.contains(n);
152 }
153 
154 // Return empty status of a block.  Empty blocks contain only the head, other
155 // ideal nodes, and an optional trailing goto.
is_Empty() const156 int Block::is_Empty() const {
157 
158   // Root or start block is not considered empty
159   if (head()->is_Root() || head()->is_Start()) {
160     return not_empty;
161   }
162 
163   int success_result = completely_empty;
164   int end_idx = number_of_nodes() - 1;
165 
166   // Check for ending goto
167   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
168     success_result = empty_with_goto;
169     end_idx--;
170   }
171 
172   // Unreachable blocks are considered empty
173   if (num_preds() <= 1) {
174     return success_result;
175   }
176 
177   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
178   // turn directly into code, because only MachNodes have non-trivial
179   // emit() functions.
180   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
181     end_idx--;
182   }
183 
184   // No room for any interesting instructions?
185   if (end_idx == 0) {
186     return success_result;
187   }
188 
189   return not_empty;
190 }
191 
192 // Return true if the block's code implies that it is likely to be
193 // executed infrequently.  Check to see if the block ends in a Halt or
194 // a low probability call.
has_uncommon_code() const195 bool Block::has_uncommon_code() const {
196   Node* en = end();
197 
198   if (en->is_MachGoto())
199     en = en->in(0);
200   if (en->is_Catch())
201     en = en->in(0);
202   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
203     MachCallNode* call = en->in(0)->as_MachCall();
204     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
205       // This is true for slow-path stubs like new_{instance,array},
206       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
207       // The magic number corresponds to the probability of an uncommon_trap,
208       // even though it is a count not a probability.
209       return true;
210     }
211   }
212 
213   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
214   return op == Op_Halt;
215 }
216 
217 // True if block is low enough frequency or guarded by a test which
218 // mostly does not go here.
is_uncommon(const Block * block)219 bool PhaseCFG::is_uncommon(const Block* block) {
220   // Initial blocks must never be moved, so are never uncommon.
221   if (block->head()->is_Root() || block->head()->is_Start())  return false;
222 
223   // Check for way-low freq
224   if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
225 
226   // Look for code shape indicating uncommon_trap or slow path
227   if (block->has_uncommon_code()) return true;
228 
229   const float epsilon = 0.05f;
230   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
231   uint uncommon_preds = 0;
232   uint freq_preds = 0;
233   uint uncommon_for_freq_preds = 0;
234 
235   for( uint i=1; i< block->num_preds(); i++ ) {
236     Block* guard = get_block_for_node(block->pred(i));
237     // Check to see if this block follows its guard 1 time out of 10000
238     // or less.
239     //
240     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
241     // we intend to be "uncommon", such as slow-path TLE allocation,
242     // predicted call failure, and uncommon trap triggers.
243     //
244     // Use an epsilon value of 5% to allow for variability in frequency
245     // predictions and floating point calculations. The net effect is
246     // that guard_factor is set to 9500.
247     //
248     // Ignore low-frequency blocks.
249     // The next check is (guard->_freq < 1.e-5 * 9500.).
250     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
251       uncommon_preds++;
252     } else {
253       freq_preds++;
254       if(block->_freq < guard->_freq * guard_factor ) {
255         uncommon_for_freq_preds++;
256       }
257     }
258   }
259   if( block->num_preds() > 1 &&
260       // The block is uncommon if all preds are uncommon or
261       (uncommon_preds == (block->num_preds()-1) ||
262       // it is uncommon for all frequent preds.
263        uncommon_for_freq_preds == freq_preds) ) {
264     return true;
265   }
266   return false;
267 }
268 
269 #ifndef PRODUCT
dump_bidx(const Block * orig,outputStream * st) const270 void Block::dump_bidx(const Block* orig, outputStream* st) const {
271   if (_pre_order) st->print("B%d", _pre_order);
272   else st->print("N%d", head()->_idx);
273 
274   if (Verbose && orig != this) {
275     // Dump the original block's idx
276     st->print(" (");
277     orig->dump_bidx(orig, st);
278     st->print(")");
279   }
280 }
281 
dump_pred(const PhaseCFG * cfg,Block * orig,outputStream * st) const282 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
283   if (is_connector()) {
284     for (uint i=1; i<num_preds(); i++) {
285       Block *p = cfg->get_block_for_node(pred(i));
286       p->dump_pred(cfg, orig, st);
287     }
288   } else {
289     dump_bidx(orig, st);
290     st->print(" ");
291   }
292 }
293 
dump_head(const PhaseCFG * cfg,outputStream * st) const294 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
295   // Print the basic block.
296   dump_bidx(this, st);
297   st->print(": ");
298 
299   // Print the outgoing CFG edges.
300   st->print("#\tout( ");
301   for( uint i=0; i<_num_succs; i++ ) {
302     non_connector_successor(i)->dump_bidx(_succs[i], st);
303     st->print(" ");
304   }
305 
306   // Print the incoming CFG edges.
307   st->print(") <- ");
308   if( head()->is_block_start() ) {
309     st->print("in( ");
310     for (uint i=1; i<num_preds(); i++) {
311       Node *s = pred(i);
312       if (cfg != NULL) {
313         Block *p = cfg->get_block_for_node(s);
314         p->dump_pred(cfg, p, st);
315       } else {
316         while (!s->is_block_start()) {
317           s = s->in(0);
318         }
319         st->print("N%d ", s->_idx );
320       }
321     }
322     st->print(") ");
323   } else {
324     st->print("BLOCK HEAD IS JUNK ");
325   }
326 
327   // Print loop, if any
328   const Block *bhead = this;    // Head of self-loop
329   Node *bh = bhead->head();
330 
331   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
332     LoopNode *loop = bh->as_Loop();
333     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
334     while (bx->is_connector()) {
335       bx = cfg->get_block_for_node(bx->pred(1));
336     }
337     st->print("Loop( B%d-B%d ", bhead->_pre_order, bx->_pre_order);
338     // Dump any loop-specific bits, especially for CountedLoops.
339     loop->dump_spec(st);
340     st->print(")");
341   } else if (has_loop_alignment()) {
342     st->print("top-of-loop");
343   }
344 
345   // Print frequency and other optimization-relevant information
346   st->print(" Freq: %g",_freq);
347   if( Verbose || WizardMode ) {
348     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
349     st->print(" RegPressure: %d",_reg_pressure);
350     st->print(" IHRP Index: %d",_ihrp_index);
351     st->print(" FRegPressure: %d",_freg_pressure);
352     st->print(" FHRP Index: %d",_fhrp_index);
353   }
354   st->cr();
355 }
356 
dump() const357 void Block::dump() const {
358   dump(NULL);
359 }
360 
dump(const PhaseCFG * cfg) const361 void Block::dump(const PhaseCFG* cfg) const {
362   dump_head(cfg);
363   for (uint i=0; i< number_of_nodes(); i++) {
364     get_node(i)->dump();
365   }
366   tty->print("\n");
367 }
368 #endif
369 
PhaseCFG(Arena * arena,RootNode * root,Matcher & matcher)370 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
371 : Phase(CFG)
372 , _root(root)
373 , _block_arena(arena)
374 , _regalloc(NULL)
375 , _scheduling_for_pressure(false)
376 , _matcher(matcher)
377 , _node_to_block_mapping(arena)
378 , _node_latency(NULL)
379 #ifndef PRODUCT
380 , _trace_opto_pipelining(C->directive()->TraceOptoPipeliningOption)
381 #endif
382 #ifdef ASSERT
383 , _raw_oops(arena)
384 #endif
385 {
386   ResourceMark rm;
387   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
388   // then Match it into a machine-specific Node.  Then clone the machine
389   // Node on demand.
390   Node *x = new GotoNode(NULL);
391   x->init_req(0, x);
392   _goto = matcher.match_tree(x);
393   assert(_goto != NULL, "");
394   _goto->set_req(0,_goto);
395 
396   // Build the CFG in Reverse Post Order
397   _number_of_blocks = build_cfg();
398   _root_block = get_block_for_node(_root);
399 }
400 
401 // Build a proper looking CFG.  Make every block begin with either a StartNode
402 // or a RegionNode.  Make every block end with either a Goto, If or Return.
403 // The RootNode both starts and ends it's own block.  Do this with a recursive
404 // backwards walk over the control edges.
build_cfg()405 uint PhaseCFG::build_cfg() {
406   Arena *a = Thread::current()->resource_area();
407   VectorSet visited(a);
408 
409   // Allocate stack with enough space to avoid frequent realloc
410   Node_Stack nstack(a, C->live_nodes() >> 1);
411   nstack.push(_root, 0);
412   uint sum = 0;                 // Counter for blocks
413 
414   while (nstack.is_nonempty()) {
415     // node and in's index from stack's top
416     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
417     // only nodes which point to the start of basic block (see below).
418     Node *np = nstack.node();
419     // idx > 0, except for the first node (_root) pushed on stack
420     // at the beginning when idx == 0.
421     // We will use the condition (idx == 0) later to end the build.
422     uint idx = nstack.index();
423     Node *proj = np->in(idx);
424     const Node *x = proj->is_block_proj();
425     // Does the block end with a proper block-ending Node?  One of Return,
426     // If or Goto? (This check should be done for visited nodes also).
427     if (x == NULL) {                    // Does not end right...
428       Node *g = _goto->clone(); // Force it to end in a Goto
429       g->set_req(0, proj);
430       np->set_req(idx, g);
431       x = proj = g;
432     }
433     if (!visited.test_set(x->_idx)) { // Visit this block once
434       // Skip any control-pinned middle'in stuff
435       Node *p = proj;
436       do {
437         proj = p;                   // Update pointer to last Control
438         p = p->in(0);               // Move control forward
439       } while( !p->is_block_proj() &&
440                !p->is_block_start() );
441       // Make the block begin with one of Region or StartNode.
442       if( !p->is_block_start() ) {
443         RegionNode *r = new RegionNode( 2 );
444         r->init_req(1, p);         // Insert RegionNode in the way
445         proj->set_req(0, r);        // Insert RegionNode in the way
446         p = r;
447       }
448       // 'p' now points to the start of this basic block
449 
450       // Put self in array of basic blocks
451       Block *bb = new (_block_arena) Block(_block_arena, p);
452       map_node_to_block(p, bb);
453       map_node_to_block(x, bb);
454       if( x != p ) {                // Only for root is x == p
455         bb->push_node((Node*)x);
456       }
457       // Now handle predecessors
458       ++sum;                        // Count 1 for self block
459       uint cnt = bb->num_preds();
460       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
461         Node *prevproj = p->in(i);  // Get prior input
462         assert( !prevproj->is_Con(), "dead input not removed" );
463         // Check to see if p->in(i) is a "control-dependent" CFG edge -
464         // i.e., it splits at the source (via an IF or SWITCH) and merges
465         // at the destination (via a many-input Region).
466         // This breaks critical edges.  The RegionNode to start the block
467         // will be added when <p,i> is pulled off the node stack
468         if ( cnt > 2 ) {             // Merging many things?
469           assert( prevproj== bb->pred(i),"");
470           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
471             // Force a block on the control-dependent edge
472             Node *g = _goto->clone();       // Force it to end in a Goto
473             g->set_req(0,prevproj);
474             p->set_req(i,g);
475           }
476         }
477         nstack.push(p, i);  // 'p' is RegionNode or StartNode
478       }
479     } else { // Post-processing visited nodes
480       nstack.pop();                 // remove node from stack
481       // Check if it the fist node pushed on stack at the beginning.
482       if (idx == 0) break;          // end of the build
483       // Find predecessor basic block
484       Block *pb = get_block_for_node(x);
485       // Insert into nodes array, if not already there
486       if (!has_block(proj)) {
487         assert( x != proj, "" );
488         // Map basic block of projection
489         map_node_to_block(proj, pb);
490         pb->push_node(proj);
491       }
492       // Insert self as a child of my predecessor block
493       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
494       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
495               "too many control users, not a CFG?" );
496     }
497   }
498   // Return number of basic blocks for all children and self
499   return sum;
500 }
501 
502 // Inserts a goto & corresponding basic block between
503 // block[block_no] and its succ_no'th successor block
insert_goto_at(uint block_no,uint succ_no)504 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
505   // get block with block_no
506   assert(block_no < number_of_blocks(), "illegal block number");
507   Block* in  = get_block(block_no);
508   // get successor block succ_no
509   assert(succ_no < in->_num_succs, "illegal successor number");
510   Block* out = in->_succs[succ_no];
511   // Compute frequency of the new block. Do this before inserting
512   // new block in case succ_prob() needs to infer the probability from
513   // surrounding blocks.
514   float freq = in->_freq * in->succ_prob(succ_no);
515   // get ProjNode corresponding to the succ_no'th successor of the in block
516   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
517   // create region for basic block
518   RegionNode* region = new RegionNode(2);
519   region->init_req(1, proj);
520   // setup corresponding basic block
521   Block* block = new (_block_arena) Block(_block_arena, region);
522   map_node_to_block(region, block);
523   C->regalloc()->set_bad(region->_idx);
524   // add a goto node
525   Node* gto = _goto->clone(); // get a new goto node
526   gto->set_req(0, region);
527   // add it to the basic block
528   block->push_node(gto);
529   map_node_to_block(gto, block);
530   C->regalloc()->set_bad(gto->_idx);
531   // hook up successor block
532   block->_succs.map(block->_num_succs++, out);
533   // remap successor's predecessors if necessary
534   for (uint i = 1; i < out->num_preds(); i++) {
535     if (out->pred(i) == proj) out->head()->set_req(i, gto);
536   }
537   // remap predecessor's successor to new block
538   in->_succs.map(succ_no, block);
539   // Set the frequency of the new block
540   block->_freq = freq;
541   // add new basic block to basic block list
542   add_block_at(block_no + 1, block);
543 }
544 
545 // Does this block end in a multiway branch that cannot have the default case
546 // flipped for another case?
no_flip_branch(Block * b)547 static bool no_flip_branch(Block *b) {
548   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
549   if (branch_idx < 1) {
550     return false;
551   }
552   Node *branch = b->get_node(branch_idx);
553   if (branch->is_Catch()) {
554     return true;
555   }
556   if (branch->is_Mach()) {
557     if (branch->is_MachNullCheck()) {
558       return true;
559     }
560     int iop = branch->as_Mach()->ideal_Opcode();
561     if (iop == Op_FastLock || iop == Op_FastUnlock) {
562       return true;
563     }
564     // Don't flip if branch has an implicit check.
565     if (branch->as_Mach()->is_TrapBasedCheckNode()) {
566       return true;
567     }
568   }
569   return false;
570 }
571 
572 // Check for NeverBranch at block end.  This needs to become a GOTO to the
573 // true target.  NeverBranch are treated as a conditional branch that always
574 // goes the same direction for most of the optimizer and are used to give a
575 // fake exit path to infinite loops.  At this late stage they need to turn
576 // into Goto's so that when you enter the infinite loop you indeed hang.
convert_NeverBranch_to_Goto(Block * b)577 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
578   // Find true target
579   int end_idx = b->end_idx();
580   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
581   Block *succ = b->_succs[idx];
582   Node* gto = _goto->clone(); // get a new goto node
583   gto->set_req(0, b->head());
584   Node *bp = b->get_node(end_idx);
585   b->map_node(gto, end_idx); // Slam over NeverBranch
586   map_node_to_block(gto, b);
587   C->regalloc()->set_bad(gto->_idx);
588   b->pop_node();              // Yank projections
589   b->pop_node();              // Yank projections
590   b->_succs.map(0,succ);        // Map only successor
591   b->_num_succs = 1;
592   // remap successor's predecessors if necessary
593   uint j;
594   for( j = 1; j < succ->num_preds(); j++)
595     if( succ->pred(j)->in(0) == bp )
596       succ->head()->set_req(j, gto);
597   // Kill alternate exit path
598   Block *dead = b->_succs[1-idx];
599   for( j = 1; j < dead->num_preds(); j++)
600     if( dead->pred(j)->in(0) == bp )
601       break;
602   // Scan through block, yanking dead path from
603   // all regions and phis.
604   dead->head()->del_req(j);
605   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
606     dead->get_node(k)->del_req(j);
607 }
608 
609 // Helper function to move block bx to the slot following b_index. Return
610 // true if the move is successful, otherwise false
move_to_next(Block * bx,uint b_index)611 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
612   if (bx == NULL) return false;
613 
614   // Return false if bx is already scheduled.
615   uint bx_index = bx->_pre_order;
616   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
617     return false;
618   }
619 
620   // Find the current index of block bx on the block list
621   bx_index = b_index + 1;
622   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
623     bx_index++;
624   }
625   assert(get_block(bx_index) == bx, "block not found");
626 
627   // If the previous block conditionally falls into bx, return false,
628   // because moving bx will create an extra jump.
629   for(uint k = 1; k < bx->num_preds(); k++ ) {
630     Block* pred = get_block_for_node(bx->pred(k));
631     if (pred == get_block(bx_index - 1)) {
632       if (pred->_num_succs != 1) {
633         return false;
634       }
635     }
636   }
637 
638   // Reinsert bx just past block 'b'
639   _blocks.remove(bx_index);
640   _blocks.insert(b_index + 1, bx);
641   return true;
642 }
643 
644 // Move empty and uncommon blocks to the end.
move_to_end(Block * b,uint i)645 void PhaseCFG::move_to_end(Block *b, uint i) {
646   int e = b->is_Empty();
647   if (e != Block::not_empty) {
648     if (e == Block::empty_with_goto) {
649       // Remove the goto, but leave the block.
650       b->pop_node();
651     }
652     // Mark this block as a connector block, which will cause it to be
653     // ignored in certain functions such as non_connector_successor().
654     b->set_connector();
655   }
656   // Move the empty block to the end, and don't recheck.
657   _blocks.remove(i);
658   _blocks.push(b);
659 }
660 
661 // Set loop alignment for every block
set_loop_alignment()662 void PhaseCFG::set_loop_alignment() {
663   uint last = number_of_blocks();
664   assert(get_block(0) == get_root_block(), "");
665 
666   for (uint i = 1; i < last; i++) {
667     Block* block = get_block(i);
668     if (block->head()->is_Loop()) {
669       block->set_loop_alignment(block);
670     }
671   }
672 }
673 
674 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
675 // to the end.
remove_empty_blocks()676 void PhaseCFG::remove_empty_blocks() {
677   // Move uncommon blocks to the end
678   uint last = number_of_blocks();
679   assert(get_block(0) == get_root_block(), "");
680 
681   for (uint i = 1; i < last; i++) {
682     Block* block = get_block(i);
683     if (block->is_connector()) {
684       break;
685     }
686 
687     // Check for NeverBranch at block end.  This needs to become a GOTO to the
688     // true target.  NeverBranch are treated as a conditional branch that
689     // always goes the same direction for most of the optimizer and are used
690     // to give a fake exit path to infinite loops.  At this late stage they
691     // need to turn into Goto's so that when you enter the infinite loop you
692     // indeed hang.
693     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
694       convert_NeverBranch_to_Goto(block);
695     }
696 
697     // Look for uncommon blocks and move to end.
698     if (!C->do_freq_based_layout()) {
699       if (is_uncommon(block)) {
700         move_to_end(block, i);
701         last--;                   // No longer check for being uncommon!
702         if (no_flip_branch(block)) { // Fall-thru case must follow?
703           // Find the fall-thru block
704           block = get_block(i);
705           move_to_end(block, i);
706           last--;
707         }
708         // backup block counter post-increment
709         i--;
710       }
711     }
712   }
713 
714   // Move empty blocks to the end
715   last = number_of_blocks();
716   for (uint i = 1; i < last; i++) {
717     Block* block = get_block(i);
718     if (block->is_Empty() != Block::not_empty) {
719       move_to_end(block, i);
720       last--;
721       i--;
722     }
723   } // End of for all blocks
724 }
725 
fixup_trap_based_check(Node * branch,Block * block,int block_pos,Block * bnext)726 Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
727   // Trap based checks must fall through to the successor with
728   // PROB_ALWAYS.
729   // They should be an If with 2 successors.
730   assert(branch->is_MachIf(),   "must be If");
731   assert(block->_num_succs == 2, "must have 2 successors");
732 
733   // Get the If node and the projection for the first successor.
734   MachIfNode *iff   = block->get_node(block->number_of_nodes()-3)->as_MachIf();
735   ProjNode   *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
736   ProjNode   *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
737   ProjNode   *projt = (proj0->Opcode() == Op_IfTrue)  ? proj0 : proj1;
738   ProjNode   *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
739 
740   // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
741   assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
742   assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
743 
744   ProjNode *proj_always;
745   ProjNode *proj_never;
746   // We must negate the branch if the implicit check doesn't follow
747   // the branch's TRUE path. Then, the new TRUE branch target will
748   // be the old FALSE branch target.
749   if (iff->_prob <= 2*PROB_NEVER) {   // There are small rounding errors.
750     proj_never  = projt;
751     proj_always = projf;
752   } else {
753     // We must negate the branch if the trap doesn't follow the
754     // branch's TRUE path. Then, the new TRUE branch target will
755     // be the old FALSE branch target.
756     proj_never  = projf;
757     proj_always = projt;
758     iff->negate();
759   }
760   assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
761   // Map the successors properly
762   block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0)));   // The target of the trap.
763   block->_succs.map(1, get_block_for_node(proj_always->raw_out(0)));   // The fall through target.
764 
765   if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
766     block->map_node(proj_never,  block->number_of_nodes() - block->_num_succs + 0);
767     block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
768   }
769 
770   // Place the fall through block after this block.
771   Block *bs1 = block->non_connector_successor(1);
772   if (bs1 != bnext && move_to_next(bs1, block_pos)) {
773     bnext = bs1;
774   }
775   // If the fall through block still is not the next block, insert a goto.
776   if (bs1 != bnext) {
777     insert_goto_at(block_pos, 1);
778   }
779   return bnext;
780 }
781 
782 // Fix up the final control flow for basic blocks.
fixup_flow()783 void PhaseCFG::fixup_flow() {
784   // Fixup final control flow for the blocks.  Remove jump-to-next
785   // block. If neither arm of an IF follows the conditional branch, we
786   // have to add a second jump after the conditional.  We place the
787   // TRUE branch target in succs[0] for both GOTOs and IFs.
788   for (uint i = 0; i < number_of_blocks(); i++) {
789     Block* block = get_block(i);
790     block->_pre_order = i;          // turn pre-order into block-index
791 
792     // Connector blocks need no further processing.
793     if (block->is_connector()) {
794       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
795       continue;
796     }
797     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
798 
799     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
800     Block* bs0 = block->non_connector_successor(0);
801 
802     // Check for multi-way branches where I cannot negate the test to
803     // exchange the true and false targets.
804     if (no_flip_branch(block)) {
805       // Find fall through case - if must fall into its target.
806       // Get the index of the branch's first successor.
807       int branch_idx = block->number_of_nodes() - block->_num_succs;
808 
809       // The branch is 1 before the branch's first successor.
810       Node *branch = block->get_node(branch_idx-1);
811 
812       // Handle no-flip branches which have implicit checks and which require
813       // special block ordering and individual semantics of the 'fall through
814       // case'.
815       if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
816           branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
817         bnext = fixup_trap_based_check(branch, block, i, bnext);
818       } else {
819         // Else, default handling for no-flip branches
820         for (uint j2 = 0; j2 < block->_num_succs; j2++) {
821           const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
822           if (p->_con == 0) {
823             // successor j2 is fall through case
824             if (block->non_connector_successor(j2) != bnext) {
825               // but it is not the next block => insert a goto
826               insert_goto_at(i, j2);
827             }
828             // Put taken branch in slot 0
829             if (j2 == 0 && block->_num_succs == 2) {
830               // Flip targets in succs map
831               Block *tbs0 = block->_succs[0];
832               Block *tbs1 = block->_succs[1];
833               block->_succs.map(0, tbs1);
834               block->_succs.map(1, tbs0);
835             }
836             break;
837           }
838         }
839       }
840 
841       // Remove all CatchProjs
842       for (uint j = 0; j < block->_num_succs; j++) {
843         block->pop_node();
844       }
845 
846     } else if (block->_num_succs == 1) {
847       // Block ends in a Goto?
848       if (bnext == bs0) {
849         // We fall into next block; remove the Goto
850         block->pop_node();
851       }
852 
853     } else if(block->_num_succs == 2) { // Block ends in a If?
854       // Get opcode of 1st projection (matches _succs[0])
855       // Note: Since this basic block has 2 exits, the last 2 nodes must
856       //       be projections (in any order), the 3rd last node must be
857       //       the IfNode (we have excluded other 2-way exits such as
858       //       CatchNodes already).
859       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
860       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
861       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
862 
863       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
864       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
865       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
866 
867       Block* bs1 = block->non_connector_successor(1);
868 
869       // Check for neither successor block following the current
870       // block ending in a conditional. If so, move one of the
871       // successors after the current one, provided that the
872       // successor was previously unscheduled, but moveable
873       // (i.e., all paths to it involve a branch).
874       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
875         // Choose the more common successor based on the probability
876         // of the conditional branch.
877         Block* bx = bs0;
878         Block* by = bs1;
879 
880         // _prob is the probability of taking the true path. Make
881         // p the probability of taking successor #1.
882         float p = iff->as_MachIf()->_prob;
883         if (proj0->Opcode() == Op_IfTrue) {
884           p = 1.0 - p;
885         }
886 
887         // Prefer successor #1 if p > 0.5
888         if (p > PROB_FAIR) {
889           bx = bs1;
890           by = bs0;
891         }
892 
893         // Attempt the more common successor first
894         if (move_to_next(bx, i)) {
895           bnext = bx;
896         } else if (move_to_next(by, i)) {
897           bnext = by;
898         }
899       }
900 
901       // Check for conditional branching the wrong way.  Negate
902       // conditional, if needed, so it falls into the following block
903       // and branches to the not-following block.
904 
905       // Check for the next block being in succs[0].  We are going to branch
906       // to succs[0], so we want the fall-thru case as the next block in
907       // succs[1].
908       if (bnext == bs0) {
909         // Fall-thru case in succs[0], so flip targets in succs map
910         Block* tbs0 = block->_succs[0];
911         Block* tbs1 = block->_succs[1];
912         block->_succs.map(0, tbs1);
913         block->_succs.map(1, tbs0);
914         // Flip projection for each target
915         ProjNode* tmp = proj0;
916         proj0 = proj1;
917         proj1 = tmp;
918 
919       } else if(bnext != bs1) {
920         // Need a double-branch
921         // The existing conditional branch need not change.
922         // Add a unconditional branch to the false target.
923         // Alas, it must appear in its own block and adding a
924         // block this late in the game is complicated.  Sigh.
925         insert_goto_at(i, 1);
926       }
927 
928       // Make sure we TRUE branch to the target
929       if (proj0->Opcode() == Op_IfFalse) {
930         iff->as_MachIf()->negate();
931       }
932 
933       block->pop_node();          // Remove IfFalse & IfTrue projections
934       block->pop_node();
935 
936     } else {
937       // Multi-exit block, e.g. a switch statement
938       // But we don't need to do anything here
939     }
940   } // End of for all blocks
941 }
942 
943 
944 // postalloc_expand: Expand nodes after register allocation.
945 //
946 // postalloc_expand has to be called after register allocation, just
947 // before output (i.e. scheduling). It only gets called if
948 // Matcher::require_postalloc_expand is true.
949 //
950 // Background:
951 //
952 // Nodes that are expandend (one compound node requiring several
953 // assembler instructions to be implemented split into two or more
954 // non-compound nodes) after register allocation are not as nice as
955 // the ones expanded before register allocation - they don't
956 // participate in optimizations as global code motion. But after
957 // register allocation we can expand nodes that use registers which
958 // are not spillable or registers that are not allocated, because the
959 // old compound node is simply replaced (in its location in the basic
960 // block) by a new subgraph which does not contain compound nodes any
961 // more. The scheduler called during output can later on process these
962 // non-compound nodes.
963 //
964 // Implementation:
965 //
966 // Nodes requiring postalloc expand are specified in the ad file by using
967 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
968 // contains a single call to an encoding, as does an ins_encode
969 // statement. Instead of an emit() function a postalloc_expand() function
970 // is generated that doesn't emit assembler but creates a new
971 // subgraph. The code below calls this postalloc_expand function for each
972 // node with the appropriate attribute. This function returns the new
973 // nodes generated in an array passed in the call. The old node,
974 // potential MachTemps before and potential Projs after it then get
975 // disconnected and replaced by the new nodes. The instruction
976 // generating the result has to be the last one in the array. In
977 // general it is assumed that Projs after the node expanded are
978 // kills. These kills are not required any more after expanding as
979 // there are now explicitly visible def-use chains and the Projs are
980 // removed. This does not hold for calls: They do not only have
981 // kill-Projs but also Projs defining values. Therefore Projs after
982 // the node expanded are removed for all but for calls. If a node is
983 // to be reused, it must be added to the nodes list returned, and it
984 // will be added again.
985 //
986 // Implementing the postalloc_expand function for a node in an enc_class
987 // is rather tedious. It requires knowledge about many node details, as
988 // the nodes and the subgraph must be hand crafted. To simplify this,
989 // adlc generates some utility variables into the postalloc_expand function,
990 // e.g., holding the operands as specified by the postalloc_expand encoding
991 // specification, e.g.:
992 //  * unsigned idx_<par_name>  holding the index of the node in the ins
993 //  * Node *n_<par_name>       holding the node loaded from the ins
994 //  * MachOpnd *op_<par_name>  holding the corresponding operand
995 //
996 // The ordering of operands can not be determined by looking at a
997 // rule. Especially if a match rule matches several different trees,
998 // several nodes are generated from one instruct specification with
999 // different operand orderings. In this case the adlc generated
1000 // variables are the only way to access the ins and operands
1001 // deterministically.
1002 //
1003 // If assigning a register to a node that contains an oop, don't
1004 // forget to call ra_->set_oop() for the node.
postalloc_expand(PhaseRegAlloc * _ra)1005 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
1006   GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
1007   GrowableArray <Node *> remove(32);
1008   GrowableArray <Node *> succs(32);
1009   unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
1010   DEBUG_ONLY(bool foundNode = false);
1011 
1012   // for all blocks
1013   for (uint i = 0; i < number_of_blocks(); i++) {
1014     Block *b = _blocks[i];
1015     // For all instructions in the current block.
1016     for (uint j = 0; j < b->number_of_nodes(); j++) {
1017       Node *n = b->get_node(j);
1018       if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1019 #ifdef ASSERT
1020         if (TracePostallocExpand) {
1021           if (!foundNode) {
1022             foundNode = true;
1023             tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1024                        C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1025           }
1026           tty->print("  postalloc expanding "); n->dump();
1027           if (Verbose) {
1028             tty->print("    with ins:\n");
1029             for (uint k = 0; k < n->len(); ++k) {
1030               if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
1031             }
1032           }
1033         }
1034 #endif
1035         new_nodes.clear();
1036         // Collect nodes that have to be removed from the block later on.
1037         uint req = n->req();
1038         remove.clear();
1039         for (uint k = 0; k < req; ++k) {
1040           if (n->in(k) && n->in(k)->is_MachTemp()) {
1041             remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1042             n->in(k)->del_req(0);
1043             j--;
1044           }
1045         }
1046 
1047         // Check whether we can allocate enough nodes. We set a fix limit for
1048         // the size of postalloc expands with this.
1049         uint unique_limit = C->unique() + 40;
1050         if (unique_limit >= _ra->node_regs_max_index()) {
1051           Compile::current()->record_failure("out of nodes in postalloc expand");
1052           return;
1053         }
1054 
1055         // Emit (i.e. generate new nodes).
1056         n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1057 
1058         assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1059 
1060         // Disconnect the inputs of the old node.
1061         //
1062         // We reuse MachSpillCopy nodes. If we need to expand them, there
1063         // are many, so reusing pays off. If reused, the node already
1064         // has the new ins. n must be the last node on new_nodes list.
1065         if (!n->is_MachSpillCopy()) {
1066           for (int k = req - 1; k >= 0; --k) {
1067             n->del_req(k);
1068           }
1069         }
1070 
1071 #ifdef ASSERT
1072         // Check that all nodes have proper operands.
1073         for (int k = 0; k < new_nodes.length(); ++k) {
1074           if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1075           MachNode *m = new_nodes.at(k)->as_Mach();
1076           for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1077             if (MachOper::notAnOper(m->_opnds[l])) {
1078               outputStream *os = tty;
1079               os->print("Node %s ", m->Name());
1080               os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1081               assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1082             }
1083           }
1084         }
1085 #endif
1086 
1087         // Collect succs of old node in remove (for projections) and in succs (for
1088         // all other nodes) do _not_ collect projections in remove (but in succs)
1089         // in case the node is a call. We need the projections for calls as they are
1090         // associated with registes (i.e. they are defs).
1091         succs.clear();
1092         for (DUIterator k = n->outs(); n->has_out(k); k++) {
1093           if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1094             remove.push(n->out(k));
1095           } else {
1096             succs.push(n->out(k));
1097           }
1098         }
1099         // Replace old node n as input of its succs by last of the new nodes.
1100         for (int k = 0; k < succs.length(); ++k) {
1101           Node *succ = succs.at(k);
1102           for (uint l = 0; l < succ->req(); ++l) {
1103             if (succ->in(l) == n) {
1104               succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1105             }
1106           }
1107           for (uint l = succ->req(); l < succ->len(); ++l) {
1108             if (succ->in(l) == n) {
1109               succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1110             }
1111           }
1112         }
1113 
1114         // Index of old node in block.
1115         uint index = b->find_node(n);
1116         // Insert new nodes into block and map them in nodes->blocks array
1117         // and remember last node in n2.
1118         Node *n2 = NULL;
1119         for (int k = 0; k < new_nodes.length(); ++k) {
1120           n2 = new_nodes.at(k);
1121           b->insert_node(n2, ++index);
1122           map_node_to_block(n2, b);
1123         }
1124 
1125         // Add old node n to remove and remove them all from block.
1126         remove.push(n);
1127         j--;
1128 #ifdef ASSERT
1129         if (TracePostallocExpand && Verbose) {
1130           tty->print("    removing:\n");
1131           for (int k = 0; k < remove.length(); ++k) {
1132             tty->print("        "); remove.at(k)->dump();
1133           }
1134           tty->print("    inserting:\n");
1135           for (int k = 0; k < new_nodes.length(); ++k) {
1136             tty->print("        "); new_nodes.at(k)->dump();
1137           }
1138         }
1139 #endif
1140         for (int k = 0; k < remove.length(); ++k) {
1141           if (b->contains(remove.at(k))) {
1142             b->find_remove(remove.at(k));
1143           } else {
1144             assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1145           }
1146         }
1147         // If anything has been inserted (n2 != NULL), continue after last node inserted.
1148         // This does not always work. Some postalloc expands don't insert any nodes, if they
1149         // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1150         j = n2 ? b->find_node(n2) : j;
1151       }
1152     }
1153   }
1154 
1155 #ifdef ASSERT
1156   if (foundNode) {
1157     tty->print("FINISHED %d %s\n", C->compile_id(),
1158                C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1159     tty->flush();
1160   }
1161 #endif
1162 }
1163 
1164 
1165 //------------------------------dump-------------------------------------------
1166 #ifndef PRODUCT
_dump_cfg(const Node * end,VectorSet & visited) const1167 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
1168   const Node *x = end->is_block_proj();
1169   assert( x, "not a CFG" );
1170 
1171   // Do not visit this block again
1172   if( visited.test_set(x->_idx) ) return;
1173 
1174   // Skip through this block
1175   const Node *p = x;
1176   do {
1177     p = p->in(0);               // Move control forward
1178     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1179   } while( !p->is_block_start() );
1180 
1181   // Recursively visit
1182   for (uint i = 1; i < p->req(); i++) {
1183     _dump_cfg(p->in(i), visited);
1184   }
1185 
1186   // Dump the block
1187   get_block_for_node(p)->dump(this);
1188 }
1189 
dump() const1190 void PhaseCFG::dump( ) const {
1191   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1192   if (_blocks.size()) {        // Did we do basic-block layout?
1193     for (uint i = 0; i < number_of_blocks(); i++) {
1194       const Block* block = get_block(i);
1195       block->dump(this);
1196     }
1197   } else {                      // Else do it with a DFS
1198     VectorSet visited(_block_arena);
1199     _dump_cfg(_root,visited);
1200   }
1201 }
1202 
dump_headers()1203 void PhaseCFG::dump_headers() {
1204   for (uint i = 0; i < number_of_blocks(); i++) {
1205     Block* block = get_block(i);
1206     if (block != NULL) {
1207       block->dump_head(this);
1208     }
1209   }
1210 }
1211 
verify() const1212 void PhaseCFG::verify() const {
1213 #ifdef ASSERT
1214   // Verify sane CFG
1215   for (uint i = 0; i < number_of_blocks(); i++) {
1216     Block* block = get_block(i);
1217     uint cnt = block->number_of_nodes();
1218     uint j;
1219     for (j = 0; j < cnt; j++)  {
1220       Node *n = block->get_node(j);
1221       assert(get_block_for_node(n) == block, "");
1222       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1223         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1224       }
1225       if (n->needs_anti_dependence_check()) {
1226         verify_anti_dependences(block, n);
1227       }
1228       for (uint k = 0; k < n->req(); k++) {
1229         Node *def = n->in(k);
1230         if (def && def != n) {
1231           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1232           // Verify that instructions in the block is in correct order.
1233           // Uses must follow their definition if they are at the same block.
1234           // Mostly done to check that MachSpillCopy nodes are placed correctly
1235           // when CreateEx node is moved in build_ifg_physical().
1236           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1237               // See (+++) comment in reg_split.cpp
1238               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1239             bool is_loop = false;
1240             if (n->is_Phi()) {
1241               for (uint l = 1; l < def->req(); l++) {
1242                 if (n == def->in(l)) {
1243                   is_loop = true;
1244                   break; // Some kind of loop
1245                 }
1246               }
1247             }
1248             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1249           }
1250         }
1251       }
1252     }
1253 
1254     j = block->end_idx();
1255     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1256     assert(bp, "last instruction must be a block proj");
1257     assert(bp == block->get_node(j), "wrong number of successors for this block");
1258     if (bp->is_Catch()) {
1259       while (block->get_node(--j)->is_MachProj()) {
1260         ;
1261       }
1262       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1263     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1264       assert(block->_num_succs == 2, "Conditional branch must have two targets");
1265     }
1266   }
1267 #endif
1268 }
1269 #endif
1270 
UnionFind(uint max)1271 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1272   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1273 }
1274 
extend(uint from_idx,uint to_idx)1275 void UnionFind::extend( uint from_idx, uint to_idx ) {
1276   _nesting.check();
1277   if( from_idx >= _max ) {
1278     uint size = 16;
1279     while( size <= from_idx ) size <<=1;
1280     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1281     _max = size;
1282   }
1283   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1284   _indices[from_idx] = to_idx;
1285 }
1286 
reset(uint max)1287 void UnionFind::reset( uint max ) {
1288   // Force the Union-Find mapping to be at least this large
1289   extend(max,0);
1290   // Initialize to be the ID mapping.
1291   for( uint i=0; i<max; i++ ) map(i,i);
1292 }
1293 
1294 // Straight out of Tarjan's union-find algorithm
Find_compress(uint idx)1295 uint UnionFind::Find_compress( uint idx ) {
1296   uint cur  = idx;
1297   uint next = lookup(cur);
1298   while( next != cur ) {        // Scan chain of equivalences
1299     assert( next < cur, "always union smaller" );
1300     cur = next;                 // until find a fixed-point
1301     next = lookup(cur);
1302   }
1303   // Core of union-find algorithm: update chain of
1304   // equivalences to be equal to the root.
1305   while( idx != next ) {
1306     uint tmp = lookup(idx);
1307     map(idx, next);
1308     idx = tmp;
1309   }
1310   return idx;
1311 }
1312 
1313 // Like Find above, but no path compress, so bad asymptotic behavior
Find_const(uint idx) const1314 uint UnionFind::Find_const( uint idx ) const {
1315   if( idx == 0 ) return idx;    // Ignore the zero idx
1316   // Off the end?  This can happen during debugging dumps
1317   // when data structures have not finished being updated.
1318   if( idx >= _max ) return idx;
1319   uint next = lookup(idx);
1320   while( next != idx ) {        // Scan chain of equivalences
1321     idx = next;                 // until find a fixed-point
1322     next = lookup(idx);
1323   }
1324   return next;
1325 }
1326 
1327 // union 2 sets together.
Union(uint idx1,uint idx2)1328 void UnionFind::Union( uint idx1, uint idx2 ) {
1329   uint src = Find(idx1);
1330   uint dst = Find(idx2);
1331   assert( src, "" );
1332   assert( dst, "" );
1333   assert( src < _max, "oob" );
1334   assert( dst < _max, "oob" );
1335   assert( src < dst, "always union smaller" );
1336   map(dst,src);
1337 }
1338 
1339 #ifndef PRODUCT
dump() const1340 void Trace::dump( ) const {
1341   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1342   for (Block *b = first_block(); b != NULL; b = next(b)) {
1343     tty->print("  B%d", b->_pre_order);
1344     if (b->head()->is_Loop()) {
1345       tty->print(" (L%d)", b->compute_loop_alignment());
1346     }
1347     if (b->has_loop_alignment()) {
1348       tty->print(" (T%d)", b->code_alignment());
1349     }
1350   }
1351   tty->cr();
1352 }
1353 
dump() const1354 void CFGEdge::dump( ) const {
1355   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1356              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1357   switch(state()) {
1358   case connected:
1359     tty->print("connected");
1360     break;
1361   case open:
1362     tty->print("open");
1363     break;
1364   case interior:
1365     tty->print("interior");
1366     break;
1367   }
1368   if (infrequent()) {
1369     tty->print("  infrequent");
1370   }
1371   tty->cr();
1372 }
1373 #endif
1374 
1375 // Comparison function for edges
edge_order(CFGEdge ** e0,CFGEdge ** e1)1376 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1377   float freq0 = (*e0)->freq();
1378   float freq1 = (*e1)->freq();
1379   if (freq0 != freq1) {
1380     return freq0 > freq1 ? -1 : 1;
1381   }
1382 
1383   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1384   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1385 
1386   return dist1 - dist0;
1387 }
1388 
1389 // Comparison function for edges
trace_frequency_order(const void * p0,const void * p1)1390 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1391   Trace *tr0 = *(Trace **) p0;
1392   Trace *tr1 = *(Trace **) p1;
1393   Block *b0 = tr0->first_block();
1394   Block *b1 = tr1->first_block();
1395 
1396   // The trace of connector blocks goes at the end;
1397   // we only expect one such trace
1398   if (b0->is_connector() != b1->is_connector()) {
1399     return b1->is_connector() ? -1 : 1;
1400   }
1401 
1402   // Pull more frequently executed blocks to the beginning
1403   float freq0 = b0->_freq;
1404   float freq1 = b1->_freq;
1405   if (freq0 != freq1) {
1406     return freq0 > freq1 ? -1 : 1;
1407   }
1408 
1409   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1410 
1411   return diff;
1412 }
1413 
1414 // Find edges of interest, i.e, those which can fall through. Presumes that
1415 // edges which don't fall through are of low frequency and can be generally
1416 // ignored.  Initialize the list of traces.
find_edges()1417 void PhaseBlockLayout::find_edges() {
1418   // Walk the blocks, creating edges and Traces
1419   uint i;
1420   Trace *tr = NULL;
1421   for (i = 0; i < _cfg.number_of_blocks(); i++) {
1422     Block* b = _cfg.get_block(i);
1423     tr = new Trace(b, next, prev);
1424     traces[tr->id()] = tr;
1425 
1426     // All connector blocks should be at the end of the list
1427     if (b->is_connector()) break;
1428 
1429     // If this block and the next one have a one-to-one successor
1430     // predecessor relationship, simply append the next block
1431     int nfallthru = b->num_fall_throughs();
1432     while (nfallthru == 1 &&
1433            b->succ_fall_through(0)) {
1434       Block *n = b->_succs[0];
1435 
1436       // Skip over single-entry connector blocks, we don't want to
1437       // add them to the trace.
1438       while (n->is_connector() && n->num_preds() == 1) {
1439         n = n->_succs[0];
1440       }
1441 
1442       // We see a merge point, so stop search for the next block
1443       if (n->num_preds() != 1) break;
1444 
1445       i++;
1446       assert(n == _cfg.get_block(i), "expecting next block");
1447       tr->append(n);
1448       uf->map(n->_pre_order, tr->id());
1449       traces[n->_pre_order] = NULL;
1450       nfallthru = b->num_fall_throughs();
1451       b = n;
1452     }
1453 
1454     if (nfallthru > 0) {
1455       // Create a CFGEdge for each outgoing
1456       // edge that could be a fall-through.
1457       for (uint j = 0; j < b->_num_succs; j++ ) {
1458         if (b->succ_fall_through(j)) {
1459           Block *target = b->non_connector_successor(j);
1460           float freq = b->_freq * b->succ_prob(j);
1461           int from_pct = (int) ((100 * freq) / b->_freq);
1462           int to_pct = (int) ((100 * freq) / target->_freq);
1463           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1464         }
1465       }
1466     }
1467   }
1468 
1469   // Group connector blocks into one trace
1470   for (i++; i < _cfg.number_of_blocks(); i++) {
1471     Block *b = _cfg.get_block(i);
1472     assert(b->is_connector(), "connector blocks at the end");
1473     tr->append(b);
1474     uf->map(b->_pre_order, tr->id());
1475     traces[b->_pre_order] = NULL;
1476   }
1477 }
1478 
1479 // Union two traces together in uf, and null out the trace in the list
union_traces(Trace * updated_trace,Trace * old_trace)1480 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1481   uint old_id = old_trace->id();
1482   uint updated_id = updated_trace->id();
1483 
1484   uint lo_id = updated_id;
1485   uint hi_id = old_id;
1486 
1487   // If from is greater than to, swap values to meet
1488   // UnionFind guarantee.
1489   if (updated_id > old_id) {
1490     lo_id = old_id;
1491     hi_id = updated_id;
1492 
1493     // Fix up the trace ids
1494     traces[lo_id] = traces[updated_id];
1495     updated_trace->set_id(lo_id);
1496   }
1497 
1498   // Union the lower with the higher and remove the pointer
1499   // to the higher.
1500   uf->Union(lo_id, hi_id);
1501   traces[hi_id] = NULL;
1502 }
1503 
1504 // Append traces together via the most frequently executed edges
grow_traces()1505 void PhaseBlockLayout::grow_traces() {
1506   // Order the edges, and drive the growth of Traces via the most
1507   // frequently executed edges.
1508   edges->sort(edge_order);
1509   for (int i = 0; i < edges->length(); i++) {
1510     CFGEdge *e = edges->at(i);
1511 
1512     if (e->state() != CFGEdge::open) continue;
1513 
1514     Block *src_block = e->from();
1515     Block *targ_block = e->to();
1516 
1517     // Don't grow traces along backedges?
1518     if (!BlockLayoutRotateLoops) {
1519       if (targ_block->_rpo <= src_block->_rpo) {
1520         targ_block->set_loop_alignment(targ_block);
1521         continue;
1522       }
1523     }
1524 
1525     Trace *src_trace = trace(src_block);
1526     Trace *targ_trace = trace(targ_block);
1527 
1528     // If the edge in question can join two traces at their ends,
1529     // append one trace to the other.
1530    if (src_trace->last_block() == src_block) {
1531       if (src_trace == targ_trace) {
1532         e->set_state(CFGEdge::interior);
1533         if (targ_trace->backedge(e)) {
1534           // Reset i to catch any newly eligible edge
1535           // (Or we could remember the first "open" edge, and reset there)
1536           i = 0;
1537         }
1538       } else if (targ_trace->first_block() == targ_block) {
1539         e->set_state(CFGEdge::connected);
1540         src_trace->append(targ_trace);
1541         union_traces(src_trace, targ_trace);
1542       }
1543     }
1544   }
1545 }
1546 
1547 // Embed one trace into another, if the fork or join points are sufficiently
1548 // balanced.
merge_traces(bool fall_thru_only)1549 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1550   // Walk the edge list a another time, looking at unprocessed edges.
1551   // Fold in diamonds
1552   for (int i = 0; i < edges->length(); i++) {
1553     CFGEdge *e = edges->at(i);
1554 
1555     if (e->state() != CFGEdge::open) continue;
1556     if (fall_thru_only) {
1557       if (e->infrequent()) continue;
1558     }
1559 
1560     Block *src_block = e->from();
1561     Trace *src_trace = trace(src_block);
1562     bool src_at_tail = src_trace->last_block() == src_block;
1563 
1564     Block *targ_block  = e->to();
1565     Trace *targ_trace  = trace(targ_block);
1566     bool targ_at_start = targ_trace->first_block() == targ_block;
1567 
1568     if (src_trace == targ_trace) {
1569       // This may be a loop, but we can't do much about it.
1570       e->set_state(CFGEdge::interior);
1571       continue;
1572     }
1573 
1574     if (fall_thru_only) {
1575       // If the edge links the middle of two traces, we can't do anything.
1576       // Mark the edge and continue.
1577       if (!src_at_tail & !targ_at_start) {
1578         continue;
1579       }
1580 
1581       // Don't grow traces along backedges?
1582       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1583           continue;
1584       }
1585 
1586       // If both ends of the edge are available, why didn't we handle it earlier?
1587       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1588 
1589       if (targ_at_start) {
1590         // Insert the "targ" trace in the "src" trace if the insertion point
1591         // is a two way branch.
1592         // Better profitability check possible, but may not be worth it.
1593         // Someday, see if the this "fork" has an associated "join";
1594         // then make a policy on merging this trace at the fork or join.
1595         // For example, other things being equal, it may be better to place this
1596         // trace at the join point if the "src" trace ends in a two-way, but
1597         // the insertion point is one-way.
1598         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1599         e->set_state(CFGEdge::connected);
1600         src_trace->insert_after(src_block, targ_trace);
1601         union_traces(src_trace, targ_trace);
1602       } else if (src_at_tail) {
1603         if (src_trace != trace(_cfg.get_root_block())) {
1604           e->set_state(CFGEdge::connected);
1605           targ_trace->insert_before(targ_block, src_trace);
1606           union_traces(targ_trace, src_trace);
1607         }
1608       }
1609     } else if (e->state() == CFGEdge::open) {
1610       // Append traces, even without a fall-thru connection.
1611       // But leave root entry at the beginning of the block list.
1612       if (targ_trace != trace(_cfg.get_root_block())) {
1613         e->set_state(CFGEdge::connected);
1614         src_trace->append(targ_trace);
1615         union_traces(src_trace, targ_trace);
1616       }
1617     }
1618   }
1619 }
1620 
1621 // Order the sequence of the traces in some desirable way, and fixup the
1622 // jumps at the end of each block.
reorder_traces(int count)1623 void PhaseBlockLayout::reorder_traces(int count) {
1624   ResourceArea *area = Thread::current()->resource_area();
1625   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1626   Block_List worklist;
1627   int new_count = 0;
1628 
1629   // Compact the traces.
1630   for (int i = 0; i < count; i++) {
1631     Trace *tr = traces[i];
1632     if (tr != NULL) {
1633       new_traces[new_count++] = tr;
1634     }
1635   }
1636 
1637   // The entry block should be first on the new trace list.
1638   Trace *tr = trace(_cfg.get_root_block());
1639   assert(tr == new_traces[0], "entry trace misplaced");
1640 
1641   // Sort the new trace list by frequency
1642   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1643 
1644   // Patch up the successor blocks
1645   _cfg.clear_blocks();
1646   for (int i = 0; i < new_count; i++) {
1647     Trace *tr = new_traces[i];
1648     if (tr != NULL) {
1649       tr->fixup_blocks(_cfg);
1650     }
1651   }
1652 }
1653 
1654 // Order basic blocks based on frequency
PhaseBlockLayout(PhaseCFG & cfg)1655 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1656 : Phase(BlockLayout)
1657 , _cfg(cfg) {
1658   ResourceMark rm;
1659   ResourceArea *area = Thread::current()->resource_area();
1660 
1661   // List of traces
1662   int size = _cfg.number_of_blocks() + 1;
1663   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1664   memset(traces, 0, size*sizeof(Trace*));
1665   next = NEW_ARENA_ARRAY(area, Block *, size);
1666   memset(next,   0, size*sizeof(Block *));
1667   prev = NEW_ARENA_ARRAY(area, Block *, size);
1668   memset(prev  , 0, size*sizeof(Block *));
1669 
1670   // List of edges
1671   edges = new GrowableArray<CFGEdge*>;
1672 
1673   // Mapping block index --> block_trace
1674   uf = new UnionFind(size);
1675   uf->reset(size);
1676 
1677   // Find edges and create traces.
1678   find_edges();
1679 
1680   // Grow traces at their ends via most frequent edges.
1681   grow_traces();
1682 
1683   // Merge one trace into another, but only at fall-through points.
1684   // This may make diamonds and other related shapes in a trace.
1685   merge_traces(true);
1686 
1687   // Run merge again, allowing two traces to be catenated, even if
1688   // one does not fall through into the other. This appends loosely
1689   // related traces to be near each other.
1690   merge_traces(false);
1691 
1692   // Re-order all the remaining traces by frequency
1693   reorder_traces(size);
1694 
1695   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1696 }
1697 
1698 
1699 // Edge e completes a loop in a trace. If the target block is head of the
1700 // loop, rotate the loop block so that the loop ends in a conditional branch.
backedge(CFGEdge * e)1701 bool Trace::backedge(CFGEdge *e) {
1702   bool loop_rotated = false;
1703   Block *src_block  = e->from();
1704   Block *targ_block    = e->to();
1705 
1706   assert(last_block() == src_block, "loop discovery at back branch");
1707   if (first_block() == targ_block) {
1708     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1709       // Find the last block in the trace that has a conditional
1710       // branch.
1711       Block *b;
1712       for (b = last_block(); b != NULL; b = prev(b)) {
1713         if (b->num_fall_throughs() == 2) {
1714           break;
1715         }
1716       }
1717 
1718       if (b != last_block() && b != NULL) {
1719         loop_rotated = true;
1720 
1721         // Rotate the loop by doing two-part linked-list surgery.
1722         append(first_block());
1723         break_loop_after(b);
1724       }
1725     }
1726 
1727     // Backbranch to the top of a trace
1728     // Scroll forward through the trace from the targ_block. If we find
1729     // a loop head before another loop top, use the the loop head alignment.
1730     for (Block *b = targ_block; b != NULL; b = next(b)) {
1731       if (b->has_loop_alignment()) {
1732         break;
1733       }
1734       if (b->head()->is_Loop()) {
1735         targ_block = b;
1736         break;
1737       }
1738     }
1739 
1740     first_block()->set_loop_alignment(targ_block);
1741 
1742   } else {
1743     // That loop may already have a loop top (we're reaching it again
1744     // through the backedge of an outer loop)
1745     Block* b = prev(targ_block);
1746     bool has_top = targ_block->head()->is_Loop() && b->has_loop_alignment() && !b->head()->is_Loop();
1747     if (!has_top) {
1748       // Backbranch into the middle of a trace
1749       targ_block->set_loop_alignment(targ_block);
1750     }
1751   }
1752 
1753   return loop_rotated;
1754 }
1755 
1756 // push blocks onto the CFG list
1757 // ensure that blocks have the correct two-way branch sense
fixup_blocks(PhaseCFG & cfg)1758 void Trace::fixup_blocks(PhaseCFG &cfg) {
1759   Block *last = last_block();
1760   for (Block *b = first_block(); b != NULL; b = next(b)) {
1761     cfg.add_block(b);
1762     if (!b->is_connector()) {
1763       int nfallthru = b->num_fall_throughs();
1764       if (b != last) {
1765         if (nfallthru == 2) {
1766           // Ensure that the sense of the branch is correct
1767           Block *bnext = next(b);
1768           Block *bs0 = b->non_connector_successor(0);
1769 
1770           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1771           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1772           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1773 
1774           if (bnext == bs0) {
1775             // Fall-thru case in succs[0], should be in succs[1]
1776 
1777             // Flip targets in _succs map
1778             Block *tbs0 = b->_succs[0];
1779             Block *tbs1 = b->_succs[1];
1780             b->_succs.map( 0, tbs1 );
1781             b->_succs.map( 1, tbs0 );
1782 
1783             // Flip projections to match targets
1784             b->map_node(proj1, b->number_of_nodes() - 2);
1785             b->map_node(proj0, b->number_of_nodes() - 1);
1786           }
1787         }
1788       }
1789     }
1790   }
1791 }
1792